
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2011

A brain-inspired model of hierarchical planner A brain-inspired model of hierarchical planner

Budhitama SUBAGDJA

Ah-Hwee TAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6262&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A Brain-Inspired Model of Hierarchical Planner

Budhitama Subagdja
School of Computer Engineering

Nanyang Technological University, Singapore
Email: budhitama@ntu.edu.sg

Ah-Hwee Tan
School of Computer Engineering

Nanyang Technological University, Singapore
Email: asahtan@ntu.edu.sg

Abstract—Hierarchical planning is an approach of planning
by composing and executing hierarchically arranged plans to
solve some problems. Most symbolic-based hierarchical plan-
ners have been devised to allow the knowledge to be described
expressively. However, a great challenge is to automatically
seek and acquire new plans on the fly. This paper presents
a novel neural-based model of hierarchical planning that can
seek and acquired new plans on-line if the necessary knowledge
are lacking. Inspired by findings in neuropsychology, plans
can be inherently learnt, retrieved, and manipulated simulta-
neously rather than discretely processed like in most symbolic
approaches. Using a multi-channel adaptive resonance theory
(fusion ART) neural network as the basic building block, the
so called iFALCON architecture can capture and manipulate
sequential and hierarchical relations of plans on the fly. Case
studies using a blocks world domain and unreal tournament
video game demonstrate that the model can be used to execute,
plan, and discover plans and procedural knowledge through
experiences.

Keywords-hierarchical planning; plan learning; adaptive res-
onance theory

I. INTRODUCTION

Various computational models of planning have been
devised mostly based on symbolic approaches [1]. In prac-
tice, a popular approach of planning is the hierarchical
transition model [2] (hierarchical planning) in which hier-
archically arranged plans are assumed to be available as
pre-given knowledge. This hierarchical approach can take
less computational efforts as it does not have to consider
all alternative solutions but to focus instead on choosing
the right goal (deliberation) and the right plan (means-end
reasoning) at the right moment as parts of the execution.
An important challenge is how to make this kind of planner
discovers and acquires new plans autonomously without
relying on much efforts of the system developer or domain
experts. Consequently, this includes the ability to acquire the
hierarchical arrangements of the plan on the fly.

On the other hand, recent findings in neuropsychology
have indicated that these goal oriented and planning-related
abilities have also been observed in human and animals and
identified to be related to a particular area in the brain [3].
Evidences based on brain lesions and neuroimaging have
revealed that the frontal cortex area in the brain is particu-
larly related to higher-level cognitive functions and controls
such as integrating multiple sources of input, sustaining

intentions, acquiring rules, monitoring the progress of plans,
and goals-subgoals decomposition [4]. In other words, the
frontal cortex also serves particularly as a kind of flexible
and adaptive hierarchical planner in the brain.

This paper presents a neural architecture for hierarchical
planning agents featuring on the fly plan discovery and learn-
ing. The proposed architecture is made as interconnected
modules each corresponds to the functionality of a certain
frontal cortex area in the brain. Using neural networks and
brain structures as the basis, the planner model can simulta-
neously process and learn plan representation continuously
rather than discretely and serially like in most symbolic-
based approaches. Each functional part or module is made
as a multi-channel neural network building block called
fusion ART [5] which enables continual cycles of catego-
rizing, matching, learning, and growing by allocating new
neurons. The proposed architecture, called iFALCON, can
map symbolic descriptions into weighted neural connections
and turns interacting pattern matching in neural networks
into state-space search and manipulation supporting planning
processes.

The work in this paper is generally intended to explore
an alternative to learning and adaptation mechanisms in
hierarchical planning without suggesting a new ultimate
planner that can produce optimal solutions. However, our
main contributions to the current state-of-the-art include a
novel way to represent sequences and transient hierarchical
structure in neural networks so that plans can be retrieved,
executed, and traced back (backtracking). We also come up
with a solution of how planning, learning, and execution can
seamlessly interleave each other in dynamic continuous cy-
cles of exploiting and forming hierarchical plans structures.

The rest of the paper is organized as follows. Section II
discusses related works in hierarchical planning systems.
Section III describes the proposed neural network model of
hierarchical planner. Section IV presents and discusses our
implementation of iFALCON to illustrate how it can follow
plans as prior knowledge while invent and learn new ones
when the knowledge is insufficient. Section V summarizes
and concludes the work with some discussion on further use
and development of the architecture.

II. RELATED WORKS

Some symbolic models of hierarchical planning have
included learning to acquire new plans when pregiven ones
are incomplete. Some approaches have considered learning-
by-doing in which the definition or parameters of operators
are acquired by online observation and practices [6], [7],
[8]. This kind of self-directed learning enables the planner
to be flexibly applied to complex and dynamic domains
like in robotics or reactive control systems. However, the
representations of the knowledge acquired are mostly simple
and limited only for adjusting predefined parameters. Some
HTN (Hierarchical Transition Network) planners have over-
came these limitations by employing particular mechanisms
to update pre-existing plans or create a new more efficient
set of plans from prior knowledge [9], [10], [11]. The HTN
learning models, however, are still considered to be offline as
they learn prior to the application of the acquired knowledge,
although the approach may relieve domain experts from
crafting the complete and correct knowledge.

On the other hand, only few neural-inspired models or
brain-like structures of planner have been proposed. Most of
them focus only on certain limited aspects of planning. Some
neural models are developed as controllers for agents or
reactive systems [12], [13]. They are not meant for acquiring
complete hierarchical structure of plans nor flexibly reuse
them but only sustaining limited parameters or brief sequen-
tial episodes. Some models have already considered both the
biological plausibility and the representational adequacy of
reactive planning systems [14]. The system has also been
related to the state-space search method by demonstrating
a simple backward chaining process to search for a plan
over the neural network structure [15]. However, the issue
of capturing hierarchical plans on the fly is almost totally
untouched.

The model proposed in this paper is intended towards
realizing a neural-plausible architecture for hierarchical
planning that includes most aspects of planning covering
reactive execution control, means-ends reasoning, and cap-
turing plans on-line. Unlike other hierarchical planners, the
proposed neural network inherently categorizes and learns
plan descriptions as neural activation patterns.

III. THE NEURAL ARCHITECTURE OF HIERARCHICAL
PLANNER

Neuropsychological studies have revealed that the brain
frontal cortex area can be associated with higher cogni-
tive functions and cognitive control [4]. Among all the
observed functional features, frontal cortex can be related
to basic operations supporting hierarchical planning as fol-
lows: (1) selecting and initiating goals and task behaviour;
(2) sustaining information for performing the tasks and
goals achievement (working memory); (3) breaking down
goals into subgoals; (4) monitoring and evaluating goals
achievement; and (5) hypothesis generation and adapting

rules (plans) of behaviour. Our proposed model is made
to realize those functional traits of the corresponding brain
cortical area in neural networks. Before moving on to the
corresponding model, the next part of this section describes
the basic building block used to realize each part or module
of the whole architecture.

A. Fusion ART: The Building Block

The proposed hierarchical planner model is based on
fusion ART [5], a derivation of Adaptive Resonance Theory
(ART) neural network [16] with multiple input fields. ART
networks apply unsupervised learning to categorize input
patterns. They employ bi-directional processes of catego-
rization and prediction to find the best matching category
(resonance). They also learn continuously by updating the
weights of neural connections at the end of each search
cycle. ART may also grow dynamically by allocating a
new category node if no match can be found. This type
of neural network is chosen as the building block of our
model as it enables continuous formation of memory with
adjustable vigilance of categorization to control the growth
of the network and the level of generalization.

Specifically, fusion ART can be defined as follows: F k
1

and F2 are the kth input (output) field and the category field
of fusion ART (Figure 1) respectively for k = 1, .., n. Let xk

denote F k
1 activity vector and wk

j denote the weight vector
associated with jth node in F2. F k

1 is associated with choice
parameter αk > 0, learning rate βk ∈ [0, 1], contribution
parameter γk ∈ [0, 1], and vigilance parameter ρk ∈ [0, 1].
A node J in F2 is selected through resonance search
which is the interaction between the application of choice
function (bottom-up process) and template matching (top-
down process). The choice function produces activations
such that Tj =

∑n
k=1 γ

k |xk∧wk
j |

αk+|wk
j
| , and through template

matching, a node J is selected such that TJ = max{Tj :

∀k,mk
j =

|xk∧wk
j |

|xk| ≥ ρk, for allF2 node j}, where the fuzzy
AND operation ∧ is defined by (p∧ q)i ≡ min(pi, qi), and
the norm |.| is defined by |p| ≡

∑
i pi for vectors p and

q. If no existing F2 node achieves the criteria such that
∀j ∃k,mk

j < ρk, an uncommitted F2 node j′ is allocated
with ∀k,wk

j′ = 1 so that ∀k,mk
j′ ≥ ρk and node j′ will be

selected with TJ = Tj′ . An equal pair (0,0) could also mean
don’t-know and (1,1) would mean don’t-care condition.

Given the selected node J , learning takes place by mod-
ifying the weight vector wk

J such that w
k(new)
J = (1 −

βk)w
k(old)
J + βk(xk ∧w

k(old)
J). The corresponding weight

vector of the chosen F2 node J can be readout into the input
field F k

1 such that xk(new) = wk
J .

It is also possible to generalize the knowledge learnt in
fusion ART. The generalization can be achieved by lowering
the vigilance parameter ρk so that slightly different input
patterns can still activate the same category. The value of an
input item can be paired so that the ART learning represents

Figure 1. Fusion ART Neural Network

a range of values. Let Ik be the input vector for F k
1 , I

k
i ∈

[0, 1]. Ik is augmented with Īk such that Īki = 1− Iki . The
activity vector xk of F k

1 thus augments the input vector
Ik with its complement Īk which are learnt as a wk

j . If
(wk

ij , w
k
ij) be the corresponding pair of wk

j , the value of the
connection becomes less specific when wk

ij ̸= 1− wk
ij .

B. Sequential and Hierarchical Representation

The standard configuration of fusion ART does not in-
clude a way of representing sequential or hierarchical re-
lations between items. As a part of the proposed model,
the fusion ART is extended to associate and group patterns
occurring across time. Inspired by the Item and Order
working memory model in which the temporal order is
encoded in the relative activity of different node popula-
tions [17], fusion ART is extended by implementing constant
increments (decrements) to determine the activation value of
each selected category node.

The activation pattern of a category field Fn follows a
recency gradient (First In Last Out or FILO) if the value of
the selected node J in Fn is set to τ such that yJ = τ , and
τ is updated so that τ (new) = τ (old) + υ, where 0 ≤ τ ≤ 1,
0 < υ < 1. τ initializes with 0 at the beginning of the
sequence and the sequence ends when it reaches 1. On the
other hand, it follows a primacy gradient (First In First Out
or FIFO), if yJ = τ , and τ (new) = τ (old)−υ. τ is initialized
at 1 at the beginning of the sequence and the sequence ends
when it reaches 0.

Figure 2. (i) Winner-take-all activation; (ii) Recency gradient activation
pattern (FILO), and (iii) Primacy gradient activation pattern (FIFO)

Figure 2 shows different types of sequential ordering
compared with the activation using the standard winner-
take-all activation in fusion ART. The analog pattern formed
following the gradient values ordering can directly be learnt
and grouped as a category using the same mechanism of
resonant search cycle in fusion ART. The sequential pattern
can be considered as the input to a fusion ART network. In
the proposed architecture, some connected layers of fusion

ARTs employ the same technique in their category field
allowing another fusion ART to learn the sequential patterns.

C. Planning with iFALCON

Given a triple ⟨S,G,P⟩ where S is the perception (beliefs)
about the current state of the world, G is the set of goals
to achieve, and P is the set of known plans that can be
used to solve different types of problem, a planning task
is to come up with a plan π to achieve G. A plan π can
be described as a tuple π = ⟨cπ, gπ, bπ, vπ⟩ where cπ is
the set of preconditions that makes π applicable to select
and initiate, gπ is the goal conditions that will hold after
performing or executing π, bπ is a sequence of operations
or actions that must be followed in the right order to achieve
gπ , and vπ is an optional attribute of π consisting of a
value reflecting the utility or the cost (depending on the
problem domain) of π. In hierarchical planning, a plan π
can be constructed by directly retrieving it from P or a plan
repository. It is also possible that an action step in bπ is a
non-primitive subgoaling action wherein a further planning
process is initiated rather than directly changing the task
environment.

iFALCON is a neural architecture that arranges different
fusion ART networks to emulate the process of planning and
plan execution. As shown in Figure 3, iFALCON consists of
four input (output) fields and three category fields. F b

1 , F g
1 ,

F c
1 , and F a

1 denote beliefs, desires, critic, and action fields
respectively. The beliefs field corresponds to the current
state of the environment or S in the problem formulation.
The desires field represent the goal corresponding to G in
the planning problem formulation. The critic reflects the
difference between the values in beliefs and desires or vπ .
The action field represents the action to take at a moment
to update the environment or initiating further planning
(subgoaling).

Figure 3. iFALCON Architecture

F2 and F3 are category fields of different fusion ARTs
representing the set of learnt plans (P) and actions included
in every plan respectively. In that case, each node j in F2

represents a plan πj and the primacy gradient pattern (FIFO)

of activation formed in F3 nodes represents the sequence of
action in πj if πj is selected. This implies that the connection
weights wb

j , wg
j , wt

j , and wc
j correspond to cπj , gπj , bπj , and

vπj respectively. Figure 4 shows how a symbolic description
of a plan corresponds to the neural network structure in
iFALCON.

Figure 4. Comparison between symbolic descriptions of plan and the
corresponding weighted connections structure

Figure 4 also shows how a non-primitive action corre-
sponds to its neural structure in iFALCON. For example, a
subgoal achievement action can be represented as a single
node in the input field F a

1 . As the action node in F3 connects
to F g

1 as well, the execution of the achievement action
replaces the values of goal field F g

1 with a new subgoal.
On the other hand, F4 category field gets its inputs from

F2 and F3 in terms of yp
2 and ys

3 vectors respectively. It
serves as working memory or a transient buffer holding in-
formation about the status of the plan execution. An instance
of a plan execution and the overall structure of intention can
be stored temporarily by categorizing the inputs (yp

2 and ys
3)

through resonance search processes following the recency
gradient pattern of activations (FILO). Whenever a plan has
been successfully executed to achieve its goals, the process
can be resumed to the state of the last superordinate plan by
selecting and reading out the largest activation of vector yi

4

in F4 field.
To realize the basic functionality of frontal cortex as

mentioned above, some operations are applied in iFALCON
as follows:

1) Selecting and initiating plans. Selecting and initi-
ating a plan can be done by applying the resonance
search to select a node in F2 given xb

1, xg
1, and xc

1.
The plan body or the sequence of action can then be
readout to F3 field.

2) Sustaining information for goal achievement. The
content of the plan body can be sustained as the
activation pattern in F3 field as scheduled operations
while the highest node is readout and deactivated for
execution.

3) Breaking down goals and subgoals. At any time
point, a non-primitive subgoal (achieve) action may be
executed as a part of the plan. This subgoaling action

initiates the resonance search in F4 to sustain the plan
and actions pending achievement while the goal values
in xg

1 is replaced by the weights wg
t (subgoal).

4) Monitoring goals achievement. A matching function
is applied to evaluate the difference between F b

1 and
F g
1 . In our implementation, we use the function md =

|xg
1∧xb

1|
|xg

1 |
to evaluate the goal achievement. If the value

is greater than or equal a threshold ρd then the goal can
be considered achieved. Otherwise the plan selection
or execution continues.

5) Hypothesis generation and plans acquisition. If no
plan that fits with the criteria can be found, a new
F2 node is allocated for a new plan while another
plan can be selected with less restricted criteria as
a hypothesis. If the sequence of hypotheses made
eventually achieves the allocated goal, the pattern
representing the sequence in F3 can be learnt as the
body of the allocated plan.

Algorithm 1 (iFALCON Execution cycles).

1 WHILE True
2 Perceive the environment and update F b

1

3 IF md =
|xg

1
∧xb

1|
|xg

1
| ≥ ρd /*the goal matches with the beliefs*/

4 IF max(y3) ≥ 1 /* a new sequence has just been formed */
5 w

t(new)
j = (1− β3)w

t(old)
j + β3(yt

3) /*learn the sequence*/

6 w
c(new)
j = (1− βc

1)w
c(old)
j + βc

1(x
c
1) /*learn the critic*/

7 IF max(y4) > 0 /* some plans are pending achievements */
8 readout F2 and F3 from node i (max) in F4; reset node i
10 readout F g

1 from node j (max) in F2

11 ELSE Finish
12 ELSE
13 IF max(y2) ≤ 0 /* no plan is activated or selected */
14 select F2 node j by resonance search
15 yp2.j ← 1; yp2.m ← 0, m ̸= j

16 readout F g
1 and F3 from node j in F2

17 IF max(y3) ≤ 0 /*no existing plan can be found*/
18 w

c(new)
j = (1− βc

1)w
c(old)
j + βc

1(x
c
1) /*learn the critic*/

19 select F4 node i by resonance search (recency gradient)
20 REPEAT /*the start of the forward chaining hypothesis*/
21 ρ

g(new)
1 = ρ

g(old)
1 − δ /*gradually reducing ρg1*/

22 select F2 node j by resonance search
23 UNTIL existing j is found
24 readout F g

1 and F3 from F2 node j (max)
25 set action pattern in Fa

1 to subgoal (achieve) action
26 readout F2 and F3 from node i (max) in F4

27 resonance search F3 with F g
1 and Fa

1 (primacy gradient)
28 w

s(new)
i = (1− βs

i)w
s(old)
i + βs

i (y
s
3);y2 = 0

29 /*store the hypothesis; reset plan field*/
30 set ρg1 back to normal (default)
31 ELSE /*there is an action in F3 pending execution*/
32 readout Fa

1 from F3 node t (max)
33 IF the selected action in Fa

1 is a subgoal action (achieve)
34 select F4 node i by resonance search (recency gradient)
35 readout F g

1 from node t in F3; reset F2

36 reset node t in F3

37 Execute the action based on Fa
1

In the current implementation, the strategy used to make
the hypothesis is forward chaining wherein the base vigi-

lance ρg1 of the desires field (F g
1) is gradually decreasing

until an existing plan can be found so that any applicable
plan will be selected regardless whether it can achieve the
main goal or not. The entire process of hierarchical planning
above can be described as pseudo-code in Algorithm 1.

IV. CASE STUDY

We have implemented iFALCON and applied it to solve
blocks world domain and a real-time first-person-shooter
video game called Unreal Tournament. Each problem do-
main will be illustrated in the following parts.

A. Blocks World

In blocks world domain, the target is to stack blocks from
one configuration (initial state) to another configuration (the
goal) like shown in Figure 5. For the same goal configura-
tion, there are twelve possible initial state configurations.

Figure 5. Blocks world problem and different initial blocks configurations.

As a hierarchical planner iFALCON has been successfully
applied to solve the blocks world problem by executing plans
and decomposing goals and subgoals. The goal condition
can be achieved from all twelve initial configurations with
minimal prior knowledge (all pre-given plans consist of only
a single step of a primitive action) although the steps taken to
solve the problem in a planning instance may sometimes not
be efficient [18]. The performance in searching for a solution
can also be improved by providing a guiding plan (a plan
with a sequence of action and subgoals) as an additional
prior knowledge [18].

The ability to acquire plans on the fly has also been
evaluated in [19] and it has been demonstrated that a
reasonable plan can be captured from a planning instance.
For example, the following is a symbolic mapping of a plan
captured as neural connections in iFALCON in solving the
blocks world problem:
{goal: [-B_On_Table, C_On_Table, -A_On_Table, -Clear_C,

-Clear_B, Clear-A],
pre: [-B_On_Table, -C_On_Table, A_On_Table, -Clear_C,

Clear_B, -Clear_A],
body: [{achieve: [Clear_A, B_On_Table]},{achieve:[-Clear_C,

-B_On_Table]}, {achieve: [-A_On_Table, -Clear_B]}],
critic: [1]}

The minus (’-’) sign means negation of the following
proposition. However, it is also indicated that the on-line
learning feature is still not effective for some initial con-
figurations if only the minimal plans are employed as prior
knowledge [19].

In this paper, we further present more results from the
evaluation of the iFALCON learning capability in blocks

world to confirm that the agent actually learns useful plans.
A testing scenario looks at how well iFALCON achieves
the goal continuously from a series of different varying
initial block configurations. Using the same set of prior
knowledge (plans) with a guiding plan as in [18] and [19],
20 independent trials over 500 consecutive series of problem
solving episodes are conducted. In a single problem solving
episode, a block configuration is selected at random. For
each trial and single episode, the number of execution cycles
required to achieve the goal, the number of action steps taken
to achieve the goal, the difference between the number of
action steps taken with the optimal number of steps that can
be applied for that particular block configuration, and the
number of plans learnt are measured.

In the early stage of the experiment, however, we have
realized that if a plan is learnt for one of the possible
initial configurations (configuration 11 in Figure 5), further
learning may instead corrupt the knowledge for other con-
figurations. This can happen because a plan learnt from the
corrupting configuration can have a more general goal crite-
ria (more don’t care conditions) that incidentally matches
with the original main goal of blocks world. This also
indicates that the context of learning from previous trials
may influence the effectiveness of the learning if the learning
trials are interdependent.

For the reason of space we do not include the early results
with the corrupting configuration in this paper. Our direct
solution is by taking out the configuration 11 from the set
of initial state configurations and rerun the same experiment.
Figure 6(i) shows the trends of the average number of ex-
ecution cycles and action steps without block configuration
11. Figure 6(ii) shows the trends of the average difference
between the number of action step and the optimal action
possible, and the average number of plans learnt. Figures 6(i)
and 6(ii) show that the performance improves and converges.
This means also iFALCON can learn useful plans that can
be reused to achieve goals in different conditions.

B. Unreal Tournament Gamebot

Unreal Tournament (UT) is a real-time first-person shooter
video game. We apply iFALCON as a reasoning engine of
a non-player character (NPC) in Unreal Tournament. The
objective of this domain is to test whether an iFALCON
agent can follow some prescribed plans and goals when
the environment is continuous and the agent has only very
limited knowledge about the task domain (no information
about locations or exact coordinates). This NPC is only
tested for its ability to execute plans and the possibility
that any plan can be captured as a result of the planning
and learning capability driven by the algorithm. The overall
performance or improvement as produced by learning is
not evaluated. The NPC must accomplish a certain mission
to collect certain objects resided in the environment in a
particular order. The mission is given explicitly as goals

Figure 6. (i) The trend of average over 20 trials of the number of execution
cycles and action steps for 500 episodes; (ii) The trend of average over 20
trials of the difference between the number of action step and the optimal
action possible, and the number of plans learnt in for 500 episodes

and plans inserted as neural activations and connections in
iFALCON. For the reason of space, we omit to show all
prior knowledge provided to the agent. Some plans used as
prior knowledge in the UT domain are as follows:

{goal: [mission_Accomplished], {goal: [got_FlakCannon]},
pre: [], pre: [-got_FlakCannon]},
body: body:
[{achieve:[got_FlakCannon]}, [{achieve:[-FlakCannonFar]},
{achieve:[got_Rocket]}], [{do:[moveto_FlackCannon}],
critic: [1]} critic: [1]}

{goal: [got_Rocket],
pre: [got_FlakCannon],
body:
[{achieve:[-RocketFar]},
{do:[moveto_Rocket]}],
critic: [1]}

After 824 ticks (1 tick is 100 interaction cycles or about
1 second) the agent can accomplish the mission 6 times,
and get 13 items in the right order (get the flak cannon first
followed by getting the rocket launcher) which also indicates
that the NPC has followed the initial plans correctly. The
bot has also captured many plans although most of them
consist of a single action step only. Some of them are also
redundant (a plan captured is already learnt before) as the
basic Algorithm 1 still does not have a mechanism to avoid
redundancy. Among the plans captured, some are as follows:
{ pre: [-mission_Accomplished, -got_Rocket,

-got_FlakCannon, WeaponFar, HealthFar,
-NavpointFar,...........................],

critic: [1]},
body: [{achieve: [to_Navpoint]},

{achieve: [to_Navpoint]}],
’goal’: [’-FlakFar’] }

{ pre: [-mission_Accomplished, -got_Rocket,
got_FlakCannon, -WeaponFar, HealthFar,

-NavpointFar............................],
critic: [1]},
body: [{achieve: [to_Navpoint]},

{achieve: [-NavpointFar’]},
{achieve: [to_Navpoint]},
{achieve: [to_Navpoint]}],

’goal’: [’-farLauncher’] }
{ pre: [-mission_Accomplished, -got_Rocket,

-got_FlakCannon, WeaponFar, HealthFar,
NavpointFar,...........................],

critic: [1]},
body: [{achieve: [-NavpointFar’]}

{achieve: [to_Navpoint]},
{achieve: [to_Navpoint]}],

’goal’: [’-FlakFar’] }

The case study in UT domain has shown that iFALCON
can function as a plan executor and plan generator simul-
taneously in a continuous real-time domain. Despite the
overall performance and the efficiency and consistency of
the learnt plans, the architecture can capture plans that can
be useful and meaningful if the domain model and the initial
knowledge are considered carefully in the design process.

V. CONCLUSION

This paper has presented a model of hierarchical planning
system realized as a neural network model called iFALCON.
The model emulates some functionalities of frontal cortex
characterizing a hierarchical planner observed and studied
in neuropsychology. The model has been implemented and
tested to solve the blocks world problem and to capture plans
in the Unreal Tournament real-time video game. Beyond a
static hierarchical plan executor, the case study confirms the
capability of planning and learning in iFALCON to explore
and capture new solutions. However, the test also reveals
that the quality of planning and learning is sensitive to
the availability of the appropriate prior knowledge and the
context of learning trials. More in-depth studies are required
to obtain the complete picture of the characteristics of the
plan learning.

The proposed model comprises bi-directional activation
pathways which make it possible to select a plan based on
different criteria and order. It is also possible to select a
plan based on the presentation of action sequences rather
than triggered by goals. In the future, it is possible to add
the feature of plan recognition beyond the basic functionality
of hierarchical planner.

In any case, the proposed model can bridge two different
approaches of building planning agents. Top-down formal
symbolic approaches can be integrated with bottom-up non-
symbolic processes to accomplish a single task domain. Both
directions can support and enrich each other to realize a
system that ultimately deliberate, plan, and learn.

ACKNOWLEDGEMENT

This work was supported by the Singapore National Re-
search Foundation Interactive Digital Media R&D Program,
under research Grant NRF2008IDM-IDM004-037.

REFERENCES

[1] M. Ghallab, D. Nau, and P. Traverso, Automated Planning:
Theory and Practice. Amsterdam: Morgan Kaufman, 2004.

[2] E. D. Sacerdoti, “The nonlinear nature of plans,” in Proceed-
ings of the 4th International Joint Conference on Artificial
Intelligence (IJCAI-75), 1975, pp. 206–218.

[3] E. K. Miller and J. D. Cohen, “An integrative theory of
prefrontal cortex function,” Annual Review of Neuroscience,
vol. 24, pp. 167–202, 2001.

[4] D. Badre and M. D’Esposito, “Is the rostro-caudal axis of
the frontal lobe hierarchical?” Nature Reviews Neuroscience,
vol. 10, pp. 659–669, 2009.

[5] A.-H. Tan, G. A. Carpenter, and S. Grossberg, “Intelligence
Through Interaction: Towards A Unified Theory for Learn-
ing,” in Proceedings of International Symposium on Neural
Networks (ISNN) 2007, LNCS 4491. Berlin:Springer, 2007,
pp. 1098–1107.

[6] X. Wang, “Planning while learning operators,” in Proceedings
of the Third International Conference on Artificial Intelli-
gence Planning Systems. AAAI Press, 1996, pp. 229–236.

[7] S. W. Bennet and G. F. Dejong, “Real-world robotics: Learn-
ing to plan for robust execution,” Machine Learning, vol. 23,
no. 2–3, pp. 121–161, 1996.

[8] M. Beetz, Concurrent Reactive Plans: Anticipating and Fore-
stalling Execution Failures, LNCS 1772. Berlin: Springer,
2000.

[9] O. Ilghami, D. S. Nau, H. Munoz-Avila, and D. W. Aha,
“Learning preconditions for planning from plan traces and
HTN structure,” Computational Intelligence, vol. 4, pp. 388–
413, 2005.

[10] C. Hogg, H. Munoz-Avila, and U. Kuter, “HTN-MAKER:
Learning HTNs with minimal additional knowledge engineer-
ing,” in Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence (AAAI’08), 2008, pp. 950–956.

[11] C. Hogg, U. Kuter, and H. Munoz-Avila, “Learning hierarchi-
cal task networks for nondeterministic planning domains,” in
Proceedings of the Twenty-First International Joint Confer-
ence of Artificial Intelligence (IJCAI’09), 2009, 1708–1714.

[12] R. Sun, Duality of the Mind: A Bottom-Up Approach Toward
Cognition. Mahwah: Lawrence Erlbaum, 2002.

[13] G. Baldassarre, “A modular neural-network model of the basal
ganglia’s role in learning and selecting motor behaviours,”
Journal of Cognitive Systems Research, vol. 3, pp. 5–13,
2002.

[14] L. Shastri, D. J. Grannes, S. Narayanan, and J. A. Feldman,
“A connectionist encoding of parameterized schemas and
reactive plans,” in Hybrid Information Processing in Adaptive
Autonomous Vehicles, G. Kraetzschmar and G. Palm, Eds.
Berlin: Springer Verlag, 1997.

[15] M. Garagnani, L. Shastri, and C. Wendelken, “A connectionist
model planning via back-chaining search,” in Proceedings
of the Twenty-Fourth Annual Conference of the Cognitive
Science Society (CogSci’02) 2002. Mahwah: Lawrence
Erlbaum, 2002, pp. 345–350.

[16] G. A. Carpenter and S. Grossberg, “Adaptive Rresonance
Theory,” in The Handbook of Brain Theory and Neural
Networks, M. Arbib, Ed. Cambridge:MIT Press, 2003, pp.
87–90.

[17] S. Grossberg, “Behavioral contrast in short-term memory:
Serial binary memory models or parallel continuous memory
models?” Journal of Mathematical Psychology, vol. 3, pp.
199–219, 1978.

[18] B. Subagdja and A.-H. Tan, “Planning with ifalcon: Towards a
neural-network-based bdi agent architecture.” in Proceedings
of the IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology (IAT’08), 2008, pp. 231–237.

[19] ——, “A self-organizing neural network architecture for in-
tentional planning agents,” in Proceedings of the Eighth Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS’09), 2009, pp. 1081–1088.

	A brain-inspired model of hierarchical planner
	Citation

	tmp.1636517174.pdf.gWAHJ

