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Abstract

We study the maximum capture problem in facility location under random utility mod-

els, i.e., the problem of seeking to locate new facilities in a competitive market such that the

captured user demand is maximized, assuming that each customer chooses among all avail-

able facilities according to a random utility maximization model. We employ the generalized

extreme value (GEV) family of discrete choice models and show that the objective function

in this context is monotonic and submodular. This finding implies that a simple greedy

heuristic can always guarantee a (1 − 1/e) approximation solution. We further develop a

new algorithm combining a greedy heuristic, a gradient-based local search, and an exchang-

ing procedure to efficiently solve the problem. We conduct experiments using instances of

different sizes and under different discrete choice models, and we show that our approach

significantly outperforms prior approaches in terms of both returned objective value and

CPU time. Our algorithm and theoretical findings can be applied to the maximum cap-

ture problems under various random utility models in the literature, including the popular

multinomial logit, nested logit, cross nested logit, and mixed logit models.

Keywords: Facilities planning and design, maximum capture, random utility maximization,

generalized extreme value, greedy heuristic.

1 Introduction

In the last decade, the facility location problem in a competitive market has received growing

attention. In practice, modelling critical managerial decisions related to infrastructure planning,

such as finding locations to locate new retail, service, or product facilities in a market, often lead
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to facility location problems. The competitive facility location problem deals with a decision of

selecting locations to open new facilities in a market to maximize the captured demand of users,

where a set of incumbent competitors are already operating in order. There are two aspects that

need to be considered in this problem, namely, the demand of customers and the competitors

in the market. Customers are independent decision-makers and their choices among different

facilities might be based on a given utility that they assign to each location. Such utilities might

be a function of facility attributes/features, e.g., distances, prices, and transportation costs.

There are several ways to define and estimate customer demand (Berman et al., 2009). In this

work, we focus on a probabilistic approach, i.e., customer demand is captured by a probability

model that assigns choice probabilities to the facilities. The random utility maximization (RUM)

framework (Horowitz, 1986, McFadden, 1973) is convenient and popular in the context. This

framework is based on the assumption that each facility is associated with a random utility,

which can be determined by the features/attributes of the facility. The RUM principle assumes

that each customer selects a facility by maximizing his/her utilities. This way of modeling allows

for predicting the probability that a customer selects a facility. The facility location problem

then becomes the problem of locating new facilities in a competitive market to maximize an

expected captured demand function, where customers select a facility (a new facility or one from

the competitors) according to a RUM model. Thus, the problem is also called as the maximum

capture problem (MCP).

To the best of our knowledge, existing related studies in the literature only employ the multino-

mial logit (MNL) or its mixed version (mixed logit model - MMNL) (Benati and Hansen, 2002,

Haase and Müller, 2013, Hasse, 2009). It is well-known that the MNL retains the independence

from irrelevant alternatives (IIA) property, which does not hold in many contexts (McFadden,

1981, McFadden and Train, 2000). On the other hand, the generalized extreme value (GEV)

family provides flexible ways to relax the IIA property and to capture the correlation between

alternative utilities (McFadden, 1981). However, under the GEV family, most of the important

properties that have been used to develop solution methods for the MCP under the MNL and

MMNL models do not hold or have not been proved to be true. More precisely, the objective

function under the GEV family does not have a linear fractional structure, thus it is difficult

to formulate the MCP into a mixed-integer linear program (MILP) as in prior work (Benati

and Hansen, 2002, Zhang et al., 2012). Moreover, under the GEV family, the objective function

of the continuous relaxation is not either concave or convex, making the outer-approximation

methods (Ljubić and Moreno, 2018, Mai and Lodi, 2020) not applicable. Furthermore, since the

structure of the objective function is driven by a GEV choice probability generating function,

which may not have a closed-form and could be complicated, it is not clear whether the objective

function is submodular or not. All the above remarks make the MCP under the GEV family

challenging. We tackle this challenge in this paper.

Before presenting our contributions in detail, we note that, from now on, when saying a “GEV

model”, we refer to any choice model in the GEV family. Each GEV model can be determined

by a choice probability generating function (CPGF) (Fosgerau et al., 2013) (see a detailed
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definition in the next section).

Our contributions: In this paper, we formulate and solve the MCP under any GEV models.

We leverage the properties of the CPGFs of GEV models (Daly and Bierlaire, 2006, McFadden,

1981) and show that the objective function in the context is monotonic increasing and submodu-

lar. These properties are already known for the MCP under the MNL model (Benati, 1996) and

now we show that they also hold for any GEV models. The monotonicity and submodularity

also imply that the MCP subjecting to a cardinality constraint, even though being NP-hard,

always admits a (1 − 1/e) approximation algorithm. In other words, a simple greedy heuristic

always returns a solution whose value is at least (1 − 1/e) (≈ 0.632) times the optimal values

(Nemhauser et al., 1978).

To further enhance the greedy heuristic (GH), we develop a new algorithm that adds a gradient-

based local search and exchanging procedures to the GH. While the latter is simply based on

steps of exchanging a location in a set of chosen locations with one outside of the set to get a

better objective value, the former is motivated by the fact that if we formulate the MCP as a

binary program, then the objective function is differentiable and we can make use of gradient

information to direct the search. The gradient-based local search is an iterative procedure in

which at each iteration we solve a subproblem to (hopefully) find a better candidate solution,

and we show that such a subproblem is solvable in polynomial-time. Our algorithm can be used

to solve problems under any GEV models and under the MMNL model.

We conduct experiments using some datasets from the recent literature, including real-life large-

scale instances from an park-and-ride location problem in New York City (Holguin-Veras et al.,

2012). We compare our algorithm, named as GGX (stands for Greedy Heuristic, Gradient-based

Local Search, and Exchanging) with some state-of-the-art approaches from recent literature,

i.e., the Branch & Cut method proposed by Ljubić and Moreno (2018) and outer-approximation

algorithms (Bonami et al., 2011, Mai and Lodi, 2020). Experiments based on MNL, MMNL, and

nested logit instances show that our algorithm remarkably outperforms the other approaches,

in terms of both returned objective value and CPU time.

Literature review: The GEV family (McFadden, 1981) covers most of the discrete choice

models in the demand modeling and operations research literature. Among existing GEV mod-

els, the MNL is the simplest and most popular one. It is also well-known that the MNL retains

the IIA property, which implies that the ratio between the choice probabilities of two facilities

will not change no matter what other facilities are available or what attributes that other fa-

cilities have. This property has been regarded as a limitation of the MNL model and should

be relaxed in many applications (McFadden and Train, 2000). There are several GEV models

that relax this property and provide flexible ways to model the correlation between choice al-

ternatives. For example, the nested logit (Ben-Akiva, 1973), the cross-nested logit Vovsha and

Bekhor (1998), the generalized nested logit (Wen and Koppelman, 2001), the paired combina-

torial logit (Koppelman and Wen, 2000), the ordered generalized extreme value Small (1987),

the specialized compound generalized extreme value models (Whelan et al., 2002) and network-
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based GEV (Daly and Bierlaire, 2006, Mai et al., 2017) models. GEV models, in particular, the

cross-nested and network GEV models, are fully flexible, in the sense that they can approxi-

mate any random utility maximization models (Fosgerau et al., 2013). Besides the GEV family,

the MMNL is also an alternative to relax the IIA property. This model extends the MNL by

assuming that the choice parameters are random. Similar to GEV models, the MMNL is also

capble of approximating any random utilities choice model (McFadden and Train, 2000). How-

ever, the choice probabilities given by the MMNL model have no closed-form and often require

simulation to approximate. Thus, the estimation and application of this model are expensive in

many contexts.

In the context of the MCP, most existing studies focus on the MNL model due to its simplicity.

Benati and Hansen (2002) seem the first to introduce the MCP under the MNL model. They

propose three methods to compute upper bounds along with a branch-and-bound method to

solve small instances. The first method is based on the concavity of the continuous relaxation

of the objective function. They show the submodularity of the objective function and use this

property to develop the second method. The third method is an equivalent mixed-integer linear

program (MILP), which is based on the fact that the objective function has a linear fractional

structure and can be linearized using additional variables. Benati and Hansen (2002) also

introduced a simple variable neighborhood search (VNS) method to solve instances with more

than 50 potential locations. Some alternative MILP models, afterward, have been proposed

by Hasse (2009) and Zhang et al. (2012). Haase and Müller (2013) give an evaluation and

comparison of these proposed MILP models and conclude that the MILP model from Hasse

(2009) is the most efficient one. Freire et al. (2015) strengthen the MILP reformulation of Hasse

(2009) by using some tighter coefficients in some inequalities and also propose a new branch-

and-bound algorithm to deal with the problem. Lin and Tian (2021a,b) further improve the

MILP approach using Benders decomposition. Ljubić and Moreno (2018) propose a branch-

and-cut method that combines two types of cutting planes, namely, outer-approximation (OA)

and submodular cuts. The first type of cuts relies on the fact that the objective function of

the continuous relaxation of the problem is concave and differentiable and the second type

is based on the submodularity and separability properties of the objective function. Their

branch-and-cut method is an iterative procedure where cuts are generated for every demand

point and a linear programming (LP) relaxation is solved at each iteration. Mai and Lodi

(2020) propose a multicut outer-approximation algorithm that works in a cutting plane fashion

by solving an MILP at every iteration. This algorithm generates cuts for groups of demand

points instead of one cut for every demand point as in Ljubić and Moreno (2018) or one cut

for all the demand points as in the classical outer-approximation scheme (Bonami et al., 2008,

Duran and Grossmann, 1986). The branch-and-cut proposed by (Ljubić and Moreno, 2018)

and multicut outer-approximation are regarded as two state-of-the-art approaches for the MCP

under the MNL model. Note that in the context of the MCP, MNL and MMNL instances

have similar structures. Thus, all the methods developed for the MNL model can be applied to

MMNL instances. There are also a couple of studies investigating the MCP under the MMNL

model (Haase and Müller, 2013, Hasse, 2009). These studies make use of MILP formulations,
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which are expensive for large instances and generally outperformed by the branch-and-cut and

outer-approximation approaches (Ljubić and Moreno, 2018, Mai and Lodi, 2020).

In the context of approximation algorithms for facility location, the literature has seen several

algorithms having worse-case bounds. For instance, Shmoys et al. (1997) develop approximation

algorithms for several classical facility location problems. Aboolian et al. (2007) consider the

problem of simultaneously optimizing location and design decisions for a set of new facilities.

They also propose a near-optimal solution approach, with adjustable error bounds, to solve some

special cases along with two heuristic methods to handle large instances. Ageev et al. (2004),

Ortiz Astorquiza et al. (2017) consider multilevel uncapacitated p-location problems and also

make use of the submodularity property to develop greedy heuristics that return (1 − 1/e)

approximation solutions. More recently, Kung and Liao (2018) propose an approximation-

relaxation-sorting-aggregation algorithm for the competitive facility location problem with net-

work effects. This method consists of four major steps which first approximate the original

objective function, then, relax the problem by decomposing the linear integer program into

subproblems before constructing a feasible solution by a simple sorting procedure, and finally,

finish by aggregating all solutions from all subproblems to generate a solution to the original

problem. They also establish some worst-case performance guarantees for some special cases.

More work on approximation algorithms for facility location can be found in Laporte et al.

(2015). Note that our work seems to be the first attempt to develop approximation procedures

with a performance guarantee for competitive facility location problems under GEV demand

models where the objective functions are highly nonlinear.

Paper outline: The rest of paper is structured as follow. Section 2 briefly presents the GEV

family focusing on the some essential properties of the CPGF, and the MCP under the GEV

family. In Section 3, we investigate the monotonicity and submodularity of the MCP under the

GEV family, and present our local search algorithm. Section 4 reports computational results.

Finally, Section 5 concludes.

Notation: Boldface characters represent matrices (or vectors), and ai denotes the i-th element

of vector a. We use [m], for any m ∈ N, to denote the set {1, . . . ,m}.

2 Generalized Extreme Value Models and the Maximum Cap-

ture Problem

In this section, we introduce some basic concepts and properties of the GEV family and formulate

the MCP under GEV models.
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2.1 Generalized Extreme Value Models

The Random Utility Maximization (RUM) framework (McFadden, 1978) is the most popular

approach to model discrete choice behavior. Under the RUM principle, the decision-maker is

assumed to associate a utility uj with each alternative/option j in a given choice set S that

contains all possible alternatives. The additive RUM (Fosgerau and Bierlaire, 2009, McFadden,

1978) assumes that each random utility is a sum of two parts uj = vj + εj , where the term

vj is deterministic and can include values representing characteristics of the alternative and/or

the decision-maker, and the random term εj is unknown to the analyst. There are several

assumptions that have been made on the randoms terms, which leads to different types of

discrete choice models in the literature, e.g., the MNL or nested logit models (McFadden, 1978,

Train, 2003). The deterministic terms vj often have a linear structure, i.e., vj = βTαj , where T

is the transpose operator and β is a vector of parameters to be estimated from historical data of

how people make decisions, and αj is a vector of attributes of alternative j. The RUM principle

then assumes that a decision is made by maximizing the random utilities, and the probability

that an alternative j is selected can be computed as P (uj ≥ uk, ∀k ∈ S).

The GEV family covers most of the existing discrete choice models in the literature. This

family of model is fully flexible, in the sense that it allows to construct various discrete choice

models that are consistent with the RUM principle (McFadden, 1981). Assume that the choice

set contains m alternative indexed as {1, . . . ,m} and let U = {v1, . . . , vm} be the vector of

utilities . A GEV model can be determined by a choice probability generating function (CPGF)

G(Y) (Fosgerau et al., 2013, McFadden, 1981), where Y is a vector of size m with entries

Yj = evj . Given j1, . . . , jk ∈ [m], let ∂Gj1...jk , be the mixed partial derivatives of G with respect

to Yj1 , . . . , Yjk . It is well-known that the CPGF G(·) and the mixed partial derivatives have the

the following properties (McFadden, 1978).

Remark 1 A CPGF G(Y) of a GEV model, has the following properties.

(i) G(Y) ≥ 0, ∀Y ∈ Rm+ ,

(ii) G(Y) is homogeneous of degree one, i.e., G(λY) = λG(Y)

(iii) G(Y)→∞ if Yj →∞

(iv) Given j1, . . . , jk ∈ [m] distinct from each other, ∂Gj1,...,jk(Y) > 0 if k is odd, and ≤ if k

is even

(v) G(Y) =
∑

j∈[m] Yj∂Gj(Y)

(vi)
∑

k∈[m] Yk∂Gjk(Y) = 0, ∀j ∈ [m].

Here we note that (i) − (iv) are basic properties of a GEV generating function (McFadden,

1981), and Properties (v) and (vi) are direct results from the homogeneity property. We will
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make use of these properties throughout the rest of the paper to explore the properties of the

objective function of the MCP and derive solution algorithms for the MCP. Under a GEV model

specified by a CPGF G(Y), the choice probability of an alternative j ∈ [m], conditional on Y

and G, is given by

P (j|Y, G) =
Yi∂Gi(Y)

G(Y)
.

The GEV framework allows for correlated utilities and one can build different CPGF to model

different correlation patterns among random utilities. One can build a GEV model from a

network of correlation structures, which provides a very flexible way to construct choice models

that are able to capture complex relationships between alternatives (Daly and Bierlaire, 2006,

Mai et al., 2017). In the following, we show some specific instances of the GEV family that are

already popular in the demand modeling and operations research literature.

The MNL model: The MNL is one of the most widely-used discrete choice models in the

literature. This model results from the assumption that the random terms εj , j ∈ [m], are

independent and identically distributed (i.i.d.) and follow the standard Gumbel distribution.

The CPGF function has a simple form as G(Y) =
∑

j∈[m] Yj and the choice probabilities have

the fractional form below

P (j|Y, G) =
Yj∑

j∈[m] Yj
=

evj∑
j∈[m] e

vj
. (1)

It is well-known that the MNL model exhibits from the IIA property, which means that the

choice probability of an alternative will not be affected by the attributes or the state of the

other alternatives. However, in some situations, alternatives share unobserved attributes (i.e.

random terms are correlated) and the IIA property does not hold.

The nested logit model: The nested logit model (Ben-Akiva, 1973) is one of the first attempts

to relax the IIA property from the MNL model. In this GEV model, the choice set is partitioned

into L nests, which are disjoint subsets of alternatives. Let denote by n1, . . . , nL the L nests.

The corresponding CPGF can be written as

G(Y) =
∑
l∈L

∑
j∈nl

Y µl
j

1/µl

,

where µl ≥ 1, l ∈ [L], are the parameters of the nested model. This model is based on the

observation that, in many situations, some similar or closely related alternatives can be grouped

into smaller subsets. It is easy to see that G(Y) satisfies the six properties above and the choice

probabilities can be computed as

P (j|Y, G) =

(∑
j′∈nl

Y µl
j′

)1/µl

∑
l∈[L]

(∑
j′∈nl

Y µl
j′

)1/µl

Y µl
j∑

j′∈nl
Y µl
j′
, ∀l ∈ [L], j ∈ nl.
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The cross-nested logit model (Ben-Akiva and Bierlaire, 1999) is an extension of the nested logit

that allows the nests to share common alternatives. This model is known to be fully flexible,

as it can approximate arbitrarily close any RUM models (Fosgerau et al., 2013). The network

GEV model proposed in Daly and Bierlaire (2006) further generalizes the cross-nested model by

proving a way to construct a GEV CPGF based on any rooted network of correlation structures.

Apart from the GEV family, the MMNL model (McFadden and Train, 2000) is also popular

due to its flexibility in capturing utility correlation. In the MMNL model, the model parameters

(and the utilities vj) are assumed to be random, and the choice probabilities can be obtained

by taking the expectations over random coefficients. Let Y1, . . . ,YK be K realizations sampled

from the distribution of the random parameters, the choice probabilities can be approximated

as

P (j|Y1, . . . , Y K , G) =
1

K

K∑
k=1

Y k
j∑

t∈[m] Y
k
t

.

The MMNL model is highly preferred in practice due to its flexibility in modeling people demand.

However, the estimation and application of this model in decision-making are well-known to be

expensive and complicated, due to the fact that it requires simulation to approximate the choice

probabilities.

2.2 The Maximum Capture Problem

We are interested in the situation that a “newcomer” firm wants to locate new facilities in a

competitive market, i.e., there are already existing facilities from competitors that can serve

customers. The firm may want to maximize the expected market share achieved by attracting

customers to new facilities. To capture the customers’ demand, we suppose that a customer

selects a facility according to a RUM model. In this context, each customer would associate

each facility with a random utility and we assume that the customer will choose a facility by

maximizing his/her utilities. Accordingly, the firm aims at selecting a set of locations to locate

new facilities to maximize the expected number of customers. In the following, we describe in

detail the formulation of the MCP under GEV models.

We denote by V = [m] the set of possible locations. Let I be the set of geographical zones where

customers are located and qi is the number of customers in zone i ∈ I and for customers at

zone i, let vij be the corresponding deterministic utility of location j ∈ [m]. These utility values

can be inferred by estimating the RUM model using historical data. The set I can be viewed

as a set of customer types, e.g., customers that belong to different categories specified by, for

instance, age or income. A GEV model for customers located at zone i ∈ I is determined by a

CPGF Gi(Yi), where Yi is a vector of size m with entries Y i
j = evij .

Under a GEV model specified by a set of CPGF Gi(Yi), i ∈ I, taking into consideration the
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competitors, the choice probability of a location j ∈ [m] is given as

P (j|Yi, Gi) =
Yj∂G

i
j(Y

i)

1 +Gi(Yi)
.

Here, without loss of generality, we assume that the total utility of the competitor is 1 for the

sake of simplicity, as if it is not the case, then we always can scale the utilities Yi to get utilities

of 1 for the competitors. More specifically, it is possible due to fact that, for any α > 0,

Yj∂G
i
j(Y

i)

α+Gi(Yi)

(a)
=

Yj
α ∂G

i
j(Y

i)

1 +Gi(Yi/α)

(b)
=

Yj
α ∂G

i
j(Y

i/α)

1 +Gi(Yi/α)

where (a) is due the homogeneity of Gi(·) ((ii) of Remark 1) and (b) is obtained by taking

derivatives of the both sides of the equation Gi(αYi) = αGi(Yi) w.r.t. Y i
j

α∂Gij(αy
i) = α∂Gij(Y

i), or ∂Gij(αy
i) = ∂Gij(Y

i), for any α > 0.

We are interested in the fact that the facilitates are located at a subset of locations S ⊂ [m].

Hence, the conditional choice probability can be written as

P (j|Yi, Gi, S) =
Y i
j ∂G

i
j(Y

i|S)

1 +Gi(Yi|S)
, ∀j ∈ S,

where the conditional CPGF Gi(Yi|S) can be computed as Gi(Yi|S) = Gi(Ỹ
i
), where Ỹ

i
is a

vector of size m with entries Ỹ i
j = Y i

j if j ∈ S and Ỹ i
j = 0 otherwise. This can be interpreted

as if a location j is not in S, then its corresponding utility becomes very small, i.e., vij = −∞,

then Y i
j = evij = 0. The maximum capture problem under a GEV model specified by CPGFs

Gi(Yi), i ∈ I, can be stated as

max
S∈S

fGEV(S) =
∑
i∈I

qi
∑
j∈S

P (j|Yi, Gi, S)

 , (2)

where S is the set of feasible solutions. Under a cardinality constraint |S| ≤ C, S can be

defined as S = {S ⊂ [m]| |S| ≤ C}, for a given constant C such that 1 ≤ C ≤ m. Note that the

objective function can be further simplified as

fGEV(S) =
∑
i∈I

qi

∑
j∈S Y

i
j ∂G

i
j(Y

i|S)

1 +Gi(Yi|S)

(a)
=
∑
i∈I

qi −
∑
i∈I

qi

1 +Gi(Yi|S)
,

where (a) is due to Property (v) in Remark 1.
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If the choice model is MNL, the objective function becomes

fMNL(S) =
∑
i∈I

qi −
∑
i∈I

qi
1 +

∑
j∈m Y

i
j

,

and from previous studies, we know that fMNL(S) is submodular (Benati and Hansen, 2002).

Thus, an approach based on sub-gradient and submodular cuts can be used (Ljubić and Moreno,

2018, Mai and Lodi, 2020) to efficiently solve the problem. In general, formulations based on

GEV models would be much more complicated. For example, under the nested logit model, we

can write the objective function as

fGEV(S) =
∑
i∈I

qi −
∑
i∈I

qi

1 +
∑

l∈[L]

(∑
j∈nl∩S(Y i

j )µl
)1/µl

.

Under a more general case, e.g., the network GEV model (Daly and Bierlaire, 2006, Mai et al.,

2017), it is even not possible to write the objective function in a closed form.

It is important to note that, if we look at the objective function under a MMNL model

fMMNL(S) =
1

K

∑
k∈[K]

(∑
i∈I

qi −
∑
i∈I

qi

1 +
∑

j∈m Y
i,k
j

)

=
∑

k∈[K],i∈I

qi
K
−

∑
i∈I,k∈[K]

qi/K

1 +
∑

j∈m Y
i,k
j

,

where Yi,k, k = 1, ...,K, are K realization of the random utility vector Yi, then we see that

this objective function can be viewed as one from the MNL-based MCP problem with K ×
|I| customer zones, in which there are qi/K customers in zone (i, k)-th. So, all the results

established for the MNL (and GEV in general) problem can also be used to solve the MMNL

problem.

3 Maximum Capture Problem under GEV Models

In this section, we explore the MCP under GEV models. In particular, by leveraging the

properties of the GEV CPGFs shown above, we show that the objective function in the context

is monotonic and submodular. This generalizes some well-known results established for MNL-

based problems in previous studies (Benati, 1996, Benati and Hansen, 2002). We then present

our local search procedure to efficiently solve the problem.

3.1 Monotonicity and Submodularity

We show two key results of the paper, which indicate that the objective function under any

GEV model is monotonic and submodular. As a result, we show that it is possible to obtain a

10



(1− 1/e) approximation solution using a simple greedy heuristic procedure.

To prove the results, we first formulate the MCP as a binary program. That is, given a subset

S ⊂ [m], let xS be a binary vector of size m with entries xSj = 1 if j ∈ S and xSj = 0 otherwise.

We see that the conditional CPGF can be written as

Gi(Yi|S) = Gi(xS ◦Yi),

where ◦ is the element-by-element operator and x ◦Yi is vector of size m with entries xSj Y
i
j ,

j = 1, . . . ,m. We now can formulate (2) as

max
x∈X

{
fGEV(x) =

∑
i∈I

qi −
∑
i∈I

qi

1 +Gi(x ◦Yi)

}
, (3)

where X = {xS ∈ {0, 1}m| ∀S ∈ S}, i.e., the feasible set of binary solutions that corresponds

to all the subsets in S. It is worth noting that if the choice model is MNL (or MMNL), then

the objective fGEV(x) is concave in x and the problem can be handled efficiently by an outer-

approximation method (Bonami et al., 2011, Ljubić and Moreno, 2018, Mai and Lodi, 2020). It

is however not the case under an arbitrary GEV model.

The following proposition tells us that the objective function is monotonic, which implies that

adding more facilities always yields better objective values.

Proposition 1 (Monotonicity) Adding more facilities always yields better objective values,

i.e., fGEV(S ∪ {i}) > fGEV(S) for any i /∈ S.

Proof. To prove the claim, let x ∈ {0, 1}m be the binary vector representing set S. For any

j ∈ [m] such that xj = 0, we need to prove fGEV(x + ej) > fGEV(x), where ej is a vector of size

m with zero entries except the j-th element that is equal to 1. To prove this, let us consider

Gi(x ◦Yi). Taking the derivative of Gi(x ◦Yi) w.r.t. an xj , j ∈ [m], we have

∂Gi(x ◦Yi)

∂xj
= Y i

j ∂G
i
j(x ◦Yi)

(b)
> 0, (4)

where (b) is due to Property (iv) of Remark 1. This implies thatGi(x◦Yi) is (strictly) monotonic

increasing in any xj , j ∈ [m]. Thus

Gi((x + ej) ◦Yi) > Gi(x ◦Yi). (5)

Together with the definition of fGEV(x) in (3), we have fGEV(x + ej) > fGEV(x) as desired.

Since fGEV(S) is monotonic, if we consider a cardinality constraint |S| ≤ C for a scalar C ∈
{1, . . . ,m}, then an optimal solution S∗ always achieves the maximum cardinality, i.e., |S∗| = C.

Thus, we can replace the cardinality constraint by an equality one, i.e., |S| = C. Note that

11



a similar claim has been validated for the MNL-based problems in prior work (Mai and Lodi,

2020).

The submodularity is well-known for the objective function under the MNL model (Benati,

1996, Benati and Hansen, 2002). The theorem below shows that it is also the case under any

models in the GEV family.

Theorem 2 (Submodularity) fGEV(S) is submodular.

Proof. To prove the submodularity, we will show that for any set A ⊂ B ⊂ [m] and for any

j ∈ [m]\B we have

fGEV(A ∪ {j})− fGEV(A) ≥ fGEV(B ∪ {j})− fGEV(B) (6)

Let use denote each component of fGEV(S) as

gi(S) =
qi

1 +Gi(Yi|S)
, ∀i ∈ I

then (6) can be validated if we can prove

gi(A ∪ {j})− gi(A) ≤ gi(B ∪ {j})− gi(B),

or equivalently,

1

1 +Gi((xA + ej) ◦Yi)
− 1

1 +Gi(xA ◦Yi)
≤ 1

1 +Gi((xA + ej) ◦Yi)
− 1

1 +Gi(xA ◦Yi)

⇔ Gi((xA + ej) ◦Yi)−Gi((xA) ◦Yi)

[1 +Gi((xA + ej) ◦Yi)][1 +Gi(xA ◦Yi)]
≥ Gi((xB + ej) ◦Yi)−Gi(xB ◦Yi)

[1 +Gi((xB + ej) ◦Yi)][1 +Gi(xB ◦Yi)]

(7)

Now, for ease of notation, for any x ∈ {0, 1}m and j ∈ [m] such that xj = 0, let

φ(x) = Gi((x + ej) ◦Yi)−Gi(x ◦Yi)

For any k ∈ [m] such that xk = 0 and k 6= j we take the partial derivative of φ(x) w.r.t. xk and

get
∂φ(x)

∂xk
= Y i

k

(
∂Gik((x + ej) ◦Yi)− ∂Gik(x ◦Yi)

)
(8)

Now, let define another function ρ(x) = ∂Gik(x◦Y
i). Taking the partial derivative of ρ(x) w.r.t.

xj we get
∂ρ(x)

∂xj
= Y i

j ∂G
i
kj(x ◦Yi),

and since ∂Gikj(x ◦Y
i) ≤ 0 (Property (iv) of Remark 1), we have ∂ρ(x)/∂xj ≤ 0. Thus, ρ(x)
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is monotonic decreasing in xj , which implies

∂Gik((x + ej) ◦Yi)− ∂Gik(x ◦Yi) ≤ 0. (9)

Combine (8) and (9) we have ∂φ(x)/∂xk ≤ 0. Thus, φ(x) is monotonic decreasing in xk, leading

to the inequality

Gi((x + ej) ◦Yi)−Gi(x ◦Yi) ≥ Gi((x + ej + ek) ◦Yi)−Gi((x + ek) ◦Yi).

Consequently, we have

Gi((xA + ej) ◦Yi)−Gi((xA) ◦Yi) ≥ Gi((xB + ej) ◦Yi)−Gi((xB) ◦Yi), (10)

for any A ⊂ B ⊂ [m] and j /∈ B. Moreover, using (5) from the proof of Proposition 1, since

A ⊂ B, we have

Gi(xA ◦Yi) ≤ Gi(xB ◦Yi)

Gi((xA + ej) ◦Yi) ≤ Gi((xB + ej) ◦Yi).

Thus,

[1 +Gi((xA + ej) ◦Yi)][1 +Gi(xA ◦Yi)] ≤ [1 +Gi((xB + ej) ◦Yi)][1 +Gi(xB ◦Yi)] (11)

Combine (10) and (11) we obtain (7) and then (6) as desired.

Theorem 2 shows the submodularity of the MCP problem under any GEV models. Together

with the fact that fGEV(S) is monotonic (Proposition 1), the results from (Nemhauser et al.,

1978) imply that a simple greedy heuristic algorithm can secure a (1 − 1/e) approximation

solution, i.e., a greedy can return a solution S such that fGEV(S) ≥ (1 − 1/e) maxS∈S f
GEV(S).

Such an algorithm can start from a null set and keep adding locations one at a time, taking

at each step a location that increases the objective function the most, and stops when the

maximum capacity |S| = C is reached. We state this important result in the following corollary.

Corollary 3 (Performance guarantee for a greedy heuristic) Under a cardinality con-

straint, a greedy heuristic algorithm can guarantee a (1− 1/e) approximation solution.

3.2 Gradient-based Local Search

Due to the submodularity, a greedy heuristic can guarantee a (1− 1/e) approximation solution.

In this section, we design a new local search procedure to further improve such a greedy solution.

Our approach is motivated by the fact that the objective function fGEV(x) is differentiable,

suggesting that we could use gradient information to direct the search. The general idea to
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design an iterative procedure, where at each step we build a model function (linear or quadratic)

to approximate the objective function using gradient and/or Hessian information. We then

maximize the model function to find a new iterate. A key component of our approach is that

the model function can be only an adequate representation of the objective function in a local

neighbourhood of the current solution. Thus, we only maximize the model function within a

restricted region. This approach is inspired by the trust-region method widely used in continuous

optimization (Conn et al., 2000).

To start our exposition, let us define a model function based on Taylor series built around a

solution candidate x

fGEV(x) ≈ fGEV(x) +∇fGEV(x)T(x− x) +
1

2
(x− x)TB(x− x),

where B is the Hessian matrix or an approximation of it at x. In our context, the Hessian can

be computed easily, but maximizing the model function will involve solving a binary quadratic

maximization problem, which is expensive. Thus, we set Bk = 0. In other words, we use a

linear model function to approximate fGEV(x).

At each iteration, we need to solve the following sub-problem

max
x

∇fGEV(x)Tx (P1)

subject to
∑
j∈[m]

xj = C (12)

∑
j∈[m]

|xj − xj | ≤ ∆ (13)

x ∈ {0, 1}m

where (12) is the cardinality constraint, and (13) is to ensure that the new solution candidate

is within a region of size ∆ around x. Note that (13) can be linearized as∑
j∈[m],xj=1

(1− xj) +
∑

j∈[m],xj=0

xj ≤ ∆,

so as (P1) becomes a integer linear program, which can be handled by an MILP solver. In the

following, we will look closely to (P1) and show that it can be solved to optimality in polynomial

time.

Solving Subproblems. We further look into the subproblem of the gradient-based local search

(P1) to design an efficient algorithm to solve it. To facilitate our exposition, we first note that the

constraint
∑

j∈[m] |xj−xj | ≤ ∆ implies that there are at most ∆/2 locations that either appears

in S or in S, but not in both, where S, S are the subsets representing x and x, respectively. For

this reason, ∆ should be integer and even, and the constraint
∑

j∈[m] |xj−xj | ≤ ∆ is equivalent

to |S 4 S| ≤ ∆, where 4 is the symmetric difference operator, i.e., S 4 S = (S\S) ∪ (S ∪ S).
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We therefore can rewrite (P1) as

max
S⊂[m]

∑
j∈S

dj (P2)

subject to |S| = C (14)

|S 4 S| ≤ ∆, (15)

where S ⊂ [m] is the subset that corresponds to the binary vector x and dj = ∇fGEV(x)j ,

j ∈ [m]. Under the cardinality constraint |S| = C, we see that |S\S| = |S\S| = |S4 S|/2. The

following proposition shows that dj are non-negative, for all j ∈ [m].

Proposition 2 All the coefficients of the objective function of (P2) are non-negative.

Proof. We prove the claim by showing that, for any x ∈ [0, 1]m, ∇xf
GEV(x) ≥ 0. Given j ∈ [m],

taking the derivative of fGEV(x) w.r.t. xj we have

∂fGEV(x)

∂xj
=
∑
i∈I

∂Gi(x ◦Yi)

∂xj

qi

(1 +Gi(x ◦Yi))2

=
∑
i∈I

qiY
i
j ∂G

i
j(x ◦Yi)

(1 +Gi(x ◦Yi))2
≥ 0 (16)

where (16) is due to the fact that ∂Gij(x ◦Yi) > 0 (Property (iv) of Remark 1). We obtain the

desired inequality.

In Algorithm 1 we describe our main steps to solve (P2). In Step 1, we find ∆/2 smallest

coefficients dj in S and ∆/2 largest coefficients dj in [m]\S. This is motivated by the fact we

only seek subsets generated by exchanging at most ∆/2 elements in S with some outside S.

Thus, to obtain the best objective values, we should exchange elements of lowest coefficients in

S with those of highest coefficients in [m]\S. In the second step, γ(t) represents the best gain

obtained by exchanging t elements, and in the third step we just select the best γ(t) to get the

best solution. Proposition 3 below shows that Algorithm 1 will efficiently return an optimal

solution to (P2).

Proposition 3 Algorithm 1 returns an optimal solution to (P1) with complexity O(m∆/2).

Proof. To prove the convergence, we let S be a feasible solution of (P2), i.e., |S| = C and

|S 4 S| ≤ ∆. We will prove that
∑

j∈S dj ≤
∑

j∈S∗ dj , where S∗ is the solution returned. from

Algorithm 1. Let t = |S4S|/2, then we know that S can be obtained by exchanging t elements

between S and S. Let π1
1, . . . , π

1
t be the indexes of t elements in S that are exchanged with t
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Algorithm 1: Solving sub-problems

# Step 1: Take smallest coefficients in S and largest coefficients in [m]\S
Choose σ1

1, . . . , σ
1
∆/2 ∈ S and σ2

1, . . . , σ
2
∆/2 ∈ [m]\S such that

dσ1
1
≤ dσ1

2
≤ . . . ≤ dσ1

∆/2
≤ min

j∈S\{σ1
1 ,...,σ

1
∆/2
}
dj

dσ2
1
≥ dσ2

2
≥ . . . ≥ dσ2

∆/2
≥ max

j∈[m]\S\{σ2
1 ,...,σ

2
∆/2
}
dj

# Step 2: Select the best set for each local region size |S 4 S| = 2t, for t = 1, . . . ,∆/2
for t = 1, . . . ,∆/2 do

γ(t) =
t∑

h=1

(
dσ2

h
− dσ1

h

)
Select t∗ = argmaxt=1,...,∆/2γ(t)

# Step 3: Return the best solution within the local region |S 4 S| ≤ ∆
Return

S∗ ← S ∪ {σ2
1, . . . , σ

2
t∗}\{σ1

1, . . . , σ
1
t∗}

elements in t, indexed as π2
1, . . . , π

2
t . We have

∑
j∈S

dj =
∑
j∈S

dj −
t∑

h=1

dπ1
h

+
t∑

h=1

dπ2
h

(c)

≤
∑
j∈S

dj −
t∑

h=1

dσ1
h

+
t∑

h=1

dσ2
h

=
∑
j∈S

dj + γ(t)

(d)

≤
∑
j∈S

dj + γ(t∗) =
∑
j∈S∗

dj ,

where (c) is due to the way we select σ1
h and σ2

h, h = 1, . . . ,∆/2, and (d) is due to the way t∗

is selected. This implies that S∗ is an optimal solution to (P2), as desired.

For the complexity, we see that Step 1 would take O(∆/2|S|+∆/2(m−|S|)) = O(m∆/2). Step

2 would require O(∆2/4), which would be much smaller than O(m∆/2). Adding all together,

the complexity of Algorithm 1 is O(m∆/2).

3.3 GGX Algorithm

Our main algorithm consists of three main phases. In the first phase (warm-up), we perform a

greedy heuristic, which can be done by starting from the null set and adding locations one at a

time, taking at each step the location that increases fGEV(·) the most. This phase finishes when

we reach the maximum capacity, i.e., |S| = C. After this phase, due to the submodularity, it is
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guaranteed that the obtained solution yields at least a factor (1− 1/e) times the optimal value.

In the second phase, we iteratively solve the sub-problem (P1) to seek better solutions. This

phase ends when we cannot find any better solutions. In the last phase, we further enhance

the solution obtained by performing a simple greedy local search based on exchanging some

locations in a candidate solution S with some others from [m]\S. We describe the three phases

in detail in Algorithm 2.

Algorithm 2: GGX algorithm

# 1: Greedy heuristics (warm up step)
S = ∅
for j = 1, . . . , C do

j∗ = argmaxj∈[m]\Sf
GEV(S ∪ {j})

S ← S ∪ {j∗}
# 2: Gradient-based local search
k = 0;S0 = S
do

Solve (P1) based on a local region around xS
k

to get a new solution candidate S
if fGEV(S) > fGEV(Sk) then

Sk+1 ← S

else
Sk+1 = Sk

k ← k + 1
until Sk = Sk−1;
# 3: Exchanging phase
do

(j∗, t∗) = argmax j∈S
t∈[m]\S

{
fGEV(Sk ∪ {t}\{j})

}
S = Sk ∪ {k∗}\{j∗}
if fGEV(S) > fGEV(Sk) then

Sk+1 ← S

else
Sk+1 = Sk

k ← k + 1
until Sk = Sk−1;

Return Sk.

In the context of assortment optimization under GEV models, Mai and Lodi (2019) also propose

a gradient-based local search (named as Binary Trust Region - BiTR) procedure to solve the

binary nonlinear formulation of the assortment optimization problem. There are major differ-

ences between Algorithm 2 and the one proposed in Mai and Lodi (2019). First, our algorithm

starts with a greedy heuristic that guarantees a (1− 1/e) approximation solution, while there is

no performance guarantee for the BiTR. Second, we explore the structure of the MCP under the

GEV family, e.g., the coefficients of the sub-problem’s objective function are non-negative and

we only care about fixed-size subsets, to build a more efficient method to solve the sub-problems.
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4 Numerical Experiments

In this section, we provide experimental results to compare our GGX algorithm with existing

approaches. We use three datasets from recent literature (Ljubić and Moreno, 2018, Mai and

Lodi, 2020) and generate instances under three popular discrete choice models, i.e., the MNL,

MMNL, and nested logit models.

4.1 Experimental Settings

We will compare our algorithm with the standard greedy heuristic (GH - Step 1 of our GGX

algorithm), the multicut, and singlecut outer-approximation algorithms (MOA and OA) (Mai

and Lodi, 2020), and the Branch-and-Cut (BC) (Ljubić and Moreno, 2018). Note that for MNL

and MMNL instances, it is possible to formulate the MCP as a MILP and solve it by an MILP

solver (e.g. IBM’s CPLEX). However, according to prior work (Ljubić and Moreno, 2018, Mai

and Lodi, 2020), this approach is generally outperformed by the MOA and BC methods. Thus,

we do not include the MILP solver in our experiments. In fact, for MNL and MMNL instances,

the OA, MOA, and BC are exact algorithms, thus if they stop within the time budget, the

solutions obtained are optimal. For nested logit instances, we only compare the GGX with

GH, OA, MOA approaches, as BC is not designed to handle such instances. Since the objective

function is highly non-concave in the context of the nested logit, all the approaches are heuristic,

but only the GGX and GH can provide solutions with a performance guarantee.

To enhance the third step of GGX, we allow the algorithm to exchange one or two locations at

a time. That is, in the last phase of GGX, we first iteratively exchange one location at a time

until we cannot further improve the objective function, as described in Algorithm 2. We then

iteratively exchange two locations at a time until getting no further improvements.

We use the following three datasets as benchmark instances and we refer the reader to Freire

et al. (2015) for more detailed descriptions. These datasets have been also used in some recent

MCP studies (Ljubić and Moreno, 2018, Mai and Lodi, 2020).

• HM14: The dataset includes 15 problems generated randomly in a plane, with |I| ∈
{50, 100, 200, 400, 800} and m ∈ {25, 50, 100}.

• ORlib: The dataset includes 11 problems where there are four instances with (|I|,m) =

(50, 25), four instances with (|I|,m) = (50, 50) and three instances with (|I|,m) = (1000, 100).

• PR-NYC (or NYC): the dataset comes from a large-scale park-and-ride location problem

in New York city with |I| = 82341 and m = 59. As reported in previous studies, these are

the largest and most challenging instances.

We employ the same settings of parameters as in previous studies (Ljubić and Moreno, 2018, Mai

and Lodi, 2020). The number of facilities that need to be opened C is varied from 2 to 10. The
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deterministic part of the utility is defined as vij = −βcij for a location j ∈M and vij′ = −βαcij′
for each competitor j

′
, where cij is the distance between zone/client i ∈ I and location j ∈ [m],

the parameter β is the sensitivity of customers about the perceived utilities and α represents

the competitiveness of the competitors. These parameters are chosen as α = {0.01, 0.1, 1} and

β = {1, 5, 10} for datasets HM14 and ORlib, and α = {0.5, 1, 2} and β = {0.5, 1, 2} for the

NYC dataset. Therefore, for each discrete choice model chosen, each problem above has 81

different instances and the total numbers of instances for HM14, ORlib, NYC are 972, 891, 81,

respectively.

The experiments are done on a PC with a processor AMD Ryzen 7-3700X CPU @ 3.80 GHz

and 16 gigabytes of RAM. We use MATLAB 2020 to implement and run the algorithms, and

we link to IBM ILOG-CPLEX 12.10 to solve MILPs under default settings. We also take the

code used in Ljubić and Moreno (2018) to generate results for the MNL and MMNL instances

with the BC approach.

4.2 Multinomial Logit - MNL

We take MNL instances from previous work (Ljubić and Moreno, 2018, Mai and Lodi, 2020)

and report numerical results in Table 1 below, where each instance is given a CPU time budget

of 600 seconds. Each row of the table corresponds to 81 instances and we indicate the largest

number of instances solved with the best objective values in bold. We use the same settings

as in Mai and Lodi (2020). We do not show the CPU times for GH as it runs very fast. The

GH finishes 26/27 problems in less than 0.01 seconds and it just needs about 0.5 seconds to

finish all the instances of the largest dataset (i.e. the NYC one). On the other hand, solutions

obtained by GH are relatively good, in the sense that the percentage gaps between the objective

values yielded by those solutions and the best objective values vary only from 0 to 2.94%. In

terms of number of instances with the best objective values, GGX performs the best as it gives

the largest numbers best objective values in 26/27 problems. Moreover, GGX solves 81/81

instances with the best objective values in 25/27 problems. On the other hand, GGX only

requires short CPU times to finish (the average CPU times are always less than 1.5 seconds

except for the NYC instances). Furthermore, when comparing GGX with the OA, MOA, and

BC approaches, the average CPU times required by GGX are about 78 times lower than OA,

28 times lower than MOA, and 12 times lower than BC. For small instances with |I| ≤ 100,

BC achieves good performance. It provides the best objective values for all 81 instances of

each problem with the lowest CPU times. However, for larger problem instances (|I| > 100),

BC becomes more expensive, especially for the three large problems in the ORlib dataset with

(|I|, |M |) = (800, 100) and for the NYC instances (the average CPU times are always more than

90 seconds). The MOA has the best performance for the NYC dataset, as it only requires 2.32

seconds to return the best objective values for all the 81 instances. In general, among all the

approaches considered, GGX achieves the best performance for the MNL instances.
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Instance |I| m
# instances with best objective Average CPU time (s)

GGX GH OA MOA BC GGX OA MOA BC

HM14 50 25 81 81 81 81 81 0.14 19.15 0.12 0.01

HM14 50 50 81 81 73 81 81 0,15 109.45 0.15 0.01

HM14 50 100 79 79 58 81 81 0.24 188.91 0.32 0.05

HM14 100 25 81 80 73 81 81 0.14 138.30 0.18 0.01

HM14 100 50 81 77 69 81 81 0.15 170.80 0.28 0.03

HM14 100 100 81 77 59 81 81 0.26 187.43 0.60 0.13

HM14 200 25 81 81 72 81 81 0.14 146.79 0.34 0.02

HM14 200 50 81 80 64 81 80 0.16 189.46 0.80 0.06

HM14 200 100 81 77 59 81 81 0.33 235.27 15.99 0.29

HM14 400 25 81 73 71 81 80 0.14 116.44 0,62 0.04

HM14 400 50 81 78 60 80 81 0.18 200.32 12.13 0.13

HM14 400 100 81 73 58 76 81 0.49 291.38 99.45 0.65

HM14 800 25 81 76 59 81 81 0.14 160.71 2.27 0.11

HM14 800 50 81 62 59 64 75 0.23 251.8 160.47 0.48

HM14 800 100 80 72 55 58 76 0.94 363.54 234.67 14.29

ORlib 50 25 81 81 81 81 81 0.14 0.21 0.20 0.01

ORlib 50 25 81 81 81 81 81 0.14 0.24 0.25 0.01

ORlib 50 25 81 81 81 81 81 0.14 0.19 0.23 0.01

ORlib 50 25 81 80 81 81 81 0.14 0.31 0.23 0.01

ORlib 50 50 81 74 81 81 81 0.15 0.37 0.31 0.02

ORlib 50 50 81 81 81 81 81 0.15 0.32 0.35 0.02

ORlib 50 50 81 80 81 81 81 0.15 0.38 0.34 0.02

ORlib 50 50 81 81 81 81 81 0.15 0.36 0.34 0.02

ORlib 1000 100 81 58 81 81 81 1.31 141.10 226.68 114.74

ORlib 1000 100 81 61 81 81 81 1.23 113.27 220.45 94.72

ORlib 1000 100 81 53 81 81 81 1.42 145.22 232.68 149.88

NYC 82341 59 81 72 77 81 80 33.87 164.01 2.32 161.71

Average 80.89 75.19 71.78 79.30 80.48

Table 1: Numerical results for MNL instances, grouped by the problem name (81 instances per
row).

To further assess the quality of the solutions obtained by GGX, we run the MOA (the best

exact method for MNL instances) with a time limit of one hour. With this time budget, the

MOA is able to return optimal solutions for all the instances. This also indicates that the

GGX, even though requires only less than 1 second for most of the instances, is able to return

optimal solutions for 2185/2187 instances and there are only 2 instances from datasets HM14

with |I| = 50 and m = 100 that it does not give optimal solutions. In these cases, the percentage

gaps between the objective values given by the GGX and the optimal values are only less than

0.7%.

4.3 Mixed Logit - MMNL

In this section, we report numerical results for MMNL instances. To generate such instances,

we assume that each utility vij , i ∈ I, j ∈ [m]}, contains a random error component that

follows a normal distribution of zero mean. We also assume that the variance of the random

number is proportional to the distance cij . More precisely, each vij associated with customer

zone (or client) i ∈ I and location j ∈ [m] is defined as vij = −θcij + cijτij/3, where τij is a
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standard normal random number. We also keep the utilities associated with the competitors

deterministic. For each problem, we approximate the objective function by the Monte Carlo

method. To do so, we choose a sample size N = 100 for the HM14 and ORlib datasets and

N = 10 for the NYC one. For the latter, we only choose small N because the NYC problem is

already large even under the MNL model. As mentioned, we consider and solve these MMNL

instances as extended MNL ones, in which the number of customer zones is 5000, 5000 and

823,410 for instances from the HM14, ORlib, and NYC datasets, respectively. We also give a

CPU time budget of 600 seconds for all instances.

In Table 2, for each problem, we report the number of instances with the best objective values

and the average CPU times over 81 instances for five approaches, i.e., GGX, GH, OA, MOA,

and BC. We indicate in bold the largest numbers of instances solved with the best objective

values. The results clearly show that GGX generally outperforms the other approaches. More

precisely, GGX manages to return the best objective values for all instances considered (i.e.

2187/2187 instances). Moreover, GH also performs very well, in the sense that the percentage

gaps between the objective values given by GH and the best objective values only vary from

0% to 2.92%. In terms of CPU time, GH is still the fastest approach when it just requires less

than 2 seconds to solve every instance except the NYC ones, which take only about 6.5 seconds

in average. The GGX approach, even though being slower than the GH, but is still much faster

than the others. We also observe that the OA, MOA, and BC approaches need much more

time to solve MMNL instances, as compared to solving the MNL instances. The average CPU

times required by these three approaches are more than 250 seconds. Overall, GGX dominates

GH in terms of returned objective value and outperforms OA, MOA, and BC in terms of both

returned objective value and CPU time.

Since the best objective values might be not the optimal ones, we further expand the time

budget to see whether the GGX can return optimal solutions. More precisely, we run the

BC (the best exact method) with a time budget of one hour and obtain optimal solutions for

1808/2187 instances. Interestingly, GGX also returns optimal solutions for all these instances,

noting that GGX always terminates in a matter of seconds.

The fact that MMNL instances are more expensive to solve than MNL ones suggests that one

can approximate MMNL instances by replacing the sample utilities by their mean values and

treat these approximate instances as MNL instances. This would indeed reduce the computing

cost but would lead to degradation in solution quality. To further explore this degradation, we

compare the objective values obtained by solutions given by solving MNL approximate instances

and the optimal values of the MMNL instances. To this end, for each MMNL instance, we solve

its MNL-instance counterpart and obtain a solution SMNL. The performance gap between this

solution and the best solution (denoted as SMMNL) obtained by directly solving the MMNL

instance is computed as
fMMNL(SMMNL)− fMMNL(SMNL)

fMMNL(SMMNL)
,

where fMMNL(·) is the objective function of the MCP under MMNL. We report these performance
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Problem |I| m
# instances with best objective values Average CPU time (s)
GGX GH OA MOA BC GGX GH OA MOA BC

HM14 50 25 81 81 66 58 81 0.24 0.01 236.36 189.23 1.66

HM14 50 50 81 81 46 54 81 0.83 0.02 312.73 232.16 6.45

HM14 50 100 81 81 41 29 81 3.49 0.05 390.60 425.57 40.78

HM14 100 25 81 75 53 55 81 0.29 0.01 279.68 212.33 11.37

HM14 100 50 81 81 47 31 81 1.11 0.03 356.28 430.85 36.57

HM14 100 100 81 75 41 22 78 4.76 0.10 528.64 519.79 133.67

HM14 200 25 81 81 54 33 81 0.35 0.02 317.28 375.46 47.32

HM14 200 50 81 77 39 27 78 1.51 0.05 402.01 464.52 126.53

HM14 200 100 81 77 34 28 77 6.75 0.23 456.24 328.89 174.75

HM14 400 25 81 77 52 32 77 0.44 0.03 336.85 404.77 138.9

HM14 400 50 81 74 40 25 74 2.03 0.13 472.38 515.90 237.10

HM14 400 100 81 63 29 15 63 9.34 0.67 569.4 570.10 325.16

HM14 800 25 81 66 52 29 68 0.60 0.07 345.27 396.63 229.83

HM14 800 50 81 73 39 27 74 3.06 0.34 406.18 467.89 341.22

HM14 800 100 81 72 32 18 72 14.29 1.25 562.63 565.37 421.74

ORlib 50 25 81 70 57 54 77 0.24 0.01 388.27 485.02 276.30

ORlib 50 25 81 72 57 54 80 0.24 0.01 388.19 497.24 268.27

ORlib 50 25 81 66 50 51 78 0.24 0.01 365.41 457.82 218.40

ORlib 50 25 81 67 56 51 74 0.25 0.01 369.85 484.69 268.10

ORlib 50 50 81 81 33 38 81 0.84 0.02 459.78 619.15 425.71

ORlib 50 50 81 80 33 38 80 0.84 0.02 452.13 620.70 422.28

ORlib 50 50 81 81 33 35 81 0.83 0.02 459.68 643.83 435.96

ORlib 50 50 81 81 33 40 81 0.84 0.02 458.49 652.69 429.13

ORlib 1000 100 81 81 14 14 81 16.50 1.52 677.73 677.73 600.00

ORlib 1000 100 81 81 44 14 81 16.46 1.52 600.91 691.05 600.00

ORlib 1000 100 81 81 38 13 81 16.47 1.52 600.91 637.31 600.00

NYC 82341 59 81 72 75 68 72 114.42 6.50 178.18 135.24 381.48

Average 81 75.81 44.00 35.30 77.56

Table 2: Numerical results for MMNL instances, grouped by the problem name (81 instances
per row).

gaps in Table 3, where each row of the table corresponds to the average gap of MMNL instances

with C varying from 2 to 10. The results show that the degradation is significant and the

performance gaps can go up to quite high values ( e.g. 14.48% for HM14 instances with |I| =

800 and m = 100). Note that while MMNL instances are expensive for OA, MOA and BC

approaches, our local search algorithms (GGX and GH) can always solve them in less than 17

seconds, except for the NYC dataset.

Here we note that under the MNL and MMNL models, the MILP equivalent formulations can

be used with an MILP solver (e.g. CPLEX or GUROBI) to exactly solve the MCP. Even-though

from prior work, we know that this approach is much slower than other exact methods (MOA or

BC), we try to feed the MILP solver with a good initial solution obtained from other methods,

aiming to explore whether we can enhance the MILP approach by a good warm-up. We do this

by giving the MILP solver (CPLEX) the solutions obtained by the GGX (the best method).

We then observed that the MILP solver is either not able to stop within 600 seconds or not able

to run for some large-size instances. In general, the MILP approach is not able to return any

better solutions than the initial solutions we give to it.
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Problem |I| m Gap (%)
HM14 50 25 6.96
HM14 50 50 3.56
HM14 50 100 2.71
HM14 100 25 4.50
HM14 100 50 2.28
HM14 100 100 5.33
HM14 200 25 5.65
HM14 200 50 3.37
HM14 200 100 8.49
HM14 400 25 1.52
HM14 400 50 3.08
HM14 400 100 5.85
HM14 800 25 4.59
HM14 800 50 3.80
HM14 800 100 14.84
ORlib 50 25 2.52
ORlib 50 25 2.52
ORlib 50 25 2.52
ORlib 50 25 2.52
ORlib 50 50 5.76
ORlib 50 50 5.86
ORlib 50 50 5.76
ORlib 50 50 5.76
ORlib 1000 100 0.01
ORlib 1000 100 0.01
ORlib 1000 100 0.06
NYC 82341 59 0.35

Average 4.08

Table 3: Percentage gaps between objective values given by MNL approximate solutions the
best objective values found by solving MMNL instances.

4.4 Nested Logit Model

This section reports numerical results for nested logit instances. We perform a comparison

between 4 approaches, namely, the GGX, GH, OA, and MOA algorithms. We do not include

the BC approach in this experiment, as it is not designed to handle nested logit instances. For

the OA and MOA approaches, since it is quite straightforward to generate outer-approximation

cuts using gradient information, we apply these algorithms to solve the nested logit instances to

see how they perform. Note that, in the context, the objective function is no-longer concave, thus

OA and MOA become heuristic with no performance guarantee, to the best of our knowledge.

To generate nested logit instances, we build a customer nested logit model by partitioning the

set of locations into L = 5 different and disjoint groups of equal size. In particular, the NYC

dataset has 59 locations (m = 59), so for this problem we partition the locations into four

groups with 12 locations and one with 11 locations. We choose the nested logit parameters

as µ = (1.1, 1.2, 1.3, 1.4, 1.5), noting that more nests and/or other nested logit parameters can

be chosen. Our selections here are just to illustrate the performance of different algorithms in

handling GEV instances. We also give a time budget of 600 seconds for all the algorithms.
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Table 4 reports comparison results of the four approaches. Each row of the table corresponds to

81 solved instances and we also indicate the largest numbers of instances solved with the best

objective values in bold. The results clearly show that GGX outperforms the other approaches

in terms of the number of instances solved with the best objective values. More precisely, GGX

gives the best objective values for all problem instances while GH only performs the best for

9/27 problems. In terms of CPU time, GGX is not very fast. In particular, for the NYC

instances, the average CPU time is about 355.36 seconds and is much larger than the average

CPU times required by GH, OA, and MOA. The reason is that the objective function in this

context is quite expensive to evaluate, as compared to the cases of the MMNL and MNL models,

and the exchanging procedure of the GGX (Phase 3) requires calculating the objective function

several times to find a pair of locations to swap. The GH is still very fast and the returned

objective values are pretty close to the best values given by GGX. The percentage gaps between

the objective values obtained from GH and the best objective values only vary from 0 to 3.32%.

The OA and MOA approaches, even though run very fast, but give bad solutions most of the

time. This can be explained by the fact that the objective function under a nested logit model

is highly non-concave, thus a subgradient cut (or an outer-approximation cut) could potentially

remove good solutions during the cutting-plane procedure.

Problem |I| m
# instances with best objective Average CPU time (s)
GGX GH OA MOA GGX GH OA MOA

HM14 50 25 81 81 24 20 0.35 0.01 0.15 0.09

HM14 50 50 81 81 2 0 1.94 0.03 2.83 0.12

HM14 50 100 81 81 27 27 13.08 0.10 104.39 0.19

HM14 100 25 81 80 18 15 0.43 0.01 0.66 0.16

HM14 100 50 81 75 3 0 2.44 0.04 0.39 0.16

HM14 100 100 81 76 0 1 16.04 0.11 83.31 0.27

HM14 200 25 81 81 2 0 0.57 0.02 0.80 0.18

HM14 200 50 81 80 1 0 3.41 0.19 1.85 0.23

HM14 200 100 81 81 0 0 20.76 0.15 111.70 0.46

HM14 400 25 81 72 24 20 0.85 0.16 0.75 0.18

HM14 400 50 81 77 5 0 5.37 0.21 1.83 0.35

HM14 400 100 81 72 0 0 32.02 0.08 167.55 1.15

HM14 800 25 81 77 0 0 0.93 0.04 0.89 0.31

HM14 800 50 81 66 0 0 6.38 0.10 2.14 0.61

HM14 800 100 81 69 22 18 41.99 0.30 299.35 5.64

ORlib 50 25 81 81 1 0 0.35 0.01 0.09 0.10

ORlib 50 25 81 81 1 0 0.35 0.01 0.10 0.10

ORlib 50 25 81 81 0 0 0.35 0.01 0.09 0.10

ORlib 50 25 81 78 0 0 0.35 0.01 0.09 0.09

ORlib 50 50 81 74 0 0 1.96 0.03 0.10 0.11

ORlib 50 50 81 81 0 0 1.96 0.03 0.11 0.11

ORlib 50 50 81 78 0 0 1.97 0.03 0.11 0.11

ORlib 50 50 81 80 0 0 1.96 0.03 0.10 0.11

ORlib 1000 100 81 60 0 0 46.17 0.37 1.02 66.50

ORlib 1000 100 81 54 0 0 46.23 0.37 10.91 66.24

ORlib 1000 100 81 50 0 0 46.18 0.37 8.38 56.44

NYC 82341 59 81 72 5 4 355.36 6.89 0.85 0.65

Average 81 74.78 5.00 3.89

Table 4: Numerical results for nested-logit instances, grouped by the problem name (81 instances
per row).
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We look more closely into the NYC problem (the largest problem) to see how the algorithms

work. In table 5, we report comparison results for the NYC instances in detail. Each row of

the table corresponds to 9 instances with a value of C, varying from 2 to 10. GGX performs

the best in terms of objective value, as it gives the best objective values for all the instances

while GH only gives 6/9 best objective values for C ∈ {2, 3, 4}. The numbers of instances with

the best objective values given by OA and MOA are very low. They both have 4 instances

with the best objective values when C = 2 and the OA has one more instance with the best

objective value when C = 5. This clearly shows that OA and MOA are outperformed by GGX

and GH. On the other hand, in terms of CPU time, GGX is much more expensive than the other

approaches. The average CPU times required by GGX is about 52 times, 418 times, and 547

times higher than those required by GH, OA, and MOA approaches, respectively. In summary,

for these large instances, GH performs much better than OA and MOA, and GGX manages to

significantly improve the objective values returned by GH.

C
# instances

with best objective values
Average

CPU time (s)
GGX GH OA MOA GGX GH OA MOA

2 9 6 4 4 81.90 2.28 1.03 0.74
3 9 6 0 0 234.77 3.53 1.24 0.83
4 9 6 0 0 454.85 4.75 1.26 0.94
5 9 9 1 0 551.34 5.74 1.13 0.67
6 9 9 0 0 556.38 6.94 1.14 0.60
7 9 9 0 0 541.49 8.04 0.52 0.54
8 9 9 0 0 538.21 9.19 0.49 0.52
9 9 9 0 0 537.17 10.27 0.48 0.51
10 9 9 0 0 541.68 11.25 0.41 0.52

Average 9 8 0.56 0.44

Table 5: Comparison results for NYC instances, grouped by C, 9 instances per row.

The MCP under the nested logit model has the advantage that the demand model is more

flexible to capture the correlation between customers’ utilities, but the objective function is

highly non-concave, making it difficult to be solved exactly. On the other hand, the MCP under

MNL is much easier to be solved to optimality due to the concavity of the objective function.

Thus, similar to the experiments with MMNL instances, we also try to simplify nested instances

and solve them by MNL solvers and explore the degradation in solution quality. To this end,

for each nested instance, we simply set all the nested parameter µ to one, which will convert the

nested instance into an MNL one. We then solve this MNL instance by the best exact method

(i.e, MOA) and compute the performance gap as

fGEV(SGEV)− fGEV(SMNL)

fGEV(SGEV)
,

where SMNL is the solution obtained by solving the MNL instance and SGEV is the best so-

lution found by solving the nested instance. To broader demonstrate the degradation, we

compute the gaps with different settings as follows. We use 2 sets of nested logit parameter

µ1 = (1.1, 1.2, 1.3, 1.4, 1.5) and µ2 = (1.8, 3.6, 1.0, 2.2, 4.1) (the latter is significantly higher than
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the former) to see how these parameters affect the gaps. Moreover, the utility values in our

benchmark instances are either too small or too large (e.g, from -30 to 0 in the HM14 dataset

and from -150 to 450 in the NYC dataset), making the Y values (exponential functions of the

utilities) extremely small or extremely large. This further makes GEV instances very similar to

MNL instances in terms of the objective function. Thus, to better demonstrate the differences,

we scale the utilities as v′ij = vij/20. We then report performance gaps with the following

three settings. The first setting, denoted as Gap 1, refers to the use of the nested parameters

µ1 = (1.1, 1.2, 1.3, 1.4, 1.5) and the original utilities. For the second setting (Gap 2) we use the

set µ1 = (1.1, 1.2, 1.3, 1.4, 1.5) and the scaled utilities, and the third setting (Gap 3) corresponds

to the set µ2 = (1.8, 3.6, 1.0, 2.2, 4.1) with the scaled utilities.

Table 6 reports the percentage gaps under these three settings, where each row corresponds to

the average gap of nested instances with C varying from 2 to 10. The Gap 1 column reports

the gaps with the original nested parameters and original utility functions and we see that the

gaps are relatively small, especially for HM14 dataset, which indicates that solving the MNL

approximate instances would provide good solutions. For the second setting with scaled utilities,

the gaps are more significant for all the instances, which verifies our statement about the issue

of having too small or too large utilities. In the third setting where we increase some nested

parameters and the nested instances are more different from the MNL counterparts, the gaps

reported in the last column are remarkably higher and can go up to 9.32%. The average gap

increases from 1.29% to 4.38%, as compared to the second setting, and there are only 2 problems

whose gaps are less than 2%. The results also imply that if the nested parameters are close

to 1, nested instances would be close to their MNL counterparts and one can solve these MNL

instances to obtain good solutions for the nested problem.

5 Conclusion

In this paper, we have studied the maximum capture problem in facility location where customer

behavior is captured by any GEV model. By leveraging the properties of the GEV generating

function, we have shown that the objective function is monotonic and submodular, implying

that a simple greedy heuristic can always give a solution whose value is at least (1 − 1/e)

times the optimal value. We have further developed an algorithm based on a greedy heuristic,

a gradient-based local search, and an exchanging procedure to solve the problem under any

GEV model and the MMNL model. We have tested and compared our algorithm with some

state-of-the-art algorithms using MNL, MMNL, and nested logit instances and our numerical

experiments clearly demonstrate the advantages of our approach, in terms of both returned

objective value and CPU time. Our theoretical findings and algorithm can be applied to the

maximum capture problem under any GEV model, including the popular MNL model and other

complex GEV models in the literature.
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Problem |I| [m] Gap 1(%) Gap 2(%) Gap 3(%)
HM14 50 25 0.00 1.60 7.14
HM14 50 50 0.00 3.41 3.71
HM14 50 100 0.02 1.22 4.39
HM14 100 25 0.00 2.24 6.09
HM14 100 50 0.01 1.57 2.12
HM14 100 100 0.00 0.90 2.99
HM14 200 25 0.14 1.94 9.30
HM14 200 50 0.00 0.64 3.09
HM14 200 100 0.20 1.03 5.73
HM14 400 25 0.00 0.73 3.23
HM14 400 50 0.00 1.45 4.19
HM14 400 100 0.01 2.64 4.51
HM14 800 25 0.60 1.10 7.15
HM14 800 50 0.03 1.49 4.97
HM14 800 100 1.30 2.59 4.62
ORlib 50 25 1.92 0.88 2.99
ORlib 50 25 1.92 0.88 2.98
ORlib 50 25 1.93 0.88 2.99
ORlib 50 25 1.93 0.88 2.99
ORlib 50 50 2.17 1.13 4.16
ORlib 50 50 2.18 1.13 4.16
ORlib 50 50 2.18 1.13 4.16
ORlib 50 50 2.18 1.13 4.16
ORlib 1000 100 0.35 0.48 4.07
ORlib 1000 100 0.74 0.79 1.32
ORlib 1000 100 0.28 0.18 1.83
NYC 82341 59 0.02 0.73 9.32

Average 0.74 1.29 4.38

Table 6: Percentage gaps between objective values given by MNL approximate solutions and
the best objective values obtained by solving nested instances.

In this work, we only focus on decisions involving location selections, noting that facility set-up

costs would be also important to consider when building new facilities. In the context of random

utilities, such decisions can be included in the utility function as vij = aijxj+bij , where xj is the

set-up cost of facility j, aij is a parameter representing the sensitivity of customer i with respect

to the cost xj , and bij is another term that affects customers’ utilities. In this setting, the joint

facility and set-up cost planning problem would be formulated as an optimization problem with

binary and continuous variables, which would be changeling to handle and would be interesting

for future work. Other future directions would be to formulate and solve a maximum capture

problem in the situation that the choice parameters are not known with certainty, or to consider

a combination of facility location and security planning under the MNL/MMNL or any GEV

models.
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Bonami, P., Biegler, L. T., Conn, A. R., Cornuéjols, G., Grossmann, I. E., Laird, C. D., Lee, J.,

Lodi, A., Margot, F., Sawaya, N., et al. An algorithmic framework for convex mixed integer

nonlinear programs. Discrete Optimization, 5(2):186–204, 2008.
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