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Abstract

Coordinated control of multi-agent teams is an important task in many real-time

strategy (RTS) games. In most prior work, micromanagement is the commonly

used strategy whereby individual agents operate independently and make their

own combat decisions. On the other extreme, some employ a macromanage-

ment strategy whereby all agents are controlled by a single decision model. In

this paper, we propose a hierarchical command and control architecture, con-

sisting of a single high-level and multiple low-level reinforcement learning agents

operating in a dynamic environment. This hierarchical model enables the low-

level unit agents to make individual decisions while taking commands from the

high-level commander agent. Compared with prior approaches, the proposed

model provides the benefits of both flexibility and coordinated control. The

performance of such hierarchical control model is demonstrated through empir-

ical experiments in a real-time strategy game known as StarCraft: Brood War

(SCBW).
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1. Introduction

Real-time strategy (RTS) games have been popularly used to study rein-

forcement learning in recent years. Unlike deterministic fully-observable board

games like Go or Chess wherein Artificial Intelligence (AI) has been notably

outperform humans (Hassabis, 2017), games such as StarCraft, Warcraft, and5

Unreal Tournament are still considered open challenges for reinforcement learn-

ing (Ontañón et al., 2013) as they may involve issues like dealing with very

large state-action space, spatio-temporal reasoning, team coordination, oppo-

nent modeling, incomplete information, and decision making under uncertain-

ties (Buro, 2003; Robertson & Watson, 2014). Leveraging reinforcement learning10

agents playing RTS games or battle simulation of some sort for analyzing and

evaluating strategic behaviors may also be applicable in practice like discovering

military doctrines from combat simulation or computer generated forces (CGF)

Teng et al. (2013).

In a game that includes controlling several units to achieve the game ob-15

jective like StarCraft, multiagent reinforcement learning (MARL) becomes an

important field to investigate. Beyond the traditional reinforcement learning

approach that a single agent learns by trial-and-error to improve its own per-

formance, the effect of actions of each agent to one another and to the entire

team objective must also be considered (Gronauer & Diepold, 2021). How-20

ever, most of these learning approaches are still emphasized on micromanage-

ment skills acquisition that each agent tries to improve its own low-level per-

formance based on its individual input (like a step or movement, attacking

towards a target, or running away) with less consideration on the macroman-

agement strategy to govern the activities of the entire team (Shantia et al.,25

2011; Wender & Watson, 2012; Gabriel et al., 2012). Each agent unit is made

to learn to play the game from scratch that will end with the elimination
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of either self or the opponent’s unit. This approach of learning individually

may end up in unstable performance as the agents face non-stationarity or

moving target problem since every agent co-adapts to each other especially30

when there is a high dependency among the agents (Gronauer & Diepold,

2021). Some models tackle this non-stationarity issue by applying Centralized-

Training-Decentralized-Execution (CTDE) method. In this method, learning is

conducted in a centralized manner that all agents share special reward or value

system during training so that every agent learns its policy interdependently to35

one another. However, the policy is still applied independently by each individ-

ual agent during testing or performing phases after training (e.g (Lowe et al.,

2017; Rashid et al., 2018; Foerster et al., 2017)). A similar model of separating

the phases of training and testing or execution while emphasizing micromanage-

ment skills has also been applied even in a model that has notably reached the40

level of human grand-mastery in the StarCraft II RTS game through learning

with self-play without the actual sparring opponents (Vinyals et al., 2019).

Despite their remarkable achievements (like beating human players in hu-

mans vs AI StarCraft tournament (Vinyals et al., 2019)), this kind of learning

does not really capture the strategic control model among the agents and for a45

certain training approach like self-play, it is only effective when the opponents

have symmetrical capabilities with the same characteristics of game objectives.

No organizational structure of the team nor actual macromanagement strategy

are considered in this case as relations among the agents are still assumed to be

flat. This also implies that to reach an adequate level of performance, this kind50

of multi-agent reinforcement learning requires very extensive training iterations

conducted separately from its main performance (testing) phase.

In this case, leveraging the structure of the organization, command hierar-

chy, and control of a team of agents in a real-time strategic game requires a

distinct architecture from the flat organization structure mostly employed in55

existing multiagent reinforcement learning. The architecture should also ensure

that the learning can be conducted effectively to capture strategic and micro-

management levels of knowledge. On the other hand, evaluating the behavior of
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the agents and the effectiveness of the reinforcement learning model in acquiring

both strategic and micromanagement knowledge requires a method of interpret-60

ing the learned knowledge explicitly. This enables more thorough comprehen-

sion of the overall performance of the agents after the learning which is still

a great challenge in most existing multiagent reinforcement learning methods

(Gronauer & Diepold, 2021). Another significant issue in most current multia-

gent reinforcement learning methods is the capacity to insert prior knowledge to65

the agents based on knowledge reuse from past learning (Gronauer & Diepold,

2021) or some hand-crafted doctrines (Teng et al., 2015) to initiate and speed-

up the exploration in learning. Most reinforcement learning models mentioned

above are based on deep learning or neural networks of some sort that requires

extensive learning iterations from scratch with learned policies in the form of70

distributed representation which is too difficult, if not impossible, to interpret

or to specify in advance.

To address the above issues and challenges in multiagent reinforcement learn-

ing, this paper presents a model of hierarchical control and learning of a multia-

gent team to play an RTS game. In contrast to other approaches of multiagent75

reinforcement learning that focus on micromanagement aspects of behavior with

an initial flat organization structure, the hierarchical control and learning archi-

tecture enable a complex multi-agent learning problem to be decomposed into

two subproblems, one at the centralized strategic manner and the other at the

micromanagement unit level.80

Besides the hierarchical structure of control and learning, the model allows

the reinforcement learning to be investigated with the option of initially starting

out from initial strategies to direct the agents. In this case, rather than hav-

ing distinct phases training and testing, it is also considered that learning and

performing stages are integrated and conducted continually without separation.85

In order to realize the capabilities as mentioned, a class of self-organizing

neural networks known as Fusion Architecture for Learning and Cognition (FAL-

CON) is selected as the model of the learning agents (Tan, 2004; Tan et al.,

2008). FALCON has been successfully developed and benchmarked in partially
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observable learning tasks like reinforcement learning in first-person shooting90

game environment known as Unreal Tournament (Di & Tan, 2015), cooperative

reinforcement learning for network routing problem (Xiao & Tan, 2013), and

self-regulating reinforcement learning in pursuit-evasion domain (Teng et al.,

2015). In this paper, FALCON is applied for multiagent reinforcement learning

in the RTS game.95

FALCON supports continual cycle of pattern retrieval (readout) and learn-

ing (Tan, 2004; Tan et al., 2019) so that no separation of training and execution

is necessary allowing the reinforcement learning to be conducted online con-

tinuously. Moreover, the incremental clustering on explicit properties of state,

action, and reward in its reinforcement learning algorithm allows interpretable100

knowledge to be learned or to be directly inserted to the neural network (Tan,

2004). Therefore, the hierarchical control for multiagent reinforcement learning

model enables the learned knowledge to be interpretable as rules so that the

learned behaviours and strategies can be analysed. The learning performance

can also be enhanced with pre-inserted rules as the initial knowledge to follow105

both at primitive and strategic level of control.

For evaluation, empirical experiments are conducted in StarCraft RTS game

environment. Recently, StarCraft has become a standard testbed for evaluating

AI techniques in RTS games (Ontanon et al., 2015) and used by various large

communities in many international AI RTS game tournaments (Ontañón et al.,110

2013). With the existing programming libraries and APIs, StarCraft can also

be customized to simulate certain real-world tasks and missions, like battlefields

or military operations. In this case, an asymmetric warfare scenario is applied

to the game wherein the main objective of the agents (as battle tanks) is to

advance from a starting position in the environment to a designated goal loca-115

tion whereas some adversary units (as battle tanks controlled internally by the

game) may deter the advancing objective. This kind of scenario is suitable for

evaluating the use of prior knowledge, the relevance of the learned knowledge,

and the learning outcome. It is also more relevance to practical applications

like analyzing strategic knowledge in computer generated forces or CGF.120
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The remainder of the paper is organized as follows. Section 2 provides a

discussion on related work. Section 3 provides the summary of the StarCraft

RTS game environment as the domain problem discussed in this paper. Section

4 provides a summary of the architecture and algorithm of FALCON. Section

5 presents the proposed hierarchical architecture model and the collaborative125

mechanism. Section 6 reports the experiments and discusses the simulation

results. Section 7 concludes and provides a brief discussion of the future work.

2. Related Work

Reinforcement learning has been a widely adopted approach to playing real-

time strategy or RTS games. Considered as a recent milestone in the field, Al-130

phaStar has been applied to play StarCraft II against human players (Vinyals

et al., 2019). It has reached the grand-master level of the game by making

use of multi-agent deep reinforcement learning and exhaustive training from

scratch against itself through self-play without sparring any opponent. Previ-

ous attempts have trained a team of unit players or agents to engage in battle135

situations in RTS games like StarCraft. A reinforcement learning method of

State-Action-Reward-Action (Sarsa) was applied to control units in StarCraft

small battles (Shantia et al., 2011). Artificial neural networks were used here

to learn the expected reward of the actions performed and select the best ac-

tion based on the expected reward. Various learning algorithms that include140

Temporal-Difference (TD) Q-Learning and Sarsa in the unit control have also

been studied focusing on their abilities to learn the kiting strategy by unit

agents in small-scale combat scenarios (Wender & Watson, 2012). Gabriel et al.

(2012) used a neuro-evolutionary algorithm to create and train an artificial

neural network. The created network rtNEAT evolves both the topology and145

connection weights of the neural networks for individual units. One of the issues

in this kind of micromanagement model of multi-agent reinforcement learning is

the non-stationary behaviors of different agents that simultaneously learn and

adapt in decentralized manner.
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Beyond independently learning the skills of individual units, others have in-150

vestigated learning coordination and strategies at the team level while tackling

the non-stationary issue. Adopting the centralized training with decentralized

execution mechanism, some recent approaches augment additional information

about the policies of all the agents to update the value function during training

but apply the learned policy for individual agent independently in decentralized155

fashion during testing. Multi-Agent Deep Deterministic Policy Gradient (MAD-

DPG) is one approach that takes all the states and actions of the agents into

consideration during training by a critic module but applies individual policies

to be executed by individual actors independently (Lowe et al., 2017). Another

recent model has applied Deep Q-Network for each individual unit but using160

shared experience replay buffer augmented with the probability of joint-action,

the rate of exploration, and the number of training iteration to handle the non-

stationary issue in multi-agent reinforcement learning (Foerster et al., 2017).

Another example is QMIX that also uses the shared experience buffer during

training, but also learn to associate a global state with a joint action-value165

function in a dedicated mixing network at the same time (Rashid et al., 2018).

In this way, QMIX can learn complex monotonic value function for the entire

team to be used to update the policy of each individual agent. for the testing

stage. These centralized training and decentralized execution models require

separate phases of training and testing. The additional information about the170

team value function applies only during training but the execution or testing

phase is conducted independently by each agent without considering the value

to change the policy.

The separation of learning and testing phase suggests that the policy learned

through this centralized training does not really reflect the strategic knowledge175

to win the game. The individual policy directs the agent only to act reactively.

Unless the multi-agent reinforcement learning is model-based that explicitly

extracts a model of the environment and the team interaction while conducting

reinforcement learning (Zambaldi et al., 2018), it is impractical to interpret the

learned policy to understand the strategy and thus, to ensure the continuity of180
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the learning.

Another type of multi-agent reinforcement learning incorporate communi-

cations and interactions among the agents as parts of the input to be learned

either during the training or testing phase. A deep neural network controller

using heuristic reinforcement learning algorithm (Usunier et al., 2017) has been185

proposed that selects the unit agent with different methods of target selection

including random static target, built-in AI control, nearest target, weakest tar-

get and no overkill with static target. Peng et al. (2017) formulated multi-agent

learning for StarCraft combat task as a zero-sum Stochastic Game, wherein

agents can communicate through their proposed bidirectional-coordinated net190

as an interaction protocol for the agent to perform and learn. These interac-

tive, models however did not provide a clear description of the unit coordination

strategy. This lack of unit coordination during battles may thus lose the element

of cohesiveness and weaken the overall fire power. Moreover, their concerns are

mainly on federated controls in reinforcement learning wherein the learning can195

be conducted across multiple agents in decentralized manner to make it efficient

and scalable. The federated control can be realized practically through a nego-

tiation framework for reaching agreements upon joint actions among the agents

which may be moderated by a meta-controller (Kumar et al., 2017). It can also

be applied as a communication protocol devised for a unit agent to exchange its200

internal state and policy with others within a spatio-temporal proximity (Chu

et al., 2020).

Although the federated control models can be more practical and scalable,

in this paper, we emphasize more on the aspect of organizational structure and

generalization in learning to influence the resulting performance and learned205

strategies. In our approach, the learned policy and values are still shared among

the agents though each may have different observation and action to take. Un-

like the popular centralized training with decentralized execution model for

multi-agent reinforcement learning, the proposed model in this paper considers

indivisible phases of training and execution for each agent. Similar to the feder-210

ated model, the central commander can also be considered as a special type of
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unit agent that run independently but always direct the actions of other units.

Besides the hierarchical organization structure and directed communication,

the proposed model can also maintain the learned policy as explicit and inter-

pretable knowledge or strategy. However, unlike the model-based approach (Zam-215

baldi et al., 2018), the reinforcement learning algorithm can still be considered

model-free as it does not construct any explicit model about the environment

or the game being played besides the policy.

3. Problem Domain: StarCraft Brood War

StarCraft is a science fiction real-time strategy video game developed by220

Blizzard Entertainment in early 1998. The game was further expanded and

released in late 1998 with Saffire company as an expansion pack known as Star-

Craft: Brood War (SCBW) (Wikipedia, 2019). The game play revolves around

players collecting resources to build structures and units in order to defeat other

players. Each player can choose one out of the three distinct interstellar species:225

Protoss, Terran, or Zerg.

The current application programming interface (API), known as Brood War

API (BWAPI) (Doxygen, 2017), is well supported in the SCBW community.

BWAPI was developed primarily for supporting the development of artificial

intelligence agents to play the game autonomously. The complexity of real time230

strategy games is much higher than constrained board games and it can better

represent a simplified military simulation (Robertson & Watson, 2014). BWAPI

allows the community to build artificial agents using a variety of approaches,

including hard-coded, planned-based, as well as machine-learning approaches.

A survey by Ontañón et al. (2013) has documented different approaches and235

some of the popular competitions across the years, including AAAI Conference

on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), IEEE

Conference on Computational Intelligence and Games (CIG), and Student Star-

Craft AI (SSCAI) Tournament.

As shown in Figure 1, both the environment and unit attributes are gathered240
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Figure 1: Communication bridge between StarCraft game and AI module with Brood War

API.

from the callable methods in the BWAPI that provides the communication

between the game and the developed AI Module. BWAPI also provides a terrain

analyser module that can generate the shortest path between two points and

identify potential choke points. Readers are encouraged to refer to (Jurenka.sk,

2014) for a complete listing of the available methods provided by BWAPI.245
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Figure 2: Concurrent views of units at different terrain height illustrating the effect of Fog of

War.

In this StarCraft game, different terrain levels may provide different advan-

tages for players to gain more scores. Figure 2(a) and (b) show the concurrent

views of two different players with units at the low terrain and high terrain, re-

spectively. Units at the higher terrain have the advantage of not being affected

by the fog of war. In contrast, units at the lower terrain will not be able to250

detect the enemies on the higher terrain unless the enemies make an attack and

expose their location. In addition, units attacking from a lower terrain to the

10



higher terrain will have a higher chance of missing the target. This gives an

advantage to units that are on the higher terrain.

Table 1: Descriptions of Symbols and Notations presented

Symbol Description

Fk1 , F2 Neural fields of fusion ART/FALCON neural network: respectively kth F1

input fields and F2 category field

Ik, Īk Respectively input vector and its complemented vector to present to the kth

input field in Fusion ART/FALCON neural network

xk, y, wk
j Respectively the activity vector of kth input field in F1, the activity vector

of F2 category field, and the weight vector associating jth node in F2 with

the input pattern in Fk1 field in fusion ART/FALCON neural network.

αk, βk, γk,

ρk

Respectively choice, learning rate, contribution, and vigilance parameter of

kth input field in fusion ART/FALCON neural network

Tj , m
k
J Respectively bottom-up choice function for node j in F2 field and top-

down matching function of node J in F2 to the kth F1 field in fusion

ART/FALCON neural network

∧, |p|, ||p|| Respectively fuzzy AND operator defined by (p ∧ q)i ≡ min(pi, qi), L1

norm operator defined by |p| ≡
∑
i pi, and L2 norm operator defined by

||p|| ≡
√∑

i p
2
i

S, A, Q, Q∗ Respectively the state vector, the action vector, the (Q) value vector, and

the maximum (Q) value vector

r, Q(s, a),

TDErr

Respectively the reward value, the expected accumulated (Q) value of taking

action a from state s, and the temporal error term of the (Q) value in

Temporal Difference learning

α, γ,

maxa′Q(s′, a′)

Respectively the learning rate parameter, the discount parameter, and the

maximum expected accumulated (Q) value of taking an action from state s′

4. Fusion Architecture for Learning and Cognition (FALCON)255

Fusion Architecture for Learning and Cognition (FALCON) is a model for

reinforcement learning based on the Fusion Adaptive Resonance Theory (Fusion

ART) neural network architecture (Tan et al., 2007, 2019). Specifically, the

FALCON model is a three-channel fusion ART model comprising a category

field F2 and three input fields, namely a sensory field F 1
1 for representing the260
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current state, an action field F 2
1 for representing the action to take, and Q

(reward) field F 3
1 for representing the reinforcement value.

4 Ally Units 

Shortest Path 

High 
ground 

Low ground 

4 Enemy Units 

Low ground 

Destination 

Starting 
location 

High ground 

High ground 

Q-Value Act1 
Act2 

Act3 
attr2 

attr1 
attr6 

attr3 attr7 
attr8 attr4 

attr9 attr5 

Original Value 

Complement Value 

Site A 

Figure 3: Fusion ART for Reinforcement Learning.

The state field F 1
1 represents the currect state of affair in the environment

or the game. In a game like StarCraft, this can be the sensory information

as received by the agent like the indication if an enemy agent is nearby, if the265

enemy is attacking, the current health status of the agent, and so on. On the

other hand, the action field F 2
1 represents the action taken by the agent, like

attacking or advance move in the StarCraft game, as the reaction to the current

state as represented in F 1
1 . After the action is taken and executed, the agent

may receive feedback in terms of reward signal indicating the value of taking270

the action in the given state. In this case, the reward value is represented in F 3
1

field.

When the reinforcement value is obtained by the agent after the action is

taken, the reinforcement learning is taking place in FALCON by associating the

state-action pair with an evaluative reward value. This association is categorized275

and clustered in F2 category field that can be explicitly interpreted as a code of

triple or rule of behavior.

In what follows, the neural network representation and the dynamics of FAL-

CON are described and explained in more details. Starting from this section,

some symbols and notations for various concepts are defined and explained. All280

the symbols can be referred to Table 1.
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4.1. FALCON dynamics

The FALCON neural network, as a three-channel fusion ART, can be defined

as follows:

Input vectors: Let Ik = (I1i , I
2
i , I

3
i ) be the input vector, where Iki ∈ [0, 1]285

indicates the input i to channel k. In this case, I1i , I2i , and I3i corresponds to

the input attribute in the state, action, and Q (reward) field respectively. With

complement coding, the input vector Ik is augmented with a complement vector

Īk such that Īki = 1 − Iki for k ∈ {1, 3}. Particularly, in FALCON, only input

state (I1) and input Q (I3) are complement coded. Specifically, complement290

coding in FALCON with fuzzy operations is necessary to prevent category pro-

liferation and to enable generalization of input (output) attributes (Tan et al.,

2007).

Activity vectors: Let xk = (xk1 , x
k
2 , x

k
3) be the F k

1 activity vector of FALCON

input fields, for k = 1, 2, and 3. Initially, xk = Ik. Let y be the F2 activity295

vector of the FALCON category field.

Weight vectors: Let wk
j be the weight vector associated with jth node in F2 for

learning the input patterns in F k
1 . Initially, F2 contains only one uncommitted

node and its weight vectors contain all 1’s.

Parameters: The neural network is characterized by learning rate parameters300

βk ∈ [0, 1] that sets how much the update is applied to the weight vector of the

corresponding k-channel, contribution parameters γk ∈ [0, 1] that corresponds

to the importance of field k during bottom-up activation, and vigilance param-

eters ρk ∈ [0, 1] that indicates how sensitive field k towards differences during

top-down matching operation. For k ∈ {1, 2, 3}, the choice parameter αk > 0305

indicates the significance of field k among the others. It is also used to avoid

division by zero.

Based on the definitions, the FALCON neural network operates in two dif-

ferent modes, namely, action selection to select an action to take by the agent

and learning based on the reward feedback as received from the environment.310

These modes are described as follows.
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4.1.1. Action Selection

Action selection is a process of finding the best action to take by the agent

based on the current input state and the existing learned code that best matches

with the state and may provide the maximum accumulated values in the long315

run if its action is performed. The action selection in FALCON is carried out in

four basic steps, namely, code activation, code competition, template matching,

and activity readout. As a special kind of fusion ART neural network, those

steps can be described in general to select a node in F2 category field and to

readout the value to a particular field as follows.320

Code activation: A bottom-up activation takes place in which the activities

of the nodes in the F2 field are computed. Given the activity vectors x1,x2,x3,

for each F2 node j, the choice function Tj is computed as follows:

Tj =

3∑
k=1

γk
|xk ∧wk

j |
αk + |wk

j |
, (1)

where the fuzzy AND operation ∧ is defined by (p∧q)i ≡ min(pi, qi), the norm

|.| is defined by |p| ≡
∑

i pi for vectors p and q, and the operation · is a vector325

dot product.

Code competition: A code competition process follows under which the F2

node with the highest choice function is identified. The winner is indexed at J

where TJ = max{Tj : for all F2 node j}. When a category choice is made at

node J , yJ = 1; and yj = 0 for all j 6= J . In this case, a winner-take-all strategy330

is applied.

Template matching: Before the node J can be selected and retrieved, a tem-

plate matching process checks if the weight templates of node J are sufficiently

close to their respective input patterns. Specifically resonance occurs if, for

each channel k, the match function mk
J of the chosen node J meets its vigilance335

criterion:

mk
J =

|xk ∧wk
J |

|xk|
≥ ρks , (2)

where ρks is the vigilance parameter of the corresponding field k during the action

selection process. If any of the vigilance constraints for a field k is violated, the
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search process then selects another F2 node J . This search and test process

is guaranteed to end as it will either find a committed node that satisfies the340

vigilance criterion or activate an uncommitted node that definitely satisfies the

criterion as its weight vectors contain all 1’s. This cycle of code activation, code

competition, and template matching to find a node with resonance condition is

also called resonance search.

Activity readout: The chosen F2 node J performs a readout of its weight345

vectors into the input field F k
1 such that xk(new) = xk(old) ∧wk

J . The resultant

activity vectors in F k
1 are thus the fuzzy AND of the original value and their

corresponding weight vectors.

The resonance search is the core process of fusion ART wherein bottom-up

activation and top-down matching interact together with simple Fuzzy opera-350

tions of Choice activation (Equation 1) and Template matching (Equation 2) to

settle at the choice of extending an learned cluster or creating a new one. This

continuous matching process is analogue to the use of acceptance probability in

Metropolis-Hasting algorithm to determine the inclusion of a sample in random

walk process (Martino & Elvira, 2017).355

Action selection in the reinforcement learning of FALCON neural network

is employed to get the action to perform which can be readout from an existing

code that can provide the desirable reward values. In Direct Access method

of FALCON (Tan, 2007), this can be achieved by selecting a node with the

highest Q value with the matching state s. Upon input presentation, the state360

vector is initialized as x1 = S = (s1, s2, . . . , sn) where si ∈ [0, 1] indicates the

value of sensory input i. Direct Access method simplifies the selection of the

best action by directly retrieving the code with maximum Q value. The search

can be conducted by simply presenting the state S, the action A = (1, ..., 1)

(to allow complete overriding of values by activity readout), and the maximum365

value vector Q∗, in which Q∗ = (1, 0), to the corresponding fields to retrieve the

code with the closest (the highest possible) match of the reward value through

the four steps in action selection process.

However, the agent still needs to explore the possible outcomes of different
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Algorithm 1 FALCON Action Selection
1: Sense the environment and formulate a state representation in S

2: According to exploration-exploitation policy, make a choice between exploration and ex-

ploitation

3: if exploration then

4: select a random action a from the set of possible actions

5: set x2a ← 1 and every other x2b ← 0, b 6= a in action vector x2

6: set Q to the default value (for example Q← (0.5, 0.5))

7: else if exploitation then

8: present state, action, and reward value vector S, A = (1, ..., 1), and Q∗ to the corre-

sponding x1,x2,x3 vector in F1 respectively

9: repeat

10: for all node j in F2 field, compute Tj ←
∑3
k=1 γ

k |x
k∧wk

j |
αk+|wk

j |
(Code activation)

11: select node J in F2 based on TJ = max{Tj : for all F2 node j} (Code competition)

12: compute mkJ ←
|xk∧wk

J |
|xk| (Template matching)

13: until mkJ ≥ ρ
k
s for every channel k in F1

14: set Q← w3
J (Q weight vector)

15: if node J is uncommitted (no matching code can be found in F2) then

16: select a random action a from the set of possible actions

17: set x2a ← 1 and every other x2b ← 0, b 6= a in action vector x2

18: set Q to the default value (for example Q← (0.5, 0.5))

19: end if

20: readout x2(new) ← x2(old) ∧w2
J (Activity readout)

21: end if

22: set A← x2
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actions at the initial stage of learning when the existing learned knowledge370

are still insufficient to direct the agent towards the best possible values. To

deal with the trade-off between exploitation, like selecting the action based on a

learned knowledge so far, and exploration, like trying out an action less familiar,

an exploration strategy can be applied providing options besides selecting the

action based on learned knowledge. In Direct Access method (Tan, 2007), for375

example, ε-greedy policy is employed so that the selection based on the learned

knowledge (exploitation) is applied with probability of ε and random action

selection is taken with probability of 1−ε. The ε parameter is decayed gradually

over time until the policy turns into the full exploitation.

Algorithm 1 shows the action selection process in FALCON wherein an ac-380

tion is selected through resonance search in fusion ART neural network (line 8

to 12) during the mode of exploitation. It is also shown that a random action

selection is still conducted when no match can be found or an uncommitted

code is selected instead (line 13 to 15). The outputs of Algorithm 1 are the

selected action vector A and the expected Q vector for taking the action of A.385

4.1.2. Learning

As a type of fusion ART neural networks, FALCON conducts learning by

template learning when a matching F2 node J is found through the resonance

search during action selection.

Template learning: Given a selected node J , for each input channel or field390

k in F1 of FALCON, the weight vector wk
J is modified by the following learning

rule.

w
k(new)
J = (1− βk)w

k(old)
J + βk(xk ∧w

k(old)
J ), (3)

where βk ∈ [0, 1] is the learning rate parameter for the particular field k in F1.

The template learning rule implies that the weight vector wk
J is updated

towards the values of its corresponding input vector xk with the rate of βk.395

βk can be set to 1 as the maximum rate for fast learning or below 1 for a

slower learning to deal with noisy inputs from the environment. When the field
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k is complement coded, the updated weights become generalized so that the

corresponding node J will match with more variations of similar inputs in the

particular field k.400

However, when the selected node J is uncommitted implying that the pre-

vious resonance search failed to find a matching code, the entire patterns of all

the input fields must be stored as they are in weight vectors under node J . In

that case, the learning rate βk is typically set to 1, for the uncommitted node

J .405

On the other hand, reinforcement learning in FALCON is intended to acquire

an action policy as the mapping of a state to its corresponding desirable action.

Once the selected action a is performed, the agent will receive a feedback from

the environment as the reward signal r and may end up in another state s′.

Based on these information, FALCON makes use of Temporal Difference method410

of learning to update the value of the current policy. Let Q(s, a) be the current

value of taking action a in state s. When receiving reward r, ending up in state

s′, Q(s, a) must be updated based on Temporal Difference equation such that

∆Q(s, a) = αTDerr, where α ∈ [0, 1] is the learning rate parameter and TDerr

is the temporal error term given state s and action a so that415

TDerr = r + γmaxa′Q(s′, a′)−Q(s, a), (4)

where r is the immediate reward value, γ ∈ [0, 1] is the discount parameter, and

maxa′Q(s′, a′) denotes the maximum estimated value of the next state s′. The

update function is then becomes Q(new)(s, a) ← Q(old)(s, a) + αTDerr. This

Q-learning update rule is applied to all states that the agent traverses. With

many iterations of update, the value function Q(s, a) is expected to converge to420

r + γmaxa′Q(s′, a′) over time.

As the fusion ART neural network can only process a normalized input value

from 0 to 1, a Bounded Q-Learning rule can be defined so that it can also be

applied in FALCON as follows.

∆Q(s, a) = αTDerr(1−Q(s, a)). (5)
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By incorporating the scaling term 1 −Q(s, a), the adjustment of Q values will425

be self-scaling so that they will not increase beyond 1. Based on the Bounded

Q-learning update rule, the Q input field can be updated in FALCON so that

the code for the policy can be learned.

Algorithm 2 shows the steps taken in FALCON reinforcement learning. It is

assumed that the action selection process has taken place prior to the learning430

and selected action has been performed. In that case, the state, the selected

action, the reward, the successor state, and the expected Q value are available

at the start (line 1 of Algorithm 2). Resonance search processes are conducted

twice in Algorithm 2, firstly to obtain the maximum expected Q value in the

future (line) from the next state s′ (line 2) and secondly to select a node J in435

F2 to learn the code or rule of behavior (line 8).

Algorithm 2 FALCON Learning
1: Given the previous state vector S, the performed action vector A, the expected Q vector

of taking action A from S, the reward r received, and the next state vector S′ after taking

action A

2: Obtain the maximum expected future Q′ (or maxa′Q(s′, a′)) by resonance search with

x1 ← S′, x2 ← (1, ..., 1), and x3 ← Q∗

3: if uncommited node is found for Q′ then

4: set Q′ to default value (like Q′ ← (0.5, 0.5))

5: end if

6: Based on Q′, S, A, Q, and r, obtain Q(new)(s, a)← Q(old)(s, a) + αTDerr

7: Update Q according to Q(new)(s, a) just obtained

8: Find the best match node J in F2 by resonance search with x1 ← S, x2 ← A, and x3 ← Q

and ρkl as the vigilance parameter

9: if node J is uncommitted then

10: w
k(new)
J = xk ∧w

k(old)
J for all k in F1

11: set J to be committed and allocate a new uncommitted node

12: else

13: Readout action vector x2 ← x2 ∧w2
J

14: w
k(new)
J = (1− βk)w

k(old)
J + βk(xk ∧w

k(old)
J ) for all k in F1

15: end if
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4.2. FALCON with ART2 Extension

With the Fuzzy AND operation ∧, Fuzzy ART allows generalization of the

input vectors to be learned. Equation 3 suggests that, based on the learning

rate βk parameter, weight values may decrease to the minimum if they are440

different from the corresponding elements of the input vector. This implies that

some features that are irrelevant or changed significantly often, like in the state

field, may vanish or be filtered out in the corresponding vector to zero. In a

complement coded field, its corresponding weight vector may also be generalized

ignoring varying features while staying focus on invariant parts.445

However, this kind of generalization cannot hold for the reward field as the

value may fluctuate inconsistently especially when there is a hidden or partially-

observed state. In a later section on the experiments in this paper, it is also

shown that FALCON reinforcement learning with all the Fuzzy operations can-

not cope with inconsistent changes in rewards due to the partial observality and450

uncertainties in the game environment. The vanishing values and overgeneral-

ization in rewards result in low performance of learning.

A modification for effective learning was therefore proposed to handle the

uncertainties in an environment, similar to the partially-observable Markov de-

cision process (POMDP) (Di & Tan, 2015). In POMDP, performing the same455

action in a similar situation may not lead to the same outcome. Therefore, in

order to allow the agents to perform generalization and concurrently ensure the

correctness of learning, a combination of fuzzy ART and ART2 operation was

proposed. Specifically, fuzzy ART operations are applied to the state (k=1)

and action (k=2) vectors for state and action space generalization and ART2460

operations are applied to the reward (k=3) vectors for value approximation. In

this hybrid model of FALCON, the choice activation function applied in Algo-

rithm 1 as defined in Equation 1 can be replaced with the new hybrid function

as follows.

Tj =

2∑
k=1

γk
|xk ∧wk

j |
αk + |wk

j |
+ γ3

x3 ·w3
j

||x3|| ||w3
j ||
, (6)

where the norm ||.|| is defined by ||p|| ≡
√∑

i p
2
i . The input vector I3 is465
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augmented with a complement vector Ī3i =
√

1− (I3i )2 instead.

In the case of learning when performing ART2 operation on the reward field,

the following learning rule can be used.

w
k(new)
J =

(1− βk)wk(old)
J + βk(xk ∧w

k(old)
J ), for k=1,2

(1− βk)wk(old)
J + βkxk, for k=3.

(7)

The fuzzy ART learning rule adjusts the weight values using the Fuzzy AND

operation which allows generalization in complement coded state vector but470

the weight values are monotonically decreasing. On the other hand, the ART2

template learning, based on dot product operation, still allows the weight values

to increase or decrease according to the input vector xk. This hybrid model of

learning can be applied in FALCON by replacing template learning method that

changes weight vectors in Algorithm 2 defined in Equation 3 with the one in475

Equation 7.

4.3. Knowledge Insertion

In FALCON, a code associating state, action, and Q (reward) value is learned

or clustered as a node in its F2 category field. The codes learned in F2 are

compatible with a class of IF-THEN rules that maps a set of input attributes480

(antecedents) in one pattern channel (field) to a disjoint set of output attributes

(consequents) and the estimated reward value in the other channel. In this way,

instructions in the form of IF-THEN rules (accompanied by reward values) can

be readily translated into the recognition categories at any stage of the learning

process. Consequently, the learning outcomes can also be observed and analysed485

directly in terms of the rules.

Specifically, each corresponding rule can have the following format:

IF c1 ∧ c2 ∧ · · · ∧ cn THEN aj (Q = r)

where ∧ indicates the logical AND operator. Each conditional attribute ci

and action attribute aj correspond to each element of the state and action

vector respectively. On the other hand, Q corresponds to the reward values490
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in FALCON input vectors. In other words, The rule format above contains n

number of condition (c1, c2, and so on until cn) to match from the state input

that each condition refers to the corresponding element of the state vector, an

action aj to select wherein j may correspond to the index of the element in the

action vector, and r value corresponding to the value in the reward vector in495

FALCON input fields.

Besides analyzing the learned code explicitly, the rules can also be used as a

form of instructions that they can be directly inserted to the network allowing

the agent to follow and act without firstly conducting many iterations of trials-

and-errors in reinforcement learning. A set of rules can be defined explicitly500

either by hand or based on the results of previous learning episodes (transferred

knowledge) and used as initial knowledge to direct the behavior of the agent at

the early stage of learning.

To insert rules into the network, the IF-THEN clauses and reward values

of each rule can be translated into corresponding input vectors. Knowledge505

insertion is an important feature where expert knowledge can be inserted to

speed up the learning process. This feature works hand in hand with dynamic

exploration by exploiting the existing knowledge prior to exploring.

In this paper, the rules insertion feature is applied in the experiments to

guide the initial behavior of the agents both at micromanagement unit level and510

macromanagement commanding level of the hierarchical control structure. The

detail of rules to be inserted will be given in later section about the experimental

settings.

5. The proposed model

As mentioned earlier, existing AI bots typically employ macromanagement515

for handling research management, building placement, and strategy planning,

but leaving combat to be handled at the micromanagement level. However,

such micromanagement of units does not provide for cohesiveness in the action

and movement among the agents, impeding the overall fire power and unit
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placement.520

In this section, a hierarchical learning and control model is presented, com-

prising a commander agent at the upper level and multiple unit agents at the

lower level. The commander and unit agents are each modeled as a reinforce-

ment learning agent, namely FALCON, as described in the previous section.

The state vector, action vector and reward system used in the next section will525

be illustrated.

5.1. The Unit Agent Model

In the unit agent model, an individual agent is allowed to make its own

action decision based on the sensory input obtained from the environment. An

example of the unit agent information vector is shown in Figure 4. Each state530

vector is piped through a channel of the fusion ART at the F1 input layer, which

is connected to the F2 category field.

4 Ally Units 

Shortest Path 

High 
ground 

Low ground 

5 Enemy Units 

Low ground 

Destination 

Starting 
location 

High ground 

High ground 

Q-Value Act1 
Act2 

Act3 
attr2 

attr1 
attr6 

attr3 attr7 
attr8 attr4 

attr9 attr5 

Original Value 

Complement Value 

Site A 

Site A 

Figure 4: Example of the structure of activity vectors for a unit agent. There are complement

coded state, action, and Q (reward) vectors, each consecutively has 9 attributes (attr1 to

attr9), 3 actions (Act1 to Act3), and one Q (reward) value (Q-Value). Each element of a

vector is shown as a white square for its original value and grey square for its complement.

As shown in Table 2, the state vector of the unit agent model S consists of

nine input attributes. Using complement coding (Tan et al., 2007), the length

of S is 18 (including the complement values). These attributes range from the535

agent-self health condition, enemy’s presence to ground height level advantage.

In response to the state vector presented, FALCON selects an action among the

available choices, namely Advance, Attack, and Fall back. The Advance action

is to move towards the next checkpoint. The Attack action is to engage in a
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battle with the nearest enemy. The Fall back action is to move towards the540

previous checkpoint and concurrently lure the enemy down from higher terrain.

For the purpose of fall back, checkpoints were selected along the shortest path

generated by the terrain analyser in BWAPI.

Table 2: The state attributes of unit agents.

No. Name Type/Description

1 Ground height advantage Real value, disadvantage ground=0.0, even

ground=0.5, advantage ground=1.0

2 Enemy in attack range Boolean

3 Nearest ally closeness Boolean, true when nearest ally is within half the dis-

tance of the unit’s seek range

4 Current Health Real value, normalised against full health

5 Under attack Boolean

6 Weapon cool down Boolean

7 Enemy closeness Boolean, true when enemy is within half the distance

of the unit’s seek range

8 Ally ratio Real value, number of existing allies over all existing

units including enemy units

9 Average ally health Real value, average health of existing units normalised

against full health

For reinforcement learning, a reward function has to be designed which serves

as evaluative feedback to the actions of the agents. For the game scenario, the545

terminal reward function is defined by the following rules,

if game ends with a win then

reward will be 1.0

else if unit is destroyed then

reward will be 0.0550

else if time out occurs then

reward will be 0.0.

end if
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During the game play, additional rewards are provided to facilitate learning

of the agents. The intermediate reward function is defined by the following555

rules,

if an enemy is destroyed then

reward will be 1.0

else if an enemy is damaged then560

reward will be 0.75

else if unit is damaged then

reward will be 0.25

else if there is a decrease in distance to destination then

reward will be 0.75565

else if there is an increase in distance to destination then

reward will be 0.25

else if there is no change in the distance then

reward will be 0.5.

end if570

With the intermediate and terminal rewards, FALCON learns by updating

or creating new codes using the state and the executed action in the previous

action selection cycle. This model shows a standalone action decision model

with no interaction among the ally agents. This thus lacks the cohesion and

action coordination among existing units that are able to increase the chances575

of completing the task.

5.2. The Commander Agent Model

The commander agent is also a FALCON model, which gathers the input

state information from the environment and the existing units, and makes an

action decision to be issued down to individual units. In this model, the action580

issued by the commander will be strictly followed and executed by all units.

This model allows a better judgement of the current situation based on the

information gathered from existing units and environment. However, such model
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is rigid where actions issued by the commander may not be executable by specific

unit (e.g. an attack action is issued by the commander to all units, but some585

units may not have a target within the attacking range). Therefore these units

will remain stationary and waste the precious turn. The information vector of

the commander agent model is shown in Figure 5 with the state vector gathered

from the environment and individual units. Individual units will strictly execute

the action selected (Act1, Act2 or Act3) by the squad model.590
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Figure 5: The relationship between actions vector of Commander agent model and the vector

of a Unit agent model. The action selected by the Commander in its Actions vector (Act1,

Act2, and Act3) is reflected in the last three attributes of the Unit agent (attr10, attr11, and

attr12). These attributes correspond to the actions the Unit agent can perform as instructed

by the Commander.

In this work, the commander agent’s state vector S comprises six inputs,

and hence the length of S is 12 (including 6 complement values), as shown in

Table 3.

The actions available are identical to the unit agent actions (Attack, Ad-

vance, Fall back). The action from the commander is an overall command or595

strategy that is passed to the unit level that is strictly followed. The rules for

the terminal reward function is given as follows.

if game ends with a win then

reward will be 1.0600

else if game ends with a loss then
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Table 3: State attributes of commander agent.

No. Attribute Type/Description

1 Enemy in attack range Boolean, true when one of the units detected an enemy

within it’s attacking range

2 Ally ratio Real value, number of existing allies over all existing

units including enemy units

3 Average ally health Real value, average health of existing units normalised

against full health

4 Current strength Real value, current number of units over initial number

of units

5 Ground advantage Real value, total number of ally units on even or ad-

vantageous ground over total number of ally units

6 Ally closeness Real value, normalised average distance between all

existing units against unit seek range, 1.0 when nor-

malised average distance is greater than unit seek

range

reward will be 0.0

else if time out occurs then

reward will be 0.0.

end if605

The rules of the intermediate reward function is given by

if any enemy is destroyed then

reward will be 1.0

else if any enemy is injured then610

reward will be 0.75

else if any ally is injured then

reward will be 0.25

else if any ally is destroyed then

reward will be 0.0615
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else if there is a decrease in overall distance then

reward will be 0.75

else if there is an increase in overall distance then

reward will be 0.25

else if there is no change in distance then620

reward will be 0.5.

end if

Figure 6: Hierarchical control architecture over four units wherein a Commander agent senses

the state of the environment and the state of every Unit agent to issue a command to the Unit

agents. Each Unit agent, in turn, senses the environment and perform an action accordingly.

5.3. The Hierarchical Model

As shown in Figure 6, the hierarchical model combines the unit agent model

and the commander agent model in a two-level modular architecture. The625

integration of the two allows the combined model to have the benefits of learning

and decision making based on the global situation as well as the flexibility of

localised learning and decision making by individual unit agents. Instead of

forcing each unit agent to follow strictly the action commands issued by the

commander, the action vector of the commander (Act1, Act2, Act3) is fed into630

the individual units as part of their state vector (attr10, attr11, attr12) as
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shown in Figure 5 hierarchical unit model. With the extended state vector,

each unit agent performs its action selection cycle and selects the best action

to be performed. The hierarchical unit model is allowed to perform the action

as per instructed by the squad commander or overwrite the commander action635

with other more suitable actions.

The reward computation is performed for learning at each level of agent

before the next action decision. In this work, the learning cycles for both level

of agents are similar, called once at every 20 game frame. Each individual unit

agent computes its reward based on the changes on self or environment detected640

over the period of the 20 game frames. These unit rewards may be included

to determine the reward given to the commander agent that in turn refines the

learned knowledge of the commander agent model. Reward of the commander

may also be determined based on the achievement of the overall objectives of the

action strategy. In our implementation, we compute the rewards based on the645

achievement of overall objectives as discussed described under the commander

agent model section.

In Figure 6, it is indicated that at the unit agent level, a shared fusion ART

model is employed to capture the knowledge learned by all the unit agents.

However, each unit agent has its individual Q-Learning cycle which updates the650

common fusion ART model. By sharing the knowledge, learning efficiency can

be enhanced. When the unit receives a feedback from the environment, it may

update and learn the knowledge. The shared knowledge allows the change to

be known and used by the other units on the fly.

6. Experiments655

In this section, we describe the experiments conducted to test and evaluate

the proposed model of hierarchical control for multiagent reinforcement learn-

ing. The experiments are based on StarCraft: Brood War game environment

customized with particular maps, unit agents characters, and special missions

for ally (the side of the reinforcement learning agent) units to accomplish. Using660
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the customized game configurations, the first stage of experiments is to inves-

tigate the characteristics of the game environment against the reinforcement

learning model in terms of partial observability and uncertainties. Here, we

compare the learning performance between the agents with purely Fuzzy ART-

based FALCON and those with hybrid Fuzzy ART-ART2 model when they run665

the mission.

The second stage of the experiments is to evaluate the proposed hierarchical

control model for the learning performance. Different organization structures of

the agents are compared including purely micromanagement learning by indi-

vidual units, fully centralized control by a commander agent, and the proposed670

hierarchical control with unrestrictive directions from the commander. At this

stage, the knowledge insertion feature of FALCON is also demonstrated. Two

different map configurations with distinct difficulty levels are also applied to

investigate the capability of the proposed model.

6.1. Experimental Environment675

As a scaled-down version of StarCraft game, the goal (or mission) of the game

task is for a team of ally agents to advance from its current location to reach

the final destination with as many surviving units as possible. Along the path

from the starting point of the ally forces (bottom right) to the destination (top

left) are enemy units trying to deter the advancing objective of the ally units680

as shown in both maps in Figure 7. For simulating the ally and enemy units,

siege tanks belonging to the Terran race is used. This is to exclude any effect

of bias due to the differing abilities of different unit types in the experiment.

As mentioned earlier, most existing work on the StarCraft domain focused

on combat scenarios on a flat terrain (Uriarte & Ontañón, 2015). To make685

the game more realistic, our experiments have included terrains with different

heights, increasing the complexity of the environment. In addition, two different

levels of game play were created. Scenario 1 has an equal number of four units

for both ally and enemy (4v4), while in the more challenging scenario 2, the

enemy force has the benefit of an additional unit (4v5). In both scenarios,690
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Figure 7: Customized maps: (Map 1) 4 ally units versus 4 enemy units with two enemies are

at a high ground and the other two are at a different high ground position; (Map 2) 4 ally

units versus 5 enemy units with three and two enemies strategically placed at a high ground

and a low terrain respectively.

ground advantage were given to the enemy side which increases the difficulty

level of the simulations. The maps may seem simple, but in actuality, the enemy

located on a higher terrain has the advantage of having a larger visibility range

due to the fog of war and higher hit rate (see Figure 2). The level of difficulty

is further increased in Map 2 by an additional enemy being placed at the higher695

ground at the Site A to defend the advancement route. This greatly increases

the fire power of the enemy and reduces the time needed to destroy an ally unit.

6.2. Parameter Settings

For the purpose of consistency, in all our experiments, the default parameter

values of FALCON are used without tuning as shown in Table 4. Those param-700

eter values are chosen based on previous empirical investigation on finding the

best parameter settings for FALCON reinforcement learning (Teng et al., 2015).

Specifically, the choice parameters {α1,α2,α3}, as in (6), are set to {0.1,0.1,0.1}.

The contribution factors {γ1,γ2,γ3}, as in (6), are set to {0.33,0.33,0.33} imply-

ing that equal weightage is applied to all fields. As fast learning is employed in705

the experiments, it is reasonable to have learning rate parameters {β1,β2,β3} for

template learning to be {1.0,1.0,1.0}. The vigilance parameters {ρ1s,ρ2s,ρ3s} are

set to {0.0,0.0,0.5} for action selection and {ρ1l ,ρ2l ,ρ3l } are set to {0.0,1.0,0.75}
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Table 4: FALCON and Temporal Difference Parameters for Experiments

FALCON Parameters

Choice parameters (6) {α1,α2,α3} = {0.1,0.1,0.1}

Contribution parameters (6) {γ1,γ2,γ3} = {0.33,0.33,0.33}

Learning rate parameters (2) {β1,β2,β3} = {1.0,1.0,1.0}

Vigilance parameters (action selection) {ρ1s,ρ2s,ρ3s} = {0.0,0.0,0.5}

Vigilance parameters (learning) {ρ1l ,ρ
2
l ,ρ

3
l } = {0.0,1.0,0.75}

Temporal Difference Learning

Learning rate (5) α = 0.5

Discount factor (4) γ = 0.1

during learning. These choices of vigilance can still be justifiable since during

action selection, the main concern is to find a code or rule that guarantees a710

good return. The code may only need to match with a few attributes from the

input state implying zero state vigilance. In this case, the vigilance for action

field is set to zero since its values will be replaced by the readout instead of

matched. On the other hand, the vigilance parameters for action is maximum

or 1 during learning as it must ensure to find a node that exactly match with715

the input action to learn.

For Q-learning, the parameters are also chosen empirically. The learning

rate α in (5) is set to 0.5 and discount factor γ in (4) is set to 0.1.

6.3. Learning from Scratch Experiments

In this first set of experiments, we evaluate the use of fuzzy ART and ART2720

operations in the unit agent model based on the Map 1 shown in Figure 7 as

it learns from scratch. In particular, the experiments are designed to compare

the model that employs fuzzy ART for all the fields with the hybrid fusion ART

employing the fuzzy ART and ART2 operations for state field and reward field

respectively.725
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Note that only the performance of fuzzy ART in the single successful run is

shown here as the POMDP nature of the game may cause the reward values of

the learned knowledge to be over generalized resulting in continuous time out.

In comparison, all five runs of the unit agent model using ART2 operation in

the reward field have achieved successful learning behavior as shown in Figure 8.730

As such, the standard deviation of the five runs are plotted for the unit agent

model using ART2 operation only.
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Figure 8: Comparing the performance of unit agent models using fuzzy ART and ART2

operations.

The results have suggested that ART2 operations is a better choice when

the domain is not fully observable and has a POMDP nature. The following

section further supports this observation.735

6.4. Learning Hierarchical Control Experiments

In the second stage of experiment, the purpose is to compare the perfor-

mance of the three model configurations, namely: the Unit agent model, the

commander agent model and the hierarchical model. The unit agent model per-

forms micromanagement of the low-level units and does not maintain cohesion740

in actions. The commander agent model, on the other hand, performs macro-

management of the high level control, where all low-level units strictly obey the

centralized action commands received. Lastly, the hierarchical model combines

both the unit agent and commander agent models. On top of evaluating the

three agent models, the experiments also evaluate the use of fuzzy ART and745

ART2 operations in the underlying fusion ART models.
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FALCON neural networks have the capability to integrate rule-based knowl-

edge with reinforcement learning (Teng et al., 2015). This set of experiments

illustrates the performance of the various models when rules are inserted before

the learning. The two sets of rules inserted for the commander agent and the750

unit agent are shown in Table 5 and Table 6 respectively.

Table 5: Commander Agent Rules

No.Conditions Actions

1 Enemy not in range, ally ratio [0.5-1.0], average ally health

[0.5-1.0], current strength [0.5-1.0], ground height [0.5-1.0]

Advance

2 Ally ratio [1.0-1.0], average ally health [1.0-1.0], current

strength [1.0-1.0], ground height [0.5-0.5], ally closeness [0.5-

1.0]

Advance

3 Ally ratio [1.0-1.0], average ally health [1.0-1.0], current

strength [1.0-1.0], ground height [0.5-0.5], ally closeness [0.0-

0.5]

Advance

4 Enemy in range, ground height [0.0-0.5] Fall back

5 Enemy in range, ground height [0.5-1.0], ally closeness [0.5-

1.0]

Attack

6 Enemy in range, current strength [0.5-1.0], ground height [0.5-

1.0], ally closeness [0.0-0.0]

Attack

The reward value r for every inserted rule is set to 0.76 so that it is sufficiently

high to be prioritized for selection over other learned nodes whenever the state

matches with the input, but still allowing it to learn or create a new rule with

a better reward during exploration. In this experiment, the inserted rules are755

considered as doctrines that must be followed by the units and the commander.

In that case, they are made immutable and cannot be changed once they are

inserted in the network. However, as Fusion ART allows new uncommitted

nodes to be created or recruited, additional rules can still be acquired with

similar state and reward value to the inserted ones though it may happen only760

by chance during exploration.
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Table 6: Unit Agent Rules

No.Conditions Actions

1 Ground height [0.5-1.0], NO enemy seen Advance

2 Ground height [0.5-1.0], enemy seen, ally close by, weapon cool

down

Attack

3 Ground height [0.0-0.0], enemy seen, under attack, NOT

weapon cool down

Fall back

4 Ground height [0.5-1.0], NO enemy seen, ally close by, Com-

mander Attack command

Advance

5 Commander says Advance Advance

6 Commander says Attack Attack

7 Commander says Fall back Fall back
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Figure 9: Success (winning) rates over 1000 game trials averaged across 5 runs for the 4v4

scenario in Map 1.

For the unit agent model configuration of experiment, only rules 1 to 3

applicable to unit agents will be inserted. On the other hand, for the commander

agent model configuration, all rules applicable to the commander agent rules

in Table 5 are used. Similarly, in the hierarchical model configuration, the765

commander agent applies all the listed commander rules.
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6.5. Results and Discussion

As shown in Figure 9, the success rate of the various models (averaged

over five independent runs) are all above 70%. While both the unit agent

models using the fuzzy ART and ART2 operations achieved a stable 70%, the770

hierarchical model using ART2 operation achieved the best performances of

95%. The other models have also achieved a high performance of roughly 90%

success rate with the inserted rules. This shows that the difficulty level of Map

1 may be too low and the inserted rules are sufficient to handle the game.

Note that the hierarchical model with the ART2 operation has achieved the775

best result compared to the commander agent model with ART2 operation,

though they are both using the identical inserted rules. This shows the benefits

of flexibility at the unit agent level that allow them to perform other more

appropriate actions rather than strictly following the commander’s action under

the commander agent model.780

In addition, the performance of the three different models have shown that

unit cohesion may play a part in achieving better performance. A lower success

rate of 70% was attained by unit agent model units largely due to the non-

cohesive actions taken by units individually. On the other hand, units that either

fully obey commander’s command (in the commander agent model) or take into785

consideration the commander’s command as additional input (in the hierarchical

model) had achieved higher success rates of above 80% due to the unit movement

cohesion. This is because, at the commander’s level, information of the current

observation from all the individual unit contributes to the attributes of the

commander agent (e.g. ground advantage). This information can be used to790

select or learn the best action to take based on the inserted or learned rules.

The final set of experiments is conducted to evaluate the performance of the

model in a more challenging configuration of the environment. The difficulty of

the simulation is further increased as shown in Map 2, with an additional enemy

unit located at Site A. The experiments are also independently rerun five times795

using the same parameters and inserted codes. With the increased difficulty,

unit movement and attack cohesion becomes an important factor to achieve a
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successful game in this map configuration.
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Figure 10: Success (winning) rate over 1000 games averaged across five runs for the 4v5

scenario in Map 2.

Figure 10 shows the performance under the Map 2 configuration. As the

difficulty level of the customised map is increased, the overall success rate of the800

game is well expected to drop. Both the unit agent models using fuzzy ART and

ART2 operations are shown to achieve below 20% winning rate. On the other

hand, with the underlying mechanism of unit coordination, better performance

can be obtained by the hierarchical model and the commander agent model.

The best performance is achieved by the hierarchical model followed by the805

commander agent model with both using the ART2 operations. These results

have shown that with unit coordination, the success rate can be greatly im-

proved, and even better with the hierarchical model over the commander agent

model. This is because the hierarchical model retains the flexibility whereby

individual units are allowed not to strictly follow the action given by the com-810

mander under certain conditions that may lead to a bad outcome at the unit

level. Observations were made on situations wherein each unit has chosen an

action according to each individual rules, but the result becomes less optimal

or even detrimental to the entire team of the agents For example, in situation

whereby unit A is on an even ground with the enemy, rule 2 (Table 6) is valid to815

select or execute. However, another nearby unit B that is at a disadvantageous

37



ground with the enemy, may instead choose to fall back (according to rule 3 in

Table 4), leaving the unit A to face the enemy alone. With the advantages of

being on the high ground, the enemy units have a nearly 100% hitting rate of

their fire power on ally units on the low ground. Consequently, the ally units820

typically suffer much health level decline before engaging on any battle. In con-

trast, both the hierarchical model and the commander agent model mitigate

such situations by instilling unit coordination. At the commander level, deci-

sions are made based as seen on the overall situation. However, each individual

unit is in its own situation which may not be suitable to follow the comman-825

der’s instruction all the time. In that case, the flexibility the hierarchical model

overcome this rigidity in the commander model.

The performance achieved by both the hierarchical model and commander

agent model using fuzzy ART operation is notably poor. As the difficulty of the

map is increased (Map 2), the uncertainty within the game is also increased.830

In particular, the enemy units have a longer range of visibility and higher fire

power when they are on a higher ground than the ally units that are mostly

placed in low ground. In this case, an action, like attacking, by one ally unit

that should lead to a good outcome, may be a bad one for another in a similar

situation. As a result, the rules learned using the fuzzy ART operations may835

be over-generalized, leading to the decline in the success rates. Specifically, it is

observed that although generalization based on the complement-coded vectors

with fuzzy ART operations is effective for learning the state representation, it

is not so for learning the uncertain reward values. On the other hand, the agent

models using ART2 operations for learning in the reward field are able to adapt840

better with the uncertainty, leading to a more stable level of performance.

More observations on the relationship of rules learned with the resulting

winning rate have also indicated that striking a balance between generalizing

state attributes of a rule and keeping specific attributes of an existing code may

determine the effectiveness of the learned rules to achieve the domain objectives.845

Overgeneralization, even on a single attribute, can be detrimental to the corre-

sponding rule to take effect. For example, as shown in Table 5, rule number 2
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and 3 are specific and quite similar in terms of the action to take (Advance) and

the state attributes except for the attribute representing the ally closeness (unit

cohesiveness). However, making the two as a single rule by generalizing the850

closeness attribute to ignore any value of it and to match with its entire range

of closeness (from 0 to 1) may instead make the rule seldom to be selected. The

cause can be that there is another rule with more generalized attributes but

still has more chance to be selected as it has always higher activation values in

general. In this case, the generalization may instead cause the rule to be ineffec-855

tive especially during action selection wherein the vigilance ρ1s = 0, bypassing

the template matching process. In this case, a good rule, either learned or pre-

inserted should have most of its attributes generalized (with ranges of values)

to a certain extent but not too much (e.g taking the entire range of values).

7. Conclusion860

This paper has presented a hierarchical learning and control model for co-

ordinating the adaptation and performance of multiple self-organizing learning

agents in real time. The empirical results obtained based on the StarCraft do-

main have shown that the hierarchical model, combining the learning ability

at the macromanagement and micromanagement levels, is more robust than865

individual unit agent models learning at the micro level. When compared to

a commander agent model at the macro level, the hierarchical model has the

advantage of flexibility, whereby each individual unit is still able to learn bet-

ter micro-level strategies rather than strictly following the central commander’s

instructions. This flexibility can be observed from both the map scenarios in870

our experiments, wherein the hierarchical model consistently produces a better

level of performance.

Regarding the specific model choice of self-organizing neural models, the suit-

ability of ART2 choice and matching functions over the fuzzy ART operations

in a POMDP domain, such as StarCraft game, has been observed through the875

comparative experiments conducted. Due to the unidirectional fuzzy learning
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rule, over-generalisation in fuzzy ART has resulted in only one out of five runs

successfully achieving a proper learning. It also led to degrading of performance,

in terms of winning rates, in the knowledge inserted experiments.

Moving forward, the management of complex combat scenarios in RTS games880

is still an open research problem as most work in the literature only explores

a limited set of actions such as moving, attacking and fleeing. Extending the

hierarchical model into a full fledged bot to play the entire game will therefore

be a great challenge. The extension may also include mutable inserted rules to

investigate the effect of adaptive doctrines to the overall performance during885

learning. To handle a more complex problem domain, different learning strate-

gies, including deep learning, could be explored in our future work for learning

compressed representation in the commander as well as the unit agents.
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