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ABSTRACT

Array constraints are prevalent in analyzing a program with sym-

bolic execution. Solving array constraints is challenging due to the

complexity of the precise encoding for arrays. In this work, we pro-

pose to synergize symbolic execution and array constraint solving.

Our method addresses the difficulties in solving array constraints

with novel ideas. First, we propose a lightweight method for pre-

checking the unsatisfiability of array constraints based on integer

linear programming. Second, observing that encoding arrays at

the byte-level introduces many redundant axioms that reduce the

effectiveness of constraint solving, we propose type and interval

aware axiom generation. Note that the type information of array

variables is inferred by symbolic execution, whereas interval in-

formation is calculated through the above pre-checking step. We

have implemented our methods based on KLEE and its underlying

constraint solver STP and conducted large-scale experiments on

75 real-world programs. The experimental results show that our

method effectively improves the efficiency of symbolic execution.

Our method solves 182.56% more constraints and explores 277.56%

more paths on average under the same time threshold.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging.
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1 INTRODUCTION

Symbolic execution [7, 24] provides a way for systematically explor-

ing the space of program paths. Since it was put forward, symbolic

execution has been successfully applied in many software engi-

neering activities, including automatic software testing [14, 34],

bug finding [20], program repair [17], etc. The success of symbolic

execution is built upon the remarkable advancements of constraint

solving [18, 25]. At the same time, the effectiveness of constraint

solving techniques is also a limiting factor for the success of sym-

bolic execution [7]. First, constraint solving dominates a large part

of the time for symbolic execution [14]; second, the program’s com-

plex features need more advanced SMT theories for encoding and

solving, such as array or string data types and operations [4, 31].

Therefore, the advancement of constraint solving can improve both

the efficiency and effectiveness of symbolic execution.

Array is one of the most basic data types in programming and is

widely used in programs. To precisely represent the array opera-

tions in the program, many symbolic executors employ the SMT

theory for arrays [25], which provides two natural terms (i.e., ar-

ray Read and Write) for encoding array operations. Usually, the

symbolic executor uses the SMT solver combining array theory

with other theories (e.g., bit-vector arithmetic theory) for constraint

solving. Counter-example-guided abstraction/refinement (CEGAR)

based solving method [19] is the state-of-the-art method for array

constraint solving, which abstracts the array constraint by eliminat-

ing the array terms and refines the abstract constraint by gradually
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introducing the axioms defined by the array theory, aiming to find

the solution or disprove the constraint faster. Many solvers [12, 19]

employed by mainstream symbolic executors [14] implement the

CEGAR-based solving method.

However, existing CEGAR-based array constraint solving still

suffers from the scalability problems due to the scale of the con-

straint. We have the following two key observations of array con-

straint solving in symbolic execution. First, in many cases, the

unsatisfiability of the constraint can be decided by a lightweight

method, which avoids expensive calls to the underlying SMT solver

of the symbolic executor. Second, during the refinement of the

CEGAR-based method, there may exist many redundant axioms,

particularly for the symbolic execution that models every program’s

data as a byte-sized array, which is commonly adopted by the state-

of-the-art symbolic executors for precise memory modeling [9].

Based on the above observations, we propose a method for im-

proving array constraint solving in symbolic execution by syner-

gizing constraint solving and symbolic execution. In principle, we

use the type and interval information calculated during symbolic

execution to boost the array constraint solving. Specifically, we

propose two optimizations. The first one is to use an integer linear

programming (ILP) [26] based decision procedure to check the ab-

stracted constraint’s unsatisfiability before invoking the underlying

SMT solver. We first use the ILP solver to calculate the intervals

of index variables; then, we calculate the intervals of the array

read terms. Last, we use the ILP solver again to check the abstract

constraint’s unsatisfiability, which implies the original constraint’s

unsatisfiability. The second one is to eliminate the redundant axiom

constraints by array accesses’ type information inferred in sym-

bolic execution and index variables’ interval information computed

in the first optimization, which reduces the complexity of solving

array constraints significantly in many cases and speeds up the

solving.

We have implemented our optimizations on a state-of-the-art

symbolic executor and a CEGAR-based high performance solver,

i.e., KLEE [14] and STP [19]. Extensive experimental results on Core-

utils benchmark programs and 13 other real-world programs show

that our method significantly improves the efficiency of symbolic

execution.

The main contributions of this paper are as follows.

• An ILP-based unsatisfiability pre-checking method that can

prove the constraint’s unsatisfiability and calculate the in-

tervals of index variables.

• An array access type-guided and index interval-guided opti-

mization method for CEGAR-based constraint solving that

removes the redundant axioms in array constraint solving.

• We have implemented the optimizations on the mainstream

symbolic executor KLEE and its underlying CEGAR-based

solver STP.

• We have carried out extensive experiments on real-world

C programs. The experimental results indicate that our op-

timizations can improve the number of solved constraints

and the number of explored paths by 182.56% and 277.56%,

respectively.

The remainder of this paper is organized as follows. Section 2

briefly introduces the CEGAR-based constraint solving and illus-

trates our method by an example program. Section 3 describes the

symbolic execution framework and type inference in our method.

Section 4 presents our optimizations in detail. Section 5 presents the

implementation and the evaluation. Section 6 reviews and compares

the related work. Finally, Section 7 concludes.

2 ILLUSTRATION

In this section, we first briefly introduce the state-of-the-art CEGAR-

based array constraint solving method. Then, we use an example

to illustrate how our approach works.

2.1 CEGAR-Based Array Constraint Solving

An array SMT constraint [25] is a quantifier-free first order logic

formula with the following two special functions, where a is an

array variable, i and v are index and value variables, respectively.

R(a, i) | W(a, i,v) (1)

R(a, i) returns the ith element of a, whileW(a, i,v)writes the value

ofv to a’s ith element and returns the updated array a. Hereafter, for

the sake of brevity, we use RI (a, i) and Rb (a, i) to denote reading

the ith integer and byte of array a, respectively.

There are commonly used two axioms for solving array SMT

constraints [25].

i = j ⇒ R(a, i) = R(a, j) (2)

R(W(a, j,v), i) =

{

v i = j

R(a, i) otherwise
(3)

The first one states that two reads must be equal if the index vari-

ables are equal. The second one, called read-over-write axiom, states

that the value ofa’s jth element should bemodified tov byW(a, j,v)

and the values of the elements with a different index should remain

the same as before. Usually, the array SMT theory is used together

with other SMT theories for encoding programs.

Given an array constraint C , a CEGAR-based solving method

[19] first eliminates all the write terms in C by the axiom (3), i.e.,

using the ITE (If-Then-Else) disjunctive operator [25]. Then, every

read term is replaced by a new variable to get an abstract constraint

Ca , in which there is no array term. Therefore, initially, Ca does

not have any read axioms. Ca is solved by other SMT theories. If

Ca is unsatisfiable, C is unsatisfiable; otherwise, we get a solution

S , which will be validated w.r.t. C . If C is true under S , we find a

solution; otherwise, we refine Ca by adding the (2) axioms (e.g.,

A0, ...,An ) that are violated by S , i.e.,Ca ∧A0∧ ...∧An . The refined

constraint will be solved again, and the iteration continues until

finding a solution or disproving C .

For example, suppose that C is the following constraint,

RI (a, i) > 10 ∧ i ≥ 0 ∧ i ≤ 3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2).
(

∧

n∈{0,1,2}

i = n ⇒ RI (a, i) = 0
)

∧ i = 3⇒ RI (a, i) = 11

To solve this constraint using the CEGAR-based method, first Ca
is constructed, which is u > 10 ∧ i ≥ 0 ∧ i ≤ 3 at the beginning

(u represents RI (a, i)). Suppose that the solving of Ca gets u = 12
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1 int foo(int i, int j) {

2 int a[4] = {0, 0, 0, 5};

3 // int a[4] = {0, 0, 0, 9};

4 if (i + j > 4) {

5 if (a[i] + a[j] > 10) {

6 printf("Error!\n");

7 return 1;

8 }

9 }

10 return 0;

11 }

(a) An illustrative program

(b) Array memory layout (big-endian) and axioms. Gray lines are redundant axioms. Dark

lines are necessary axioms.

Figure 1: Motivation example

and i = 0, which does not satisfy C , because the following axiom is

violated.

i = 0⇒ RI (a, i) = 0

Then, we add the violated axiom toCa and get the following refined

constraint.

u > 10 ∧ i ≥ 0 ∧ i ≤ 3 ∧ (i = 0⇒ u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a

solution satisfying C; otherwise, the refinement continues until

finding a solution, which may need 4 times of refinement in the

worst case after adding all the four axioms.

2.2 An Illustrative Example

To precisely model the program under analysis, many existing sym-

bolic executors employ the SMT solver supporting both array and

bit-vector [7, 14] (ABV) SMT solving. Usually, the solver supports

byte-level reasoning for the symbolic executor to represent each

program’s data as a byte-sized array. Therefore, this paper considers

the scenario where the symbolic executor employs an ABV SMT

solver supporting byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates a typ-

ical scenario of array usage extracted from real-world programs.

Suppose that the inputs i and j are symbolic when performing the

symbolic execution of P, and the precondition of function foo is as

follows, i.e., both of the array index variables are within the scope

of the array a.

0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 (4)

Then, when checking the feasibility of path 1→2→4→5→6, the

symbolic executor generates the following array constraint.

i + j > 4 ∧ RI (a, i) + RI (a, j) > 10 (5)

We observe that this constraint can be disproved without invoking

the underlying SMT solver to solve it.

UNSAT pre-check. The first optimization is an ILP-based method

to pre-check whether an ABV constraint C is unsatisfiable (UNSAT).

We abstract the constraints of the index variables inC and compute

the interval of each index variable through an ILP solver; then, we

compute the intervals of the array read terms and replace themwith

new variables with the same intervals; finally, we use ILP solver

again to check whether the abstracted constraint is UNSAT. The

abstracted constraint’s unsatisfiability implies C’s unsatisfiability.

Both the problem of solving an ABV constraint and the problem

of integer linear programming are NP-Complete in general. How-

ever, we can use many abstractions and simplifications to reduce

the complexity of the ILP model constructed in symbolic execution.

Besides, the interval information computed by the ILP solver can

help solve the ABV constraint, which will be elaborated later. For

the example program, when we check the unsatisfiability of con-

straint (5), we first use an ILP solver to compute the minimum and

maximum values of i . The equations are as follows.

i + j > 4

0 ≤ i ≤ 3

0 ≤ j ≤ 3

(6)

We can get that the minimum and maximum values of i are 2 and

3, respectively, i.e., i’s interval is [2, 3]. Similarly, j’s interval is the

same. Then, we can compute the intervals of RI (a, i) and RI (a, j)

as [0, 5] with the concrete content of array a. To eliminate array

read terms in the constraint, we introduce two new variables, i.e.,

ai and aj , to replace RI (a, i) and RI (a, j), respectively. Finally, we

get an abstracted version of the ABV constraint as follows.

0 ≤ ai ≤ 5

0 ≤ aj ≤ 5

ai + aj > 10

(7)

Now, we use ILP to decide the unsatisfiability of the above ab-

stracted constraint. As it is unsatisfiable, the result of solving the

constraint (5) is UNSAT, andwe do not need to invoke the ABV solver.

Let us consider another case: if we replace Line 2 with Line 3 in

the example program in Figure (1a), i.e., the value of the last element

in the arraya is 9 instead of 5, the above UNSAT pre-checkingmethod

cannot prove the unsatisfiability of the constraints (5), which is

satisfiable. However, the ABV constraint’s satisfiability is still un-

known as the answer is for the abstracted constraint. So we must

invoke the underlying SMT constraint solver. This constraint is

encoded as follows in the underlying SMT solver that employs byte-

level reasoning, where ◦ denotes the bit concatenation operator
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[25] (assuming that we use big-endian).

i0 + j0 > 16

∧ X = Rb (a, i0) ◦ Rb (a, i1) ◦ Rb (a, i2) ◦ Rb (a, i3)

∧ i0 = 4×i ∧ i1 = i0 + 1 ∧ i2 = i0 + 2 ∧ i3 = i0 + 3

∧ Y = Rb (a, j0) ◦ Rb (a, j1) ◦ Rb (a, j2) ◦ Rb (a, j3)

∧ j0 = 4×j ∧ j1 = j0 + 1 ∧ j2 = j0 + 2 ∧ j3 = j0 + 3

∧ X + Y > 10

(8)

The first part of Figure (1b) shows the memory layout of a and

two array reads.X andY areRI (a, i) andRI (a, j), respectively. Both

X and Y are the concatenation of four bytes, and each byte is an

array read with an index variable. There are 8 array index variables

in the constraint. Because array a’s size is 4, there are 16 bytes in the

array. Then, there should be an axiom for each array index variable

and each byte in a. For example, the following axiom requires that

Rb (a, i0) is 9 if i0 is 15, i.e., the last byte in a.

i0 = 15⇒ Rb (a, i0) = 9 (9)

The second part of Figure (1b) shows the axioms related to i3, where

each line represents an axiom, and there are 16 axioms. Hence, there

are 128 axioms (i.e., 16 ∗ 8) for the eight index variables. Besides,

there will be an axiom for every two index variables, which are

shown in the third part of Figure (1b). For example, the following

axiom requires that the element at i1 is equal to the element at j1 if

i1 is equal to j1.

i1 = j1 ⇒ Rb (a, i1) = Rb (a, j1) (10)

Hence, there are 28 (i.e., C2
8) axioms for the eight index variables.

In total, there are 156 axioms.

Axiom elimination. Inspired by the idea of typed memory mod-

eling [8, 13], we observe that many axioms are redundant if we

have type information of the array accesses and interval informa-

tion of the program’s index variables. For example, for the array

constraint (8), because every array access in the program is reading

an integer, there is no need to have an axiom for the two bytes

that have different offsets in the integers. For example, the axiom

(9) is redundant because i0 is the first byte in the integer, and the

15th byte is the fourth byte; whereas the axiom (10) is necessary

because both the i1th byte and the j1th byte are the second byte.

Besides, because we have computed each index variable’s interval

in the UNSAT pre-checking step, there is no need to have an axiom

for any byte within the interval and any byte outside of the interval.

For example, the below axiom is redundant because i0’s interval is

[8, 12].

i0 = 0⇒ Rb (a, i0) = 0 (11)

In the second and third parts of Figure (1b), the axioms represented

by gray lines are redundant. In this way, we can reduce the number

of axioms from 156 to 20 (i.e., 2 ∗ 8+ 4), which significantly reduces

the complexity of CEGAR-based array constraint solving.

3 SYMBOLIC EXECUTION FRAMEWORK

In this section, we first briefly introduce the symbolic execution

framework. Then, we present the rules for the type inference in

symbolic execution.

P ::= var a[e] : T | a := e | ∗a := e

P # P | if e P else P | while e do P

e ::= c | a | e ⊕ e | ∗e | (T∗)e

Figure 2: Syntax of a core language.

3.1 Basic Framework

Let T be the set of atomic types, N be the name set, and C be

the set of constants. Without losing of generality, we consider the

programs defined by the language in Figure 2 for brevity, where

T ∈ T, a ∈ N, c ∈ C, and ⊕ represents a commonly used boolean,

numeric, or bit operator.

Note that in our language, the only variables are array variables,

which are pointers. There are three atomic statements: array vari-

able declaration, array variable assignment, and memory content

update. Besides, we provide three typical composition operators

for composite statements. In the expressions, we provide pointer

deference ∗e and pointer type conversion (T∗)e , which are typical

for memory operations. In principle, the language is expressive

enough for modeling C-like programs. Our implementation fully

supports C programs.

During the symbolic execution of a program P, a symbolic state

is a tuple (σ ,M,G), such that:

• σ = (∆,H, stmt, PC), where ∆ is the variable map that maps

each array variable to an address, H is the heap map that

maps an address to its concrete or symbolic byte value, stmt

is the next statement to be executed, and PC is the current

path constraint, i.e., an ABV constraint. We use σ .e to denote

the element e of σ , e.g., σ .stmt is σ ’s statement to be executed.

• M is the map that gives the size of an array variable’s access

type.

• G maps an array variable to its address range.

We use σ (v) to denote the address value of array variable v and

σ (e) to denote the value of the expression e on a symbolic state.

Algorithm 2 shows the symbolic execution algorithm. The al-

gorithm employs a worklist-style procedure. At the beginning,

the worklist only contains the initial symbolic state si , where

σ = (∅, ∅, stmti , true), where stmti is P’s entry statement, and

M and G are both ∅. The algorithm adopts the traditional symbolic

execution in the state-forking style [7]. The algorithm selects a

state from worklist. It carries out the symbolic execution of the next

statement on the state, which updates the state and may gener-

ate and insert new states into worklist. The symbolic execution of

each statement is standard [24] and omitted for brevity. Along with

symbolic execution, the algorithm also infers the type information

of each array’s accesses, and the type informationM will be used

later to improve the constraint solving. We will explain the type

inference rules in the next subsection.

3.2 Type Inference of Array Accesses

Figure 3 and Figure 4 show the inference rules for atomic statements

and expressions, where S(T) represents the size of the type T. For a

statement s or an expression e , denoted bya, we define the following

inference relation.

(M,G)
σ ,a
−→ (M′,G′)

364



Type and Interval Aware Array Constraint Solving for Symbolic Execution ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Algorithm 1: Symbolic Execution Framework

SE(P)

Data: P is a program

1 begin

2 worklist ← {si }

3 whileworklist , ∅ do

4 (σ ,M,G) ← Select(worklist)

5 if σ .stmt is atomic and not declaration then

6 (M,G)
σ ,σ .stmt
−−−−−−−−−→ (M′,G)

7 M←M′

8 end

9 if σ .stmt has a branch condition e then

10 (M,G)
σ ,e
−→ (M′,G)

11 M←M′

12 end

13 S ← Execute(σ ,M,G)

14 if σ .stmt is declaration then

15 for (σn ,Mn ,Gn ) ∈ S do

16 (Mn ,Gn )
σn,σ .stmt
−−−−−−−−−→ (M′,G′)

17 (Mn ,Gn ) ← (M
′
,G′)

18 end

19 end

20 end

21 end

1 :

s = var v[e] : T

(M,G)
σ ,e
−→ (M′,G) u = σ (v) + σ (e) × S(T) − 1

(M,G)
σ ,s
−→ (M′[v ← S(T)],G[v ← [σ (v),u]])

2 :
s = v := e (M,G)

σ ,e
−→ (M′,G)

(M,G)
σ ,s
−→ (M′,G)

3 :
s = ∗v := e (M,G)

σ ,e
−→ (M′,G)

(M,G)
σ ,s
−→ (M′,G)

Figure 3: Type inference rules for atomic statements.

It means that the type map M and the array range map G are

updated to M′ and G′ by a under σ . Type inference only needs

to consider atomic statements and expressions. The key idea is to

infer an array’s access type as the minimum type size of the pointer

dereferences inside the array’s address range.

When an array variable v is declared, we use the σ after execut-

ing the statement to infer v’s access type. We record the type of v’s

access as T at the beginning and v’s address range for later infer-

ences (Rule 1 in Figure 3). For the array variable assignment and the

memory content update statements, we infer the type information

by the expressions based on σ before executing the statement. The

constant and variable expressions do not changeM and G. The most

important one is the type conversion expression (Rule 3 in Figure

4), which modifies the array’s access type size to the minimum one

1 :
e = c

(M,G)
σ ,e
−→ (M,G)

2 :
e = v

(M,G)
σ ,e
−→ (M,G)

3 :

e = (T∗)e1 σ (e1) ∈ G(v)

(M,G)
σ ,e1
−→ (M′,G) s1 = min(S(T),M′(v))

(M,G)
σ ,e
−→ (M′[v ← s1],G)

4 :
e = ∗e1 (M,G)

σ ,e1
−→ (M′,G)

(M,G)
σ ,e
−→ (M′,G)

5 :
e = e1 ⊕ e2 (M,G)

σ ,e1
−→ (M1,G) (M1,G)

σ ,e2
−→ (M2,G)

(M,G)
σ ,e
−→ (M2,G)

Figure 4: Type inference rules for expressions.

of the target type T and the current type size. We update M and

G by the composed expressions for the deference expressions and

binary composite expressions.

Hence, during symbolic execution, if the current statement is

atomic and not a variable declaration statement, we infer the type

before the statement’s symbolic execution (Lines 6-7). If the state-

ment is a composite statement and has a branch expression, we also

infer the type by the expression before symbolic execution (Lines

10-11). For the variable declaration statement, we infer the type

after the symbolic execution (Lines 16-17).

4 ARRAY CONSTRAINT SOLVING

This section first introduces the basic framework of our CEGAR-

based solving method. Then, we discuss the UNSAT pre-checking

method. Next, we explain the axiom generation algorithm.

4.1 CEGAR-Based Framework

Algorithm 2 shows the details of our CEGAR-based solving method

for array constraints. The inputs are an ABV constraint C and the

array accesses’ type informationM inferred by the symbolic execu-

tor. The algorithm returns UNSAT if C is unsatisfiable; otherwise,

the algorithm returns a solution if C is satisfiable.

The algorithm first uses Pre-check (c.f., Alogrithm 3) to check

whether C is unsatisfiable. If Pre-check returns UNSAT, the algo-

rithm returns UNSAT. Otherwise, it records the interval map I

from Pre-check which maps index variables in C to their intervals.

Then, the algorithm computes the axioms that will be added during

CEGAR refinement iterations based on M and I (c.f., Algorithm 4).

Next, it constructs an abstract constraint Ca [19]. The abstraction

is as follows.

• Use the read-over-write axiom (c.f., Axiom (3)) to eliminate

the write terms in C .

• Replace each read term RI with a new fresh bit-vector vari-

able v , and record the mapping between RI and v .

Therefore, after abstraction, Ca is a bit-vector constraint without

any array terms. Ca is an over-approximation of C (i.e., C ⇒ Ca ),

since there are no read axiom requirements in Ca . The CEGAR

procedure starts with Ca .
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Algorithm 2: CEGAR-based Solving Framework

CEGAR−ABV(C,M)

Data: C is an ABV constraint, andM maps C’s each array

to the size of its access type

1 begin

2 (r , I) ← Pre-check(C,M) ▷ I is an interval map

3 if r = UNSAT then

4 return UNSAT

5 end

6 A← Axioms(C,M, I)

7 Ca ← abstract(C)

8 while true do

9 (r , S) ← sat(Ca )

10 if r = UNSAT then

11 return UNSAT

12 end

13 else if r = SAT then

14 if S |= C then

15 return S

16 end

17 else

18 AS ← Select(S,A,C)

19 Ca ← Ca ∧
∧

AS

20 A← A \AS

21 end

22 end

23 end

24 end

In the CEGAR loop, Ca is solved as a bit-vector constraint. The

algorithm convertsCa to an SAT problem [25] and employs an SAT

solver for solving (Line 9). If the result r is UNSAT, the algorithm

returns UNSAT, because Ca is implied by C . If Ca is satisfiable, the

algorithm checks whether the solution S satisfies C , i.e., S |= C ,

which includes all the array axioms in the form (2). If S satisfies C ,

a solution is found; otherwise, the algorithm employs a procedure

Select to select the axioms that are not satisfied by S . Then, Ca is

refined by the axioms (Line 19) that will be removed from A (Line

20). This iteration continues until a solution is identified, or C is

proved to be UNSAT or timeout (omitted for brevity). In this way,

the CEGAR-based algorithm tries to find a solution or disprove the

constraint by solving a simplified version of the original constraint.

4.2 UNSAT Pre-checking

Algorithm 3 shows the details of the UNSAT pre-checking of the

input constraint C . The basic idea is to abstract C’s constraint of

index variables with an integer arithmetic constraint. Then, we

employ an ILP solver to compute each index variable’s range of

values, based on which we compute the interval of read terms. Next,

we introduce new variables to replace read terms and transform

the final array-term-free constraint to integer arithmetic format for

checking the unsatisfiability of C .

To begin with, the algorithm partitions constraint C into a part

without array terms CV and a part with array terms Carr . Then,

Algorithm 3: Pre-check Algorithm

Pre-check(C,M)

Data: C is an ABV constraint, andM maps C’s each array

to the size of its access type

1 begin

2 (CV ,Carr ) ← separate(C) ▷ C = CV ∧Carr

3 for each r ∈ readTerms(C) do

4 v ← indexVariable(r )

5 Ca
v ← linearizev (CV ↓ v)

6 Iv [v] ← [ILP(C
a
v ,min v), ILP(Ca

v ,max v)]

7 Ir [r ] ← compute(r , Iv ,C,M)

8 end

9 Ca
arr ← linearizea (Carr , Ir )

10 ret ← ILP(Ca
arr ,∅)

11 if ret = UNSAT then

12 return (UNSAT,∅)

13 end

14 else

15 return (UNKNOWN, Iv )

16 end

17 end

for each array read term r , suppose that the index variable of r is v

(denoted as indexVariable(r )), we linearizev’s related constraints in

CV (denoted as CV ↓ v) to an integer arithmetic constraint Ca
v , in

which no disjunction exists (Line 5). Then, if we set v as objective,

we can use ILP to compute v’s upper and lower bounds, i.e., its

range (Lines 6). With the range of v and the type mapM, we can

compute r ’s interval (Lines 7) [27]. After all intervals of read terms

are computed, we linearizeCarr to an integer arithmetic constraint

Ca
arr and use ILP again to check whether it is unsatisfiable (Lines

9-10). The algorithm will return UNSAT if Ca
arr is unsatisfiable;

otherwise, the algorithm returns UNKNOWN and the interval map,

then we can use the interval map to help the CEGAR-based solving

later. Note that the algorithm may return UNSAT as well when

checking Ca
v . Here we omit it for brevity.

The algorithm employsmultiple abstractions. First, the algorithm

abstracts the constraint Cv of index variables (linearizev (CV ↓ v)

at Line 5), and CV ↓ v is a bit-vector constraint. We employ the

method in [37][11] to abstract a bit-vector constraint to an ILP

problem. We consider each variable as an unsigned variable and

use unsigned numeric operations to represent signed numeric op-

erations. The overflow behavior of bit-vector variables is modeled.

Second, the algorithm abstracts the read terms in the ABV con-

straint by their intervals and returns to the first abstractions again

(linearizea (Carr , Ir ) at Line 9). Third, to simplify the ILP problem,

the algorithm adopts several abstraction rules when precise model-

ing is costly. These abstraction rules ensure over-approximation.

Suppose the bit-vector constraint CV ↓ v of an index variable v is

as follows, where each ci is an atomic bit-vector constraint.

n
∧

i=1

ci (12)
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If there exists symbolic array writes in CV ↓ v , the UNSAT pre-

checking method is skipped. Otherwise, the abstraction for CV ↓ v

(i.e., Algorithm 3’s linearizev at Line 5) does the abstraction for

each ci .

The key idea is to exclude the constraints of complex operators or

abstract the constraint by introducing a new variable with a larger

range, which ensures the original constraint’s over-approximation.

We exclude the ci in which one of the following conditions holds.

• ci is a comparison constraint, and the comparison operator

is the not equal operator.

• ci ’s comparison operator is a siдned operator and both operands

are not constant; or if one of the operands is a constant and

the other operand is a variable that could be negative or

positive.

• There exists any non-linear expression in ci .

Besides, there are following abstraction rules with respect to ci ’s

constraint form.

• ci ’s each boolean predicate is replaced by a new boolean

variable.

• If ci is a (urem x c) expression, it is abstracted to a variable

v with a specific interval of [0, c] when c is a constant.

• If ci is a (xor a b) expression, it is abstracted to a bit-vector

variable v whose bit-width is the same as a and b.

• If ci is a (bvand a b) expression, it is abstracted to a variable

v that satisfies 0 ≤ v ≤ a and 0 ≤ v ≤ b. However, if the

binary of a or b is a sequence of 1 following a sequence of

0, precise modeling is available according to the way that

Extract expression is modeling [11].

• If ci is a (bvor a b) expression, suppose a and b is a k-bit

bit-vector, the expression is abstracted to a variable v that

satisfies a ≤ v ≤ 2k and b ≤ v ≤ 2k .

• ci ’s each read of symbolic array is abstracted to a variable v

with a specific interval of [0, 255].

In addition, if an index variable’s interval is larger than the array’s

range, we add the constraints to require that the variable should be

in the array’s range.

Finally, to further reduce the ILP problem’s cost, we propose two

kinds of simplifications: interval computation and caching. Interval

computation eliminates the redundant integer variables introduced

when modeling the modulo semantics [11] of bit-vector operations.

If the result of a bit-vector operation does not overflow, there is no

need tomodel themodulo semantics. A typical bit-vector expression

in symbolic execution is as follows, where ZE[32] denotes the 32-bit

zero-extend operator.

(((ZE[32] a[8]) ×[32] 2) +[32] 1)

Because a is an 8-bit variable, interval computation can check that

the bit-wise multiplication and the bit-wise addition do not over-

flow. The other simplification, i.e., caching, reuses the ILP solutions

among the solving of the different constraints in symbolic execu-

tion. When the constraints are similar in structure, caching reduces

the pre-checking’s overhead a lot.

4.3 Axiom Generation

Algorithm 4 shows the axiom generation of an ABV constraint C

with the type information M of the array accesses and the interval

Algorithm 4: Axiom Generation

Axioms(C,M, I)

Data: C is an ABV constraint,M is the map of access type

information, and I is the map of interval information

1 begin

2 A← ∅

3 for each a ∈ arrays(C) do

4 for each (v, i) ∈ indexVariables(C,M,a) do

5 [min,max] ← I[v]

6 for j ∈ [min,max] do

7 if (j modM(a)) = i then

8 A← A ∪ {v = j ⇒ Rb (a,v) = a[j]}

9 end

10 end

11 end

12 R ← ∅

13 for ((vi , i1), (vj , i2)) ∈ idx × idx do

14 if i1 = i2 ∧ i , j ∧ (vj ,vi ) < R then

15 A← A∪{vi = vj ⇒ Rb (a,vi ) = Rb (a,vj )}

16 R ← R ∪ {(vi ,vj )}

17 end

18 end

19 end

20 return A

21 end

information I of the array index variables in C . For each array

a and each a’s index variable v with the offset i , we first get v’s

interval from I (Line 5). Then, we generate an axiom for v and the

a’s element with the same offset (Line 8) and within v’s interval.

Besides, we generate an axiom for the different index variables with

the same offset (Line 15).

As mentioned previously, to get the interval of each index vari-

able, we construct an ILP model for the over-approximation of the

variable’s related constraints. As expected, the computed interval

may be an over-approximation of the exact interval of the index

variable, i.e., the lower bound is smaller, and the upper bound is

larger. Therefore, the index variable’s value is certainly not equal to

those values outside of the interval, which means that the axioms

related to those values can be removed safely. So, the interval-based

axiom elimination only removes redundant axioms. The type-based

axiom elimination has the same guarantee because the axioms

between the bytes with different offsets are also redundant. Fur-

thermore, type inference rules in Section 3.2 prefer to record a

smaller access type, which guarantees that the necessary axioms

will never be removed. Therefore, the constraint after eliminating

redundant axioms is equivalent to the original one.

4.4 Discussion

The pre-checking algorithm employs a lightweight procedure to

check the abstract constraint’s unsatisfiability, which implies the

original constraint’s unsatisfiability. The abstraction’s precision

determines the precision of the index variables’ ranges, which di-

rectly determines the extent to which the pre-checking can prove
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the constraint’s unsatisfiability. In the case that Pre-check fails to

conclude UNSAT, the index variables’ intervals can help remove the

redundant axioms in the later solving procedure. The pre-checking

algorithm is general and can be applied to any array constraint

solver, but the abstraction method may differ. In principle, the ab-

straction needs to tradeoff the precision and the pre-checking’s

overhead.

The type and interval aware axiom generation method is enabled

by the synergy between symbolic execution and constraint solver.

Symbolic execution infers the type information of array accesses,

which is used to do pre-checking and remove the redundant axioms

in the ABV constraint solving. The type inference rules guarantee

the correctness of solving by using the minimum access size of

the array. Hence, in the worst case, the access type of an array

has the one-byte size, which generates the same axioms as before.

However, in practice, the size of an array’s access type is often larger

than one. On the other hand, the interval information collected

in the pre-check algorithm can be used to remove the redundant

axioms. In a word, the type-aware axiom optimization is applicable

if the symbolic executor employs byte-sized array-based modeling.

The interval-aware axiom optimization applies to any array theory

solver despite the usage of the CEGAR-based method.

5 IMPLEMENTATION AND EVALUATION

We have implemented our approach on KLEE [14] and STP [19]1.

We implemented the type inference rules in KLEE. We have imple-

mented the pre-checking algorithm in KLEE for the first optimiza-

tion, and the pre-checking will be carried out before invoking STP.

We use PPL [6] for integer linear programming, and the abstraction

is implemented for the constraint in KLEE’s KQuery language [3].

For the second optimization, axiom generation is implemented in

STP, and STP’s interfaces are modified to support type information

input and interval information input.

5.1 Research Questions

There are the following three research questions:

• RQ1: effectiveness, i.e., can our method improve the effi-

ciency of symbolic execution?

• RQ2: relevance of either optimization, i.e., how about each

optimization’s significance for improving effectiveness?

• RQ3: compare with the dedicated optimization method for

array constraint solving, i.e., KLEE-Array [31], how about

our method’s effectiveness?

5.2 Experimental Setup

To answer the research questions, we have applied our implemen-

tation on the benchmark programs in Table 1 to evaluate the opti-

mization methods. GNU Coreutils2 is a standard benchmark suite

for KLEE-based implementations. Among all the programs in this

benchmark (which has a total of 89 programs), we filter those that

are irrelevant (i.e., no array constraints that trigger CEGAR-based

solving), and the remaining contains 62 programs. LD and BC are

two GNU programs, which are used in [31] as the benchmark for

the optimizations in symbolic execution for arrays. APR is used in

1KLEE’s version is 2.2-pre, and STP’s version is 2.3.3.
2Coreutils’s version is 6.11.

Table 1: The benchmark programs in the experiments.

Subject C SLOC Brief Description

Coreutils 91992 62 Unix utility programs

yaml 1590 A yaml scanner

ld 62279 The GNU linker

bc 12511 GNU numeric processing language

rust 2610 A Rust language lexer

clan 2187 Polyhedral representation Extraction Tool

apr 61201 Apache portable runtime framework

rats_py 2021 Python scanner in RATS tool

clex 1998 A C language lexer

libqpol 2431 Policy analysis tools for SELinux

sgml_lex 2719 Lexical analyzer for basic SGML

rats_php 2234 PHP scanner in RATS tool

rats_perl 2006 Perl scanner in RATS tool

libguile 1503 A library for GNU Extension Language

Total 249282 75 open source C programs
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Figure 5: Result of queries without the query optimizations

in KLEE under DFS.

[23] as the benchmark for a new memory model for symbolic exe-

cution. Other programs are lexers or scanners of different grammar.

In total, we have collected 75 real-world open-source C programs.

In principle, the number of solved constraints and explored paths

directly reflect a symbolic executor’s efficiency. If a symbolic ex-

ecutor can solve more constraints or explore more paths under a

time threshold, it is considered as more efficient. Hence, we first

use KLEE to analyze the benchmark programs under different con-

figurations and then collect the solved constraints and the explored

paths during symbolic execution. To alleviate the randomness of the

experiments, we use the depth-first search (DFS) search heuristic.

We analyze each program in 30 minutes. Finally, we carried out all

the experiments three times on a server whose CPU is 3.1GHz and

got the average values. The operating system is Ubuntu 16.04.

5.3 Experimental Results

Answer to RQ1. Figure 5 shows the results of constraint solving

using our optimizations without KLEE’s optimizations in analyz-

ing the 75 programs. The Y-axis shows the relative increase of
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Figure 6: Result of queries with the query optimizations in

KLEE under DFS.

the queries, which is calculated as follows. Qopt is the number of

queries (i.e., constraints) solved under our optimizations, and Qor i

is the one without our optimizations.

Qopt −Qor i

Qor i
(13)

The X-axis shows the program numbers. The relative increasing

values order the programs, and the 29th program is the last program

where the number of queries is decreased. As shown by the figure,

our method can increase the number of solved constraints (often

significantly) for 46 programs (61.33%) and decrease the number

(always only slightly) for 29 programs. Since ILP solving introduces

overhead, it is understandable that performance degradation occurs

in some cases. However, as shown in Figure 5, degradation is minor,

which illustrates the effectiveness of the caching simplification in

ILP solving. On average, the relative increasing value for queries is

160.52% (−15.63%∼2335.80%), and the value for explored paths is

80.04% (−55.31%∼1206.63%).

To further evaluate the compatibility of our method and KLEE’s

optimizations, we also run the experiment with all query optimiza-

tions in KLEE. Same as Figure 5, Figure 6 shows the query results

under our optimizations with all of KLEE’s query optimizations.

The 6th program is the last program, where the number of queries

is decreased. There are 13 programs on which our optimizations

have no effect because KLEE’s optimizations are efficient enough to

reduce the underlying constraint solver’s most invocations. Hence,

with KLEE’s optimizations, we can increase the number of queries

for 56 programs (74.67%). The average increase in the number of

queries is 182.56% (−0.56%∼2271.43%), and the value for explored

paths is 277.56% (−1.63%∼10824.39%).

To further evaluate our method, we select the benchmark pro-

grams whose ratio of the queries that reach the CEGAR-loop in the

solver is greater than 10% (with respect to the results in Figure 5)

for a further evaluation under different configurations, which we

believe is a relatively appropriate ratio. There are 23 programs. We

compare four configurations in detail with KLEE’s optimizations:
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Figure 7: Relative increasing of solved queries under dif-

ferent configurations (vs. Vanilla KLEE) for the programs

in whose symbolic execution the constraint solving uses at

least 80% time.

vanilla KLEE with query optimizations3, using assertion encoding4,

using the pre-check method (Opt 1) and using both optimizations

(Opt 1+2).

Table 2 provides the detailed results of these 23 programs. The

first column displays the program names and time spent in the

constraint solver under vanilla KLEE. The second column shows

twometrics: solved queries and explored paths. Then, the remaining

columns show the results of different configurations. For the last

four configurations, the table also shows the relative increasing

values of solved queries and explored paths. For the sake of the

reader’s convenience, we highlight the maximum value in each

case under the five configurations. It is then easy to find out which

configuration performs best with respect to different metrics in

each case.

The assertion encoding achieves the average relative increasing

of queries and paths as 320.19% (−0.95%∼1410.99%) and 324.78%

(−17.24%∼3936.59%) respectively. Our first optimization achieves

the average relative increasing of queries and paths as 339.78%

(0%∼1474.73%) and 351.50% (−17.24%∼4231.71%) respectively. If

both optimizations are used, the achieved average relative increas-

ing of queries and paths are 592.89% (0%∼2271.43%) and 896.98%

(3.44%∼10824.39%), respectively. Our optimizations solved more

queries and explored more paths in all 23 programs than vanilla

KLEE. Hence, our optimizations are effective. Figure 7 shows the

results of the 13 programs whose time of constraint solving dom-

inates the total time of symbolic execution (more than 80%). As

shown by the figure, employing both optimizations improves the

queries for all the 13 programs, and the average relative increases of

queries and paths are 1046.88% (348.85%∼2271.43%) and 1579.10%

(26.41%∼10824.39%), respectively. These results indicate that our

method is more effective for the programs whose symbolic execu-

tion is solving-intensive.

Statement coverage. In the following, we show an end-to-end im-

provement of our method for symbolic execution’s application

3The vanilla KLEE uses a flushing way to encode arrays.
4The KLEE’s version uses assertion encoding [1][2].
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Table 2: Solved queries and explored paths results of the 23 programs whose ratio of the constraints that enters the CEGAR-

based solving loop is at least 10%. The programs are ordered by the ratio of solving time in symbolic execution.

Program (ST%) Metrics Vanilla Assertion (Inc%) Opt 1 (Inc%) Opt 1+2 (Inc%) KLEE-Array (Inc%)

libqpol

(99.95%)

Queries 178 1470(725.84%) 1503(744.38%) 2350(1220.22%) 1665(835.39%)

Paths 22 22(0.0%) 22(0.0%) 35(59.09%) 22(0.0%)

yaml

(99.95%)

Queries 91 1375(1410.99%) 1433(1474.73%) 2158(2271.43%) 2429(2569.23%)

Paths 11 23 (109.09%) 23(109.09%) 28(154.55%) 29(163.64%)

sgml_lex

(99.89%)

Queries 424 2645(523.82%) 2491(487.5%) 5222(1131.6%) 5425(1179.48%)

Paths 39 94(141.03%) 87(123.08%) 165(323.08%) 184(371.79%)

rats_py

(99.86%)

Queries 908 8384(823.35%) 8997(890.86%) 13602(1398.02%) 10684(1076.65%)

Paths 29 264(810.34%) 281(868.97%) 401(1282.76%) 342(1079.31%)

rust

(99.85%)

Queries 318 1993(526.73%) 2030(538.36%) 3441(982.08%) 2020(535.22%)

Paths 29 24(-17.24%) 24(-17.24%) 38(31.03%) 24(-17.24%)

rats_perl

(99.84%)

Queries 861 6971(709.64%) 7533(774.91%) 12513(1353.31%) 10084(1071.2%)

Paths 29 213(634.48%) 233(703.45%) 402(1286.21%) 338(1065.52%)

clan

(99.84%)

Queries 333 2846(754.65%) 3037(812.01%) 4663(1300.3%) 3532(960.66%)

Paths 39 41(5.13%) 46(17.95%) 86(120.51%) 66(69.23%)

clex

(99.84%)

Queries 950 3171(233.79%) 3299(247.26%) 5060(432.63%) 3903(310.84%)

Paths 74 70(-5.41%) 71(-4.05%) 124(67.57%) 87(17.57%)

rats_php

(99.80%)

Queries 960 7986(731.88%) 8369(771.77%) 10461(989.69%) 7854(718.12%)

Paths 41 1655(3936.59%) 1776(4231.71%) 4479(10824.39%) 1554(3690.24%)

libguile

(99.78%)

Queries 1740 4562(162.18%) 5418(211.38%) 7810(348.85%) 6964(300.23%)

Paths 46 170(269.57%) 222(382.61%) 421(815.22%) 337(632.61%)

bc

(99.72%)

Queries 387 1460(277.26%) 1501(287.86%) 2006(418.35%) 1915(394.83%)

Paths 22 22(0.0%) 22(0.0%) 43(95.45%) 36(63.64%)

apr

(99.40%)

Queries 347 883(154.47%) 986(184.15%) 4940(1323.63%) 4414(1172.05%)

Paths 100 1664(1564.0%) 1734(1634.0%) 5542(5442.0%) 3456(3356.0%)

ld

(84.02%)

Queries 1046 4401(320.75%) 4856(364.24%) 5641(439.29%) 1857(77.53%)

Paths 462 524(13.42%) 525(13.64%) 584(26.41%) 489(5.84%)

mkfifo

(34.99%)

Queries 808 803(-0.62%) 810(0.25%) 819(1.36%) 638(-21.04%)

Paths 148588 146508(-1.4%) 150975(1.61%) 158098(6.4%) 170580(14.8%)

tac

(30.48%)

Queries 1065 1079(1.31%) 1080(1.41%) 1099(3.19%) 741(-30.42%)

Paths 181133 189011(4.35%) 189391(4.56%) 199560(10.17%) 186594(3.01%)

head

(18.19%)

Queries 1122 1133(0.98%) 1237(10.25%) 1125(0.27%) 681(-39.3%)

Paths 225386 229105(1.65%) 204987(-9.05%) 303754(34.77%) 227922(1.13%)

touch

(15.70%)

Queries 1125 1147(1.96%) 1149(2.13%) 1179(4.8%) 631(-43.91%)

Paths 210590 219859(4.4%) 220742(4.82%) 233603(10.93%) 218317(3.67%)

mkdir

(15.20%)

Queries 733 726(-0.95%) 738(0.68%) 744(1.5%) 530(-27.69%)

Paths 176282 169954(-3.59%) 180342(2.3%) 185129(5.02%) 201180(14.12%)

du

(12.89%)

Queries 846 853(0.83%) 857(1.3%) 868(2.6%) 630(-25.53%)

Paths 165273 170106(2.92%) 173134(4.76%) 181855(10.03%) 168268(1.81%)

unexpand

(12.18%)

Queries 189 189(0.0%) 189(0.0%) 189(0.0%) 189(0.0%)

Paths 862561 875051(1.45%) 885821(2.7%) 913214(5.87%) 849669(-1.49%)

kill

(11.52%)

Queries 2564 2616(2.03%) 2718(6.01%) 2820(9.98%) 2645(3.16%)

Paths 286276 295502(3.22%) 306636(7.11%) 317902(11.05%) 298256(4.18%)

wc

(6.34%)

Queries 164 164(0.0%) 164(0.0%) 164(0.0%) 164(0.0%)

Paths 605685 605447(-0.04%) 615033(1.54%) 634648(4.78%) 591048(-2.42%)

pr

(5.34%)

Queries 351 363(3.42%) 363(3.42%) 363(3.42%) 349(-0.57%)

Paths 111046 106501(-4.09%) 112157(1.0%) 114868(3.44%) 119509(7.62%)

to some software engineering activities. We have applied KLEE

equipped with the optimized STP to analyze the thirteen large

or complex benchmark programs (i.e., the ones besides Coreutils

programs) in Table 1 in five hours. Figure 8 shows the coverage

results of 13 programs. As shown in the figure, our optimizations

can improve the statement coverage for 12 programs except for

apr. For apr, our optimizations improve the number of instructions

to 5 times; whereas, it does not contribute to statement coverage.

These results indicate that the advancement in constraint solving

can directly benefit symbolic execution’s applications. In summary,

the answer to the first research questions is as follows.

Answer to RQ1: Our optimizations can effectively improve the

efficiency of symbolic execution. On average, the optimizations

can increase the relative queries by 182.56% and the relative
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Figure 8: Result of statement coverage. The gray part is the

statement coverage of vanilla KLEE with query optimiza-

tions. The darker part is the improvement of our method.

paths by 277.56%. Besides, the optimizations can increase the

statement coverage for large-scale real-world programs.

Answer to RQ2. In the following, we report experimental results

on the relevance of either optimization. We observe that the second

optimization makes a noticeable improvement in terms of the num-

ber of solved queries. We further observe that the first optimization

itself does not contribute much to increase the number of solved

queries. This is expected as the first optimization only allows to

conclude UNSAT early. However, the first optimization contributes

significantly to the effectiveness of the second optimizations.

For the 23 programs, there are 19 cases (82.61%) in which the

first optimization can improve the solved queries compared with

assertion encoding. As for explored paths, the number is 16. For

the 23 cases, the average improvement of solved queries is 7.18%

(−5.82%∼18.76%); the average improvement of explored paths is

5.93% (−10.53%∼30.59%). Hence, although the first optimization

can improve constraint solving efficiency in many cases, it may

not increase the explored paths as the behavior of KLEE’s caching

optimizations depends on the solving results. On the other hand,

if we employ the second optimization, compared with assertion

encoding, we can achieve 92.09% (−0.71%∼459.46%) improvement

for solved queries and 99.48% (4.36%∼233.05%) improvement for

explored paths, respectively.

Answer to RQ2: The second optimization is more significant

than the first one. The first optimization can generate useful

information to help the second optimization.

Answer to RQ3. KLEE-Array [31] is the state-of-the-art work for

optimizing array constraint solving in symbolic execution. KLEE-

Array optimizes the array constraints by simplifying and transform-

ing array constraints into the constraints without arrays before

invoking the solver. Unlike KLEE-Array, our method proposes to

synergize symbolic execution and constraint solving to improve

Table 3: Results of explored paths and executed instructions

(vs. KLEE-Array)

Programs
KLEE-Array Our Method

#Instrs #Paths #Instrs #Paths

yaml 71687 29 63864 28

rust 38892 24 53921 38

sgml_lex 599397 184 523956 165

clan 69777 66 89288 86

rats_py 353230 342 417394 401

clex 87322 87 115455 124

libqpol 35871 22 45190 35

rats_php 5221268 1554 14514660 4479

apr 637629 3456 880674 5542

bc 340874 36 440008 43

rats_perl 325398 338 379466 402

libguile 665723 337 750713 421

ld 373181619 489 373304921 584

constraint solving. Our method needs to pass the information cal-

culated information to the solver. We have compared our method

with KLEE-Array5 on the 13 benchmark programs in Figure 7. Be-

cause KLEE-Array modifies the queries, we use the explored paths

and executed instructions in symbolic execution as the metric for

comparison. Table 3 shows the results.

Our method explores more paths and executes more instruc-

tions in 11 programs. On average, compared with KLEE-Array, our

method achieves the relative increasings in paths and instructions as

30.31% (−12.59%∼177.99%) and 40.39% (−10.33%∼188.22%), respec-

tively. These results indicate that our method is more effective than

KLEE-Array on the benchmark programs. In yaml and sgml_lex,

KLEE-Array is better than us because the generated constraints

in these two programs are simple. KLEE-Array performs better

when the constraints have few nested array expressions, and the ar-

rays have many continuous repeated values. However, in the other

11 programs, the constraints are complex, and the array element

values are diverse, on which our method outperforms KLEE-Array.

Answer to RQ3: Compared with KLEE-Array, our method in-

creases the number of paths and instructions by 30.31% and

40.39%, respectively.

5.4 Threats to Validity

The internal threats to the validity of our work are our implemen-

tation. We alleviate the implementation problems in the design

and testing phases. We carefully designed some small programs

for testing and utilized KLEE’s constraint solver tool Kleaver [14]

for debugging some rare constraints. Our prototype can analyze 75

real-world C programs with a wide range of scales in LoCs, which

demonstrate our implementation’s robustness. The main threats

are external. Although our benchmark programs are from recent

symbolic execution research based on KLEE, the programs may be

limited. The axiom-oriented optimizations may be specific to the

5We use all the KLEE’s query optimizations.
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CEGAR-based solving procedure. We plan to apply our optimiza-

tions to more ABV solvers and apply the optimized solvers to more

symbolic execution engines for the programs in different languages,

such as SPF [32] and JDart [29] for Java programs.

6 RELATED WORK

Our work is related to program analysis and constraint solving,

including constraint optimization in symbolic execution, array or

bit-vector SMT theory, array or bit-vector abstraction in software

or hardware verification, etc.

Improving the efficiency of constraint solving is one of the key

topics in the research of symbolic execution. Many existing ap-

proaches use the SMT solver in a black-box manner and optimize

the constraint before invoking the solver. KLEE [14] optimizes

the constraints before solving by term rewriting, simplification,

counter-example caching, and irrelevant constraint elimination.

Both Green [35] and its enhanced version GreenTrie [22] propose

to reuse the results of constraint solving during symbolic execu-

tion or across the symbolic execution of different programs with

respect to different equivalence or implication relations. Instead

of cache-based approaches, stack-based incremental solving ap-

proaches [28] are proposed to optimize the constraint solving in

symbolic execution. In speculative symbolic execution [39], the

symbolic executor reduces the solving invocations by speculatively

executing the program under analysis. Unlike these approaches,

multiplex symbolic execution [38] can utilize partial solutions to

generate multiple inputs by solving once. Compared with these

approaches, our approach is complementary and directly improves

the underlying ABV solver’s efficiency. KLEE-Array [31] is the

closest related work, which optimizes the encoding of array opera-

tions by merging the repeated values in arrays. The optimizations

of KLEE-Array are on the level of symbolic execution, while our

optimizations are mainly on the level of constraint solving. We

have empirically compared our approach with KLEE-Array in the

evaluation (c.f., Section 5.3).

Array or bit-vector SMT theory is also related to our approach.

In [10], the authors investigate the complexity of the decision

procedure for the combination of array theory and different the-

ories, such as equality with uninterpreted functions (EUF) and

Presburger arithmetic. CEGAR-based array constraint solving over-

approximates the constraint and gradually refines the abstraction,

which is adopted by modern ABV solvers [12, 19]. Besides, the idea

of under-approximation is also used to find the solution faster [12]

by restricting the individual bits of bit-vectors. In [5], the authors

combine over-approximation and under-approximation to solver

bit-vector constraints. In [36], the authors propose an interval-based

method to calculate the bit information for boosting the SAT solv-

ing of bit-vector constraints. Compared with these approaches, we

consider improving ABV solving under the background of symbolic

execution. We integrate symbolic execution with the underlying

ABV solver to improve efficiency. Besides, the work of bit-vector

optimization [30] is interesting and can also be used to support a

pre-checking, which is left to be the future work.

Our work is also related to the work of array or bit-vector ab-

straction in software or hardware verification. In [21], the authors

use infeasible counter-example paths to get the predicates for array

operations during the CEGAR-based verification loop. In [33], the

authors propose abstraction refinement techniques to prove the

quantified properties for array programs. In [15], a full-program in-

duction technique is proposed to prove the quantified or quantifier-

free properties of the programs with parametric size. In [16], the

authors propose to use the program’s data and control flow infor-

mation to guide the SAT solving under the background of bounded

program verification. It is interesting to see whether these ideas

can help ABV solving under the background of symbolic execution.

For hardware verification, the work in [11, 37] uses integer linear

programming to verify the hardware RTL designs, which inspires

our abstraction for bit-vector constraints.

7 CONCLUSION AND FUTUREWORK

Array exists extensively in programs. The symbolic execution of

array programs usually employs array SMT theory to encode the

program’s array operations. Symbolic execution’s efficiency can

be improved by the advancements of array constraint solving. In

this paper, we propose two optimizations for CEGAR-based ABV

constraint solving. The first optimization employs an ILP-based

checking algorithm to check the constraint’s unsatisfiability. The

other optimization removes the redundant axioms by the type in-

formation inferred during symbolic execution and the interval in-

formation computed by pre-checking. We have implemented these

optimizations on the state-of-the-art symbolic executor and the

ABV solver. The results of the extensive experiments on real-world

benchmarks indicate that our optimizations effectively improve the

efficiency of symbolic execution. The future work has the following

directions: 1) apply the optimizations to other symbolic executors

and solvers; 2) exploring other synergy methods between symbolic

execution and constraint solving.
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