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Abstract—The paper proposes a biologically-inspired cogni-
tive agent model, known as FALCON-X, based on an integra-
tion of the Adaptive Control of Thought (ACT-R) architecture
and a class of self-organizing neural networks called fusion
Adaptive Resonance Theory (fusion ART). By replacing the
production system of ACT-R by a fusion ART model, FALCON-
X integrates high-level deliberative cognitive behaviors and
real-time learning abilities, based on biologically plausible
neural pathways. We illustrate how FALCON-X, consisting
of a core inference area interacting with the associated in-
tentional, declarative, perceptual, motor and critic memory
modules, can be used to build virtual robots for battles in a
simulated RoboCode domain. The performance of FALCON-X
demonstrates the efficacy of the hybrid approach.

Keywords-Cognitive Agents; Knowledge Representation; Re-
inforcement Learning

I. INTRODUCTION

In the fields of artificial intelligence and cognitive science,
there has been a debate over symbolic and sub-symbolic
(connectionist) representation of human cognition [1], mo-
tivating two parallel streams of research directions. The
symbolic field holds the view that, the human cognitive
system uses symbols as a representation of knowledge
and intelligence is through the processing of symbols and
their respective constituents. Soar [2] and ACT-R [3], for
example, are representatives of symbolic systems. On the
other hand, the sub-symbolic camp argues that the hu-
man cognitive system uses a distributed representation of
knowledge and is capable of processing this distributed
representation of knowledge in a complex and meaningful
way [4]. Sub-symbolic or connectionist systems are most
generally associated with the metaphor of neural models,
composing of neural circuits that operate in parallel. The
key strengths of sub-symbolic systems lie in their learning
abilities and allowance for massively parallel processing.
In this paper, a cognitive agent model, known as Fu-

sion Architecture for Learning and Cognition - eXtension
(FALCON-X), is proposed, based on an integration of the
Adaptive Control of Thought (ACT-R) architecture [3] and
the fusion Adaptive Resonance Theory (fusion ART) neural
model [5]. Fusion ART is a generalization of self-organizing
neural models known as Adaptive Resonance Theory [6]. By
expanding the original ART model consisting of a single

pattern field into a multi-channel architecture, fusion ART
unifies a number of network designs supporting a myriad of
learning paradigms, including unsupervised learning, super-
vised learning and reinforcement learning. While retaining
the structure of the visual, manual, intentional and declara-
tive modules of ACT-R, the proposed architecture replaces
the symbolic production system with a fusion ART neural
network serving as the core inference area for fusing and
updating the pattern activities in the four memory buffers.
In addition, a critic channel is incorporated to regulate the
attentional and learning processes of the core inference area.
FALCON-X may potentially be used to model a wide

range of cognitive processes. In this paper, we describe
how procedural knowledge can be learned as sensory-motor
mappings through reinforcement learning. We also illustrate
how declarative knowledge can be encoded using a class of
composite neural circuits as long-term memories. The pro-
posed model has been used to build virtual robots for battles
in a simulated RoboCode domain. Based on this domain, we
show how the learned procedural and declarative knowledge
can be integrated for decision making and problem solving.
The rest of this paper is organized as follows: After a brief

review of ACT-R, we present the FALCON-X architecture.
We then describe the generic FALCON-X dynamics, fol-
lowed by details on how it may learn procedural knowledge
and represent declarative knowledge. The experimental study
on Robocode AI game is reported subsequently, followed by
the conclusion.

II. THE ACT-R ARCHITECTURE
Adaptive Control of Thought (ACT-R) is developed as a

model of human cognition using empirical data derived from
experiments in cognitive psychology and brain imaging [3].
Among the various cognitive architectures proposed, ACT-R
notably has packed a wide range of cognitive functions in
a generic and scalable architecture supported by extensive
references to human brain anatomy.
ACT-R consists of four basic modules, namely the visual,

manual, intentional and declarative modules, interconnected
via a central production system. The visual module receives
sensor input from the external world, the manual module
executes the actions produced by the production system,
the intentional module maintains the task-related objectives
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Figure 1. The FALCON-X architecture.

during the cognition process, and the declarative module
contains the long-term memory. Each module has a buffer
to keep track of one’s internal state during problem solving.
The central production system activates the relevant produc-
tion rules based on the information available in the buffers
of the four modules.
The high level knowledge representation of ACT-R (i.e.

chunks and production rules) has made it easy to represent
complex relationships. However, much of the knowledge
that is acquired within ACT-R is typically written by ex-
perienced programmers and not learned through interaction
with outside stimuli [1]. In addition, although ACT-R has
made extensive references of its modules to specific regions
in the human brains, the central production system of ACT-R
remains symbolic and not neurally plausible.

III. THE FALCON-X ARCHITECTURE
The FALCON-X architecture is presented herein, based

on an integration of the ACT-R cognitive architecture and
the fusion ART neural model (Figure 1). While retaining
the structure of the ACT-R’s peripheral memory modules,
the proposed architecture replaces the symbolic production
system with a fusion ART neural network serving as the core
inference area for fusing and regulating the pattern activities
in the four memory buffers. As a key departure from ACT-
R, an explicit critic module is incorporated, which provides
reward signals to the core inference area. The roles and
functions of the various modules are described as follows.

• The Perceptual Module receives input signals from
the external environment. In actual applications, some
preprocessing of the input signals may be necessary.
The input signals are typically represented as a set of
vectors of values in the perceptual buffer, taken from
the sensors.

• The Motor Module receives and executes the actions,
produced by a readout action from the core inference
area. The actions are typically represented as a set

of discrete values in the motor buffer, each of which
denotes one of the possible actions.

• The Intentional Module consists of the task-relevant
goals serving as the context. Each goal is represented
as a target state vector in the goal buffer, representing
the active goals of the agent.

• The Declarative Module consists of middle-term and
long-term memories, relevant to the tasks. The memory
can be represented in many ways, such as rules or
neural networks.

• The Critic Module computes reward signals that in-
dicate the goodness of the actions taken. Generally,
there can be two type of critics, namely, reward signals
received from the external environment; and estimated
payoff computed based on the current states and the
target states.

• The Core Inference Area receives activations from
the five memory modules and acts as a key driver of
the inference process. In FALCON-X, the inference
mechanism is realized via a five-step bottom-up and
top-down neural processes, namely code activation,
code competition, activity readout, template matching
and template learning, described in the next section.

IV. THE FALCON-X DYNAMICS

In each inference cycle, the core inference area of
FALCON-X receives input signals from the perceptual,
intentional and declarative modules, and selects a cognitive
node based on a bottom-up code activation and competi-
tion process. Whereas the intentional buffer maintains the
active goals, the declarative module provides the relevant
conceptual memory for code selection. The inference engine
may also receive reward signals from the critic module. It is
important to note that at any point in time, FALCON-X does
not require input to be present in all the pattern channels.
Upon activity readout, a template matching process takes

place to ensure that the matched patterns in the four memory
modules satisfy their respective criterion. If so, a state of
resonance is obtained and the template learning process
encodes the matched patterns using the selected cognitive
node. Otherwise, a memory reset occurs, following which a
search for another cognitive node begins. During prediction
or action selection, the readout patterns typically include the
actions to be executed in the motor module. In other cases,
the conceptual memory buffer is updated and the goals may
change as a result of inference.

V. LEARNING PROCEDURAL KNOWLEDGE

In this section, we illustrate how FALCON-X, specifically
the core inference area together with the perceptual, mo-
tor and critic modules, can acquire procedural knowledge
through reinforcement learning in a dynamic and real-time
environment.
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A. Reactive Learning
A reactive learning strategy, as used in the R-FALCON

(Reactive FALCON) model [7], performs fast association
between states and actions, based on reward signals. Given
a reward signal (positive feedback) in the critic buffer,
FALCON associates the current state in the perceptual buffer
with the selected action represented in the motor buffer. If
a penalty is received, it learns the mapping among current
state, the complement pattern of the action taken and the
complement value of the given reward.

B. Temporal Difference Learning
A key limitation of reactive learning is the reliance on the

availability of immediate reward signals. TD-FALCON [8],
[9] is a variant of FALCON that incorporates Temporal Dif-
ference (TD) methods to estimate and learn value functions
of action-state pairs Q(s, a) that indicates the goodness for
an agent to take a certain action a in a given state s.
Given the current state s, TD-FALCON first decides

between exploration and exploitation by following an ac-
tion selection policy. For exploration, a random action is
picked. For exploitation, TD-FALCON performs instanta-
neous searches for cognitive nodes that match with the cur-
rent states and at the same time provide the highest reward
values using a direct access procedure. Upon receiving a
feedback from the environment after performing the action,
a TD formula is used to compute a new estimate of the Q
value of performing the chosen action in the current state.
The new Q value is then used as the teaching signal for
TD-FALCON to learn the association of the current state
and the chosen action to the estimated Q value.

VI. INCORPORATING DECLARATIVE KNOWLEDGE
Declarative knowledge refers to long-term memories that

are consciously available. Symbolic representations, such as
rules and concept hierarchy, are typically used to model
declarative memory. In this work, we illustrate that declar-
ative knowledge can also be represented using connection
weights of neural networks. In view that most neural net-
works only deal with proposition logic, a type of composite
neurons is used here for representing complex rules involv-
ing variables.
A composite neuron consists of two interconnected sub-

neurons: gating node CNg and activation node CNa. The
CNg node is responsible for condition gating, while the
CNa node is used to infer output concepts and update the
conceptual buffer. As shown in Figure 2, the declarative
module can be implemented as a field of composite neurons
that receive input from the conceptual buffer and in turn
update the conceptual buffer through the activation of a
selected composite neuron.
The conceptual buffer consists of a set of conceptual

nodes, each of which serves as the input and may be
activated by the core inference area and declarative module.
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Conceptual 
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Figure 2. The declarative module implemented by composite neurons with
direct connection to conceptual buffer.

Table I
TWO SAMPLE RULES FOR ROBOCODE DOMAIN.

Rule 1: IF Relative Target Bearing = x
THEN Turn Gun Angle = x

Rule 2: IF Turn Gun Angle = x
AND Adjust Angle = y
THEN Final Gun Bearing = x + y

The conceptual nodes thus function as a working memory
for accumulating short-term memory activities.

VII. EXPERIMENTAL STUDY

Robocode (http://robocode.sourceforge.net) is a virtual
battle simulator, in which one can create robots to fight
against each other (Figure 3). A large number of robots
of various design (http://robowiki.net) have been developed
over the years. However, most of them employ some pre-
defined strategies without any learning or adaption ability.

A. Incorporating Domain Knowledge
A simple and intuitive firing strategy is to point the

gun towards the enemy’s direction and fire. However, as
bullets take time to travel, the enemy may have moved
to another location during the time interval. To overcome
this problem, FALCON-X adopts an “aim-off” strategy.
Specifically, instead of firing directly towards the enemy’s
current position, it turns the gun an angle away from the
enemy’s bearing anticipating the enemy’s future location.
This firing strategy is captured into two rules listed in Table
I and illustrated in Figure 3.

B. Learning Firing Strategy
In this section, we illustrate how FALCON-X can learn

the “aim-off” angle through reinforcement signals. Here we
name our robots as R-FALCONBot and TD-FALCONBot,
which use the reactive and temporal difference (TD) learning
rules respectively.

• Sensory Input: Two state variables are used for learn-
ing, namely the distance from FALCONBot to the
enemy’s robot and the enemy’s heading relative to its
bearing.

• Motor Output: The motor output will be the Ad-
just Angle from the enemy bearing. As it is a con-
tinuous variable, the angle is discretized into several
blocks of equal interval.
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Figure 3. The Robocode battle field and firing strategy.
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Figure 4. The performance of FALCON-X against SpinBot.

• Critic Feedback: When a bullet hits the enemy, a
reward of 1 is credited to the action. Conversely, when
the bullet misses the target, a zero reward is given.

C. Results and Analysis
Our evaluation consists of five set of experiments, each of

which lasts for 1000 learning rounds of battles. We measure
the system performance in terms of the number of winning
rounds within each learning period of 100 rounds.
With the initial set of domain knowledge, R-FALCONBot

and TD-FALCONBot can already defeat almost all the
sample robots provided by the Robocode platform, with the
exceptions of SpinBot and Walls. As shown in Figure 4, we
see that the number of winning rounds of TD-FALCONBot
against SpinBot increases to more than 80 right after 100
rounds. On the other hand, R-FALCONBot achieves a suc-
cess rate of over 60% after 200 rounds of learning. These
results show that the performance of both TD-FALCONBot
and R-FALCONBot consistently improves upon learning. In
addition, the learning efficacy of TD-FALCONBot is signif-
icantly stronger than that of R-FALCONBot. Referring to
Figure 5, we can see that, against Walls, the performance of
TD-FALCONBot improves steadily and achieves a winning
rate of around 50%. This implies that its performance is
roughly comparable to Walls after learning. In comparison,
R-FALCONBot achieves a much lower performance.

VIII. CONCLUSION
We have presented a cognitive model by merging the

ART-R cognitive architecture with fusion ART neural net-
work. We have illustrated how FALCON-X can be used to
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Figure 5. The performance of FALCON-X against Walls.

learn procedural knowledge and how the procedural knowl-
edge can be integrated with declarative knowledge encoded
as pre-existing long-term memories using composite neurons
for problem solving. The proposed integration of ACT-R and
ART is interesting as the parallel memory processes and
production rule firing of ACT-R can now be regulated by
the neurally plausible mechanism of ART. In addition, the
competitive coding processes of ART enable a natural and
powerful means for learning of associations across the five
memory modules.
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