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A Learning and Optimization Framework for
Collaborative Urban Delivery Problems with

Alliances

Jingfeng Yang1 and Hoong Chuin Lau1

School of Computing and Information Systems, Singapore Management University,
80 Stamford Rd, Singapore 178902

jfyang.2018@phdcs.smu.edu.sg, hclau@smu.edu.sg

Abstract. The emergence of e-Commerce imposes a tremendous strain
on urban logistics which in turn raises concerns on environmental sustain-
ability if not performed efficiently. While large logistics service providers
(LSPs) can perform fulfillment sustainably as they operate extensive lo-
gistic networks, last-mile logistics are typically performed by small LSPs
who need to form alliances to reduce delivery costs and improve effi-
ciency, and to compete with large players. In this paper, we consider a
multi-alliance multi-depot pickup and delivery problem with time win-
dows (MAD-PDPTW) and formulate it as a mixed-integer programming
(MIP) model. To cope with large-scale problem instances, we propose a
two-stage approach of deciding how LSP requests are distributed to al-
liances, followed by vehicle routing within each alliance. For the former,
we propose machine learning models to learn the values of delivery costs
from past delivery data, which serve as a surrogate for deciding how re-
quests are assigned. For the latter, we propose a tabu search heuristic.
Experimental results on a standard dataset and a real case in Singapore
show that our proposed learning-based optimization framework is effi-
cient and effective in outperforming the direct use of tabu search in most
instances. Using our approach, we demonstrate that substantial savings
in costs and hence improvement in sustainability can be achieved when
these LSPs form alliances and requests are optimally assigned to these
alliances.

Keywords: Alliances · Collaboration · Machine Learning · Pickup-and-
delivery · Tabu Search.

1 Introduction

With rapid urbanization, urban delivery systems need to be optimized for ca-
pacity and efficiency. High delivery demands not only bring challenges to large
LSPs such as Amazon and Cainiao, but also create more intense competition
among small and medium-sized LSPs. Due to the high uncertainty of demands
and locations in daily delivery, LSPs face operational issues from one end of the
spectrum (idle capacity) to the other hand (vehicle and manpower shortage).
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To overcome these issues, one approach is to establish collaboration with fellow
logistics players. As described by Savelsbergh and Woensel [19], collaboration or
cooperation is often regarded as a useful path to consolidating freight volumes,
leading to a higher and efficient utilization of resources. An alliance by two or
more companies offers opportunities for sharing of information and resources to
jointly handle delivery tasks. Collaboration in city logistics systems has been
widely studied during past few years.

In this paper, we study the pickup and delivery routing problem in a collab-
orative setting. In particular, we consider the problem that frequently occurs in
urban delivery: LSPs perform their daily operations to pickup goods from one
location and deliver to another location, and each request has a delivery time
window. In an uncooperative setting, each LSP make route plans with their
respective requests. For collaborative routing, we assume there exists multiple
alliances in the market, and LSPs in the same alliance can share requests and
execute the joint routing decision. For simplicity, we assume LSPs in a given
alliance will share the same depot to locate their vehicles. Furthermore, an LSP
may participate in more than one alliances (perhaps to service different types of
goods). Note that this paper is not concerned with the coalition structure gen-
eration problem, which focuses on partitioning the set of agents into mutually
disjoint coalitions so that the overall total reward is maximized in the long haul.
Rather, we assume that the structure of the alliances (composition of LSPs in
each alliance) is given as input parameters for our model, and deal with the
operational problem of efficient deliveries in an environment where an LSP may
belong to multiple alliances.

From the sustainability perspective, it would be ideal to consider the set-
ting where the LSPs are co-operative, and the problem of how planning can
be performed on an existing alliance structure that maximizes the system wide
objective of total travel cost. We formulate this problem as a multi-alliance multi-
depot pickup and delivery problem with time windows (or MAD-PDPTW).

The main contributions of this work are summarized as follows: (1) We pro-
pose a MIP model to formulate the MAD-PDPTW; (2) We develop a tabu search
based heuristic method to solve the problem on large instances; (3) To solve the
problem more efficiently, we decompose MAD-PDPTW to a two-stage problem,
which first learns the delivery cost from data and then optimizes the request
reassignment and vehicle routing; (4) We demonstrate the significance of the
proposed learning and optimization framework (achieve lower delivery cost with
less computational time) and obtain managerial insights for LSPs.

2 Related Work

This section provides a summary of existing studies which focus on collabora-
tion in logistics and distance approximation in vehicle routing problems (VRP).
Collaboration in logistics industry has been a prevalent topic in urban logistics
studies which normally can be achieved in two ways: vertically and horizontally
[19]. In this paper, we focus on the horizontal collaboration which involves logis-
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tic service providers (LSPs) at the same level in supply chains. A comprehensive
description about the opportunities and impediments of horizontal collabora-
tive logistic service was conducted by [3]. They did a survey include 1537 LSPs
in Belgium, and the results shows that most of LSPs believe collaboration will
increase their profits and improve service quality.

Horizontal Collaboration: Various studies for horizontal collaboration in
logistic systems have been published in last decades. Readers can refer to [6],
[21] for more details. Two main themes can be further summarized: (1) develop
optimization models and mechanisms for collaborative network planning and
design problems to help LSPs increase profits or decrease costs; and (2) propose
cooperative and non-cooperative game theory methods for cost/gain sharing to
establish and keep better collaborations. This study will focuses on the optimiza-
tion models for collaborative multi-LSPs delivery problem, the literature review
is conducted accordingly. Berger et al. [1] proposed a decentralized control and
auction exchange mechanisms to maximize total profits through collaboration
among individuals carriers. Similar research has been conducted by Lai et al. [11],
which focus on a centralized control with iterative auction to minimize empty
traveling miles. Dahl and Derigs [4] studied a pickup and delivery vehicle routing
problem with time windows (PDVRPTW) to minimize total delivery cost. Li et
al. [13] also studied the pickup and delivery problem with requests exchange to
maximize total profits. [18] solved a multi-depot vehicle routing problem to min-
imize the total distance traveled with a local search method. Unlike exchange
requests or vehicle sharing, [5] introduced a new vehicle routing problem that
customers can be served by more than one carrier. It aims to minimize overall
operational cost by such collaboration. For more various vehicle routing prob-
lem in a collaborative setting, readers can refer to the survey investigated by
Gansterer and Hartl [8].

Approximations of Routes: The VRP has been well studied from the last
decade. Many exact and heuristic algorithms have been investigated to solve
it optimally or in a short computational time. Different from the optimization
algorithms which aims to get the optimal or good solutions, the continuum ap-
proximation (CA) models are used to approximate the travel distance of routes
without solve the complex routing problem. Those CA models can provide faster
and good approximation of route distance, which are developed and applied for
many applications, such as terminal design problem [17], supply chain distribu-
tion network design [14] and collaboration mechanisms design [7]. While, in the
face of large-scale complex problems, most CA approaches hold a low accuracy
performance. Recently, few studies [15, 16] use machine learning approaches to
direct estimate the total travel distance of routes. In this paper, we develop a
machine learning approach to estimate the delivery cost for pickup and delivery
problem with time windows (PDPTW). And with the help of the learned cost,
we can further integrate it in requests assignment procedure, and decide which
alliance the order should be allocate to.

As discussed above, most studies have devoted to optimize collaborative plan-
ning and operation problems from a perspective of entire coalition, whereas all
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LSPs take part in a single coalition. Zhang et al. [22] investigated the less-
than-truck collaboration decision making problem for the e-commerce logistic
network, which objective is maximize the total profit of the entire alliance. To
our best of knowledge, Guajardo et al. [10] is the first work that studied the
coalition configuration problem which allows company can collaborate in more
than one coalition (we prefer to use the term ’alliance’ in this paper) in collab-
orative transport. They developed optimization model to help finding the best
coalition configuration. Hence, research gaps are identified form the review of
extant literature. In our paper, alliances have been established as inputs in our
model, and LSPs in one alliance can share requests and do centralized planning
for urban delivery services. More specifically, we focus on optimizing collabora-
tive urban delivery service, with some LSPs can collaborate in more than one
alliance.

3 Problem Formulation

In this section, we present our collaborative urban logistic delivery problem in the
context of multiple LSPs and multiple alliances. Since each LSP may specialize
in fulfilling different types of goods (e.g. groceries and electronics) which may
or may not be loaded in the same vehicle, and each may have their own trusted
partners, it is plausible to have multiple alliances with overlapping participants.

Fig. 1. Multiple alliances with overlapping LSPs

Figure 1 gives an example comprising 8 LSPs and 3 alliances. Each node is
defined as a LSP, and if two nodes are connected with an edge, it represents
those two LSPs that can share requests. So the alliance is defined as a complete
sub-graph, in which a unique edge connects every pair of distinct vertices. Here,
we have alliances [2, 3, 4], [1, 2, 5, 6] and [1, 7, 8] in this example. This study aims
to assess the potential benefits of collaborative routing among LSPs by sharing
requests and joint planning, which means a centralized platform will decide the
optimal assignment of requests among each alliance with the constraint that
requests cannot be shared between different alliances.

Note that if this problem were to be treated as a whole, one will need to simul-
taneously decide how LSPs’ own requests are distributed to different alliances,
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Notation Description

G A complete direct graph
N Set of all LSPs
A Set of all alliances as well as depots
K Set of vehicles
R Set of all requests, each request r has a pickup node and delivery node
P Set of pickup nodes
D Set of delivery nodes
V Set of all nodes in graph G
Ra Set of requests only belong to alliance a
Ka Set of vehicles only belong to alliance a
da Depot node for alliance a
[ei, li] Time windows for node i, earliest pickup time and latest delivery time
si Service time at location i
qi Weight of goods to pickup or delivery at node i
cij Travel cost between node i and node j
tik Time node i served by vehicle k
wik Weight of vehicle k after visit node i
Q Vehicle capacity

yijk
Binary variable, 1 if the vehicle k visited node j directly after visited
node i, 0 otherwise

Table 1. Notations

and how routing is performed on the assigned requests within each alliance. It
is worth noting that even for a small-scale problem instance, a straightforward
meta-heuristic approach such as Tabu Search may not be computationally effi-
cient and may not provide an effective solution, as our experiment would show.

Before presenting our mathematical programming model, we first introduce
notations in Table 1.

Given the above notations, we formulate the multi-alliances multi-depots
vehicle routing problem with pickup and delivery (MAD-PDPTW) as follows:
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Fig. 2. A two-stage learning and optimization framework to solve the MAD-PDPTW

minimize
∑
i∈V

∑
j∈V

∑
k∈K

cijyijk (1)

subject to
∑
i∈V

∑
k∈K

yijk = 1 ∀j ∈ P ∪D (2)∑
i∈V

yijk −
∑
i∈V

yjik = 0 ∀j ∈ P ∪D,∀k ∈ K (3)∑
i∈V

yidak =
∑

j∈P∪D
ydajk ≤ 1 ∀a ∈ A,∀k ∈ Ka (4)

∑
j∈P∪D

yijk −
∑

j∈P∪D
y(i+r)jk = 0 ∀i ∈ R,∀k ∈ K (5)

tik + si + cij −M(1− yijk) ≤ tjk ∀i, j ∈ P ∪D (6)

ei ≤ tik ≤ li ∀i ∈ P ∪D,∀k ∈ K (7)

tik ≤ t(i+r)k ∀i ∈ P (8)

tak = 0 ∀a ∈ A,∀k ∈ K (9)

wjk ≤ wik + qj +M(1− yijk) ∀i, j ∈ V,∀k ∈ K (10)

wjk ≥ wik + qj −M(1− yijk) ∀i, j ∈ V,∀k ∈ K (11)

wik ≤ Q ∀i ∈ V,∀k ∈ K (12)

yijk = 0 ∀i /∈ Ka,∀j /∈ Ka,∀k ∈ Ka (13)
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We divide constraints into four groups. The first group of constraints deals
with the in and out flow between each pickup and delivery node. Constraint
(2) guarantees that each pickup or delivery node will be visited exactly once.
Constraint (3) ensures that each pickup or delivery node, it must be served
by the same vehicle k. Constraint (4) imposes constraints on each depot and
ensures that each vehicle k belongs to depot Kl will start and back to depot d
with at most once. Constraint (5) guarantees the pickup node and delivery node
belonging to one request will be served within the same tour.

The second group of constraints deals with visiting precedence of pickup
nodes, delivery nodes and time windows. And constraint (6) is the Miller-Tucker-
Zemlin (MTZ) sub-tour elimination constraint. If yijk = 1, then we have tik +
si + cij ≤ tjk, otherwise we have a constraint with right hand side (RHS) is
a enough big positive value. Constraint (7) is time windows constraints, which
guarantee the delivery time for each request must in the time window. Constraint
(8) is precedence constraint that ensure each request is serviced at its pick up
node first before the delivery. Constraint (9) denotes the arriving time for each
vehicle at the depots equals to 0.

The third group of constraints are the capacity constraints. Constraints (10)
to (11) calculate the vehicle weight after visiting each node. In addition, we have
qi = −qi+r for i ∈ Rp. And constraint (12) means for each vehicle k after serve
node i, the weight of it cannot exceed the capacity.

The final constraint is the request assignment constraint. It ensures that
vehicles belonging to one alliance cannot deliver a request belonging to other
alliance. In other words, each alliance is responsible for its own requests.

4 Two-Stage Learning and Optimization Framework

The above section introduces a MIP model to determine the optimal request as-
signment as well as routing of multiple alliances. In the MIP model, the decision
variable yijk not only decide the delivery sequence from node i to node j, but
also make decision for LSPs participating in multiple alliances on request assign-
ment (choose the alliance to share requests). However, the underlying problem
is NP-hard, which is computationally intractable to cope with larger instances.
In this section, we propose a learning and optimization framework consisting
of two stages from requests assignment to vehicle routing. Specifically, the first
stage makes decisions for LSPs participating in multiple alliances, which alliance
each request should be assigned to (Section 4.1). The second stage adopts a tabu
search based heuristic algorithm to solve the PDPTW for each alliance with the
assigned requests (Section 4.2). The whole framework is depicted in Figure 2.

4.1 Delivery Cost Prediction, Request Assignment

In this subsection, we first discuss the prediction model for the delivery cost for
each alliance. Second, we use the estimated delivery cost as input parameters
for requests assignment.
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Cost prediction: Previous research has proposed approximate analytic for-
mulas for TSP and VRP under various application scenarios as described in
the literature review. However, those analytic based methods always have poor
performance on larger problems or complex real-world constraints (e.g., capac-
ity vehicle routing problem with time windows). Here, we use machine learning
models to predict the delivery cost for PDPTW (in this paper, we take the de-
livery cost as the total travel distance). We first generate the promising features
for the total travel distance. The general classes of predictors are based on the
number of locations, visiting area, the distance between nodes, node dispersion,
time windows, and the number of routes. Table 1 lists all the features included
in our learning model, and there is a total of 19 features used in our prediction
model.

Features Definitions

f1 Number of locations need to be visited
f2, f3 Min/max distance between customers and depots
f4, f5 Min/max x distance between customers and depots
f6, f7 Min/max y distance between customers and depots
f8 Average distance between customers and depots
f9 Average x distance between customers and depots
f10 Average y distance between customers and depots
f11 Standard deviation of distance between customers (and depots)
f12 Area of the smallest rectangle covering customer locations
f13 Area of the smallest rectangle covering customer and depot locations
f14 Sum of the length of time windows
f15 Standard deviation of the length of time windows
f16 Sum of the length of overlap time windows
f17 Standard deviation of the length of overlap time windows
f18 Total demand/Vehicle capacity ratio
f19 Vehicle capacity/Average demand ratio

Table 2. Features for total travel distance prediction

After extracting the features of the PDPTW, the second step is to get the
actual solutions to the problem instances as labeled data. Since PDPTW is an
NP-hard problem, it would be computationally challenging to generate a large
number of exact solutions to be used as label data. In this paper, we find a
proxy for the best solution by applying our tabu search algorithm (presented in
the next section) instead. Experimental results show that our algorithm comes
within a 5% gap on average compared with the best known solutions, and this
gives the assurance that the labeled data generated by this approach is accurate
and precise. The next step is to select the appropriate machine learning model
compatible with the request assignment optimization. We tried a wide range of
machine learning regression models in this work, including linear models, such as
ordinary least square, LASSO and ridge regression, and nonlinear models, e.g.,
decision trees and random forest. In summary, we want to identify prediction
models that can achieve both good performance and interpretability. In the
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numerical experiments of Section 5, we show the selection details considering
the above criteria.

Request assignment: In the MAD-PDPTW, one request can only be as-
signed to one alliance, but the assignment for request belongs to LSPs participate
in more than one alliance (e.g., LSP 1 in Figure 1) has multiple options. There-
fore, we can divide the whole requests into two categories: (1) requests waiting
for assignment; and (2) alliance base requests which only belong to one spe-
cific alliance. Assume there are I = {1, 2, ..., |I|} requests waiting for assign to
J = {1, 2, ..., |J |} alliances. Each request must be served and there is no limit on
how many requests each alliance can have. Then the request assignment problem
is to find a partition of the requests waiting for assignment with the minimum
total cost. As a result, the request assignment problem can be cast as the set
partitioning problem:

min
∑
j∈Z

cjvj (14)

s.t.
∑
j∈Z

δijvj = 1 ∀i ∈ I (15)

∑
j∈J

vj = |A| (16)

vj ∈
{

0, 1
}

(17)

where Z is the set of all possible partition of requests. δij equals to 1 if request i
belongs to subset j, and 0 otherwise. Constraints (15) ensure that every request
is assigned to a alliance and constraint (16) ensures the number of selected sub-
sets equal to the number of alliances |A|. The problem involves an exponential
number of variables (columns) since the number of possible subsets grows ex-
ponentially in the number of requests waiting for assignment. And predict the
cost cj of all possible partition of request is also very time-consuming. Instead
of enumerating all the possible partitions, we provide a simply greedy heuristic
approach to solve the request assignment iteratively. We randomly rank requests
sequence of unassigned requests, and assign one request to one alliance at each
iteration. Here, variable aij denotes the cost for request i assigned to alliance
j. The value of assignment cost aij is predicted by the machine learning model
introduced in cost prediction. In this case, the problem becomes a simple fa-
cility location problem and we can simply assign each request i to the alliance j
with lowest cost aij . Then the total cost equals to

∑
i∈I,j∈J aij .

4.2 Tabu search algorithm

In this subsection, we first develop an efficient tabu search algorithm to solve the
PDPTW for each alliance. Furthermore, with minor adjustments by including
constraint (12) into the algorithm, we can use it to solve the MAD-PDPTW,
which is used as a baseline method in our numerical experiments in Section 5.

Tabu search [9] is one of the well-known meta-heuristics. It takes a potential
solution and search its neighborhood iteratively to find improved solutions. It
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has been applied successfully to various routing problems [20, 2]. In what fol-
lows, we introduce the full framework of our algorithm, including initial solution
construction and the tabu search algorithm.

The procedure to construct an initial solution s0 is described here. We con-
struct the initial solution s0 where not all the constraints defined in PDPTW
need be satisfied. Given requests set R, pickup node set P , delivery node set D,
and available vehicles K as inputs, for each vehicle k ∈ K, we iteratively select
request c from the pickup set P , and check whether it satisfy the earliest pickup
time constraint ei ≤ ec ≤ ei+1. If yes, we add the both the pickup node and
delivery node of requests c to vehicle k, otherwise, we put it in a new vehicle
k + 1. When there are no requests in set P , we end up with the initial solution
s0.

Algorithm 1 Tabu search algorithm

Input: s0, best solution s∗ = s0, tabu list L = ∅
Output: Best solution s∗

1: Let current solution sc = s0
2: while i ≤ Imax do
3: Do insertion and removal operation
4: Get the neighborhood solution Ns of sc
5: for si ∈ Ns do
6: Calculate fitness function f(si)
7: if si /∈ L and f(si) ≤ f(sc) then
8: sc = s0
9: end if

10: end for
11: if f(sc) ≤ f(s∗) then
12: s∗ = sc
13: end if
14: if Size of L ≥ Lmin then
15: Update L
16: end if
17: end while

Based on the initial solution found, the tabu search based heuristic algorithm
is described in Algorithm 1. In our paper, the termination condition is that
the maximum number of iterations Imax is reached. And the fitness function
is described as f(s) = C(s) + α · Q(s) + β · T (s), where C(s) is the value of
objective function (1), Q(s) denotes the total amount of weights that exceed
the vehicle capacity and T (s) represents the total unit of times that violate the
time windows constraint. As can be seen, the fitness function consists of two
parts: the original objective function and the penalty cost. Parameters α and β
are both positive penalty terms that make the solution s become more likely to
meet the capacity and time windows constraints, respectively. To achieve this,
we introduce a new parameter θ with small value (e.g., 0.1) as step size to adjust
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the value of α and β. If either Q(s) or T (s) not equals to 0, we multiply it by
(1 + θ) in the next iteration. Another important part is the tabu list, which
represents a set of solutions that have been visited in the recent past. In this
paper, we define the maximum length of tabu list is Lmax and use it to memorize
the insertion operations when we insert the pickup node i and delivery node i+r
to route k. In order to solve the MAD-PDPTW, we only need to add constraint
(12) before doing insert and remove operation, to ensure that nodes i and i+ r
can only be added to or removed from route k ∈ Ka that belongs to the same
alliance.

5 Numerical Experiments

This section presents experimental setup for problem instance generation, de-
livery cost prediction and compares our learning and optimization framework
against tabu search in solving the MAD-PDPTW. Computational experiments
are conducted to validate the developed framework’s performance for multiple
alliances under different kinds of settings. All computational experiments are
conducted on a desktop computer with Intel Core i5 2.3 GHz with 16GB RAM.
The tabu search algorithm are implemented in Java, while the machine learning
models are coded in Python 3.7.

5.1 Problem Instance Generation

The dataset proposed by [12] is a popular standard dataset in the study of
PDPTW, and is used to generate sampled PDPTW instances in our paper.
We need to construct two types of instances, which are synthesized from the
PDPTW benchmark dataset, with the first one used as a training and testing
dataset for delivery cost prediction, while the second one is prepared for running
MAD-PDPTW. For the first type of instances, we randomly sample with the
total number of requests of each instance are in the range of 100 to 200. The
labeled data of each PDPTW instance is computed by the tabu search algorithm
described in Section 4. We obtain 500 instances in total, of which 400 are ran-
domly selected as the training set, and the remaining 100 serve as the test set.

Notations Description

x The x coordinate of the pickup/delivery locations
y The y coordinate of the pickup/delivery locations
qi Demand of node i
ei Earliest pickup/delivery time of node i
li Latest pickup/delivery time of node i
si Service time of node i
pi Pickup (index to sibling) of node i
di Delivery (index to sibling) of node i
Li LSP index of node i

Table 3. Instances generated from the PDPTW benchmark dataset
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To set up the multiple alliance structures, we construct a second type instance

Fig. 3. Alliances structure setting for the case study

by sampling from the original data and randomly reallocating the requests to
LSPs and alliances. Compared to the first type of instances, the second type
has one more column with request ownership information. Table 2 gives a brief
description of the second type of sampled instances. Table 3 and Figure 3 list
the detailed parameters and shows the alliance structures for all second type test
instances.

Parameters Settings

Number of instances 15
Number of LSPs 3, 5, 6, 8, 10
Number of alliances 2, 3, 4, 5
Number of requests 18, 60, 65, 75, 105, 120, 135, 150, 180, 185

Table 4. Main parameter settings for the case study

Model 5-CV R2 5-CV MAPE Test R2 Test MAPE

LR 0.969 0.067 0.904 0.140
LASSO 0.966 0.072 0.972 0.066
Ridge 0.967 0.071 0.953 0.095
Elastic Net 0.947 0.101 0.939 0.099
Decision Tree 0.937 0.089 0.961 0.085
Random Forest 0.965 0.068 0.966 0.069

Table 5. Performance evaluation of the machine learning models

5.2 Prediction Model Selection

We test 5 different machine learning models: linear regression, LASSO regres-
sion, ridge regression, elastic net, decision trees, and random forest. To achieve
the best performance, we implement 5-fold cross-validation (5-CV) to select the
best hyper-parameters (e.g., coefficient value for the regulation term, maximum
depth of the tree) for all models. All the training and validation procedures are
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No. Structure Alliance LSPs Requests Request Configuration

1 1 2 3 18 [6, 6, 6]
2 1 2 3 65 [30, 10, 25]
3 1 2 3 65 [20, 15, 30]
4 1 2 3 65 [25, 5, 35]
5 2 2 6 60 [10, 10, 10, 10, 10, 10]
6 3 3 6 105 [30, 10, 20, 10, 20, 15]
7 3 3 6 105 [40, 5, 25, 10, 15, 10]
8 3 3 6 120 [30, 15, 30, 20, 15, 10]
9 4 4 8 135 [20, 10, 5, 30, 15, 10, 15, 30]
10 4 4 8 135 [15, 15, 5, 20, 25, 15, 20, 20]
11 4 4 8 135 [30, 5, 15, 25, 10, 20, 10, 20]
12 5 5 10 150 [20, 10, 20, 5, 15, 10, 15, 15, 20, 20]
13 5 5 10 180 [30, 15, 25, 20, 15, 30, 10, 10, 10, 15]
14 5 5 10 185 [25, 5, 25, 30, 10, 20, 15, 20, 10, 25]

Table 6. Detail parameters setting for all test instances

implemented in Python 3.7. Table 4 summarizes the average cross-validation R2

value and the mean absolute percentage value (MAPE). Let ls denotes the best

solutions we get by tabu search, l̂s denotes the predicted delivery cost for a sam-

ple s in each fold S of the training set. The MAPE is defined as: 1
|S|
∑

t∈S
|ls−l̂s|

ls
.

Based on the evaluation results, all the above machine learning models achieve
reasonably good performance on delivery cost prediction. In particular, the
LASSO regression model has the lowest test error and highest R2 score. Be-
sides, LASSO estimates sparse coefficients that reduce the number of features in
the model and maintain good interpretability. Hence, we decide to use LASSO
as the prediction model in our framework.

5.3 Performance Comparison

This subsection, we compare the results on delivery costs obtained by (1) self-
routing by LSPs without collaboration, (2) collaborative routing with alliances
solving by tabu search heuristic alone, (3) collaborative routing with alliances
solving by proposed learning-based optimization framework and (4) collaborative
routing with fully collaboration, which means each LSP can cooperate with each
other and exchange requests from both the computational and management
perspectives. Table 5 gives the detail configurations for all test instances. That
include the instances, alliances structures shown in Figure 3, number of alliances,
number of requests and LSPs for the instance. The last column shows the request
configuration information which indicates the number of requests belongs to each
LSP. And experiments results of all instances are shown in Table 6.

Columns I, F and L denote the delivery costs obtained by self-routing with-
out collaboration, collaborative routing with fully collaboration and collabora-
tive routing with alliances solving by our learning-based approach, respectively.
Columns Amin, Amax denotes the minimal and maximal delivery cost obtained
for collaborative routing with alliances after run the tabu search alone 5 times.
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No. G I F L Amin Amax S1 (%) S2 (%) Smin (%) Smax (%) T1 (s) T2 (s)

1 1609 1894 1582 1642 1609 1666 13.31 16.47 -2.05 1.44 1.0 1.5
2 Fail 5699 4165 4660 4915 5096 18.23 26.92 5.18 8.50 20 50
3 Fail 5263 3958 4706 4587 4784 10.58 24.80 -2.59 1.63 21 51
4 Fail 5067 3855 4804 4747 4887 5.19 23.92 -0.64 1.67 19 47
5 Fail 5659 3705 4550 4678 4785 18.45 34.53 2.81 5.16 18 49
6 - 8990 5685 7337 7805 7935 18.39 36.76 5.99 7.17 43 57
7 - 8499 5711 7342 7613 7763 13.61 32.80 3.79 5.65 40 62
8 - 12857 8955 11058 11286 11886 13.99 30.35 2.02 6.96 59 94
9 - 14978 9472 12856 13434 13628 14.17 36.76 4.30 5.66 65 93
10 - 14969 10187 12711 13205 13676 15.08 31.95 3.74 7.06 64 102
11 - 14416 10536 12302 13313 13700 14.66 26.91 7.59 10.20 55 104
12 - 17060 10572 14005 14986 15241 17.91 38.03 6.55 8.11 81 134
13 - 21029 11375 16802 17512 20297 20.10 45.91 4.05 17.22 106 226
14 - 19850 13645 16550 17166 17576 16.62 31.26 3.58 5.83 87 223

Table 7. Experimental results for all test instances

Columns S1, S2 are the cost savings in percentage achieved by collaborative
routing with alliance and fully collaboration, compare to self-routing.

For small and medium size instances (instances No.1 to No.5), we also im-
plement the exact method in Gurobi. It find our tabu search method can obtain
the optimal solution for Instance 1. And for instances No.2 to No.5, Gurobi fails
to give feasible solutions in 3600 seconds. The results obtained are depicted in
column G. It shows that our tabu search method can achieve optimal solution
as same as Gurobi for instance No.1. However, for medium size instances (in-
stance No.2 to No.5), Gurobi fails to find feasible solutions in 3600 seconds, and
both our tabu search and learning-based framework can find good solutions in
less than 1 minutes. As shown in columns S1 and S2, we can find that both
collaboration with alliance and fully collaboration always lead to fewer delivery
costs compares to self-routing. Column Smin and Smax are the minimum and
maximum savings that the learning framework can achieve compare to the di-
rect use heuristic method (tabu search) alone. We find that for the small and
medium size of instances (No.1 to No.5), our learning and optimization frame-
work can obtain solutions as good as tabu search. While for moderate or larger
test instances with denser alliance structure graph (No.2 to No.14), our learning
framework is about 2% to 10% better than use heuristic method (tabu search)
alone, and it can achieve up to 17% cost savings. We also compare the running
times of our proposed learning and optimization framework and directly using
heuristic method (tabu search), as shown in column T1 and T2. It shows that
the our new approach needs less computing resources compare to the heuristic
method (tabu search), especially in large scale cases.

At last, for a two-stage approach, prediction error will always exists in stage
one. Here, to better evaluate the benefits of our learning-based approach, we
also investigate the influence of error cascade. We incorporate the errors occurs
in prediction stage via an error term ẽ into request assignment stage. Column
E shows the estimate error of assignment cost will reduce the quality of our
learning-based approach, but still better than using tabu search alone.
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6 Conclusion

This paper attempted to address an emerging concept in a collaborative urban
delivery problem involving multiple alliance structures. Compared to individ-
uals performing optimal planning by LSPs themselves, our experiments show
that centralized collaborative routing can potentially reduce the total operat-
ing cost by about 20%. Compared to centralized collaborative routing with the
direct use of a heuristic algorithm, our experiments show that our learning-
based optimization approach can reduce the total operating cost up to 17% with
the less computational time required. Furthermore, the learning-based approach
is a framework so methodologically, which means we can replace tabu search
with any other heuristic methods to improve the results. We observe that (1)
more LSPs joining alliances generally produces more cost savings; (2) the al-
liance structure has a significant impact: the denser the alliance structure is,
the more substantial savings we can achieve, which suggests that overlapping
alliance structure allows us to perform logistics more sustainably. This saving
can be translated into profit-sharing schemes among participating LSPs, thereby
incentivizing them to join such an alliance structure. Profit sharing mechanisms
are another topic worthy of future works which fall outside the scope of this
paper. In the future, we also aims to provide a robust optimization model to
handle the errors for cost prediction in the first stage.

References

1. Berger, S., Bierwirth, C.: Solutions to the request reassignment problem in col-
laborative carrier networks. Transportation Research Part E: Logistics and Trans-
portation Review 46(5), 627–638 (2010)

2. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. Journal of the Operational research society
52(8), 928–936 (2001)

3. Cruijssen, F., Cools, M., Dullaert, W.: Horizontal cooperation in logistics: oppor-
tunities and impediments. Transportation Research Part E: Logistics and Trans-
portation Review 43(2), 129–142 (2007)

4. Dahl, S., Derigs, U.: Cooperative planning in express carrier networks—an em-
pirical study on the effectiveness of a real-time decision support system. Decision
Support Systems 51(3), 620–626 (2011)

5. Fernández, E., Roca-Riu, M., Speranza, M.G.: The shared customer collaboration
vehicle routing problem. European Journal of Operational Research 265(3), 1078–
1093 (2018)

6. Ferrell, W., Ellis, K., Kaminsky, P., Rainwater, C.: Horizontal collaboration: op-
portunities for improved logistics planning. International Journal of Production
Research 58(14), 4267–4284 (2020)

7. Gansterer, M., Hartl, R.F.: Request evaluation strategies for carriers in auction-
based collaborations. OR spectrum 38(1), 3–23 (2016)

8. Gansterer, M., Hartl, R.F.: Collaborative vehicle routing: a survey. European Jour-
nal of Operational Research 268(1), 1–12 (2018)

9. Glover, F., Laguna, M.: Tabu search. In: Handbook of combinatorial optimization,
pp. 2093–2229. Springer (1998)



16 Yang. J et al.
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