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∗wysuen@smu.edu.sg, †chunyat.lee.2019@mitb.smu.edu.sg, ‡hclau@smu.edu.sg

Abstract—Recent hardware developments in quantum tech-
nologies have inspired a myriad of special-purpose hardware
devices tasked to solve optimization problems. In this paper, we
explore the application of Fujitsu’s quantum-inspired CMOS-
based Digital Annealer (DA) in solving constrained routing
problems arising in transportation and logistics. More precisely
in this paper, we study the vehicle sharing problem and show that
the DA as a QUBO solver can potentially fill the gap between
two common methods: exact solvers like Cplex and heuristics.
We benchmark the scalability and quality of solutions obtained
by DA with Cplex and with a greedy heuristic. Our results show
that the DA is a general QUBO solver that is more robust than
heuristics, and more scalable than Cplex. Our methodology and
framework which focus on QUBO problems is also applicable
to other quantum-inspired and fully quantum devices that are
undergoing development.

I. INTRODUCTION

Optimization problems are extremely prevalent in our phys-
ical world, with applications to real-world planning and
scheduling problems. Presently, most widely used methods to
solve them are exact solvers like Cplex/Gurobi, or handcrafted
heuristic algorithms. Both have their respective strengths and
weaknesses. Exact solvers like Cplex are able to obtain optimal
solutions of optimization problems. However, the efficiency
and quality of solutions obtained are dependent on character-
istics of the problem, e.g. model size, types of constraints, and
scaling of the model. These affect the intrinsic solvability of
the model, and could take years or decades to solve optimally
even on the fastest imaginable computers today. In contrast,
heuristic algorithms offer quick solutions which are easy to
understand and implement. They are practical, serving as fast
and feasible short-term solutions to planning and scheduling
problems. However, in general, heuristic algorithms are unable
to deliver provably optimal solutions.

Recently, developments in quantum technologies have in-
spired a myriad of special-purpose hardware devices tasked
to solve optimization problems. These devices range from
physics-inspired classical machines [1], [2], to classical-
quantum hybrid [3], to quantum hardware [4], [5]. These
hardware developments have brought forth new possibilities
in solving various optimization problems, such as factory
optimization, drug discovery, banking and financial services.
However, the commercial prospects of these new hardware and

techniques largely depend on whether they can overcome the
shortcomings of current hardware technologies.

Alongside this trend, our interest lies in the viability of
the Fujitsu’s quantum inspired Digital Annealer (DA) [6] in
solving real-world transportation and logistics problems at its
current stage. DA is a CMOS hardware specially designed
to mimic the behaviour of quantum annealing devices used to
solve optimization problems such as constrained clustering [7].
While many problems that have demonstrated success have
relatively simple constraints, it is interesting to investigate
the application the same technology to solve complex con-
strained routing problems. In this paper, we study the Vehicle
Sharing Problem (VSP), where the goal is to minimize total
traveling time of a fleet of vehicles transporting passengers
from their starting positions to their destinations. The VSP
and its variations play an important role in urban mobility
in the form of taxi services, carpooling services, emergency
personnel dispatch, and etc. These activities widely dictate the
social and economic efficiencies in modern societies. Common
VSP variants are the dial-a-ride problem (DARP) [8], taxi ser-
vices [9], workplace car pooling [10], and etc. These problems
are NP-hard in general, and a wide range of different methods
of solving such problems have been developed, ranging from
exact methods [11]–[13] to various heuristics algorithms [14]–
[18].

Relatively, the study of using quantum computing to solve
complex VSP is much less prevalent in the literature. Quantum
computing techniques ranging from quantum inspired algo-
rithms executed on classical computers to quantum algorithms
implemented on quantum hardware have been studied to solve
routing problems. In [19], a path integral Monte Carlo (PIMC)
quantum annealing algorithm was used to solve the traveling
salesman problem (TSP). Similarly, [20] uses the same
technique to solve the capacitated vehicle routing problem
(CVRP). There are also classical-quantum hybrid algorithms,
such as one proposed in [21] to study the capacitated vehicle
routing problem (CVRP). In [22], the authors explored the
applicability of quantum annealing in solving selected space
planning problem. In our manuscript, we study the VSP using
the Fujitsu Digital Annealer (DA) [6]. Our contributions are
as follows:
• We formulate single and multi destination static VSP as

mixed integer programs (MIP).



• We also formulate their quadratic unconstrained binary
optimization (QUBO) representations as inputs to the DA.

• Our experimental results highlights the scalability and
robustness of DA compared to Cplex and a nearest
neighbour heuristics.

II. METHODOLOGY

Quantum annealers like D-Wave solve optimization prob-
lems by searching for the ground state of an Ising Hamiltonian
corresponding to the objective function of the problem (e.g.
[23]). Similarly with the quantum-inspired Fujitsu DA, we
formulate the problem Hamiltonian in the form of a QUBO:

E(qi) =

n∑
i=1

aiqi +
∑
i,j

ai,jqiqj (1)

where qi ∈ {0, 1} is the binary decision variable of the
problem, ai and ai,j are coefficients that influence the shape
of the energy landscape of the problem. The DA currently
solves problems of up to 8192 binary variables. Details of
the underlying hardware and algorithm in the DA have been
published in [6]. To date, the DA has been applied to solve var-
ious optimization problems [7], [24]–[27]. These problems are
somewhat “simplistic” in that they do not involve sequences
and schedules. By studying the VSP, we wish to explore the
effectiveness of QUBO models and DA in dealing with these
complex constraints.

A. Single Destination VSP (SDVSP)
The VSP aims to minimize total distance traveled by a fleet

of vehicles when transporting individuals from their initial
locations to their destinations. The SDVSP can be formulated
as a modification of the multi TSP where multiple vehicles
are deployed to transport multiple passengers to a single
destination.

Consider a graph G = (V,E), where V is the set of N + 1
nodes, and E is the set of edges. Associated with each edge
(i, j) ∈ E is a cost (or distance) dij . We let node 0 to be
the common destination of all passengers, and there are K
vehicles. The decision variable is defined as:

xij =

{
1 if edge (i, j) is included in a route
0 otherwise

We also define ui to be the position of node i on a route, and
p to be the maximum number of nodes that can be visited by
any vehicle. The MIP is formulated as:

min
∑

i∈[1,N ]
j∈[0,N ]

i6=j

dijxij (2)

s.t.
∑
i

xi0 = K (3)∑
i

xij = 1 ∀j (4)∑
j

xij = 1 ∀i (5)

ui − uj + p · xij ≤ p− 1 1 ≤ i 6= j ≤ N (6)

The objective function (2) minimizes the total distance traveled
by all vehicles. Constraint (3) ensures that all K vehicles
arrives at the single common destination. Constraint (4) and (5)
ensure that each node is only visited and traveled from once.
Constraint (6) eliminates sub-tours within each vehicle’s route.
Using the MIP, we can construct the QUBO formulation that
describes the Hamiltonian of the SDVSP by defining penalty
terms that serve the same purposes as the constraints in the
MIP. We define

xk
i,l =

{
1 if i is the l-th node visited by vehicle k

0 otherwise
(7)

The QUBO can then be formulated as:

H1 =
∑

i,j∈[1,N ]
l∈[0,L−1]

k∈K

di,jx
k
i,lx

k
j,l+1 +

∑
i∈[1,N ]
k∈K

di,0x
k
i,3x

k
0,4

∑
i,j∈[1,N ]
l∈[0,L−1]

k∈K

ci,jx
k
i,lx

k
j,l+1 + A1

∑
k

 ∑
i∈[1,N ]

l∈[0,L−1]

xk
i,l − 4


2

+A2

∑
k,l

 ∑
i∈[1,N ]

xk
i,l − 1

2

+ A3

∑
i

∑
l,k

xk
i,l − 1

2

(8)

where di,j denotes the distance between passenger nodes i
and j. Together, the first two terms form the objective function.
The third term serves as an additional distance term to heavily
discourage the model from assigning passengers that are far
apart from each other to the same vehicle. We define

ci,j =

{
M if di,j > r · dmax

0 otherwise
(9)

where dmax is the maximum inter-node distance in the prob-
lem, 0 ≤ r ≤ 1 is the coefficient that controls the distance
threshold that activates the term, and M is a very large
constant. The subsequent terms in (8) are the penalty terms of
the QUBO. The fourth term in (8) ensures that each vehicle
picks up the maximum number of passengers possible before
dropping them off. The fifth term ensures that each position
in a tour of each vehicle can only be occupied by a single city
and the sixth term ensures that each city can only be assigned
to one vehicle and one position in a tour. Together, the last two
terms serve as sub-tour elimination penalties. The coefficients
Ai’s are hyper-parameters that controls the strength of each
penalty and shape the energy landscape of the problem.

B. Multi Destination VSP (MDVSP)

The MDVSP generalizes the SDVSP into multiple destina-
tions, and the number of destinations is less than or equals
to the number of passengers. This implies that more than
one passenger can have the same destination. To preserve a
high level of robustness, there are no restriction that vehicles
must only pick up passengers going to the same destination.
Moreover, vehicles do not need to pick up all the passengers
before traveling to their respective destinations, i.e. vehicles



can drop off passengers that are along the way the next
passenger pick-up.

Using the same graph notation of G = (V,E), where V
is the set of nodes and E is the set of edges, we let v =
1, 2, . . . , N−1, N denote vertices that represent the N number
of passengers, and the N number of vertices representing des-
tination locations be v = N+1, N+2, . . . , 2N−1, 2N . While
there may be fewer than N number of unique destinations,
we still define there to be as many destination vertices as
passenger vertices such that each passenger i’s corresponding
destination vertex is given by i + N . Additionally, we define
the vertex V = 0 to be a dummy depot node such that any
travel distance to and from the dummy node is equal to 0. For
each vehicle k, let the maximum route length be L = 8 and
the maximum passenger capacity be C = 4 . The total number
of vehicles required is then given by K =

⌈
N
C

⌉
. The primary

decision variable is a 4-index variable defined as follows:

xkl
ij =

{
1 if edge (i, j) is the l-th edge traveled by vehicle k

0 otherwise

The MDVSP MIP model is formulated as follows:

min
∑

i,j∈[0,2N ]
l∈[0,L−1]
k∈[0,K−1]

dijx
kl
ij (10)

The objective function (10) minimizes the total distance trav-
elled by all vehicles from the first passenger picked up till
the last destination visited, excluding the distance travelled
from the last destination to the first passenger node the vehicle
departs from. This is because in our formulation, each vehicle
completes a route that ends at the first node it departs from.∑

j,k,l

xkl
ij = 1 ∀i ∈ [1, 2N ] (11)∑

i,k,l

xkl
ij = 1 ∀j ∈ [1, 2N ] (12)∑

i,j

xkl
ij ≤ 1 ∀k, l (13)

Constraints (11) and (12) ensure that each passenger and
destination node is visited exactly once, while constraint (13)
ensures that each edge position of a vehicle k’s tour can only
be assigned to one edge (i, j), similar to constraints (4) and
(5) in the SDVSP MIP formulation.∑

h,l

xkl
i+N,h =

∑
h,l

xkl
i,h ∀i ∈ [1, N ], k (14)

Constraint (14) ensures that each passenger i picked up by a
vehicle k will be dropped off at destination i+N by the same
vehicle k.∑

h

xkl
ih +

∑
h

xkl′

i+N,h ≤ 1

∀i ∈ [1, N ], l, l′ ∈ [0, L− 1], l′ ≤ l, k

(15)

∑
h

xkl
ih +

∑
h

xkl′

i+N,h ≤ 1

∀i ∈ [1, N ], l ∈ [0, L− C − 1],

l′ ∈ [l + C,L− 1], l′ ≤ l, k

(16)

Constraints (15) ensures that the destination i + N is visited
only after passenger i has been picked up. More specifically,
it ensures that the edge position l of vehicle k departing from
passenger node i cannot be greater than or after the route
position l

′
of vehicle k departing from the destination node

i + N to any other node h. Constraints (16) further ensures
that all passengers will be dropped off within C = 4 route
segments. This has a dual effect of 1) imposing a soft limit
on each passenger’s journey duration and 2) preventing the
vehicle capacity from being exceeded at any point in the
journey, since any passenger picked up will be dropped off
within the next 4 route segments regardless of how many of
the route segments were pick ups or drop offs.∑

i

xkl
ij ≥

∑
h

xk,l+1
j,h ∀j ∈ [1, 2N ], k, l (17)

Constraint (17) ensures that the route continuity of each
vehicle k is not violated.∑

l∈[1,L−1],j

xkl
0j = 0 ∀k (18)

∑
l∈[1,L−1],j

xkl
i0 = 1 ∀k (19)

Constraint (18) ensures that each vehicle k may only leave
from the dummy depot node as the first edge traveled, while
constraint (19) ensures that each vehicle k may only enter the
dummy depot node exactly once, but not as the first edge
traveled. Together, this has the effect of constraining each
vehicle to only depart from the dummy node exactly once
at the start of the route, and to enter the dummy node exactly
once at the end of the route.

Interestingly, even though the MIP model of the MDVSP
is considerably more complex than its SDVSP counterpart,
generalizing the QUBO formulation of the SDVSP to MDVSP
is relatively simpler. This is because in a QUBO formulation,
we can use quadratic functions of the decision variable when
formulating penalty terms. We also let v = 0, 1, . . . , N − 1
denote vertices that represent passengers starting locations,
and v = N,N + 1, . . . , 2N − 1 represent their respective
destinations (slightly different from the MIP labeling). Similar
to the MIP formulation, the destination of a passenger starting
at v = i is v = i + N . Once again, K is the set of all
vehicles, each with a maximum capacity of 4 passengers, and
a maximum L = 8 nodes traveled. The total vehicles required
is K =

⌈
N
4

⌉
. Using the same decision variables as Equation

(7), the problem is formulated as follows:



H2 =
∑

i,j∈[0,2N−1]
l∈[0,L−1]

k∈K

di,jx
k
i,lx

k
j,l+1 +

∑
i,i′∈[0,2N−1]

l∈[0,L−1]
k∈K

ci,jx
k
i,lx

k
j,l+1

+B1

∑
k


∑

i∈[0,N−1]
l∈[0,L−s]

l′∈[l,L]

xk
i,lx

k
i+N,l′


2

+ B2

∑
k,l

 ∑
i∈[1,N ]

xk
i,l − 1

2

+B3

∑
i

∑
l,k

xk
i,l − 1

2

+ B4

∑
k

 ∑
i∈[0,N−1]

l′<l∈[0,L−1]

xk
i,lx

k
i+N,l′


2

+B5

∑
k,i

 ∑
l′∈[0,L−1]

xk
i+N,l′ −

∑
l∈[0,L−1]

xk
i,l

2

(20)

The objective function (first term) of (20) calculates the total
distance traveled by all vehicles, and same additional distance
term (Section II-A) is introduced in the second term to penalize
assignments of passengers separated far away to the same
vehicle. The third term ensures that the passengers picked up
is dropped within the next s nodes visited. Fourth term ensures
that each route slot of each vehicle can only be occupied by a
single city and fifth ensures that each city can only be assigned
to one vehicle and one route slot. Similar to the SDVSP, they
form sub-tour elimination penalties. The sixth term ensures
that destination nodes must only be visited after corresponding
passenger nodes. Lastly, the final term ensures that passengers
that are picked up are dropped off at corresponding desti-
nations. Similarly, Bi’s control the strengths of each penalty
term.

In the QUBO formulations presented, each vehicle has
to travel L nodes. This is to avoid formulating inequality
constraints. Encoding inequality constraints as a penalty term
in the QUBO requires the introduction of slack variables,
which increases the number of decision variables required.
This results in a more complex energy landscape of the
problem and lower overall quality of solutions. However,
fixing L as a constant mandates all vehicles to travel L
nodes. This restricts input instances of the model to those with
N = LK. Thus, when N 6= LK, we let Nmax =

⌈
N
L

⌉
· K,

and introduce Nmax −N fictitious passenger nodes and their
destinations. These nodes share the same coordinate as one of
the destination nodes in the instance. For simplicity, we set this
to the first destination node in the list. This allows us to avoid
inequality constraints, and maintains the flexibility of solving
input instances of all sizes. In theory, introducing dummy
nodes sharing the same coordinates as one of the destination
nodes will not increase distance traveled, as they add 0
distance traveled to the vehicle that services the passenger
traveling to that destination. In practice, this may not be true,
but it is a small trade-off between robustness and average
accuracy.

C. Nearest-neighbour (NN) heuristics

Aside from Cplex, we also compare the performance of DA
with a simple heuristic algorithm. To this end, we implemented
a simple nearest neighbour heuristic algorithm, described in
Algorithm 1.

Algorithm 1: Nearest neighbour heuristics
Identify K number of starting points, by using a farthest

neighbour algorithm, each one representing a starting point
of each vehicle.

while # of passengers < vehicle capacity do
Pick up the passenger nearest to the current passenger. #

of passengers + = 1
end
while # of passengers > 0 do

Go to the nearest destinations of any of the passengers
currently on-board. # of passengers − = 1

end

III. EXPERIMENTAL RESULTS

Our experimental results are presented as follows. We first
present the overall performance of the DA against Cplex
for both the SDVSP and MDVSP by comparing quality of
solutions obtained by DA to those obtained by Cplex. Not
all instances presented in this paper were solved by Cplex to
optimality, so we compare the solutions obtained over the same
amount of runtime. For the SDVSP instances, we have runtime
limits of 1500, 3000, 4000, and 5000 seconds for instances
of size N = 40, 60, 70, and 80 respectively. Similarly, for
the MDVSP instances, runtime limits are set to 3600, 7200,
and 7200 seconds for instances of size N = 20, 30, and
40 respectively. DA runtime is defined as the total annealing
time, which excludes the QUBO construction at the beginning.
The largest instances that we experimented on are based on
the hardware limit of the DA. On the other hand, the MIP
presented are implemented on Cplex version 12.10 on a CPU
which has 2 × Intel® Xeon® Silver 4110 CPU 2.10 GHz,
8 Cores, 16 Logical Processors.

Subsequently, we present results from using of our al-
gorithms to solve instances generated based on Singapore’s
population distribution and custom clustered instances. We
also note that the parameters Ai’s and Bi’s in our QUBO
formulation are tuned using the hyper-parameter optimization
algorithm Optuna [28].

A. Solution Quality Frequency Distribution

The results presented in this section utilizes instances gener-
ated from the r101 and rc101 Solomon instances [29]. For the
SDVSP, we used the depot in the original Solomon instances as
the common destination for all passengers, and we sampled the
N passenger nodes randomly from the total 100CN possible
instances. As for the MDVSP, the N passenger nodes are
sampled in the same fashion. Additionally, we sample M
destination nodes that are farthest away from each other to
obtain a realistic distribution of destinations. We also let M
to be a random number between 5 to 10. Passengers are then



assigned to destinations randomly. For each N , we generated a
total of 30 samples, and compared the performance difference
of DA against both Cplex and the NN heuristics, where the
performance difference is defined as ∆(s) = 100× objDA−objs

objs
,

where objDA and objs are objective values obtained by DA
and solver s respectively. Solver s can be either Cplex or NN-
heuristics.

Figure 1 illustrates the frequency distribution of ∆(Cplex)
and ∆(NN). First, we observe that the NN-heuristics produces
better solutions than DA and Cplex. This highlights the
strength of a simple NN-heuristics in solving simple problems.
We also observe that Cplex produces higher quality solutions
than DA. However, we note that the performance gap between
the two becomes closer at N = 80, suggesting that Cplex
does not scale as well at large instances. Also interesting
to note that at N = 80, there are two instances where DA
outperforms Cplex in solving the same problem. The instance
with ∆(Cplex) = 100 implies that Cplex was unable to obtain
a feasible solution within the time limit. This difference in
scalability between DA and Cplex is also present when we
apply the same study to the MDVSP.

Fig. 2: Frequency distribution of ∆(Cplex) for MDVSP in-
stances for: (a) N = 20, (b) N = 30, ∆(NN) for (c) N = 20,
(d) N = 30, and (e) N = 40.

Figure 2 shows the frequency distribution of ∆(Cplex) and
∆(NN) for MDVSP instances of different sizes. Interestingly,
the relative performance of DA in contrast to Cplex and the
NN-heuristics is much better than in the SDVSP. At N = 20,
the frequency distribution shows that the average ∆(Cplex) is
close to 0, i.e. DA and Cplex are almost equal in terms of
solving the N = 20 MDVSP instances. For larger instances,
Cplex struggles to obtain feasible solutions within the time
limit. At N = 30, Cplex solved only 5 out of 30 instances
within an hour. Instances with ∆(Cplex) = −100 indicates
that Cplex was unable to obtain feasible solution within time
limit. Cplex did not return any feasible solutions within 2 hours
for instances with N = 40 and beyond. Similar behaviour is
also observed in [8] which compares performances of different
algorithms in solving the DARP. There, it was also observed
that Cplex was unable to obtain solution for larger instances.

Also from Figure 2, when N ∈ {20, 30}, DA produces
higher quality of solution than the NN-heuristics overall.

However, at N = 40, the NN-heuristics performs better than
DA, with a smaller margin compared to the SDVSP case
(Figure 1). When N is small, nodes are further from each
other. Thus, an algorithm that is designed to pick up/drop off
the nearest neighbour all the the time may not be efficient.
However, as N increases, nodes are more densely packed,
picking up/dropping off the nearest neighbour becomes a better
strategy. Like all heuristics designed with specific instructions,
the NN-heuristics is not very robust when the characteristics
of the problem instances change.

Instance tDA objDA objCplex tCplex ∆(Cplex) objNN ∆(NN)

sgu 20 1 679 275 203 7200 35.47 246 11.79

sgu 20 2 808 269 249 7200 8.03 218 23.39

sgu 30 1 3325 499

Infeasible

7200

Infeasible

354 40.96

sgu 30 2 2909 515 7200 360 43.06

sgu 32 1 2000 358 7200 375 -4.53

sgu 32 2 2048 356 7200 385 -7.53

sgu 40 1 4066 464 7200 476 -2.52

sgu 40 2 6679 782 7200 436 79.36

sgu 44 1 7847 795 7200 415 91.57

sgu 44 2 7834 845 7200 555 52.25

clustered 16 1000 715 632 600 13.13 915 -21.86

clustered 20 1713 845 857 1800 -1.40 1077 -21.54

clustered 24 2471 2386

Infeasible

2500

Infeasible

2982 -19.99

clustered 32 2557 3321 2600 3947 -15.86

clustered 40 2596 4464 2600 4927 -9.40

TABLE I: Comparison of performance between DA, Cplex,
and NN-heuristics for specific instances.

B. Digital Annealer performance in custom instances

Our results so far showed that DA scales better than
Cplex as the size and complexity of the benchmark problem
increases. However, a NN-heuristics outperforms both DA
and Cplex in many of the instances studied so far. In this
section, we present results obtained by studying two other
types of instances. The first type of instances are generated
from Singapore’s population and industrial data (labeled sgu ).
The passenger-destination pairs in these instances are for
the purposes of 1. transporting security personnel from their
homes to camps during an emergency recall, 2. the transporting
construction workers between their dormitories and assigned
worksites. The clustered instances (labeled clustered ) are
synthetic instances designed to mimic clusters of residential
areas with target destinations outside of them. The goal behind
these custom instances is to provide insights on instances with
different types of node distributions.

Table I shows despite the Fujitsu DA being a new tech-
nology, there area areas in which it can perform well. We
observe that the DA is better at solving larger instances of
the MDVSP, as Cplex was unable to obtain feasible solution
in the same amount of time. We also observe that in some
of the instances presented, the DA was able to obtain higher
quality solution than the NN-heuristics. This reinforces our
findings that despite the NN-heuristics being able to obtain
much better solutions for many of the SDVSP and MDVSP



Fig. 1: Frequency distribution of ∆(Cplex) (top) and ∆(NN) (bottom) for SDVSP instances of different sizes.
From left to right: N = 40, 60, 70, 80.

instances presented in the previous section, the algorithm is
not very robust. This is because like all heuristics, the NN-
heuristics are designed for specific purposes, which may not
work when the problem changes drastically. In contrast to that,
the DA has a more generalized framework, much like Cplex.
As long as the problem Hamiltonian is formulated in the form
of QUBO (which can be systematically constructed), DA is
able to solve it to the best of its capability.

IV. COMPATIBILITY WITH QUANTUM HARDWARE

Our results from using the DA to solve a VSP has high-
lighted the strengths and weaknesses of the hardware. Studying
quantum-inspired hardware such as the DA provides us with
various insights on the applications of quantum computing
in solving constrained optimization problems. Firstly, since
the DA is a QUBO solver, the methodology and framework
presented here is applicable to quantum platforms such as D-
Wave (quantum annealing) and IBM Qiskit (QAOA and VQE).
The QUBO formulation of an optimization problem as input
for all these devices will be similar [30].

At the current stage of hardware development, the main
advantage of a quantum-inspired classical QUBO solver such
as the DA is that it can solve problems that require all-to-
all connections between decision variables, such as the VSP,
without any embedding or enconding algorithms. Furthermore,
classical simulations of quantum algorithms such as QAOA are
also very limited in terms of the number of qubits that can be
simulated. As a result, the DA will be able to handle such
problems the require many more decision variables compared
to a quantum solver. This gives us an avenue to study complex
optimization problems beyond what is implementable in the
current quantum hardware, but will eventually be useful as
more powerful quantum hardware are developed.

V. CONCLUSION AND FUTURE WORK

We explored the applicability and performance of the Fu-
jitsu DA in solving complex optimization problems involv-
ing complex routing constraints. Despite the shortcomings
discussed, DA’s performance lies somewhere between exact

solvers and heuristics algorithms. In short, the DA scales
better than Cplex. As QUBO formulations of problems allow
for quadratic constraints, we can better solve more complex
problems in contrast to an MIP formulation. On the other
extreme, against a NN-heuristics, the DA is relatively more
robust in terms of the range of problem instances it can
solve. Certainly, one can make the case that a much more
sophisticated heuristics algorithm would have fared better in
Section III-B. Nonetheless, construction of such algorithms
requires substantial handcrafting in terms of algorithm design,
which is often non-generalizable. QUBO formulations can be
systematically constructed for wide range of problems.

Nonetheless, our work has also shed light on some weak-
nesses of DA. The biggest limitation that is the hardware.
DA currently can solve problems up to only 8192 binary
variables, which limits the complexity and size of problems
we can explore. However, it is still a very new device, and
is constantly undergoing development in this regard. As the
hardware improves, we hope to be able to study full-scale
industrial problems with the DA.

Another area where the DA has room to improve is the
quality of solution. We observed that despite having better
scalability than Cplex, the solutions obtained by DA for
small size instances are not as good as Cplex and the NN-
heuristics. To this end, our future work focuses on improving
the performance of the DA, through methods like problem
parameter and engine parameter tuning, or some DA-heuristics
hybrid algorithms. Each of these topics leads to different
directions in future research.
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