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Shopping malls are densely located in major cities such as Singapore and Hong Kong. Tenants in these

shopping malls generate a large number of freight orders to their contracted logistics service providers,

who independently plan their own delivery schedules. These uncoordinated deliveries and limited docking

capacity jointly cause congestion at the shopping malls. A delivery coordination platform centrally plans

the vehicle routes for the logistics service providers and simultaneously schedules the dock time slots at

the shopping malls for the delivery orders. Vehicle routing and dock scheduling decisions need to be made

jointly against the backdrop of travel time and service time uncertainty and subject to practical operations

rules. We model this problem as a two-stage stochastic mixed integer program, develop an Adaptive Large

Neighborhood Search algorithm that approximates the second stage recourse function using various sample

sizes, and examine the associated in-sample and out-of-sample stability. Our numerical study on a testbed of

instances based on real data in Singapore demonstrates the value of coordination and the value of stochastic

solutions.

Key words : Coordinated delivery; Docking capacity; Endogenous time window; Stochastic travel and

service times; Adaptive large neighborhood search

History :

1. Introduction

In major cities such as Singapore and Hong Kong, shopping malls are densely located to cater

to the demands of tourists and local shoppers. Typically within a shopping mall, there could be

hundreds of tenants including retail shops, restaurants, supermarkets, etc., which generate a large
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number of freight orders each day, to be delivered by the individually contracted logistics service

providers (LSPs) of these tenants.

Unfortunately, many of these deliveries are fragmented in that different LSPs independently plan

their delivery schedules without coordination with one another. Since the number of unloading

docks in a shopping mall is normally very limited, a vehicle has to wait when all the docks are

occupied. Consequently, high volumes of uncoordinated traffic can lead to substantial waiting times

and delays, which has been observed in our site investigations of shopping malls (such as Tampines

Mall and ION Orchard) in Singapore from December 2017 to February 2018. Clearly, coordinating

the schedule of vehicle arrivals across different LSPs can reduce the waiting time and delay, and

achieve a better utilization of docks.

Productivity aside, fragmented deliveries will result in negative environmental (noise, pollution)

as well as social (traffic congestion and safety) externalities. Motivated by the social, economic,

and environmental enhancements, the Collaborative Urban Delivery Optimization (CUDO) project

aims to develop a centralized decision making platform where LSPs can submit their orders and

obtain recommendations on vehicle routes and dock schedules. This project is supported by the

Info-communications Media Development Authority (IMDA, a national government agency respon-

sible for enhancing Singapore’s competitiveness through adoption of IT) of Singapore.

The workflow of the CUDO platform is outlined as follows. During the day, the customers (i.e.,

tenants in shopping malls) place delivery orders to their contracted LSPs. An order indicates the

location, the amount of goods to be delivered on the next day, and the time window within which

the delivery should be made. Each LSP submits its orders to the CUDO platform by a certain cutoff

time. The CUDO platform will then generate the routes of all the delivery orders and schedule the

(dock) time slots at the shopping malls, all to be done within one hour. Specifically, this means

that the platform will decide which order is assigned to which vehicle and to what time slot (the

usage of a dock) at a shopping mall, along with the vehicle routes. The scheduled time slots are

then reserved via the interface with the various external Dock Scheduling and Queuing (DSQ)

systems. On the next day, a vehicle will serve the orders according to the plan, and a shopping

mall will manage the vehicles’ entrances based on the time slot reservations.

Note that each reserved time slot is [hard, soft] where the vehicle has to wait outside the shop-

ping mall if it arrives early, and is allowed to enter if it arrives late (with some penalty in the

objective function). This time slot can be regarded as an endogenous time window, which is to be

differentiated from the exogenous time window of an order imposed by the customer.

In order to schedule good time slots, the model must deal with the uncertainty in travel times

between two locations and the uncertainty in orders’ service times. Furthermore, the limited docking

capacity introduces more uncertainty in that a vehicle may need to wait (inside the shopping mall)
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for an available dock, and the waiting time may influence the subsequent orders, which in turn

affects the schedule of other vehicles delivering to the same shopping mall.

We refer to the above problem faced by the CUDO platform as coordinated delivery to shopping

malls with limited docking capacity. The objective is to minimize the total cost that consists of the

routing cost of the vehicles and the expected penalty cost that includes the penalties for outside

waiting time, inside waiting time, late service start time, and late service end time of the orders

and for overtime working of the vehicles.

Our paper makes a number of contributions to the literature as follows.

• We introduce the novel problem of the coordinated delivery to shopping malls with limited

docking capacity, which is the first in the literature that integrates the practical features of docking

capacity, endogenous time windows (i.e., scheduled dock time slots), practical operations rules such

as First-Arrive-First-Enter (FAFE) and First-Enter-First-Serve (FEFS), and stochastic travel times

and service times. We formulate the problem as a two-stage stochastic mixed integer program. In

the first stage, we plan the vehicle routes and schedule the time slots (endogenous time windows)

at the shopping malls for the orders. Then the recourse function of the second stage evaluates the

first stage solution on the expected penalty cost of outside & inside waiting time and late service

start & end time of the orders and the overtime working of the vehicles, under the stochasticity

in both travel times and service times and subject to practical operations rules. Note that the

incorporation of the above practical features is important to properly represent the coupling effect

of the scheduled dock time slots on vehicle routes in the first stage and evaluate the interaction

among vehicle routes and scheduled dock time slots due to the docking capacity and the operations

rules such as FAFE and FEFS in the second stage.

• We develop an Adaptive Large Neighborhood Search (ALNS) metaheuristic and approximate

the second stage recourse function using sample average. To overcome the computational challenge

of evaluating the first stage solutions (of vehicle routing and dock scheduling) in a very large

solution space, we employ various sample sizes at different layers of the ALNS algorithm and test

the in-sample and out-of-sample stability. We also design two new scheduling operators in our

ALNS algorithm that enable the search to consider various time slot decisions. Note also that our

ability to formulate the practical features in a two-stage mixed-integer program enables us to solve

the mean value problems (MVP) up to certain scales to optimality so that we are able to evaluate

the quality of the ALNS in deterministic settings.

• We construct a testbed of instances based on real data in Singapore. We handle the interde-

pendency between the travel times on arcs in the road network using the copula-based scenario

generation method (Kaut 2014, Guo, Wallace, and Kaut 2019), and we generate the service time
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scenarios by bootstrapping from real service time data from 76 stores in a shopping mall in Sin-

gapore, with 3470 observations of service time. To show the value of coordination, we compare

with the current practice that each LSP plans its own deliveries and schedule the time slots in

an uncoordinated manner (“uncoordinated solution”). The average percentage saved in total cost

by the coordinated solutions is 9.4%, which is mainly driven by the reduction in penalty cost of

late start and end service time of the orders. The uncoordinated solutions tend to underestimate

the probability of congestion and schedule time slots optimistically, which potentially results in

longer expected waiting time inside the shopping malls and this propagates to significantly longer

expected late start and end service time of the orders. Our numerical study also shows the signif-

icant value of stochastic solutions (an average increase of 21.1% in total cost if the stochasticity

in both travel times and service times is ignored), and further, based on our test instances, the

stochasticity in service times seems to have a higher impact on the total cost than the stochasticity

in travel time does.

The remainder of the paper is organized as follows. Section 2 reviews the related literature.

The problem is formally described in Section 3 and the corresponding two-stage stochastic mixed

integer program is formulated in Section 4. The proposed ALNS metaheuristic is introduced in

Section 5. The newly generated instances, the tuning process of the algorithm parameters, and

the results of numerical experiments are presented in Section 6. Finally, we provide our concluding

remarks in Section 7.

2. Literature review

The problem under study is characterized by stochastic travel times and service times, endogenous

time windows, and limited docking capacity. We review the related literature in this section.

2.1. VRP with stochastic travel time or service time

In the literature on stochastic vehicle routing problems (SVRP), stochastic demands, stochastic

customers, and stochastic travel times and/or service times are the three mainly studied stochastic

characteristics (Gendreau, Jabali, and Rei 2016, Oyola, Arntzen, and Woodruff 2017, 2018). There

are two modeling paradigms for SVRP (Gendreau, Jabali, and Rei 2016): the a priori paradigm

and the re-optimization paradigm. In the a priori paradigm, routes are established before any

stochastic information is revealed and are adjusted following a predefined recourse policy based

on the revealed information during the execution of the routes. The re-optimization paradigm

gradually constructs the routes as the stochastic information is revealed. This paper falls into the

a priori paradigm.

Introduced by Laporte, Louveaux, and Mercure (1992), the vehicle routing problem with stochas-

tic travel times or service times (VRPST) that uses the a priori paradigm is usually modeled as
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a two-stage stochastic integer program (2S-SIP) or a chance constrained program (CCP). The

recourse policies in the 2S-SIP include skipping customers (Binart et al. 2016, Errico et al. 2016),

ending the tour (Campbell, Gendreau, and Thomas 2011), and penalizing shift violation (Laporte,

Louveaux, and Mercure 1992, Lei, Laporte, and Bo 2012) or earliness/tardiness in terms of cus-

tomers’ time windows (Ando and Taniguchi 2006, Russell and Urban 2008, Taş et al. 2013). In the

CCP, there could be constraints or objectives on the probability of deadline violation (Adulyasak

and Jaillet 2016) or time window violation (Ehmke, Campbell, and Urban 2015, Miranda and

Conceição 2016).

In a 2S-SIP, a general objective is F = minx[c
Tx + EωQ(x,ξ(ω))], where x is the first stage

decision, ξ is a random vector, ω is a scenario in sample space Ω, and Q(·) is the second stage

cost function. In different VRPST variants, researchers design solution methods based on different

assumptions on the sample space Ω, properties of the second stage cost function Q(·), etc. When

Ω is finite and small, the VRPST can be solved directly by solving its deterministic equivalent

problem (Laporte, Louveaux, and Mercure 1992, Kenyon and Morton 2003).

When Ω is infinite (continuous random variable) but the recourse function EωQ(x,ξ(ω)) has a

closed form expression, the VRPST can be solved by exact methods or metaheuristics for deter-

ministic VRPs. As summarized in Table 1, these papers normally assume that the probability

distribution of travel (or service) times adhering to the convolution property and there is no or

only [soft, soft] time windows, where the vehicle is allowed to start its service whenever it arrives

but is penalized for earliness/tardiness.

Table 1 VRPST literature that models as a 2S-SIP and has a closed form of Q(·) function

Research Recourse policy
Probability Exogenous Solution

distribution time window method*

Russell and Urban (2008) Earliness and tardiness Erlang [Soft, soft] TS
Campbell, Gendreau, and Thomas (2011) End the tour or not Gamma No DP, VNS
Lei, Laporte, and Bo (2012) Shift violation Normal No VNS
Taş et al. (2013) Earliness and tardiness Gamma [Soft, soft] TS
Taş et al. (2014a) Earliness and tardiness Gamma [Soft, soft] TS, ALNS
Taş et al. (2014b) Earliness and tardiness Gamma [Soft, soft] B&P
Yuan, Liu, and Jiang (2015) Tardiness Normal [Null, soft] B&P

Errico et al. (2016)
Skip current or next Discrete

[Hard, hard] B&C&Pcustomer triangular

* Adaptive Large Neighborhood Search; B&C: Branch-and-Cut; B&P&C: Branch-and-Price-and-Cut; LP:
Linear Programming; MIP: Mixed Integer Programming; SD: Scenario Decomposition; TS: Tabu Search.

When the time window is hard, the arrival time distribution will be truncated so that the

convolution property will not hold. Errico et al. (2016) consider [hard, hard] time windows, where

the vehicle has to wait if it arrives early and is not allowed to serve if it arrives late. The service
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time is only revealed upon arrival. If the a priori route is infeasible, one of the two recourse actions

will be taken: skip the current customer or skip the next customer. The authors formulate it as a

set partitioning problem and solve it by exact branch-cut-and-price algorithms, where they impose

two practically reasonable conditions to restrict the set of feasible routes. To approximate the

distribution of arrival times with no convolution property due to hard time windows, Chang, Wan,

and Ooi (2009) use a convolution propagation approach, Ehmke, Campbell, and Urban (2015)

resort to the extreme value theory, and Miranda and Conceição (2016) develop a statistical model.

When Ω is infinite or large, and when the recourse function EωQ(x,ξ(ω)) has no closed form

expression, one common approach is to use a sample average to approximate the recourse function.

Li, Tian, and Leung (2010) and Adulyasak and Jaillet (2016) use Monte Carlo sampling to generate

a sample Ω′ ⊂Ω, and replace the EωQ(x,ξ(ω)) with the sample average |Ω′|−1
∑

ω∈Ω′Q(x,ξ(ω)).

|Ω′| often needs to be large. Kenyon and Morton (2003), Verweij et al. (2003), Demir et al. (2016) use

the Sample Average Approximation (SAA), which is proposed by Kleywegt, Shapiro, and Homem-

De-Mello (2002). SAA also approximates the recourse function EωQ(x,ξ(ω)) by the sample average

|Ω′|−1
∑

ω∈Ω′Q(x,ξ(ω)), denoted by an “SAA problem.” However, it solves M SAA problems and

evaluates the solutions by a larger independent sample Ω
′′

(Ω
′′ ⊂ Ω and |Ω′′ | � |Ω′|). If a target

statistical optimality gap is achieved, the solution with the best evaluated objective function value

is selected; otherwise, the sample size |Ω′| needs to be increased and the process repeats.

An alternative approach is to use a scenario generation method and select a sample size that

exhibits both in-sample and out-of-sample stable. This approach has been applied in stochastic

vehicle routing (Guo, Wallace, and Kaut 2019), service network design (Lium, Crainic, and Wallace

2009, Wang, Crainic, and Wallace 2019), and logistics capacity planning (Crainic et al. 2016).

In-sample stability measures the stability of the (best) objective function value of the solution

obtained from a sample, while out-of-sample stability measures the stability of the real performance

of the (best) solution obtained from a sample. Both in-sample and out-of-sample stability require

that each sample should lead to a solution with approximately the same objective function value,

except that in the in-sample stability test, the objective function value is evaluated by the sample

used to find the solution, while in the out-of-sample stability test, the objective function value

is evaluated by the true objective function or a different sample than that was used to find the

solution.

In this paper, we consider both stochastic travel times and service times and formulate the prob-

lem as a two-stage stochastic mixed integer program. We develop an Adaptive Large Neighborhood

Search algorithm that approximates the second stage recourse function using various sample sizes,

and examine the associated in-sample and out-of-sample stability.
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2.2. SVRP with endogenous time windows

Due to the rapid growth of online purchase and home delivery, logistics service providers face

fierce competitions and are highly motivated to increase their service level. One approach is to

voluntarily promise a narrow delivery time window to the customer. This endogenous time window

is the decision made by the LSP, which is different from the exogenous time window imposed by

the customer.

As summarized in Table 2, the literature on the SVRP with endogenous time windows is scarce.

In Jabali et al. (2015), the endogenous time window (“self-imposed time window”) is [hard, soft],

where a vehicle has to wait if arrives early and incurs a tardiness penalty if it arrives late. The

authors consider the situation where exactly one arc will suffer a disruption from its baseline

duration, decompose the problem into the routing phase and scheduling phase, and develop a

hybrid algorithm (Tabu Search for the routing phase and solving an LP model for the scheduling

phase). Vareias, Repoussis, and Tarantilis (2019) extend the work of Jabali et al. (2015) to allow

more than one arc to be disrupted. The authors develop an ALNS algorithm, where an LP/MIP

is solved in each iteration to assign endogenous time windows. Hoogeboom et al. (2021) study

a robust vehicle routing problem with time window assignments, in which the travel times are

uncertain and only some descriptive statistics such as mean, minimum, and maximum travel times

are available. The objective is to minimize the risk of violating the assigned time windows, while

the expected total travel time is below a certain threshold. The problem is solved in a branch-and-

cut fashion, where the subgradient cuts generated from the time window assignment subproblem

are iteratively added.

Table 2 SVRP with endogenous time windows

Research
Stochastic Probability Endogenous Solution

characteristics distribution time window method*

Jabali et al. (2015) Travel time Discrete [Hard, soft] TS + LP
Spliet and Gabor (2015) Demand Discrete [Hard, hard] B&P&C
Spliet and Desaulniers (2015) Demand Discrete [Hard, hard] B&P&C
Dalmeijer and Spliet (2018) Demand Discrete [Hard, hard] B&C
Neves-Moreira et al. (2018) Demand Discrete [Hard, hard] Matheuristic
Spliet, Dabia, and Van Woensel (2018) Demand Discrete [Hard, hard] B&P&C
Subramanyam, Wang, and Gounaris (2018) Demand Discrete [Hard, hard] SD

Vareias, Repoussis, and Tarantilis (2019) Travel time
Discrete/

[Soft, soft]
ALNS + MIP/

Gamma ALNS + LP

Hoogeboom et al. (2021) Travel time
Descriptive

[Soft, soft] B&Cstatistics

* Adaptive Large Neighborhood Search; B&C: Branch-and-Cut; B&P&C: Branch-and-Price-and-Cut; LP:
Linear Programming; MIP: Mixed Integer Programming; SD: Scenario Decomposition; TS: Tabu Search.

In the studies of Spliet and Gabor (2015), Spliet and Desaulniers (2015), Dalmeijer and Spliet

(2018), Neves-Moreira et al. (2018), Spliet, Dabia, and Van Woensel (2018), and Subramanyam,
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Wang, and Gounaris (2018), an endogenous time window is assigned to each customer in the first

stage. After the stochastic demands are revealed, the routes are then decided. Since the endogenous

time window is [hard, hard] and cannot be violated, a VRP with time windows needs to be solved

in the second stage.

2.3. VRP with docking capacity

The VRP literature considering docking capacity is very scarce. Lam and Van Hentenryck (2016)

study a pickup and delivery vehicle routing problem with time windows and limited location

resources. The authors consider two types of resources, that is, service resources (e.g., forklifts)

and presence resources (e.g., parking bays) at the locations. They solve the underlying vehicle

routing problem using a branch-and-price algorithm and check the location resource feasibility

using constrained programming. Froger et al. (2017) study an electric vehicle routing problem with

capacitated charging stations, where an arriving vehicle has to wait if the charging station is full.

The paper considers nonlinear charging functions and allows for partial recharge. The objective is

to minimize the total time, which includes driving, service, charging, and waiting time. The authors

develop a route-first assemble-second matheuristic as the solution method. Both papers consider

problems in the deterministic setting.

The VRP with cross-docking (VRPCD) literature deals with the pickup of products from a set of

origins and the delivery of these products to destinations through an intermediate cross-dock, where

products are unloaded from inbound vehicles at the inbound dock doors, sorted and consolidated

in the intermediate storage area, and reloaded onto outbound vehicles at the outbound dock doors

(Wen et al. 2009, Van Belle, Valckenaers, and Cattrysse 2012, Li et al. 2019). Some VRPCD papers

consider the docking capacity by jointly determining the vehicle routes, the assignment of inbound

and outbound vehicles to a limited number of inbound and outbound dock doors, respectively, and

the sequence to process the vehicles at each dock door (Agustina, Lee, and Piplani 2014, Dondo and

Cerdá 2014, 2015, Nasiri et al. 2018, Rahbari et al. 2019). Agustina, Lee, and Piplani (2014) study

the vehicle routing and scheduling problem (VRSP) that integrates the routing of the outbound

vehicles and the scheduling of the inbound vehicles at, the unloading and loading operations in, and

the outbound vehicles from the cross-docking facility. Rahbari et al. (2019) extend the problem to

consider the uncertainty in the product freshness-life and the travel time using robust optimization

approaches. Dondo and Cerdá (2014) propose a mixed linear integer programming formulation

that simultaneously consider both the pickup (inbound) and delivery (outbound) vehicle routing,

performed by the same homogeneous fleet, and the assignment of inbound/outbound vehicles to

dock doors. Nasiri et al. (2018) incorporate supplier selection and order allocation in the VRPCD

in a multi-cross-dock system.
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In this paper, we consider the coordinated delivery to shopping malls that jointly considers

limited docking capacity, endogenous time windows in dock scheduling, and stochastic travel times

and service times. We formulate the problem as a two-stage stochastic mixed integer program,

develop an ALNS algorithm where the second stage recourse function is approximated by the

sample average, and test the in-sample and out-of-sample stability.

3. Problem description and illustration

In this section, we formally describe the coordinated delivery problem to shopping malls with

limited docking capacity in Section 3.1 and then provide a small illustrative example in Section 3.2.

3.1. Problem description

An urban shopping mall delivery coordination platform (short as “platform”) coordinates the

deliveries between a set of logistics service providers (LSPs) L= {1,2, . . . ,L} and a set of shopping

malls M= {1,2, . . . ,M}. Before the end of each day, LSPs submit the delivery orders that they

have received from their customers (tenants in the shopping malls) to the platform. The platform

determines the next day delivery routes of these orders and schedules, for each order, the time slot

of the docks at the corresponding shopping mall.

We denote the set of orders placed by the customers located at shopping mall m ∈M by NM
m

and the set of orders that LSP l ∈ L receives by NL
l . The complete set of orders is denoted by

N =
⋃
l∈LNL

l =
⋃
m∈MNM

m = {1,2, . . . ,N}. The customer who places order i ∈ N is located in

shopping mall mi ∈M. Each order i∈N also specifies the demand (delivery quantity) di and the

time window [ei, li] within which the customer requires the delivery service (unloading at a dock

and possibly delivering to the store inside the shopping mall) to start. We assume that an LSP will

consolidate the orders located at the same shopping mall with overlapping or close time windows

before it submits these orders to the CUDO platform (“off-site consolidation” as in Dalla Chiara

and Cheah 2017), such that the time windows of the submitted orders do not overlap.

Each LSP l ∈L owns a fleet of vehicles Kl, each with capacity Q. The complete set of vehicles is

denoted by K=
⋃
l∈LKl = {1,2, . . . ,K}. Each LSP l can only use its own vehicles to serve orders

that it receives (NL
l ). We assume that all the vehicles share a common depot 0. Note that our model

in Section 4 and the algorithm in Section 5 can be easily extended to the multi-depot situation

where each LSP has a different depot, with very minor changes to the model (on the locations of

the depots and the associated distance and travel time matrices).

We define the directed network G = (V,A), where V = {0} ∪M and A = {(i, j) : i, j ∈ V}. A

vehicle traveling on arc (i, j)∈A incurs a deterministic routing cost of cAij, while the travel time is

stochastic, described by a random variable tAij.
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On each day, a vehicle can travel multiple trips to deliver orders. The regular working time is T .

While working overtime is allowed, it incurs a penalty. We denote the unit penalty cost of overtime

working by co. A trip is a single vehicle tour that departs from the depot, visits customers in the

predetermined sequence determined by the platform, and returns to the depot. A route is the set

of consecutive trips that a vehicle travels during the entire day.

For each order, the platform schedules the time slot of a dock in the shopping mall mi ∈M,

denoted by [yi, zi]. yi specifies the time when the vehicle that serves order i is allowed to enter

shopping mall mi and to utilize a dock, if available, and zi specifies the time before which the

vehicle should finish the delivery service and after which the vehicle should no longer occupy any

dock in the shopping mall.

There are a few practical considerations related to the time slots. First, it makes no senses to

schedule the time slot earlier than ei and therefore yi should lie in [ei, li], i.e., ei ≤ yi ≤ li. While

relaxing the requirement and allowing yi > li may lead to a better solution theoretically, we stick to

this logical requirement in practice. Second, yi and zi are usually a multiple of some discretization

time unit τ (e.g., 15 minutes, which is a parameter set by the CUDO platform) for operational

convenience. Third, the length of a time slot is usually order-specific and depends on the order’s

expected service time. Therefore, the length of the time slot (zi−yi) can be specified as Uiτ , where

Ui ∈ N is an order-specific parameter set by the CUDO platform, typically based on the service

time distribution.

When making the vehicle routing and dock scheduling decisions, the platform faces two sources

of uncertainty: travel time uncertainty of the vehicles traveling in the road network and service

time uncertainty of the orders in the shopping malls. These two sources of uncertainty stem from

two distinct sample spaces. Denote the sample space of travel times by ΩT and that of service

times by ΩS, the joint sample space Ω of these two sources of uncertainty can then be denoted by

ΩT ×ΩS. A joint scenario is denoted by ω= (ωT , ωS)∈Ω, in which a travel time scenario ωT and a

service time scenario ωS can be separately generated from ΩT and ΩS, respectively, with a proper

treatment of the correlation between these two sources of uncertainty. Note that in the context of

this paper, we may reasonably assume that the travel time uncertainty of the vehicles in the road

network and the service time uncertainty of the orders in shopping malls are independent. In the

remaining of the paper, we only use the joint sample space Ω, for notation simplicity. For each

scenario ω ∈ Ω, we denote the travel time realization by tAij(ω),∀(i, j) ∈ A, and the service time

realization by µi(ω),∀i∈N .

At the beginning of the working time on the next day (i.e., when the time of the day is 0), all the

vehicles leave the depot and follow the scheduled routes. When a vehicle that serves order i ∈N

arrives at shopping mall mi ∈M, the shopping mall manages the vehicle’s entrance according to
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the scheduled time slot [yi, zi]. If the vehicle arrives earlier than yi, it has to wait outside the

shopping mall (e.g., park on-street) until yi; otherwise, it can directly enter, even if it arrives later

than zi. When two vehicles, one serving order i and another serving order j (with yi > yj), both

arrive at the shopping mall where these two orders are located earlier than yj, they both have to

wait outside the shopping mall. Vehicle serving order j enters the shopping mall at yj, earlier than

the vehicle serving order i that enters at yi.

Note that entering the mall does not guarantee the immediate start of the (unloading) service due

to the limited docking capacity at each shopping mall. We denote the vehicle arrival time by ai(ω).

We further denote the vehicle’s outside waiting time by wi(ω), which is wi(ω) = max{yi−ai(ω),0},

and its unit penalty cost by cw. When multiple orders are scheduled the same y (i.e., yi = . . .= yj)

at a shopping mall, the vehicles enter the shopping mall according to the First-Arrive-First-Enter

(FAFE) rule.

Each shopping mall m ∈ M has a limited docking capacity, denoted by Cm. If there is an

empty dock, the vehicle that enters the shopping mall can start its service immediately (since

yi ≥ ei); otherwise, it has to wait in line, where the First-Enter-First-Serve (FEFS) rule applies.

We denote the vehicle’s inside waiting time by $i(ω) and its unit penalty cost by c$. Then the

service start time is si(ω) = ai(ω) + wi(ω) +$i(ω). If the service starts later than li, a penalty

cost of cs is incurred per unit of late service start time δsi (ω) = max{si(ω)− li,0}. Similarly, the

service of order i (i.e., the occupation of a dock in the shopping mall) is expected to finish before

zi. If the service finishes after zi, a penalty cost ce is incurred per unit of late service end time

δei (ω) = max{si(ω) +µi(ω)− zi,0}.

After serving order i at si(ω) + µi(ω), the vehicle leaves the shopping mall and travels to the

next location (either a shopping mall or the depot). If the vehicle returns to the depot and loads

for the next delivery trip, the loading time is assumed to be a constant, µ0, and we assume that

there is no congestion and thus no waiting time at the depot.

Figure 1 is an illustration of time window [ei, li], time slot [yi, zi], and the sequence of events for

order i under scenario ω ∈Ω. The vehicle arrives early (i.e., ai < yi) so there is an outside waiting

time wi(ω). The vehicle starts (si(ω) > li) and finishes (si(ω) + µi(ω) > zi) the service late and

therefore the corresponding penalties incur.

Figure 2 is an illustration of the First-Arrive-First-Enter (FAFE) rule for vehicle entrance into

the shopping mall and the First-Enter-First-Serve (FEFS) rule for dock utilization. In this example,

the shopping mall has only one dock. As shown in the upper-right table, orders 5 to 8 (from the

same shopping mall) are served by vehicles 1 to 4, respectively. Vehicle 1 arrives after y5 and the

dock is empty upon its arrival, so it can enter the shopping mall and start the service immediately.

Both vehicles 2 and 3 arrive earlier than y6 = y7 so they have to wait outside the shopping mall. At
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Order 𝑖 𝑒𝑖 𝑙𝑖𝑦𝑖 𝑧𝑖

Arrival time 
𝑎𝑖(𝜔)

Enter shopping mall 
𝑎𝑖(𝜔) + 𝑤𝑖(𝜔)

Service start time
𝑠𝑖 𝜔 = 𝑎𝑖 𝜔 + 𝑤𝑖 𝜔 + 𝜛𝑖(𝜔)

Service end time 
𝑠𝑖(𝜔) + 𝜇𝑖(𝜔)

Outside waiting 
time 𝑤𝑖(𝜔)

The vehicle that 
serves order 𝑖 Inside waiting 

time 𝜛𝑖(𝜔)
Service time 

𝜇𝑖(𝜔)

Time 𝑡

Time window of order 𝑖, [𝑒𝑖 , 𝑙𝑖]

Late service end time 
𝛿𝑖𝑒(𝜔)

Time slot booked for order 𝑖, [𝑦𝑖 , 𝑧𝑖]

Late service start time 
𝛿𝑖𝑠(𝜔)

Figure 1 An illustration of time window, time slot, and sequence of events under scenario ω ∈Ω

y6 = y7, vehicle 2 enters the shopping mall earlier than vehicle 3, as it arrives earlier than vehicle 3

(the FAFE rule). However, vehicle 2 has to wait inside the shopping mall, as the dock is occupied

by vehicle 1. When Vehicle 1 finishes the service and the dock is available again, Vehicle 2 starts

the service earlier than vehicle 3, as it enters the shopping mall earlier than Vehicle 3 (the FEFS

rule).

Time 𝑡

Inside 
waiting area

𝑦6 = 𝑦7𝑦5 𝑦8

Outside 
waiting area

Dock

1

1

1

Location

0
1

2
3

2

2 2
3 3

3

4 4

4 4

4 4

k Vehicle k
Vehicle movement Inside/Outside waiting time

Service time

Vehicle Order
served

1 5
2 6
3 7
4 8

2

2

3

3

Figure 2 An illustration of FAFE and FEFS rule in a shopping mall with only one dock
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The objective of the platform is to minimize the total cost that consists of the routing cost of

the vehicles and the expected penalty cost that includes the outside & inside waiting time and late

service start & end time of the orders and the overtime working of the vehicles.

We summarize the notation of sets, data, parameters, and decision variables in Online Appendix

A. We also provide a description of the discrete-event simulation to evaluate the total cost, given

a solution S = {x, (y,z)} and a scenario ω, in Algorithm 5 in Online Appendix B.1.

3.2. An illustrative example

Next, we provide a small example to illustrate that considering uncertainty can make a difference to

the visiting sequence of orders (routing) and the dock reservation time slots. We further elaborate

the value of considering uncertainty (stochastic solutions) in Section 6.6.

As shown in Figure 3, let us consider two orders served by one LSP with one vehicle. The

symmetric travel times between nodes are shown along the arcs. The routing cost is not affected

by the visiting sequence of the two orders (shopping malls) and thus can be ignored for simplicity.

We also ignore the overtime penalty for illustration simplicity. The exogenous time windows [ei, li]

and service time µi are shown beside each order (shopping mall). The only source of uncertainty

is the service time of Order 1, characterized by two equally likely scenarios ω1 and ω2, µ1(ω1) = 60

minutes and µ1(ω2) = 30 minutes. The unit penalty costs of outside & inside waiting and late

service start & end are shown in the table.

Shopping mall

Depot

60

15

Term Outside 
waiting

Inside 
waiting

Late service 
start time

Late service 
end time

Unit penalty cost 0.1 0.1 0.4 0.4

Travel time
60

Service time: 𝜇1(ω1) = 60, 𝜇1(ω2) = 30
Exogenous time window [e1, l1]: [60, 120]

Service time: 𝜇2(ω1) = 𝜇2(ω2) = 50
Exogenous time window [e2, l2]: [60, 120]

Order 1

Order 2

τ = 15, U1 = U2 = 6
Routing cost and overtime 
penalty are set as 0.

Figure 3 An illustration: Two orders served by one LSP with one vehicle

If we ignore the uncertainty in service times and replace the stochastic service times of Order 1

with the mean value (denoted by the deterministic “average” scenario ω̄), i.e., µ1(ω̄) = 45 minutes,

the solution of the Mean Value Problem (MVP) SMVP is shown in Figure 4. In the MVP solution,

the vehicle first serves Order 1 and then serves Order 2, and the dock reservation time slots of

Order 1 and Order 2 are [60,120] and [120,180], respectively. Evaluated under the average scenario

ω̄, the total cost of SMVP is zero (Figure 4(a)). However, evaluated by the “reality,” that is, the

scenarios ω1 and ω2, the actual expected total cost of SMVP is 4.75 (Figure 4(b)).
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Shopping mall

Depot

Service time: 𝜇1(𝜔�) = 45
Endogenous time slot [y1, z1]: [60, 120]

Scenario Arrive Enter Start service End service
𝜔� 120 120 120 170

Scenario Outside 
waiting

Inside 
waiting

Late service 
start time

Late service 
end time

𝜔� 0 0 0 0

Service time: 𝜇2(𝜔�) = 50
Endogenous time slot [y2, z2]: [120, 180]

Travel time

MVP solution (𝒮MVP) in the average scenario
Order 2

MVP solution (𝒮MVP) in two scenarios

Scenario Arrive Enter Start service End service
ω1 135 135 135 185
ω2 105 120 120 170

Scenario Outside 
waiting

Inside 
waiting

Late service 
start time

Late service 
end time

ω1 0 0 15 5
ω2 15 0 0 0

Order 2

Service time: 𝜇2(ω1) = 𝜇2(ω2) = 50
Endogenous time slot [y2, z2]: [120, 180]

Scenario Arrive Enter Start service End service
ω1 60 60 60 120
ω2 60 60 60 90

Scenario Outside 
waiting

Inside 
waiting

Late service 
start time

Late service 
end time

ω1 0 0 0 0
ω2 0 0 0 0

Service time: 𝜇1(ω1) = 60, 𝜇1(ω2) = 30
Endogenous time slot [y1, z1]: [60, 120]

60

15

Order 2

Order 1

60

15

Order 2

Order 1

Order 1

(b) Expected total cost of 𝒮MVP is 4.75.(a) Total cost of 𝒮MVP under average scenario 𝜔� is 0.

Scenario Arrive Enter Start service End service
𝜔� 60 60 60 105

Scenario Outside 
waiting

Inside 
waiting

Late service 
start time

Late service 
end time

𝜔� 0 0 0 0

Order 1

Figure 4 MVP solution and its performances

If we consider the uncertainty in the service times of Order 1, the vehicle first serves Order 2

and then serves Order 1, and the dock reservation time slots of Order 1 and Order 2 are [120,180]

and [60,120], respectively. Evaluated by the average scenario ω̄, the total cost associated with

the stochastic solution SStoch is 2 (Figure 5(a)), which is (naturally) worse than that of the MVP

solution. However, evaluated by the “reality,” that is, the two scenarios ω1 and ω2, the actual

expected total cost of SStoch is 3 (Figure 5(b)), better than that of the MVP solution (i.e., 4.75).

4. Model formulation

In this section, we model the problem as a two-stage stochastic mixed integer program. In the first

stage (1)–(17), we plan the vehicle routes for all the LSPs and schedule the dock time slots at

the shopping malls for all the orders. In each second stage subproblem (18)–(44), the first stage

solution is evaluated under a realized joint scenario of stochastic travel times and service times and

subject to the FAFE and FEFS rules.

To model the multi-trip setting, we extend the network G to Ḡ = (V̄, Ā). Denote the maximum

number of trips that one vehicle can travel during the day by R. Note that R can be either set

by experience, or conservatively set as the maximum number of orders that an LSP needs to serve

during the day (that is, the number of orders that the LSP receives from its customers). We replicate
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Shopping mall

Depot

Service time: 𝜇1(𝜔�) = 45
Endogenous time slot [y1, z1]: [120, 180]

Scenario Arrive Enter Start service End service
𝜔� 60 60 60 110

Scenario Outside 
waiting

Inside 
waiting

Late service 
start time

Late service 
end time

𝜔� 0 0 0 0

Service time: 𝜇2(𝜔�) = 50
Endogenous time slot [y2, z2]: [60, 120]

Travel time

Stochastic solution (𝒮Stoch) in the average scenario
Order 2

Stochastic solution (𝒮Stoch) in two scenarios

Scenario Arrive Enter Start service End service
ω1 60 60 60 110
ω2 60 60 60 110

Scenario Outside 
waiting

Inside 
waiting

Late service 
start time

Late service 
end time

ω1 0 0 0 0
ω2 0 0 0 0

Order 2

Service time: 𝜇2(ω1) = 𝜇2(ω2) = 50
Endogenous time slot [y2, z2]: [60, 120]

Scenario Arrive Enter Start service End service
ω1 125 125 125 185
ω2 125 125 125 155

Scenario Outside 
waiting

Inside 
waiting

Late service 
start time

Late service 
end time

ω1 0 0 5 5
ω2 0 0 5 0

Service time: 𝜇1(ω1) = 60, 𝜇1(ω2) = 30
Endogenous time slot [y1, z1]: [120, 180]

60

15

Order 2

Order 1

Order 1

(b) Expected total cost of 𝒮Stoch is 3.(a) Total cost of 𝒮Stoch under average scenario 𝜔� is 2.

Scenario Arrive Enter Start service End service
𝜔� 125 125 125 170

Scenario Outside 
waiting

Inside 
waiting

Late service 
start time

Late service 
end time

𝜔� 0 0 5 0

Order 1

60

15

Order 2

Order 1

Figure 5 Stochastic solution and its performances

K(R+ 1) dummy depots. For each vehicle k ∈ K, its associated dummy depot set is denoted by

N 0
k = {n0

k0, n
0
k1, . . . , n

0
kR}. Define N 0 =

⋃
k∈KN 0

k . Vehicle k ∈ K leaves n0
k0 at the beginning of the

day and returns to n0
kR after serving all of its orders. If multiple trips have to be made, vehicle

k returns to and leaves from the dummy depots in {n0
k1, . . . , n

0
k,R−1} in between n0

k0 and n0
kR. We

define the node set V̄ =N 0 ∪N , where the location of order i∈N is the same as mi ∈M. In this

paper, a “node” can refer to either (the located shopping mall of) an order or a dummy depot. We

extend the definition of µi(ω) to node i ∈N 0, such that for any k ∈K, µi(ω) = 0 if i ∈ {n0
k0, n

0
kR},

and µi(ω) = µ0 if i ∈ N 0
k \{n0

k0, n
0
kR}. We further define µ̄i as the expected service time at node

i∈ V̄. The arc set is defined as Ā=
⋃
l∈L Āl, where Āl = {(i, j) : i, j ∈NL

l }∪{(i, j), (j, i) : i∈NL
l , j ∈

N 0
k , k ∈ Kl}, containing all the arcs that connect the orders contacted to LSP l (NL

l ) and its

(dummy) depots (N 0
k ,∀k ∈Kl). Note that there is no arc between any two dummy depots and any

two orders from different LSPs. A vehicle traveling on arc (i, j)∈ Ā incurs a deterministic routing

cost of cĀij, which equals to cAij of the corresponding arc (i, j) ∈ A. Further, on arc (i, j) ∈ Ā, we

define tĀij(ω) as the travel time under scenario ω, and t̄Āij as the expected travel time.

The routing decision xijk equals to 1 if vehicle k travels on arc (i, j) ∈ Ā, and 0 otherwise. vijk

denotes the total load on vehicle k while traveling on arc (i, j)∈ Ā. As described in Section 3, the

time slot scheduled for order i is [yi, zi]. We use nYi and Ui to ensure that yi and zi are multiples of
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the time unit τ (a parameter set by the CUDO platform). The first stage problem can be formulated

as in (1)–(17).

min
x,(y,z)

∑
(i,j)∈Ā

∑
k∈K

cĀijxijk +EξQ(x,y,z,ξ(ω)), (1)

s.t. ∑
i∈NL

l

xn0
k0
,i,k =

∑
i∈NL

l

xi,n0
kR
,k = 1,∀l ∈L,∀k ∈Kl, (2)

∑
j∈NL

l

xijk =
∑
j∈NL

l

xjik ≤ 1,∀l ∈L,∀k ∈Kl,∀i∈N 0
k \{n0

k0, n
0
kR}, (3)

∑
k∈Kl

∑
j∈N0

k
∪NL

l

xijk =
∑
k∈Kl

∑
j∈N0

k
∪NL

l

xjik = 1,∀l ∈L,∀i∈NL
l , (4)

∑
j∈N0

k
∪NL

l

(xijk−xjik) = 0,∀l ∈L,∀k ∈Kl,∀i∈NL
l , (5)

∑
k∈Kl

∑
j∈N0

k
∪NL

l

(vjik− vijk) = di,∀l ∈L,∀i∈NL
l , (6)

vijk ≤Qxijk,∀l ∈L,∀k ∈Kl,∀(i, j)∈ Āl, (7)

ei ≤ yi ≤ li,∀i∈N , (8)

yi = nYi τ,∀i∈N , (9)

zi− yi = τUi,∀i∈N , (10)

āi + µ̄i + t̄Āij ≤ āj +M0(1−
∑
k∈Kl

xijk),∀l ∈L,∀(i, j)∈ Āl, (11)

ān0
k0

= 0,∀k ∈K, (12)

āi ≥ 0,∀i∈ V̄, (13)

xijk ∈ {0,1},∀l ∈L,∀(i, j)∈ Āl,∀k ∈Kl, (14)

yi, zi ≥ 0,∀i∈N , (15)

nYi ∈N,∀i∈N , (16)

0≤ vijk ≤Q,∀l ∈L,∀(i, j)∈ Āl,∀k ∈Kl, (17)

The objective function (1) includes the total routing cost and the expected second stage cost,

including the summation of the penalty cost of the outside & inside waiting time and late service

start & end time of each order, as well as the working overtime of each vehicle as calculated in the

second-stage problem ((18)–(44)). Note that under the min operator in (1), we only include the

decisions on the vehicle route x = {xijk}(i,j)∈Ā,k∈K and the dock time slots (y,z) = {(yi, zi)}i∈N ,

but omit the induced and auxiliary variables. Note also that we use [yi, zi] to represent the time
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interval of scheduled dock time slot for order i and use (yi, zi) to represent the decisions on dock

time slot for order i.

Constraints (2) enforce that the route of vehicle k ∈K starts from dummy depot n0
k0 and ends

at dummy depot n0
kR. Constraints (3) ensure that if vehicle k ∈ K returns to a dummy depot (in

the multi-trip setting) in N 0
k \{n0

k0, n
0
kR}, it will leave from the same dummy depot. Constraints (4)

enforce that orders contracted to LSP l ∈ L (NL
l ) must be served and can only be served by the

fleet of LSP l (i.e., k ∈ Kl). Further, constraints (5) ensure the balance of vehicle flow for each

vehicle at each node i ∈ NL
l . Constraints (6) ensure the net commodity inflow at node i ∈ NL

l is

exactly di. Constraints (7) ensure that the vehicle capacity cannot be violated. Constraints (8)–

(10) are related to time slot decisions, i.e., [yi, zi], i ∈ N . Constraints (8) enforce that yi must lie

in the time window of order i, i.e., [ei, li]. Constraints (9) ensure yi is multiples of the discrete

time unit τ . Constraints (10) enforce that the length of the time slot equals to the predefined

order-specific length τUi (determined by the platform parameter τ and order specific parameter

Ui). Constraints (11) are the subtour elimination constraints, where āj is the expected arrival time

of the vehicle at node j based on the expected arrival time of the vehicle at node i, āi, the expected

service time at node i, µ̄i, and the expected travel time on arc (i, j), t̄Āij, ∀(i, j)∈ Āl. Note that the

subtour elimination constraints (11) can be replaced by another tighter formulation, that is,∑
i,j∈S ,(i,j)∈Āl

xijk ≤ |S | − 1,∀l ∈L,∀k ∈Kl,∀S ⊆ (
⋃
k∈Kl

N 0
k )∪NL

l , |S | ≥ 2.

We choose to use constraints (11) to obtain a more compact (polynomial-sized) formulation. Con-

straints (12) initialize the departure times at n0
k0, k ∈K, as the beginning of the day. The variables

are defined in (13)–(17).

Given the first stage decisions on the vehicle routes (x) and scheduled dock time slots ([y,z]),

a second stage subproblem ((18)–(44)) tracks the vehicle delivery activities and evaluates the cost

Q(x,y,z,ξ(ω)), under the realized joint scenario ω of travel times and service times, represented

by vector ξ(ω).

Q(x,y,z,ξ(ω)) = min
(w,$,δs,δe),δo

∑
i∈N

[cwwi(ω) + c$$i(ω) + csδsi (ω) + ceδei (ω)] +
∑
k∈K

[coδok(ω)] (18)

s.t.

si(ω) = ai(ω) +wi(ω) +$i(ω),∀i∈ V̄, (19)

M0(
∑
k∈Kl

xijk− 1)≤ si(ω) +µi(ω) + tĀij(ω)− aj(ω)

≤M0(1−
∑
k∈Kl

xijk),∀l ∈L,∀(i, j)∈ Āl, (20)
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wi(ω)≤M0[1−ϕi(ω)],∀i∈N , (21)

0≤ ai(ω) +wi(ω)− yi ≤M0ϕi(ω),∀i∈N , (22)

−M0ςij(ω)≤ ai(ω)− aj(ω)≤M0[1− ςij(ω)],∀m∈M,∀i, j ∈NM
m , i < j, (23)

−M0ζij(ω)≤ [ai(ω) +wi(ω)]− [aj(ω) +wj(ω)]

≤M0[1− ζij(ω)],∀m∈M,∀i, j ∈NM
m , i < j, (24)

−M0χij + ε0 ≤ yi− yj ≤M0(1−χij),∀m∈M,∀i, j ∈NM
m , i < j, (25)

−M0κij + ε0 ≤ yj − yi ≤M0(1−κij),∀m∈M,∀i, j ∈NM
m , i < j, (26)

χij +κij − 2≤ ςij(ω)− ζij(ω)≤ 2−χij −κij,∀i, j ∈NM
m , i < j, (27)

−M0%ij(ω)≤ si(ω)− sj(ω)≤M0[1− %ij(ω)],∀m∈M,∀i, j ∈NM
m , i < j, (28)

ζij(ω) = %ij(ω),∀m∈M,∀i, j ∈NM
m , i < j, (29)∑

j∈NM
m ∪{nsm}

σji(ω) =
∑

j∈NM
m ∪{ndm}

σij(ω) = 1,∀m∈M,∀i∈NM
m , (30)

∑
j∈NM

m

σnsm,j(ω)≤Cm,∀m∈M, (31)

$i(ω)≤M0(1−σnsm,i),∀m∈M,∀i∈NM
m , (32)

$i(ω)≤M0φi(ω),∀i∈N , (33)

M0[σij(ω)− 1]≤ sj(ω)− [si(ω) +µi(ω)]≤M0(2−φj(ω)−σij(ω)),

∀m∈M,∀i, j ∈NM
m , (34)

si(ω)− δsi (ω)≤ li,∀i∈N , (35)

si(ω) +µi(ω)− δei (ω)≤ zi,∀i∈N , (36)

an0
kR

(ω)− δok(ω)≤ T,∀k ∈K, (37)

an0
k0

(ω) = 0,∀k ∈K, (38)

wi(ω) =$i(ω) = 0,∀i∈N 0,∀ω ∈Ω, (39)

ai(ω), si(ω),wi(ω),$i(ω)≥ 0,ϕi(ω)∈ {0,1},∀i∈ V̄, (40)

σij(ω)∈ {0,1},∀m∈M,∀i∈ {nsm}∪NM
m ,∀j ∈ {ndm}∪NM

m , (41)

χij, κij, ζij(ω), %ij(ω), φij(ω)∈ {0,1},∀m∈M,∀i, j ∈NM
m , i < j, (42)

δei (ω), δsi (ω)≥ 0,∀i∈N , (43)

δok(ω)≥ 0,∀k ∈K. (44)

The objective function (18) calculates the total penalty cost of outside & inside waiting time

and late service start & end time of each order i ∈ N , as well as the working overtime of each

vehicle k ∈ K. Note that under the min operator in (18), we only include the main second stage
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variables (w,$,δs,δe) = {(wi,$i, δ
s
i , δ

e
i )}i∈N and δo = {δok}k∈K, but omit the induced and auxiliary

variables.

Constraints (19) define the service start time of the vehicle to serve node i∈ V̄ as a summation

of arrival time, outside waiting time, and inside waiting time. Note that if i is a dummy depot (i.e.,

i∈N 0), both inside and outside waiting time is 0 as specified in constraints (39). Constraints (20)

calculate the arrival times. If a vehicle k serves node j right after node i (that is, xijk = 1), then

the vehicle’s arrival time (outside the shopping mall mj to serve order j or at the dummy depot

j) is the summation of service start time of node i, service time of node i, and the travel time

between nodes i and j. That is, aj(ω) = si(ω) +µi(ω) + tĀij(ω).

Constraints (21)–(22) calculate the outside waiting time wi(ω) for an order i ∈ N , that is,

wi(ω) = max{yi− ai(ω),0}. The auxiliary binary variable ϕi(ω) helps linearize this maximization

function. When yi− ai(ω)> 0, wi(ω)> 0 because of the first inequalities in constraints (22). Then

ϕi(ω) = 0 because of constraints (21). We have wi(ω) = yi−ai(ω) as a result of the first and second

inequalities in constraints (22). When yi−ai(ω)< 0, ϕi(ω) = 1 because of the second inequalities in

constraints (22). We have wi(ω) = 0 as a result of constraints (21). When yi−ai(ω) = 0, wi(ω) = 0

because of the second inequalities in Constraints (21) and (22).

Constraints (23)–(27) enforce the First-Arrive-First-Enter (FAFE) rule, when multiple orders

in the same shopping mall m share the same y (e.g., i, j ∈NM
m and yi = yj). In Constraints (23),

the binary variable ςij(ω) = 1 indicates that the vehicle to serve order i arrives at the shopping

mall no later than the vehicle to serve order j (i.e., ai(ω)≤ aj(ω)). In constraints (24), the binary

variable ζij(ω) = 1 indicates that the vehicle to serve order i enters the shopping mall no later

than the vehicle to serve order j (i.e., ai(ω) +wi(ω)≤ aj(ω) +wj(ω)). Constraints (25) ensure that

χij = 1 if yi ≤ yj, and χij = 0 otherwise. Similarly, constraints (26) ensure that κij = 1 if yi ≥ yj and

κij = 0 otherwise. Note that we use a small positive number ε0 to ensure that χij = 1 if yi = yj in

Constraints (25) and κij = 1 if yi = yj in Constraints (26). Constraints (25) and (26) jointly ensure

that χij = κij = 1 if and only if yi = yj, which in turn leads to ςij(ω) = ζij(ω) in constraints (27).

Constraints (28)–(29) enforce the First-Enter-First-Serve (FEFS) rule. In constraints (28), the

binary variable %ij(ω) = 1 indicates that the service start time of order i is no later than the

service start time of order j (i.e., si(ω) ≤ sj(ω)). Constraints (29) ensure that the vehicle enters

the shopping mall earlier starts the unloading service earlier.

To model the docking capacity constraints, for each shopping mall m ∈ M, we introduce a

dummy source order nsm and a dummy destination order ndm. There can be at most Cm paths

connecting nsm and ndm. Each path represents a sequence of orders in NM
m to be served by the same

dock. We define the binary variable σij(ω) = 1 if order i is followed by order j on a path. As an

illustration, in Figure 6, orders i and j use dock 1. We have σnsm,i(ω) = σij(ω) = σj,ndm(ω) = 1 in
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the path. Constraints (30) ensure that the in-degree and out-degree of each order i ∈N equal to

one. Constraints (31) are the docking capacity constraints, which enforce the number of the paths

that start from nsm in shopping mall m ∈M is no more than Cm. Note that we do not enforce

the docking capacity constraints in the first stage model, which means we allow “overbooking” of

the docks, considering the uncertainty in travel and service times. However, the docking capacity

constraints are respected by constraints (30)–(31) and are handled together with the FAFE and

FEFS rules in the second stage model. The first stage vehicle routing and dock scheduling solution

will be evaluated by the second stage recourse function on the expected penalty costs. Therefore,

a poorly performed first stage solution is very unlikely (subject to statistical evaluation errors) to

be selected as the optimal solution.

Time 𝑡0

Docks in shopping mall 𝑚

Dock 𝐶𝑚

Dock 1

Dock 2

Dock …

𝜇𝑖(𝜔) 𝜇𝑗(𝜔)

Dummy source 
order 𝑛𝑚𝑠

Dummy destination 
order 𝑛𝑚𝑑

… …

𝜎𝑖𝑗 𝜔 = 1𝜎𝑛𝑚𝑠 ,𝑖 𝜔 = 1 𝜎𝑗,𝑛𝑚𝑑 𝑖 𝜔 = 1

𝜇𝑖(𝜔)
Service time of order 
𝑖 under scenario 𝜔

Figure 6 An illustration of dummy source/destination order, path, and σij(ω) under scenario ω ∈Ω

Constraints (32)–(34) calculate the inside waiting time $j(ω) for order j ∈N . Constraints (32)

specify that for the first order served at each dock, there is no inside waiting time. The binary

variable φj(ω) = 1 if $j(ω)> 0, as in constraints (33). When the vehicle to serve order j follows the

vehicle to serve order i at the same dock (i.e., σij(ω) = 1), sj(ω)− [si(ω)+µi(ω)]> 0 and $j(ω)> 0

can not hold simultaneously. This can be enforced by constraints (33) and the second inequalities

of constraints (34). The first inequalities of constraints (34) ensure that sj(ω)≥ si(ω)+µi(ω) when

σij(ω) = 1.

Constraints (35) calculate the late service start time, δsi (ω) = max{si(ω)− li,0},∀i ∈ N . Con-

straints (36) calculate the late service end time, δei (ω) = max{si(ω) + µi(ω)− zi,0},∀i ∈ N . Con-

straints (37) calculate the overtime working, δok(ω) = max{an0
kR

(ω)−T,0},∀k ∈K. Constraints (38)
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initialize the arrival time for each vehicle as time 0. Constraints (39) set both inside and outside

waiting time as 0 at dummy depots. Decision and auxiliary variables are defined in (40)–(44).

When a vehicle serves two orders located at the same shopping mall, the service end time of the

first order may be within or close to the scheduled dock time slot of the second order, due to travel

and service time stochasticity. In practice, the vehicle may very likely stay inside the shopping

mall and continue to serve the second order after serving the first order. However, the vehicle

has to “exit and re-enter” the shopping mall to serve the second order, based on the formulation

of the second stage subproblem ((18)–(44)). The non-overlapping time window assumption (see

Section 3.1) does not eliminate all possible “exit and re-enter” cases. Essentially, the second stage

subproblem in a two-stage stochastic program is to (approximately) evaluate the effect of the first

stage solution (i.e., vehicle routing and dock scheduling decisions in this paper). Thus, our current

treatment serves as a reasonable representation (or approximation) of the key characteristics of

the problem under study.

Furthermore, we introduce the symmetry breaking constraints (45)–(47) to strengthen the model.

∑
(i,j)∈Ā

cĀijxijk ≤
∑

(i,j)∈Ā

cĀijxij,k+1,∀l ∈L,∀k ∈ {kl, kl + 1, . . . , kl + |Kl| − 2}, (45)

∑
i∈NL

l

xn0
k,r+1

,i,k ≤
∑
i∈NL

l

xn0
kr
,i,k,∀k ∈K, r ∈ {0,1, . . . ,R− 2}, (46)

ān0
kr
≤ ān0

k,r+1
,∀k ∈K, r ∈ {0,1, . . . ,R− 1}. (47)

Specifically, constraints (45) ensure that the route with a smaller routing cost is assigned to the

vehicle with a smaller index, where kl is the smallest index in Kl. Constraints (46) ensure that

dummy depot r+1 is used only if dummy depot r is used (except when r=R−1). Constraints (47)

ensure that dummy depot r is visited before r+ 1.

In Online Appendix A, we summarize the notation of all the decision variables in the two-stage

stochastic model.

5. Solution method

The two-stage stochastic mixed integer program in Section 4 has a large number of binary integer

variables in both stages ((1)–(17) and (18)–(44)). Solving this model to optimality is computa-

tionally intractable. In this section, we present an Adaptive Large Neighborhood Search (ALNS)

algorithm that can be utilized to solve realistic size instances. The framework of the ALNS is

described in Section 5.1, and its components are explained in Sections 5.3 and 5.4.
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5.1. ALNS framework

First proposed by Ropke and Pisinger (2006), the ALNS is a metaheuristic that extends the Large

Neighborhood Search (LNS) algorithm. The basic idea of the ALNS is that, in each iteration, a

removal (destruction) and an insertion (construction) operator are selected from a set of operators

by a roulette wheel mechanism with adaptive weights, and these two selected operators apply on

the current solution to find a new solution. The new solution is then evaluated by the objective

function and the weights of the two selected operators are adjusted based on its quality. Thus,

operators that result in solutions of better quality are assigned with more weights and are more

likely to be selected in the subsequent iterations. Our proposed ALNS algorithm is in Algorithm 1.

Algorithm 1: The ALNS algorithm

Input: an instance, algorithm parameter settings, and the sample Ωeval.

Output: a solution S∗ and F (S∗,Ωeval).

1 Randomly generate a sample Ωalns.

2 Initialize the weights and scores of operators.

3 Generate an initial solution S0, S∗⇐S0, n⇐ 0. Evaluate solution S0 by Ωalns (see Section 5.3), i.e.,

evaluate F (S0,Ωalns).

4 while the stopping criterion is not reached do
5 Use a roulette wheel selection principle (based on operators’ weights, see Section 5.2) to select a removal

operator, an insertion operator, and a scheduling operator.

6 Randomly generate a sample Ωoper.

7 Apply the selected removal operator, insertion operator, and scheduling operator (see Section 5.4) in

sequence on solution Sn to get S ′ (Ωoper is used to evaluate the neighborhood solutions).

8 Evaluate F (S ′,Ωalns) (see Section 5.3).

9 if F (S ′,Ωalns)<F (S∗,Ωalns) then S∗⇐S ′, Sn+1⇐S ′.

10 else if the accepting criteria (see Section 5.2) are reached then Sn+1⇐S ′.

11 else Sn+1⇐Sn.

12 Update the scores of selected operators.

13 if mod(n,Nseg) = 0 then update the weights of all the operators (see Section 5.2).

14 n⇐ n+ 1.

15 Evaluate F (S∗,Ωeval).

16 return S∗ and F (S∗,Ωeval).

Given a first stage solution S = {x, (y,z)}, we approximate the expectation in F(S,Ω) =

f1(S) + Eω∈Ω[f2(S, ω)] by the sample average under Ω′ (Ω′ ⊂ Ω), i.e., F (S,Ω′) = f1(S) + 1/|Ω′| ·∑
ω∈Ω′ f2(S, ω). f1(S) is the first stage cost of solution S (equivalent to the first item in equa-

tion (1)) and f2(S, ω) is the second stage cost of solution S under scenario ω ∈ Ω′ (equivalent to

Q(x,y,z,ξ(ω)) as in equation (18)). There are three sizes of Ω′, i.e., Ωeval, Ωalns, and Ωoper, which

we will discuss in more details in Section 5.3.
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In the initialization phase (Lines 1–3), we first randomly generate a sample Ωalns ⊂Ω (Line 1).

Then for each operator, we initialize its weight as one and score as zero (Line 2). To construct an

initial solution S0 (Line 3), we create an empty route for each vehicle and set the time slot of order

i∈N as [yi, zi] = [ei, ei +Uiτ ]. Then we apply an insertion operator (greedy insertion) to generate

the initial routes, apply a scheduling operator (intra-route scheduling) to adjust time slots. S0 is

then evaluated with sample Ωalns and stored as the incumbent solution S∗. Note that the sample

Ωalns, once generated (Line 1), is fixed in the entire Algorithm 1. Our exploratory numerical study

suggests that, compared with the ALNS with a random Ωalns in each iteration, the ALNS with

a fixed Ωalns spends less time in each iteration and can produce solutions with better objective

function values within the same computational time.

The solution Sn is iteratively improved in the while loop (Lines 4–14) until reaching the stopping

criterion, when the incumbent solution S∗ is evaluated by Ωeval and returned (Lines 15–16). In the

practice of the CUDO platform, the computational time is limited to one hour, which serves as the

stopping criterion.

In each iteration within the while loop, we first generate a new solution S ′ from the current

solution Sn (Lines 5–7). Specifically, we use the roulette wheel selection principle to select a removal,

an insertion, and a scheduling operator (Line 5), and apply the selected operators sequentially. A

sample Ωoper is generated (Line 6) which is needed by some local search operators to evaluate the

neighboring solutions.

In Lines 8–13, we evaluate the newly generated solution S ′ and update the scores and weights of

the operators. We first evaluate F (S ′,Ωalns) (Line 8). If S ′ improves from S∗, we update both the

incumbent solution S∗ and Sn+1 with S ′ (Line 9); otherwise, we decide whether accepting S ′ to

update Sn+1 using the simulated annealing acceptance criteria (Lines 10–11). We update the scores

of the selected operators based on the quality of S ′ in each iteration (Line 12) and the weights of

all operators at the end of each segment (Line 13). The various conditions and their corresponding

scores are listed in Table 3.

Note that we divide the total number of iterations into a series of consecutive segments, indexed

by j (j = 1,2, . . .), each of which consists of N seg iterations.

Table 3 Scores under different conditions

Score Situation

π1 Solution S ′ is a new best solution.
π2 Solution S ′ is a new solution that has not been accepted before, and is worse than S∗ but better than

Solution Sn.
π3 Solution S ′ is a new solution that has not been accepted before, and is worse than Sn but reaches

accepting criteria.
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5.2. ALNS details

Some details in Algorithm 1 are described below.

Roulette wheel principle (Line 5). We denote the three sets of operators by O1 (removal), O2

(insertion), and O3 (scheduling) and gij by the weight of operator i in segment j. In each iteration

in segment j, we select an operator i∈Ok (k= 1,2,3) with the probability of gij/
∑

i∈Ok
gij.

Simulated annealing acceptance criteria (Lines 10–11). Given Sn, we accept the new

generated solution S ′ with the probability of min{1, e−[F (S′,Ωalns)−F (Sn,Ωalns)]/T n}, where T n is the

temperature. The temperature is initialized as T 0 and decreases after every iteration by multiplying

a cooling rate θ (θ < 1), i.e., T n = T n−1 ·θ. We set the initial temperature T0 such that a solution S

with F (S,Ωalns) = (1 + ε)F (S0,Ωalns) has a 50% of probability to be accepted, and set the cooling

rate θ such that after γ iterations, as the temperature decreases, this solution S has a 0.001% of

probability to be accepted. In this way, T0 and θ can be decided by ε and γ (Hof, Schneider, and

Goeke 2017). More specifically, T0 = ε ·F (S0,Ωalns)/ ln(2), θ= [ln(2)/ ln(100,000)]1/γ .

Update the weights of operators (Line 13). We update gij at the end of segment j− 1 as

gij =

{
gi,j−1, if qi,j−1 = 0,

(1− ρ)gi,j−1 + ρ ·κi,j−1/qi,j−1, o.w.,
(48)

where qi,j−1 is the number of iterations that operator i is selected in segment j − 1. If operator

i is not selected in segment j − 1 (i.e., qi,j−1 = 0), gij remains the same as gi,j−1; otherwise, we

update gij based on the reaction factor ρ∈ [0,1] and the accumulated scores earned by operator i

in segment j− 1, denoted by κi,j−1.

5.3. Solution evaluation

Given a first stage solution S and a sample Ω′ ⊂ Ω, the evaluation of F (S,Ω′) = f1(S) + 1/|Ω′| ·∑
ω∈Ω′ f2(S, ω) requires solving a second stage mixed integer program ((18)–(44)) under each sce-

nario ω ∈ Ω′, which is often computationally challenging. We overcome this challenge by using

different sample sizes at different levels of the ALNS, evaluating f2(S, ω) by a discrete-event simu-

lation, and approximating the change of f2(S ′, ω)− f2(S, ω) by only considering the direct impact

of the altered order in each step of a local search operator.

Given the budget on the total computational time, we face the trade-off between the accuracy in

evaluation of a certain solution and the number of solutions we are able to explore (and evaluate).

Note that in the ALNS, Ωeval is only used once to evaluate the “true” objective of the final solution

(Line 15), whereas Ωalns is used to evaluate the newly generated solution in each iteration (Line

8), and Ωoper is used to evaluate the solutions explored by the neighborhood search operators in

each iteration (Line 7). Intuitively, we set |Ωeval| � |Ωalns|> |Ωoper|, where an appropriate size of

|Ωalns| is chosen by considering its in-sample and out-of-sample stability (Kaut and Wallace 2007).
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Given a first stage solution S, in the second stage, each vehicle serves the orders in the pre-

determined sequence and each shopping mall manages the vehicles and docks according to the

vehicles’ arrival time and the scheduled time slots, based on the First-Arrive-First-Enter and First-

Enter-First-Serve rules. Hence, instead of solving the mixed integer program as in (18)–(44), we

can calculate f2(S, ω) by simulating all the events and bookkeeping the resulted arrival times,

inside/outside waiting times, late service start/end times, etc. The details of this discrete-event

simulation algorithm for calculating f2(S, ω) are presented in Algorithm 5 in Online Appendix B.1.

The worst case time complexity of Algorithm 5 is O(N logK), where N is the number of orders

and K is the number of vehicles.

When we apply some operators (worst removal, greedy insertion, regret insertion, intra-route

scheduling, and intra-shopping-mall scheduling), we need to extensively search and evaluate a large

number of solutions in the neighborhood of the current solution S, denoted by δ(S). Note that only

one order i is altered in each step of a removal, insertion, or scheduling operator. Thus, we may

use ∆G(S,S ′, i, ω,B(S, ω)) to approximate the change in the objective, i.e., f2(S ′, ω)− f2(S, ω),

rather than calculating f2(S ′, ω) from scratch. For a removal operator, i is the successor of the

order that has been removed from S. For an insertion operator, i is the order that has been inserted

to S. For a scheduling operator, i is the order whose time slot (yi and zi) has been rescheduled.

B(S, ω) = {a(ω),w(ω),$(ω),H(ω)} is the output of the discrete-event simulation algorithm when

evaluating solution S under scenario ω, where a(ω), w(ω), and $(ω) are the arrival, outside

waiting, and inside waiting times of all the orders, and H(ω) is the sorted array indicating the

entering sequence of all the orders.

The details of the algorithm to calculate ∆G(S,S ′, i, ω,B(S, ω)) are presented in Algorithm 6

in Online Appendix B.2. While the calculation of f2(S, ω) in Algorithm 5 in Online Appendix B.1

requires simulating all the events, the approximation in Algorithm 6 only considers the impact on

the orders 1) that are located in the same shopping mall where order i is located and are served

by the vehicles that enter the mall before li +Uiτ (the largest possible value that zi can be) and

2) that are served after order i on the same vehicle. The worst case time complexity of Algorithm

6 is O(N).

5.4. Local search operators

In this section, we describe ten removal operators, two insertion operators, and two scheduling

operators.

Removal operators: (1) random, (2) Shaw, (3) worst, (4) shopping mall, (5) vehicle, (6) trip,

(7) outside waiting time, (8) inside waiting time, (9) time window violation, and (10) time slot

violation. The first six removal operators are adapted from common removal operators in the ALNS
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literature (Ropke and Pisinger 2006, Azi, Gendreau, and Potvin 2014), while the last four removal

operators remove orders based on a certain cost term, as suggested by the names of these operators.

A general outline of the removal operators is presented in Algorithm 2. A removal operator takes

parameters ψ and ψ as inputs. In Line 1, the target number of orders to be removed (denoted by

q) is generated uniformly in [bψNc, dψNe]. The preprocessing procedure (Line 3) and the method

to select a subset of orders to remove (Line 5) are specified in each removal operator. Note that

in some removal operators, the orders are removed in a batch (e.g., in trip removal, the orders

on a trip must be removed simultaneously). The algorithm stops once the number of orders to be

removed is greater than or equal to q (Line 7). We describe the details of removal operators in

Online Appendix C.

Algorithm 2: A general outline of removal operator

Input: A solution S; parameter ψ and ψ.

Output: A subset of orders to remove, N remove ⊂N .

1 Generate a random integer number q∼U [bψNc, dψNe].

2 n⇐ 0,N remove
0 ⇐∅, stop⇐ false.

3 Preprocessing. /* specified in each removal operator */

4 while not stop do
5 Select the orders to remove, N temp ⊂N\N remove

n . /* specified in each removal operator */

6 N remove
n+1 ⇐N remove

n ∪N temp.

7 if |N remove
n+1 | ≥ q then stop ⇐ true.

8 n⇐ n+ 1.

9 return N remove
n .

Insertion operators: The two insertion operators (greedy insertion and regret insertion) are

both adapted from Ropke and Pisinger (2006). We describe the details in Online Appendix C.

Scheduling operators: Here, the purpose is to adjust time slot decisions after a removal and

an insertion operator have been performed on the routes. We introduce two scheduling operators:

intra-route scheduling (Algorithm 3) and intra-shopping-mall scheduling (Algorithm 4). The two

operators share the same idea that, given a current solution S = {x, (y,z)}, we pick an order i∈N

and adjust the time slot [yi, zi], while the time slots of other orders remain unchanged. We try every

possible [yi, zi] in its feasible region and evaluate the resulted solutions using Ωoper. After figuring

out the best [yi, zi], we keep it fixed and continue to search the next order until all the orders in

N have been searched. The two operators differ in the selection of which order to search next. The

intra-route scheduling operator follows the sequence of each route, while the intra-shopping-mall

scheduling operator follows the sequence of average arrival time in each shopping mall.
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Algorithm 3: Intra-route local search scheduling operator
Input: a solution S, a sample Ωoper.

Output: an improved solution S∗.

1 K′⇐K,S∗⇐S /* initialize */

2 while |K′|> 0 do /* enumerate all vehicles */

3 Randomly select a vehicle k ∈K, with route rk = (0, . . . , i, j, . . . ,0).

4 ∆G∗⇐+∞.

5 foreach order i on route rk do /* enumerate all orders on vehicle k */

6 Evaluate solution S by Ωoper, i.e., evaluate F (S,Ωoper).

7 foreach feasible [yi, zi] do /* enumerate all possible time slots of order i */

8 S ′⇐ change the time slot of order i in solution S to [yi, zi].

9 Calculate ∆G=
∑

ω∈Ωoper ∆G(S,S ′, i, ω,B(S, ω)).

10 if ∆G<∆G∗ then ∆G∗⇐∆G,S∗⇐S ′.
11 S ⇐S∗.
12 K′⇐K′\{k}.
13 return S∗.

Algorithm 4: Intra-shopping-mall local search scheduling operator
Input: a solution S, a sample Ωoper.

Output: an improved solution S∗.

1 M′⇐M,S∗⇐S /* initialize */

2 while |M′|> 0 do /* enumerate all shopping malls */

3 Randomly select a shopping mall m∈M′.

4 Sort order i∈NM
m in an increasing order of average arrival time.

5 ∆G∗⇐+∞.

6 foreach order i∈NM
m do /* enumerate all orders in shopping mall m */

7 Evaluate solution S by Ωoper, i.e., evaluate F (S,Ωoper).

8 foreach feasible [yi, zi] do /* enumerate all possible time slots of order i */

9 S ′⇐ change the time slot of order i in solution S to [yi, zi].

10 Calculate ∆G=
∑

ω∈Ωoper ∆G(S,S ′, i, ω,B(S, ω)).

11 if ∆G<∆G∗ then ∆G∗⇐∆G,S∗⇐S ′.
12 S ⇐S∗.
13 M′⇐M′\{m}.
14 return S∗.

6. Numerical experiments

In this section, we describe the design of base instances, the algorithm parameter tuning, the

performance of the proposed ALNS algorithm, and the numerical study on the value of coordination

and value of stochastic solutions. All experiments are performed on a computer with an Intel Core

i7-8700 processor with 3.20 GHz CPU and 16 GB RAM. The ALNS algorithm is implemented in

Java, and Gurobi 9.0.2 is used as the solver.
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6.1. Base instances

We construct our instances based on a subset of ten large shopping malls (M = 10) in Singapore, as

shown in Figure 7. The LSPs are located in the same logistics park (Jurong in Figure 7). Each LSP

assigns a fleet of vehicles dedicated to the deliveries to these shopping malls. For simplicity in the

numerical study, we assume that each shopping mall has an equal number of docks, varying from

one to four, that is, C1 = C2 = . . .= C10 = 1,2,3,or 4. At each value of Cm,m ∈M, we set three

levels on the total number of orders (N), representing three levels of order density. The number of

LSPs (L) is proportional to the total number of orders. Each LSP has a fleet of three vehicles and

serves the same number of orders in each instance. We summarize the instance settings in Table 4.

For each instance setting in Table 4, we run five replications. We denote the instance based on its

setting and replication number. For example, “M10-C2-N100-L6-K18-5” denotes an instance with

ten shopping malls (M10) each with two docks (C2), a total number of 100 orders (N100), six LSPs

(L6), a total number of 18 vehicles (K18), and replication 5. In our instance construction, we also

make sure that the endogenous time windows of the orders located at the same shopping mall and

to be delivered by the same LSP do not overlap.

1 NEX
0 Jurong 2 Hougang Mall

7 Bedok Mall

5 Tampines Mall

3 Compass one
4 White Sands

6 Eastpoint Mall

8 Parkway Parade

9 Paya Lebar Quarter

10 Leisure Park Kallang

Shopping mall

Depot

Figure 7 Shopping malls and the depot in the instances

For an order i, the demand di is uniformly selected from {10,20, . . . ,50}, and the length of the

time window [ei, li] is fixed as two hours. We generate the service time of each order based on the

real service time data we collected in the Tampines Mall from January 12, 2017 to November 17,

2017. We collected the service time data of 108 stores, but removed 32 stores with fewer than five

orders. For the remaining 76 stores, we calculated each store’s average service time and then the
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Table 4 Base instances

# Docks per shopping mall (Cm) # Orders (N) # LSPs (L) # Vehicles (K)

1 50 3 9
1 100 6 18
1 150 9 27

2 100 6 18
2 200 12 36
2 300 18 54

3 150 9 27
3 300 18 54
3 450 27 81

4 200 12 36
4 400 24 72
4 600 36 108

median of these average service times, which is 26.84 minutes. We then divided these 76 stores

into two sets. The stores that have an average service time larger than 26.84 are denoted by “slow

movers”, while the rest are denoted by “fast movers.” Overall, there are 1140 observations of

service time for fast movers, and 2330 observations of service time for slow movers. For each order

in an instance, we first decide whether it is placed by a fast mover or a slow mover, with equal

probability. Then, for each of its service time realizations in Ωeval and Ωalns, we correspondingly

bootstrap (with replacement) from the service time observations of the fast or slow movers, with

equal probability. For Ωoper, we bootstrap (with replacement) the service time from those in Ωalns.

The length of a dock reservation time slot (Uiτ = zi − yi) is a multiple of the discretization

time unit τ = 15 minutes. We set Ui to approximately equal to 95% quantile of the service time

distribution, which is 90 minutes for a slow mover (Ui = 6) and 60 minutes (Ui = 4) for a fast

mover.

Each LSP serves either 16 or 17 orders, which are distributed in all the ten shopping malls. So

each LSP has one or two orders to serve in each shopping mall. If there is only one order (say

order i) in a shopping mall, then its time window [ei, li] is selected from {[9 : 00,11 : 00], [9 : 15,11 :

15], . . . , [15 : 00,17 : 00]} with equal probability. If there are two orders (say order i and j), their

time windows are also randomly selected from {[9 : 00,11 : 00], [9 : 15,11 : 15], . . . , [15 : 00,17 : 00]} ,

but [ei, li +Uiτ ] and [ej, lj +Ujτ ] are not allowed to overlap.

We generate the travel time scenarios based on the real travel time data in Singapore that we

collected via the Google API. For each arc (between each pair of locations in Figure 7), we collected

the travel time via Google API in every 30 minutes from 8:00 to 18:00 on July 16, 2018 (Monday)

to July 20, 2018 (Friday). We thus obtained a set of 5× 21 = 105 distinct travel time matrices,

which serves as the base for generating a travel time scenario. The average length of an arc is 14.05

KM, and the average speed of the vehicle is 43.37 KM/H. Note that each travel time matrix has the
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inter-dependent travel times on 11×10 = 110 arcs in the network with one depot and ten shopping

malls. When generating a travel time scenario in Ωeval, we first bootstrap (with replacement) a

travel time matrix from the 105 travel time matrices, and then add a perturbation εij ∼N(0, σ̂Oij)

on each arc (i, j), where σ̂Oij is the sample standard deviation of the travel time on arc (i, j) in

the 105 travel time matrices. When generating a service time scenario in Ωeval, for each order, we

bootstrap (with replacement) from the service time observations of either a fast or a slow mover. In

a joint scenario that combines stochastic travel times of the vehicles and stochastic service times of

the orders, we can reasonably assume that these two stochastic elements are mutually independent.

In our experiments, we set the size of Ωeval as 10,000.

When generating the travel time scenarios in Ωalns and Ωoper, in order to maintain the interde-

pendency between the travel times on arcs in the road network, we apply the copula-based scenario

generation method (Kaut 2014, Guo, Wallace, and Kaut 2019) to the travel time scenarios in

Ωeval. The copula-based scenario generation method first generates a copula sample to minimize

the average deviation between the copula sample and the target copula (i.e., the empirical copula

of travel times in Ωeval in our experiment), and then uses the marginal distributions to transform

the copula sample into travel time scenarios. We provide a description of the copula-based scenario

generation method in Online Appendix D. More details can be found in Kaut (2014).

Each vehicle has a capacity Q= 100. The regular working time is T = 480 minutes. The loading

time at the depot is set to 0 (for simplicity). The routing cost is estimated as 0.2 SGD/KM,

which is calculated based on fuel consumption rate 11.0 L per 100 KM (The Land Transport

Authority of Singapore 2018) times fuel price 1.82 SGD/L (Shell 2018)1, and is equivalent to

about 0.14 SGD/minute based on the average speed 43.37 KM/H in the network. The unit penalty

costs in the objective function are set as cw = c$ = 0.1 SGD/minute, cs = ce = 0.4 SGD/minute,

co = 0.2 SGD/minute, where the unit penalty cost of overtime (co) is derived from the public

information available on the The Ministry of Manpower (2018) website, and all other coefficients

are set according to the prevailing setting in the CUDO platform. The relative high unit penalty

costs of late service start and end time reflect the CUDO platform’s importance weighting toward

the punctuality of the services (high late service start time) and the release of the docks in time

(high late service end time).

6.2. Algorithm parameter tuning

The ALNS introduced in Section 5 has many algorithmic parameters. Following the tuning process

and settings provided in Ropke and Pisinger (2006), we begin with a fixed parameter setting and

then tune the parameters one by one in the order and within the value ranges as shown in Table 6.

1 1 SGD = 0.7357 USD, as of the exchange rate on December 1, 2019.
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When one parameter is being tuned, the rest of the parameters were fixed from the previously

determined values.

When tuning the parameters, we generate a set of test instances with order size N = 200,400,600,

which are independent of those in the base instances and with different numbers of LSPs (see

Table 5). For each instance setting, we generate two instance replications. For each algorithm

parameter setting, we run the ALNS on each test instance for five times, where the same sample

Ωeval (|Ωeval| = 10,000) is used for variance reduction. The parameter value that produced the

best average performance, i.e., F (S,Ωeval), is selected and fixed. The final choice of the parameter

settings is shown in Table 6.

Table 5 Test instances for parameter tuning

# Docks per shopping mall (Cm) # Orders (N) # LSPs (L) # Vehicles (K)

2 200 12 36
4 400 24 72
4 600 36 108

Table 6 Algorithm parameter settings

Parameter Notation Range Value

Relatedness function coefficients ϑc [1, 3, 5, 7, 9] 7
ϑa [1, 3, 5, 7, 9] 3

ϑd [1, 3, 5, 7, 9] 1

ϑl [1, 3, 5, 7, 9] 3
Regret insertion β [2, 3, 4, 5, 6] 3

Removal operator ψ [10%, 15%, 20%, 25%, 30%, 35%, 40%] 15%
ψ [5%, 10%] 5%

Intensity of the bias p [4, 6, 8, 10] 8
Segment length Nseg [25, 50, 100, 200] 50
Simulated annealing acceptance criteria ε [1%, 3%, 5%, 7%, 9%] 3%

γ [1000, 2000, 3000, 4000] 2000
Score π1 [1, 5, 9, 13, 17] 5

π2 [1, 5, 9, 13, 17] 9
π3 [1, 5, 9, 13, 17] 1

Reaction factor ρ [0.3, 0.4, 0.5, 0.6, 0.7] 0.5

We further experiment on the comparative performance between the ALNS with ∆G (i.e., Algo-

rithm 6 in Online Appendix B.2) and that without ∆G (i.e., replacing ∆G with an exact evaluation

by Algorithm 5 in Online Appendix B.1). As shown in Table 7, on average, the use of ∆G in the

ALNS increases the number of iterations by 32 times and reduces the mean objective function value

by 6.1%. The results show that the approximation of ∆G in Algorithm 6 does reduce the evaluation

time significantly, which enables the ALNS algorithm to search more solution and obtains better

solutions, under the budget on total computational time.
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Table 7 Comparisons between the performances of the ALNS with ∆G vs. without ∆G

Instance

With ∆G Without ∆G Comparisons
Mean # Iterations Mean # Iterations Mean # Iterations

(1) (2) (3) (4) (5) = (1)−(3)

(3)
(6) = (2)−(4)

(4)

M10-C2-N200-L12-K36-6 2667.42 15263 2786.51 696 -4.3% 21
M10-C2-N200-L12-K36-7 2806.39 15392 2860.67 693 -1.9% 21
M10-C4-N400-L24-K72-6 4876.70 3619 5176.41 104 -5.8% 34
M10-C4-N400-L24-K72-7 4800.62 3661 5152.19 104 -6.8% 34

M10-C4-N600-L36-K108-6 10425.58 1490 11534.51 35 -9.6% 42
M10-C4-N600-L36-K108-7 10570.59 1485 11519.92 35 -8.2% 42

Average 6024.55 6818 6505.03 278 -6.1% 32

6.3. Scenario generation and stability test

In Section 5, we introduce three sizes of samples, Ωeval, Ωalns, and Ωoper. Ωeval is used to evaluate the

“true” objective of the final solution, so its size is very large (|Ωeval|= 10,000 in our experiments).

Ωalns is used to evaluate the solution in every iteration of the ALNS, while Ωoper is used more

frequently to evaluate the solutions generated by the neighborhood search operators.

For either |Ωalns| or |Ωoper|, a larger size will lead to more accurate evaluation, but will also

take more computational time such that less iterations can be done, given the one-hour solution

time limit (and vise versa). To study this tradeoff, we test different combinations of |Ωalns| and

|Ωoper|. For each test instance, we run the ALNS with each combination of |Ωalns| and |Ωoper| five

times, and report the average gap compared to the best F (S∗,Ωeval) among all the replications

of all the combinations. The results are in Table 8. In each block where the |Ωalns| is fixed, the

best combination is in bold. We observe that, given a fixed |Ωalns|, the gap initially decreases and

then increases with |Ωoper|, forming a U-shape. Too small |Ωoper| introduces too much noise in the

neighborhood search, while too large |Ωoper| reduces the number of ALNS iterations, given a fixed

|Ωalns|. The best setting overall is |Ωalns|= 200 and |Ωoper|= 20, with the gap of 2.85%.

Table 8 Gaps and number of iterations for different combinations of |Ωalns| and |Ωoper|∣∣Ωalns
∣∣ |Ωoper| Gap # Iterations

∣∣Ωalns
∣∣ |Ωoper| Gap # Iterations

∣∣Ωalns
∣∣ |Ωoper| Gap # Iterations

50 2 13.79% 52,362 100 2 12.84% 41,155 150 2 13.02% 33,798
50 6 5.57% 21,221 100 6 5.53% 19,162 150 6 5.67% 17,324
50 10 4.01% 13,242 100 10 3.89% 12,320 150 10 3.57% 11,532
50 20 3.54% 6741 100 20 3.69% 6521 150 20 3.92% 6333
50 30 3.95% 4488 100 30 3.97% 4410 150 30 3.80% 4296

200 2 13.47% 28,632 600 2 13.62% 13,144 1000 2 14.21% 8519
200 6 5.10% 15,700 600 6 5.68% 9387 1000 6 6.25% 6723
200 10 3.78% 10,788 600 10 4.14% 7325 1000 10 4.65% 5577
200 20 2.85% 6050 600 20 3.62% 4775 1000 20 3.88% 3956
200 30 3.54% 4169 600 30 3.83% 3517 1000 30 3.91% 3046

We evaluate the in-sample and out-of-sample stability for a fixed sample size of Ωalns obtained

above (Kaut and Wallace 2007). For each test instance, we generate J samples (Ωalns
j , j = 1,2, . . . , J)
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and denote the corresponding ALNS solutions by S∗j . In-sample stability requires that differ-

ent samples should lead to solutions with approximately the same objective function values, i.e.,

F (S∗i ,Ωalns
i ) ≈ F (S∗j ,Ωalns

j ),∀1 ≤ i 6= j ≤ J . Out-of-sample stability measures the stability of the

samples, evaluated by the true objective function or a different sample than that was used to find

the solutions, i.e., F (S∗i ,Ωeval)≈ F (S∗j ,Ωeval),∀1≤ i 6= j ≤ J .

In Table 9, we show the in-sample and out-of sample stability (J = 20) of test instances in Table 5.

Columns (1) and (2) are the mean values and standard deviations of F (S∗j ,Ωalns
j ), 1 ≤ j ≤ J ,

respectively. We measure the in-sample stability by the coefficients of variation in Column (3),

which range between 1.02%–1.60%, with an average of 1.32%. Columns (4) and (5) are the mean

values and standard deviations of F (S∗j ,Ωeval), 1 ≤ j ≤ J , respectively. We measure the out-of-

sample stability by the coefficients of variation in Column (6), which range between 0.73%–1.33%,

with an average of 1.10%. Column (7) shows that the relative gap∑
1≤j≤J F (S∗j ,Ωeval)−

∑
1≤j≤J F (S∗j ,Ωalns

j )∑
1≤j≤J F (S∗j ,Ωeval)

is 0.85% on average. The above calculations demonstrate that using 200 as |Ωalns| is in- and out-

of-sample stable (Kaut and Wallace 2007, Wang, Crainic, and Wallace 2019).

Table 9 In-sample and out-of-sample stability

Instance

In-sample stability Out-of-sample stability
Mean Std. dev. (2)/(1) Mean Std. dev. (5)/(4) ((4)-(1))/(4)

(1) (2) (3) (4) (5) (6) (7)

M10-C2-N200-L12-K36-6 2634.98 37.84 1.44% 2677.67 32.41 1.21% 1.59%
M10-C2-N200-L12-K36-7 2758.80 43.68 1.58% 2795.70 35.23 1.26% 1.32%
M10-C4-N400-L24-K72-6 4854.23 57.07 1.18% 4861.98 53.40 1.10% 0.16%
M10-C4-N400-L24-K72-7 4784.36 76.72 1.60% 4807.83 64.17 1.33% 0.49%
M10-C4-N600-L36-K108-6 10,347.08 105.92 1.02% 10,420.00 75.59 0.73% 0.70%
M10-C4-N600-L36-K108-7 10,516.22 116.69 1.11% 10,607.87 101.61 0.96% 0.86%

Average 1.32% 1.10% 0.85%

Moreover, the results in Table 9 are consistent with the observations in Kaut and Wallace (2007).

In the in-sample stability test, the objective function value of each solution is evaluated by the

sample used to find the solution, while in the out-of-sample stability test, the objective function

value of each solution is evaluated by the same Ωeval in the paper. We observe that the mean

values in Column (1) are consistently lower than those in Column (4), because the in-sample

stability test (Column (1)) tends to “overestimate the quality of its own solution.” Also, while our

solutions obtained by the ALNS (Algorithm 1) are heuristic in nature, the observations on the

“over-optimistic” solutions associated with a (smaller) subset of sample and on the monotonicity of

the solution quality in sample size are consistent with what are shown in Mak, Morton, and Wood
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(1999). We also observe that standard deviations in Column (2) are consistently higher than those

in Column (5), because the out-of-sample stability test (Column (5)) uses the common sample

Ωeval to evaluate the solutions and thus reduces the variance of the results.

6.4. ALNS performance

The problem and model in Sections 3 and 4 often result in large instances in practice that are

very difficult to solve. Take a medium-size instance M10-C2-N300-K54-L18-1 as an example, the

first stage includes ∼24,000 binary variables, ∼600 general integer variables, ∼25,000 continuous

variables, and ∼43,000 constraints; the second stage (for one scenario) includes ∼51,000 binary

variables, ∼2900 continuous variables, and ∼112,000 constraints.

We benchmark our proposed ALNS with a commercial solver (Gurobi 9.0.2) on the mean value

problem (MVP) of some small instances, in which we replace the stochastic travel times and service

times with their mean values, and show the results in Table 10. We generate and name these

instances in a similar fashion to the base instances (Section 6.1). Note that in the instances with

N = 15, there are only two malls (Compass One and Tampines Mall in Figure 7).

In Table 10, Columns (1) to (5) are the results of Gurobi. Specifically, Columns (1) and (2) are

the upper bound and lower bound provided by Gurobi, respectively. Column (3) is the optimality

gap, calculated by (3) = [(1)− (2)]/(2). Columns (4) and (5) are the time to find the best solution

and the total time until Gurobi terminates. Columns (6) to (9) are the results of the ALNS.

Specifically, Column (6) is the objective function value of the best solution of the ALNS. Column

(7) is the optimality gap, calculated by (7) = [(6)− (2)]/(2). Column (8) is the time to find the

best solution of the ALNS. Column (9) is the improvement of the best objective function value of

the ALNS compared with that of Gurobi, calculated by (9) = [(6)− (1)]/(1).

For the five instances of N = 15, on average, Gurobi solves them to optimality in 2.1 seconds,

while the ALNS finds the best solution within 0.06 seconds with an average optimality gap of

0.13%. We further notice that the ALNS finds the optimal solutions in four instances.

For instances of N = 25, we set the time limit of 3600 seconds for both algorithms. Gurobi

and the ALNS reach similar average optimality gaps of 17.10% and 15.97%, respectively, with the

ALNS slightly better than Gurobi. In terms of the average time to find the best solution (column

“TB”), it takes Gurobi 2091 seconds, much longer than 17 seconds of the ALNS.

For the smallest instances (N = 50) in Table 4, Gurobi fails to find even a feasible solution to

the MVP within days of computational time. Therefore, in the remaining experiments, we use the

ALNS to solve all the instances.

In Table 11, we show the performance of the ALNS operators, based on solving the instances in

Table 4. For each operator, we report the average one-run CPU time, and the percentage of the
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Table 10 Mean value problem: Commercial solver (Gurobi 9.0.2) vs. ALNS

Instance

Gurobi ALNS
UB LB Gap TB (sec) TT (sec) UB Gap TB (sec) % Improve
(1) (2) (3) (4) (5) (6) (7) (8) (9)

M10-C1-N15-L3-K3-1 121.15 121.15 0.00% 2.2 2.2 121.15 0.00% 0.01 0.00%
M10-C1-N15-L3-K3-2 119.83 119.83 0.00% 1.7 1.7 119.83 0.00% 0.01 0.00%
M10-C1-N15-L3-K3-3 121.69 121.69 0.00% 2.7 2.7 121.69 0.00% 0.11 0.00%
M10-C1-N15-L3-K3-4 106.27 106.27 0.00% 1.7 1.7 106.97 0.66% 0.01 -0.66%
M10-C1-N15-L3-K3-5 118.13 118.13 0.00% 2.0 2.0 118.13 0.00% 0.17 0.00%

Average (N = 15) 0.00% 2.1 2.1 0.13% 0.06 -0.13%

M10-C1-N25-L3-K5-1 171.00 150.48 12.00% 2990 3600 169.61 11.28% 1.8 0.81%
M10-C1-N25-L3-K5-2 225.74 169.76 24.80% 1262 3600 218.76 22.40% 4.7 3.09%
M10-C1-N25-L3-K5-3 168.03 150.99 10.14% 3000 3600 166.62 9.38% 1.3 0.84%
M10-C1-N25-L3-K5-4 199.68 154.96 22.39% 355 3600 199.39 22.28% 67.7 0.15%
M10-C1-N25-L3-K5-5 175.99 147.54 16.16% 2848 3600 172.62 14.53% 9.6 1.92%

Average (N = 25) 17.10% 2091 3600 15.97% 17.0 1.36%

Note UB: upper bound; LB: lower bound; Gap in (3) = [(1)− (2)]/(2); Gap in (7) = [(6)− (2)]/(2); TB: time
to the best solution; TT: total time; % Improve in (9) = [(6)− (1)]/(1).

Table 11 Performance of the ALNS operators

Operator Time (sec) Usage Score Operator Time (sec) Usage Score

Removal Removal (continued)
Random 3.86×10−5 1.9% 4.6% Time window violation 4.10×10−5 2.1% 4.5%
Shaw 1.59×10−3 1.8% 2.6% Time slot violation 4.19×10−5 5.2% 4.4%

Worst 6.40×10−3 21.4% 34.0% Insertion
Shopping mall 1.83×10−5 3.7% 1.9% Greedy 1.17×10−2 53.3% 53.9%
Vehicle 2.60×10−5 10.1% 5.5% Regret 1.19×10−2 46.7% 46.1%

Trip 5.96×10−5 3.1% 1.5% Scheduling
Outside waiting time 5.50×10−5 2.8% 12.5% Intra-route 4.26×10−1 45.2% 55.3%
Inside waiting time 5.65×10−5 47.9% 28.5% Intra-shopping-mall 4.24×10−1 54.8% 44.7%

usage (measured by the number of iterations the operator is used relative to the total number of

iterations) and the score obtained in its (removal/insertion/scheduling) operator set.

In terms of computational time, we note that scheduling operators > insertion operators >

removal operators. We also observe that worst removal and inside waiting time removal are the

best two removal operators, with a summed score of 62.5%; greedy insertion outperforms regret

insertion; and intra-route scheduling outperforms intra-shopping mall scheduling.

6.5. Value of coordination

The platform serves as a centralized decision maker that coordinates the order deliveries of different

LSPs and dock reservations in shopping malls (denoted by the coordinated solution). In the current

practice, LSPs plan their deliveries and dock reservations in an uncoordinated manner, i.e., each

LSP l ∈ L independently makes routing and scheduling decisions on its own orders and reserves

the docks accordingly (denoted by the uncoordinated solution). In this section, we measure the
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value of coordination by comparing these two solutions. To ensure a fair comparison, we evaluate

both the coordinated and uncoordinated solutions using the same Ωeval, and for each LSP-specific

problem, we use the same ALNS parameter setting and computational time (i.e., 3600 seconds) as

those in the coordinated problem.

For the base instances described in Section 6.1, we compare the total cost F (S∗,Ωeval) in Table 12,

in which we show the average of five replications for each instance. The average percentage saved

by coordination of all instances is 9.4%, which is significant (compared to the coefficient of variance

of less than 2% in the stability tests in Section 6.3). For a fixed number of total docks, we observe

that the total cost increases significantly as the number of orders (N) increases. This is intuitive

as more orders increase the chance of congestion. The value of coordination is higher if the docks

are more congested, which is evidenced by the increase of the percentage saved by coordination as

N increases. This is also shown below in Figure 8.

We also observe in Table 12 that, when increasing the number of docks while keeping the number

of orders fixed, the total costs of both uncoordinated and coordinated solutions reduce dramatically,

and further, the % saved by coordination also reduces significantly. For instance, while keeping

N = 300, increasing the number of docks from 2 to 3 reduces the total costs of both uncoordinated

and coordinated solutions by more than 50%, and the % saved by coordination reduces from 20.1%

to 2.1%. This is intuitive, when the number of orders is fixed, increasing the number of docks

provides more unloading capacity, which naturally reduces the total cost, and further, increasing

the number of docks provides more flexibility and reduces the chance of congestion (even for

uncoordinated solutions), which results in the diminishing of the value of coordination.

Table 12 Total cost and % saved by coordination: Base instances

# dock 10×1 10×2
N 50 100 150 100 200 300

Uncoordinated 647.0 2600.1 7334.7 1066.4 3002.8 8659.5
Coordinated 599.9 2085.5 5675.3 1043.2 2753.0 6919.8

% saved 7.3% 19.8% 22.6% 2.2% 8.3% 20.1%

# dock 10×3 10×4
N 150 300 450 200 400 600

Uncoordinated 1531.4 3594.9 10,126.3 1973.8 4575.6 12,071.1
Coordinated 1531.4 3518.1 8510.4 1973.8 4504.1 10,527.0

% saved 0.0% 2.1% 16.0% 0.0% 1.6% 12.8%

In Figure 8, We plot the values of “% saved” (by coordination) in Table 12. We observe that,

when the order-dock ratio is fixed (that is, even when the demand-capacity ratio is fixed), the

value of coordination decreases in the number of docks in each shopping mall. Again, increasing

the number of docks provides more flexibility and thus reduces the chance of congestion.
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Figure 8 Value of coordination: Fixed order-dock ratio

Figure 9(a) shows the total cost and the decomposed cost components. For each instance set-

ting, the left bar corresponds to the coordinated solution while the right bar corresponds to the

uncoordinated solution. Each bar consists of routing cost, outside waiting penalty cost, inside wait-

ing penalty cost, late start of service penalty cost, late end of service penalty cost, and overtime

penalty cost (from bottom to top). We observe that the routing cost of the coordinated solution

is always larger than that of the uncoordinated solution. In order to alleviate congestion in docks,

some vehicles may need to deviate from their distance minimizing routes and visit less congested

shopping malls. We also observe that the saving in the total cost of the coordinated solution is

mainly driven by the reduction in late start/end of service penalty.

Noting the difference in penalty coefficients (0.4 SGD/minute for late start/end of service penalty

and 0.1 SGD/minute for outside/inside waiting time), we compare the decomposed time (without

penalty coefficients) in Figure 9(b), where we show the average time per order for each time item.

Compared to the coordinated solution, the outside waiting time of the uncoordinated solution is

shorter, as each LSP independently schedules the time slots earlier (based on their own routing

decisions), which in turn allows the vehicles to enter the mall earlier. However, the underestimation

of potential congestion causes longer inside waiting time, which propagates to significantly longer

late start and end service time.

6.6. Value of stochastic solutions

Next, we study the value of stochastic solutions. There are two types of stochasticity: travel time

(TT) and service time (ST). When ignoring one type of stochasticity, we replace the corresponding
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Figure 9 Value of coordination: Base instances

distributions with the expected values. When both types of stochasticity are ignored, the prob-

lem becomes the mean value problem (MVP). We vary the stochasticity settings from the base

instances, solve these instances by the ALNS algorithm, and evaluate the solutions under the same

Ωeval.

In Figure 10 (from left to right), S-ST&S-TT (black bar) represents the setting with stochastic

service time & stochastic travel time, S-ST&D-TT (dark grey bar) represents the setting with

stochastic service time & deterministic travel time, D-ST&S-TT (light grey bar) represents the

setting with deterministic service time & stochastic travel time, and D-ST&D-TT (white bar)
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represents the mean value problem. The gaps of the last three bars relative to the S-ST&S-TT are

shown on top of these bars.
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Figure 10 Value of stochastic solutions

We observe that the gaps between the stochastic solutions (S-ST&S-TT) and the MVP solutions

(D-ST&D-TT) range from 18% to 38%, with an average of 21.1%, which shows the significant

value of stochastic solutions. Further, we observe that the average gap between the S-ST&S-TT

and S-ST&D-TT is only 2.0%, while that between S-ST&S-TT and D-ST&S-TT is 19.6%. This

indicates that, under our base instances, the stochasticity in service time has a higher impact than

the stochasticity in travel time does.

In order to further understand the impact of the stochasticity in travel time on the value of

stochastic solutions, we (arbitrarily) select the base instances with 300 orders and 3 docks in each

mall and increase the variance of perturbations (from σ̂Oij to 2σ̂Oij and 3σ̂Oij) when generating travel

time scenarios based on the 105 travel time matrices, while keeping the stochastic service time

settings unchanged. In Table 13, We observe that, when increasing the travel time variances, the

average gap between S-ST&S-TT and S-ST&D-TT (Column (5)) increases from 1.98% to 2.21%

and then 2.88% but is still much smaller than the average gap (22.13%) between S-ST&S-TT and

D-ST&S-TT (Column (6)). One potential explanation on the higher impact of stochasticity in

service time than the stochasticity in travel time is that the former has a direct impact on the dock

occupation while the latter only has an indirect impact. More specifically, a longer service time

will lead to longer occupation of the dock while a longer travel time only delays the arrival of the

vehicle at the shopping mall and affects the sequence of services in that shopping mall.
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Table 13 Value of stochastic solutions under different travel time variances (base instances with 300 orders

and 3 docks in each mall)

Travel time S-ST&S-TT S-ST&D-TT D-ST&S-TT D-ST&D-TT (2)−(1)

(1)

(3)−(1)

(1)

(4)−(1)

(1)

perturbation (1) (2) (3) (4) (5) (6) (7)

εij ∼N(0, σ̂Oij) 3518.15 3587.86 4281.39 4649.14 1.98% 21.69% 32.15%
εij ∼N(0,2σ̂Oij) 3530.52 3608.57 4283.59 4698.88 2.21% 21.33% 33.09%
εij ∼N(0,3σ̂Oij) 3563.15 3665.65 4289.18 4814.88 2.88% 20.38% 35.13%

7. Conclusions

In many cities where shopping malls are densely distributed, the tenants in shopping malls are

replenished by logistics service providers (LSPs), which route their own fleet of vehicles without

coordination with each other. Uncoordinated arrivals of vehicles and limited docking capacity

jointly cause congestion within and outside shopping malls, which highlights the importance to

better coordinate the deliveries. One approach as discussed in this paper is to develop a centralized

decision making platform that routes and schedules at the system level. The underlying problem is

denoted by the coordinated delivery to shopping malls with limited docking capacity, which jointly

considers docking capacity, endogenous time windows, and stochastic travel times in the road

network and stochastic service times of orders in the shopping malls. We formulate this problem

as a two-stage stochastic mixed integer program.

We develop an Adaptive Large Neighborhood Search (ALNS) metaheuristic, where removal

and insertion operators adjust routes and newly introduced scheduling operators adjust time slot

decisions. Given a first stage solution, the precise evaluation of the second stage recourse function

involves calculating the expectation of the second stage cost. To overcome the computational

challenge of evaluating the first stage solutions (of vehicle routing and dock scheduling) in a very

large solution space and to trade off between the evaluation accuracy and the number of solutions

that can be searched, we use various sample sizes to approximate the second stage recourse function

at different layers of the ALNS algorithm. Further, we test the in-sample and out-of-sample stability

of our approximations. We construct a test bed of instances based on real data in Singapore and

demonstrate the performance of the proposed solution method as well as the value of coordination

and the value of stochastic solutions in our numerical study.

Notably, our computational study on the impact of stochastic travel times is somehow constrained

by our limited collection of raw travel time data, due to various of factors. Further, the variances in

travel times in Singapore are relatively low, compared with other cities in the world. One extension

to this work is to study the impact of stochastic travel times using rich travel time data of various

city profiles. This would also enables a more comprehensive understanding on the relative impact

between stochastic travel times and stochastic service times.
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Taş D, Dellaert N, Van Woensel T, De Kok T, 2013 Vehicle routing problem with stochastic travel times

including soft time windows and service costs. Computers & Operations Research 40(1):214–224.
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