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Shell Theory:
A Statistical Model of Reality

Wen-Yan Lin, Siying Liu, Changhao Ren, Ngai-Man Cheung, Hongdong Li, Yasuyuki Matsushita

Abstract—The foundational assumption of machine learning is that the data under consideration is separable into classes; while
intuitively reasonable, separability constraints have proven remarkably difficult to formulate mathematically. We believe this problem is
rooted in the mismatch between existing statistical techniques and commonly encountered data; object representations are typically
high dimensional but statistical techniques tend to treat high dimensions a degenerate case. To address this problem, we develop a
dedicated statistical framework for machine learning in high dimensions. The framework derives from the observation that object
relations form a natural hierarchy; this leads us to model objects as instances of a high dimensional, hierarchal generative processes.
Using a distance based statistical technique, also developed in this paper, we show that in such generative processes, instances of
each process in the hierarchy, are almost-always encapsulated by a distinctive-shell that excludes almost-all other instances. The result
is shell theory, a statistical machine learning framework in which separability constraints (distinctive-shells) are formally derived from
the assumed generative process.

Index Terms—high dimension, statistics, semantic manifold, anomaly detection, one-class learning, life-long learning, incremental
learning, hierarchical models, generative models

F

1 INTRODUCTION

W E view the world through the lens of semantic concepts
like cats and dogs, houses and mountains, streets and cars.

Such semantics help us to frame our thoughts, communicate with
our neighbors, formulate machine learning problems. Semantics
seem so intuitive, we seldom think about them; however, when we
do, semantics begin to seem rather peculiar.

The salient feature of semantics is its ability to unambiguously
group a huge variety of different objects into a single class. For
instance, members of the cat class can have long or short fur; be
big or small; be orange, white or black. Despite the variations, we
almost invariably agree on what is and is not a cat. This raises a
series of fundamental but overlooked questions: Why is semantic
classification possible? What are the constraints underlying it?
And perhaps, most importantly, what are semantics?

To formulate principled answers to these questions, we attempt
to develop a mathematical model of the generative processes
that give rise to our reality, At first, modeling reality seems
impossibly difficult. However, language can itself be considered
a successful model of reality. This leads us to a solution based on
mathematically mirroring the semantic structure of language.

Our model is based on two key observations. First, semantics
are rarely (if ever?) defined in terms of a single attribute. Rather,
semantics appear to reference patterns that only emerge when
considering multiple attributes. This suggests a formulation based
on high dimensional statistics. Second, each object seems to be si-
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multaneously a member of several hierarchically related semantic
classes. For instance, a Siamese cat is also a cat, a mammal, an
animal, etc. This suggests a hierarchical relationship between key
statistical dependencies. Using these observations, we develop the
following mathematical representation of reality:

• Objects are represented by high dimensional vectors of
attributes. These are also termed data-points;

• Data-points are outcomes of some high dimensional,
stochastic generative processes;

• Generative processes are related to one another through a
global hierarchy;

• Semantics are symbolic representations of individual gen-
erative processes.

The challenge lies in fusing these representations into a
coherent mathematical model. Unfortunately, current statistical
techniques tend to breakdown as dimensions increase. This is
because most statistical techniques are formulated in terms of
probability density. Other things being equal, the volume of a
statistical sample space increases exponentially with the number
of dimensions, making high dimensional sample spaces vast and
sparsely populated; this in turn, makes density ill-defined and
causes the failure of many basic statistical tools.

We address this problem by developing a distance based
approach to statistics. The vastness of a high dimensional sample
spaces makes co-incidental similarity extremely rare. Thus, high
dimensional distances can acts as proxies for statical dependence
and vice-versa, providing us with a simple but effective mechanics
for statistical analysis. Applying this to high dimensional, hierar-
chal generative processes, we show that the instances (objects)
of each generative process (sematic label) are almost-always be
encapsulated by a distinctive-shell (separability constraint) that
excludes almost-all other instances. We term this phenomenon
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shell theory. 1

Distinctive-shells provide the first, explicit mathematical rep-
resentation of the separability constraints underlying machine
learning; reformulating/ reinterpreting algorithms in terms of the
separability constraints provides a refreshingly new perspective
to many machine learning problems. Examples discussed in this
paper include:

Surprisingly simple manifold discovery: Distinctive-shells
are probably the often hypothesized semantic manifold. As
distinctive-shells can be directly estimated from data statistics,
complex manifold discovery algorithms can be replaced with four
lines of Python code.

Shell-Normalization: We show how the sensitivity of
distinctive-shell’s can be tailored to specific problems through a
data pre-processor which we term shell-normalization. From this
perspective, traditional normalization is a special case of shell-
normalization which is tailored to the multi-class classification
problem.

From One Class to Multiple Classes: Shell theory provides
a framework whereby independently trained one-class learners
can be fused to form a multi-class classifier. This unifies the two
problems into a learning mechanics which is eerily similar to that
employed by humans.

Anomaly Detection: Shell theory shows how anomaly detec-
tion can be formulated as a robust least squares shell-fitting. This
allows for the development of algorithms that are simple, fast and
reliable.

Statistical Maximum Distance: The geometric maximum
distance between two unit-normalized data-points is 2. Shell
theory makes the quirky prediction that there exists a “statistical
maximum distance” of

√
2, which is much less than the geometric

maximum.
In summary: This paper takes an unorthodox approach to

machine learning. Rather than the traditional focus on designing
algorithms for discovering semantic representations, we focus on
understanding the natural patterns that semantics reference. As one
of the first works in this direction, it is almost-surely incomplete;
however, we feel it is essential to start a conversation on this
topic. After all, without understanding the semantics used for
understanding, have we understood anything [1]?

1.1 Related Works
This paper builds on a foundation established by the wider ma-
chine learning community. One set of works we found especially
inspiring were those linking Newtonian mechanics to the semantic
manifold hypothesized by the machine learning community [2],
[3], [4]. This is an intriguing insight. However, modeling an entire
generative process makes for very complex mathematics; hence,
it is hard to make specific machine learning predictions with such
models. To simplify the mathematics, shell theory only models
key aspects of the generative process.

One key aspect is surely high dimensions. Indeed, a number
of works have already used high dimensional statistics to derive
conclusions that are similar to the aforementioned physics based
techniques [5], [6], [7]. However, such mathematical techniques
are still in their infancy and conclusions often differ wildly. Thus,
some models claim high dimensions are intrinsically cursed [6],
[7], [8], while others use the same constraints to show it is a

1. The term “shell”, is a reference to the surface of a high dimensional
hyper-sphere.

blessing [5], [9], [10]. Shell theory provides a unifying framework
in which it is possible to derive both curse and blessing by
tweaking the assumed statistical dependency.

Shifting our focus from the fields of physics and mathematics
to that of machine learning, we see a similar push for more inter-
pretable techniques [4], [11], [12], [13], [14], better understanding
of the generative processes [15], [16], [17], [18], [19], [20],
[21], [22], [23] and hypothesized existence of naturally occurring
groupings [5], [24]. Gaussian Mixture Models and Expectation
Maximization [25], [26], [27] are early examples of the use of
statistics for interpretable machine learning. The tradition has
since been extended to deep-learning, with notable examples being
variational auto-encoders [28], [29], contrastive-loss [24], [30] and
triplet-loss [31], [32].

In traditional machine learning, statistical formulations are al-
most density based; however, they typically avoid explicit estima-
tion of sample density. Rather, they tend to assume that probability
densities follow a Gaussian distribution, that can be parametrized
in terms of its centroid. This leads to Gaussian mixture algorithms
that are remarkably similar to algorithms derived through shell
theory. Perhaps unsurprisingly, such algorithms are often effective
even in high dimensions. Their drawback is the occasional gap
between theoretical predictions and empirical observation (for
example, classification may be accurate even if sample density
does not corresponds to the algorithm’s predicted probability
density); this sometimes leads to “mysterious failures” that are
attributed to the “curse-of-dimensions”.

From the perspective of traditional machine learning, shell
theory can be seen as providing an alternative, more rigorous,
derivation of the traditional Gaussian mixture algorithm; this
provides better alignment of theoretical predictions with empirical
observation and allows statistical analysis to be extended to new
domains like semantic manifolds and normalization.

Finally, shell theory has a rather interesting relationship with
artificial neural networks (deep-learners). Neural networks like
VGG [33], ResNet [34], GAN [35], [36] and variational auto-
encoders [28], [29] are very effective at specific tasks. How-
ever, networks must be customized for each task, leading to
a proliferation of problem specific networks. By making the
separability constraints explicit, shell theory allows a single a pre-
trained neural network to perform well on many different machine
learning problems (Sec. 6, Sec. 7, Sec. 8), with an accuracy that is
comparable to or better than the state-of-the-art.

2 PRELIMINARIES

When developing statistical models, the instinct is to think in
terms of probability density functions; however, density becomes
an increasingly ill-defined concept, as the number of dimensions
increase. Other things being equal, the volume of a statistical
sample space will increase exponentially with the number of
dimensions. As a result, high dimensional sample spaces tend to
be huge. In fact, they may be so huge that even all data in the
world can only populate them sparsely. This means that in high
dimensions, probability density often makes a poor approximation
of sample density and vice-versa.

Although increasing dimensions take away a statistical tool,
they provide another. Vast sample spaces make coincidental sim-
ilarity is rare. If so, distances between high dimensional random
vectors would reflect statistical dependencies and vice-versa. We
formalize this intuition using a set of theorems, which make
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distance based statistical analysis possible. We use these theorems
to statically model the origins of our data, giving rise to shell
theory.

Shell theory introduces concepts, notations and lemmas, which
may seem intimidatingly unfamiliar. To aid understanding, we
have traced each derivation back to first principles; we also provide
an introduction to statistical modeling, random variables and high
dimensions, which we urge all readers to peruse.

2.1 Mathematical Preliminaries
Following the conventions in statistics, we use random variables
to denote the outcomes of stochastic events. Random variables
are always capitalized; thus, the outcome of a dice throw may be
denoted by random variable Z .

Random variables are place-holders for undetermined out-
comes and have no specific value. Specific outcomes are referred
to as instances or data-points. These are denoted by the small letter
variant of their respective random variables, with z representing
an instance of Z .

Random vectors are formed by concatenating two or more
random variables. Both ordinary vectors and random vectors are
boldfaced. Thus, the outcome of ten dice rolls may be denoted
by a ten dimensional random vector Z, with z representing an
instance of Z.

A reference list of the notations used in this paper is placed
below:

Definition 1.

• d2(.) denotes an operator for normalized squared `2 norm,
such that for x ∈ Rk, d2(x) = ‖x‖2

k
. If x is the difference

between two vectors, we refer to d2(x) as normalized squared
distance, or distance for short;

• d(.) is the normalized `2 norm operator, d(.) =
√
d2(.);

• S(µ, r) denotes a thin shell centered at µ, with radius r.

Let Z = [Z[1],Z[2], . . . ,Z[k]]T denote a k-dimensional random
vector where Z[i] is a random variable,

• z denotes the instantiation of Z;
• Z is high dimensional if and only if its fourth order moments

are finite; its dimension k → ∞; And there are only a finite
number of pairwise dependencies between its dimensions;

• d2(.) operator can be applied to random vectors. d2(Z) =
‖Z‖2
k

is a random variable formed by averaging Z’s squared
elements;

• µZ = E(Z) = [E(Z[1]), . . . ,E(Z[k])]T is a vector of each
dimension’s expectation;

• vZ =
∑k
i=1

var(Z[i])
k

is the average variance;
•

a.s
= denotes almost-surely-equal. Thus, if as k →∞,

P (‖d2(Z− c)− t‖ < ε2)→ 1, ε > 0,

for an arbitrarily small ε, is written d2(Z− c)
a.s.
= t.

Unit-vector-normalization refers to the data pre-processing step in
which each instance is subtracted by some common vector (also
known as the normalization vector) and the resultant rescaled to a
unit-vector;
As dimension k → ∞, unit-vector-normalization makes individual
entries to tend to 0. Thus, for unit-vector-normalized data, the defini-
tions of d2(.) and vZ must be modified to avoid a division by k:

• d2(.) is a squared `2 norm, such that d2(Z) = ‖Z‖2;
• vZ =

∑k
i=1 var(Z[i]), is the total variance.

When the number of independent dimensions in random vec-
tors becomes large, euclidean distances can be predicted using the

law-of-large-numbers. More formally, if the number of indepen-
dent dimensions tends to infinity, the euclidean distance between
independent random vectors A and B is [5]:

d2(A−B)
a.s.
= vA + vB + d2(µA − µB), (1)

where µA,µB and vA, vB represent the mean and average vari-
ance of their respective distributions; a.s.= denotes almost-surely
equal; and d2(.) is the squared, `2 norm divided by the number of
dimensions.

Note that Eq. (1) comes with a caveat. The law-of-large-
numbers requires the number of independent random variables to
be much larger than data variability. This caveat is usually satisfied
given a sufficiently large number of independent dimensions;
however, a pathological exception occurs if some dimensions
have infinite variability. Thus, Eq. (1) requires the underlying
distributions of A and B have finite fourth order moments in
all dimensions 2.

To avoid the pathological exception discussed above, we define
a high dimensional random vector as one whose: 1) Underlying
distributions have finite fourth order moments; 2) Dimensions tend
to infinity; 3) Has a finite number of dependent dimensions [5].
The multivariate probability density function associated with a
high dimensional random vector is termed a high dimensional
distribution.

Equation (1) leads to two main results. First, if A1,A2

are independent, identically distributed (i.i.d.), high dimensional
random vectors, with average variance vA,

d2(A1 −A2)
a.s.
= 2vA. (2)

Second, if c is the outcome of some random process that is
independent of A, we can set B in Eq. (1) to be a distribution of
mean c and variance zero. This yields:

d2(A− c)
a.s.
= vA + d2(µA − c), ∀c ∈ Rk. (3)

Together, Eq. (1), Eq. (2) and Eq. (3), form the foundational
distance relations we use for statistical analysis in high dimen-
sions.

2.2 Mathematics meets Reality

Let the set of all objects be denoted:

so = {a1,a2, . . .}.

Each object can be considered an outcome of some stochastic pro-
cess. The stochastic processes are represented by a corresponding
set of random vectors

S0 = {A1,A2, . . .}.

Statistical modeling can be interpreted as the attempt to make
reasonable assumptions on the nature of the random vectors in S0,
such that the overall model becomes simple enough to be useful,
yet remains complex enough to be realistic.

Many statistical models make the assumption that the random
vectors in S0 are independent, identically distributed (i.i.d.); i.e.,
they share a common probability distribution; and the outcome of
each random vector has no impact on the outcome of any other
random vector. Is this realistic?

2. More research may allow the constraint to be relaxed from fourth order
to second order.
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Recall that the vastness of high dimensional spaces make
coincidental similarity rare. As a result, the outcomes of i.i.d.
random vectors tend to be very unique. This uniqueness is so
extreme that instances exhibit complete distinctiveness, with no
two instances being more similar (closer) to each other, than they
are to any other instance. This is proven in Eq. (2).

Natural data is certainly very unique. Often, the uniqueness
of individual objects can be assumed, even when there is no
mechanism that enforces uniqueness. Examples the reader may be
familiar with include: finger-prints, snowflakes and human faces.
However, it is much harder to accept a claim that natural data is
completely distinctive. Surely humans resemble each other more
than they do snowflakes.

Perhaps the previous example was too extreme and analysis
needs to be restricted to a smaller set of objects, such as animals.
However, the problem reoccurs. Animals can be divided into
species, each of whose individuals is more similar to each other
than they are to other species. Species can be further divided into
sub-species whose members are more similar to each other than
they are to other members of their parent species. In fact, it appears
possible to iterate this process indefinitely, defining increasingly
smaller groups based on ever finer definitions of similarity and
difference. The result is a hierarchical pattern of similarity and
difference that seems to be reflected in the hierarchical organiza-
tion of semantics.

We posit that the hierarchy of similarity and differences arise
from an innately hierarchical, generative process where depen-
dencies between random vectors are caused by the sharing of
common ancestors. To formalize this hypothesis, we propose a
high dimensional generative process, governed by a few simple
rules.

3 HIERARCHICAL GENERATIVE PROCESS

We define a hierarchical generative process as a stochastic model
of data generation governed by the following rules:

1) The process starts with a single, parent data generator,
known as the root generator;

2) A parent generator stochastically generates some number
of child generators;

3) Child generators are conditionally independent given
their parents;

4) Child generators themselves become parents, creating the
next layer of generators. The process is iterated, creating
multiple layers of generators;

5) Data-points are stochastic outcomes of the last layer of
generators.

While the root generator only creates child generators directly,
all data-points can be considered (indirect) stochastic outcomes
of it. We use a random vector A to denote a data-point outcome
by the root generator. The mean and average variance of A are
denoted by µA, vA respectively. A specific instantiation of A is
denoted by a.

Random vector Aθm denotes a data-point outcome of an
intermediate generator at the mth level. Aθm ’s distribution pa-
rameters are denoted by θm, while its mean and average variance
are denoted by µθm , vθm respectively. The root generator is
considered level zero. Thus A = Aθ0 . To simplify notation, Aθm

is sometimes used to reference the generator itself. When there is a
need to distinguish between different generators at the mth level,
we add a subscript index and write Aθm

k
.

𝐀

ℓ5
3= 2𝑣𝐴

ℓ𝑖
𝑛 = 𝒅𝟐(𝐀𝜃3

3 − 𝐀𝜃𝑖
𝑛)

𝐀𝜃𝑖
𝑛

Legend:

ℓ6
3= 2𝑣𝐴 ℓ8

3= 2𝑣𝐴

ℓ7
3 = 2𝑣𝐴

𝐀𝜃3
3

2𝑣𝜃11ℓ1
3=

𝐀𝜃1
1

𝐀𝜃1
2 𝐀𝜃2

2 𝐀𝜃3
2 𝐀𝜃4

2

𝐀𝜃2
1

𝐀𝜃1
3

𝐀𝜃2
3 𝐀𝜃4

3

𝐀𝜃5
3

𝐀𝜃6
3

𝐀𝜃7
3

𝐀𝜃8
3

2𝑣𝜃11ℓ2
3
=

2𝑣𝜃33ℓ3
3=

2𝑣𝜃22ℓ4
3
=

Fig. 1: Visualizing a hierarchical generative process. Generators
are denoted Aθn

i
. Squared distance of Aθ3

3
to every other data-

point is almost-surely two times the average variance of their
most recent common ancestral generator. From Corollary 1,
vA > vθ1

1
> vθ2

2
> vθ3

3
. Thus, more closely related data-points

are also geometrically closer to each other.

Any data-point from an M level hierarchical generative pro-
cess is simultaneously the outcome of M ancestral generators.
Thus it is simultaneously an instance of each member of the set,

{A,Aθ1 ,Aθ2 , . . . ,AθM }, (4)

where Aθi denotes its ith level ancestor. Each Aθi+1 generator
can be considered the result of its Aθi parent being constrained
by some additional information.

3.1 Distances in High Dimension
A high dimensional hierarchical generative process occurs when
every Aθm in the generative process is a high dimensional random
vector. We show that this leads to the distinctive pattern of
similarity and difference that is commonly found in nature.

Let a1,a2 denote a pair of data-points generated by a high
dimensional, hierarchical generative process. Due to rule 3, a1,a2,
can be considered to have been independently generated by their
most recent common generator, whose associated random vector
is denoted Aθj . From Eq. (2) their distance from each other is

a.s. d2(a1 − a2) = 2vθj . (5)

where a.s. denotes almost-surely. More formally:

Theorem 1. (Pairwise Distance) The normalized squared dis-
tance between any two data-points created by a high dimensional
hierarchical generative process is almost-surely

√
2v, where v is

the average variance of their most recent common generator.

Theorem 1 implies the pattern of distances illustrated in Fig. 1.
Next, we show how this pattern can be interpreted.

In the hierarchical generative process, any intermediate level
generator, Aθm , is simultaneously a root generator for its own
hierarchical generative process. Thus, the data-point generation
by Aθm can be decomposed into two stochastic steps: First,
by iteratively applying rules 1-4 of the hierarchical generative
process, create a descendant generator j levels below Aθm ; Next,
generate a data-point from that descendant generator. We use
AθmΘj to reference this two step process. The parameters of the
descendant generator are denoted with random variable Θj , where
the superscript j denotes the number of levels the descendant
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generator is below Aθm . The descendant generator’s mean and
average variance, are denoted with random variables

MθmΘj , VθmΘj , j ∈ Z+
0 ,

respectively. Note that AθmΘj is just a different notation for
Aθm . Thus,

Aθm = AθmΘj . (6)

When a data-point is considered generated by Aθm , its distri-
bution parameter, µθm , needs to be generated a priori. Thus, the
generation of µθm is independent of Aθm . Hence, from Eq. (3),

d2(Aθm − µθm)
a.s.
= vθm . (7)

Likewise, AθmΘj is independent of the generation of µθm

and from Eq. (3),

d2(AθmΘj − µθm)
a.s.
= VθmΘj + d2(MθmΘj − µθm). (8)

Combining Eq. (6), Eq. (7) and Eq. (8) gives rise to the
following theorem:

Theorem 2. (Mean-Variance Constraint) The mean and variance
of generators descended from Aθm follow the constraint:

VθmΘj + d2(MθmΘj − µθm)
a.s.
= vθm , ∀j ∈ Z+

0 . (9)

Theorem 2 implies the average variance of descendant gen-
erators, VθmΘj , is almost-surely less than or equal to their
ancestor’s, vθm . Equality only occurs if the descendant generator’s
distribution parameters are trivially similar to that of their parents3.
Thus:

Corollary 1. Non-trivial3 descendant generators of Aθm , almost-
surely have average variances less than vθm . i.e.,

VθmΘj

a.s.
< vθm , ∀j ∈ Z+. (10)

Corollary 1 means generators lower in the hierarchy almost-
surely have smaller average variance than their ancestors. Theorem
1 implies distances between data-points almost-surely depend on
the average variance of their most recent shared generator. Thus,
the distance between data-points is almost-surely a function
of how recently they shared a common generator.

Using this understanding to interpret Fig. 1, we see that a
subset of data-points sharing a common generator, have greater
mutual similarity (lower mutual distance) to each other, relative to
data-points outside the set. This process can be iterated. Hence,
a sub-subset of those data points, sharing an even more recent
generator, will have greater mutual similarity to each other, relative
to other data-points in the original subset. Thus, the hierarchical
generative process creates a corresponding hierarchical pattern of
similarities that greatly resembles the natural similarity patterns
discussed in Sec. 2.

3. A non-trivial descendant generator is one with a finite difference in either
mean or average variance from the parent. Trivial descendants are the opposite.
If the distributions underlying generator creation are continuous, child
generators are almost-always non-trivially different from their parents.

3.2 Distinctive-Shells

In high dimensional hierarchical generative processes, distances
between data-points are proxies for statistical dependencies caused
by the sharing of generative processes. This statistical constraint
can be leveraged to develop unique identifiers for instances of each
generator. We term these identifiers, distinctive-shells.

Theorem 3. Let Aθn denote the data-point outcomes of an
nth level generator, that is a non-trivial child of its immediate
parent 3,4. Instances of Aθn are termed α data-points. All other
data-points are non-α data-points.

• α data-points almost-surely lie on the distinctive-shell sα :

sα = S(µθn ,
√
vθn); (11)

• Non-α data-points almost-surely lie outside sα. Their gap
from sα is given by

G(Aθc , sα) =d2(Aθc − µθn)− vθn ,
a.s.
= 2(vθc − vθn),

(12)

where G is a function of random variables and Aθc

is the non-α data-point’s most recent common ancestral
generator with α.

Note that Corollary 1 shows vθc is almost-surely greater than
vθn . Thus, the gap is almost-surely positive for non-α data-points.

Proof. Replacing m by n in Eq. (7) yields

d2(Aθn − µθn) = vθn . (13)

This proves Eq. (11)’s constraint on α data-points. We now focus
on proving Eq. (12).

Let aα denote a non-α data-point. Based on rule 3, aα and
µθn can be considered, independently generated by their most
recent common generator, whose data-point outcomes are denoted

Aθc , c ∈ Z+
0 , c < n.

Thus, from Eq. (3), the distance of a non-α data-point from
µθn is:

a.s. d2(aα − µθn) = vθc + d2(µθc − µθn). (14)

If we consider vθn ,µθn to be distribution parameters of some
descendant generator of Aθc , from Theorem 2:

a.s. vθn + d2(µθc − µθn) = vθc . (15)

Combining Eq. (14) and Eq. (15), we can see that the distance
of aα from shell sα is

a.s. d2(aα − µθn)− vθn = 2(vθc − vθn), (16)

thus proving Eq. (12).

If semantics are symbolic references to individual generators
of a hierarchical generative process, Theorem 3 would represent
the (to our knowledge) first, explicit mathematical representation
of the constraints which make semantic classification possible, a
hypothesis that we term shell theory.

This concludes the paper’s formal proof. However, before
ending the section, we believe it best to provide readers with an
intuitive interpretation of shell theory.
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Projection with
Invariant Radius

Projection with
Invariant Volume

Projection with
Invariant Distance to Parent Center

Fig. 2: Two dimensional projections of high dimensional distinctive-shells. Parent shells are in bold, while child shells are dotted.
Each projection preserves a different attribute. Radius invariant projection: The distinctive-shell of each child generator has a smaller
radius than its parent. Volume invariant projection: High dimensions cause small changes of radius to induce huge changes of volume.
Thus, the distinctive-shells of child generators occupy an infinitesimally small percentage of their parent’s distinctive-shell. As a result,
independently generated instances of a parent will almost-never enter a child’s distinctive-shell. Projection with invariant distance
to center: For illustrative purposes, the previous two projections have taken liberties with the location of the child distinctive-shells.
In reality, child distinctive-shells lie on their parent’s distinctive-shell. This allows a parent distinctive-shell to serve as an identifier for
almost-all instances of its child generators.

3.3 An Intuitive Derivation of Shell Theory
At the heart of shell theory lies the quirky relation between the
radius and volumes of high dimensional hyper-spheres. Consider
two k dimensional hyper-spheres, one of radius r and another of
radius r −∆r, where ∆r is small but positive. The ratio of their
volumes is:

volume of small sphere
volume of big sphere

=

(
r −∆r

r

)k
= xk, (17)

where x is less than ones. If k →∞, the above ratio tends to zero.
This implies that the small change in radius has induced a huge
change in volume. As a result, almost-all of a high dimensional
hyper-sphere’s volume will lie near its surface (outer-shell).

If we conceptualize a high dimensional sample space as a
hyper-sphere, stochastically generated instances will almost-surely
lie on the hyper-sphere’s outer-shell, as this contains almost-all of
the hyper-sphere’s volume. It is this phenomenon that gives rise to
the shell based constraints that shell theory derives its name.

The quirky relation between volume and radius also explains
why distinctive-shells are distinctive. Recall that Corollary 1 and
Eq. (11) show child generators have distinctive-shells of smaller
radii than their parents; Eq. (17) shows this difference in radius
restricts instances of child generators to an infinitesimal fraction
of their parent’s distinctive-shells. As a result, independently
generated instances of a child’s parent almost-never coincidentally
fall within that child’s distinctive-shell, causing the distinctiveness
derived in Theorem 3. This is illustrated in Fig. 2 with a series
of two dimensional projections of high dimensional distinctive-
shells.

In summary: If the objects in our reality were the result of
a high dimensional hierarchical generative process, they would

4. If Aθn is a trivial child of its parent, its parent’s generator is only
“trivially-different” from Aθn and its parent’s data-points should also be
considered α data-points.

represent a very sparse sampling of the huge number of potential
objects. The sparsity of this sampling would mean that sets of
instances that are related by some common ancestor, would be
separated from other instances by wide gulfs of emptiness. This
creates naturally occurring boundaries that can be exploited for
machine learning. This is the challenge which we take up in the
next sections.

4 NORMALIZATION AND SHELLS

Normalization is a commonly employed data pre-processor. It
is widely accepted to significantly improve machine learning
performance. However, the reason for this performance boost
remains poorly understood. This section interprets normalization
in terms of its impact on the distinctive-shells.

Before continuing, we provide a brief recap of Theorem 3 and
its conclusions. Aθn denotes a generator of interest, also known
as the α generator. Its outcomes are α data-points, which form
a shell, sα = S(µθn ,

√
vθn), centered on µθn and with radius√

vθn .
Let aα denote a non-α test data-point. Its most recent common

ancestral generator with α is denoted Aθc , c < n.
From Theorem 3, the gap between aα and sα is

G(Aθc , sα)
a.s.
= vθc − vθn + d2(µθc − µθn),

a.s. = 2(vθc − vθn).
(18)

where because of Corollary 1, vθc

a.s.
> vθn , this creates a finite

gap that can be used to distinguish aα from α data-points.
We interpret normalization in terms of its impact on the gap

between aα from sα.

4.1 Shell-Normalization
In traditional normalization, the training data’s mean is considered
a normalization vector. This normalization vector is subtracted
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from each data-point which is then re-scaled to a unit-vector. This
algorithm couples the normalization vector to the training data.
However, the nature of the training data, and hence normalization
vector, varies with the machine learning problem at hand. We use
shell theory to study how such variations impact machine learning
performance.

Let m denote the normalization vector, where,

m ∈ {µθt |t ∈ Z+
0 , t ≤ n}.

Here, µθt denotes the mean of the tth level ancestral generator of
α. The symbol, ,̃ is used to denote post normalization outcomes.
Thus, the normalization of a high dimensional random vector B
is denoted

B̃ =
B−m√
d2(B−m)

. (19)

Ãθn denotes post-normalized outcomes of the α generator. Its
associated distinctive-shell is

s̃α = S(µ̃θn ,
√
ṽθn),

where µ̃θn , ṽθn are the mean and average variance of Ãθn .
ãα is the post-normalized non-α data-point. Its gap from the

post-normalized shell s̃α shell is G(Ãθc , s̃α).
The effects of different normalization vectors, m, on the gap

G(Ãθc , s̃α) is summarized in two rules, whose derivations are
presented in Appendix A.

First Normalization Rule: For normalization vector

m = µθt , 0 ≤ t ≤ c,

the gap, G(Ãθc , s̃α), between ãα and shell s̃α increases as t
increases, reaching a maximum at m = µθc .

Second Rule of Normalization: For normalization vector

m = µθt , c ≤ t ≤ n,

the gap, G(Ãθc , s̃α), between ãα and shell s̃α decreases as t
increases. When m = µθn , the gap becomes zero.

Together, these two rules suggest the optimal normalization
vector for maximizing the gap is m = µθc , where µθc is the
mean of the most recent common ancestor for α and aα. This
effectively couples the choice of normalization vector to the test
data under consideration.

In this framework, changing the normalization vector has an
effect analogous to adjusting the focal length on a zoom lens.
Consider an example where the α class is Siamese cats. Normal-
izing with the mean of a very recent ancestor, like cats, “zooms in
with the lens”, magnifying fine details but losing the big picture.
According to the first rule of normalization, the gap between
other cat breeds and the Siamese cat’s distinctive-shell widens,
improving fine grained recognition. However, the second rule of
normalization means both other cat breeds and dogs are now at
nearly the same distance from the distinctive-shell, reducing the
capacity for coarse-grained differentiation.

Similarly, normalizing with the mean of a distant ancestor,
like animals, “zooms out the lens”, compressing fine details but
preserving the big picture. In this case, the gap of other cat
breeds from the Siamese cat’s distinctive-shell narrows, reducing
the capacity for fine grained recognition. However, other cat
breeds are now much closer to the distinctive-shell than dogs,
thus enhancing coarse differentiation.

We term such shell guided normalization, shell-normalization.

Implications: Shell-normalization suggests a rule-of-thumb, in
which the normalization vector should be the mean of the
test-data. This differs from traditional normalization, which uses
the training data’s mean as the normalization vector.

From this perspective, traditional normalization is a special
case that is only optimal if the training data’s mean approximates
the test data’s mean. The success of traditional normalization
is caused by the fact that normalization is typically employed
for multi-class problems that coincidentally satisfy the above
condition. This in turn suggests that the normalization process
needs to be modified if it is to accommodate other machine
learning problems.

4.2 Normalization and Noise
We have previously shown how the normalization vector can be
chosen to maximize the gap. Interestingly, this procedure also
has a noise cancellation property. We provide some preliminary
analysis on this phenomenon in Appendix B. However, the topic
requires a more complete analysis.

5 SEMANTIC MANIFOLDS

It is often hypothesized that instances of each semantic lie on
a representative manifold. Shell theory suggests such semantic
manifolds are actually distinctive-shells, thus providing us with
the first, explicit parametrization of such manifolds. Explicit
parametrization allows complex manifold discovery problems to
be solved using simple shell fitting algorithms. The result is a fast
and effective tool for machine learning.

5.1 Implementation
Shell theory assumes objects are represented by long attribute vec-
tors. In practice, such attribute vectors are difficult to obtain. Thus,
we use image features as proxies for attribute vectors, with each
object being represented by the ResNet-50 feature [34] feature
associated with its image. Where possible, the shell normalization
pre-processor of Sec. 4.1 is applied to the features.

Given a set of features of a specific semantic, the semantic’s
distinctive-shell can be estimated using Algorithm 1. The next
sections employ these distinctive-shells for: one-class learning;
multi-class classification; and anomaly detection.

Algorithm 1: Shell-Fit
Input: Features F = {f1, f2, . . . , fN}

1 µ′α = average(F) ;
2 r′α = average({‖fi − µ′α‖}i=1,...,N ) ;

Output: s′α = S(µ′α, r′α)

6 ONE-CLASS LEARNING

One-class learning tries to identify objects of a specific class
amongst all objects, by primarily learning from a training set
containing only the objects of that class. Objects of the interest
class are termed positive instances, other objects are termed
negative instances.

As negative instances are not available in the training phase,
it is difficult to define boundaries between positive and negative
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instances. Indeed, it is tempting to consider one-class learning an
ill-posed problem. Yet, this cannot be true; humans are remarkably
adept at one-class learning.

Shell theory provides a mathematically principled solution to
this conundrum. Distinctive-shells can be learned from positive
instances, with Theorem 3 guaranteeing the learned distinctive-
shell will encapsulate almost-all positive instances and exclude
almost-all negative ones. Finally, shell-normalization provides a
data pre-processing framework for enhancing the effectiveness of
distinctive-shells. The result is a one-class learning algorithm that
is simple, fast and very effective.

6.1 Experimental Setup
The following data-sets are used for experimental evaluation:

• Fashion-MNIST [37] consists of simple black and white
images which are rasterized into feature vectors. This
data-set is likely not high dimensional, with Principal
Component Analysis showing that on average, 50% of
the variation in each class can be explained with just four
dimensions. It is included in the evaluation because it is
a common data-set for evaluating one-class learning and
provides an interesting test case for the robustness of shell
fitting when its assumptions are violated;

• STL-10 [38], is another widely used data-set. It consists
of 10 commonly occurring classes, airplane, bird, cat, etc;

• Internet STL-10 is a data-set we created to simulate learn-
ing in the “wild”. This data-set has the same 10 classes
as STL-10. However, training images are crawled from
the internet. Testing is performed on the original STL-10
data-set;

• MIT-Places-5 [39] is composed of the first five scene
classes of the MIT-Places [39]. These are: abbey, airport
terminal, alley, arch and amusement park. This data differs
greatly from the object oriented classes, cat, human, car,
etc, used to train deep-learned features [33], [34]. It is
included to help assess the generalizability of shell fitting
algorithms;

• Assira [40] consists of two easily confused classes [41],
cats and dogs. This allows us to asses shell fittings relia-
bility on fine-grained recognition.

When evaluating one-class learning algorithms on data-sets
with multiple classes, we treat one class at a time as the positive
class and the remainder as the negative class. Half the instances
of the positive class are used as training data and the remaining
instances (both positive and negative) are used as test data.

A one-class learner is expected to rank the test data based on
their similarity to the positive class. The reliability of the rankings
are using AUROC (Area Under Receiver Operating Characteristic
curve). Each algorithm’s average AUROC is tabulated in Table 1,
with computational times presented in Table 3.

6.2 Discussion
We divide algorithms according to their inputs. This creates three
groups:

Symbol Algorithm Inputs

-I raw images

-F image features

-FN features normalized with the mean of test data

Table 1 shows group -I has noticeably poorer performance
than the other groups. This is surprising as group -I is expected to
provide the best results.

Algorithms in group -I use deep-learning to jointly learn
a semantic manifold and feature representations from positive
instances. Such algorithms require significant parameter tuning.
While we tuned the algorithms, parameter choices may still be
sub-optimal.

Parameter settings aside, these results may indicate a more
fundamental problem. The second rule of normalization in Sec. 4.1
shows that setting normalization vector as the positive class mean
(m = µθn ) will reduce the gap between negative instance and the
distinctive-shell to be zero, i.e. both positive and negative instances
map onto the same distinctive-shell. This creates a degeneracy
in which a manifold that fits the positive instances, also fits the
negative instances. As algorithms in group -I have very large
solution spaces, it is possible they are encountering this (or other)
degeneracies.

Shell fitting is a manifold discovery approach which uses the
last layer of a pre-trained network as a feature representation, this
results in a fixed feature representation. Shell fitting and other
algorithms that employ fixed feature representations, are grouped
under -F. Table 1 shows the performance of algorithms in group
-F are notably better performance than those of group -I. This may
be due to their avoidance of the degeneracies.

Shell normalization is a pre-processor that shows how features
can be adapted for improved performance. Algorithms whose in-
put features have undergone shell normalization are grouped under
-FN. Table 1 shows shell-normalization boost the performance of
all algorithms, with many scores approaching perfection. To our
knowledge, this is the first time such a phenomenon is reported.

If we focus on shell fitting’s performance, we can see from
Table 1 that shell fitting’s accuracy is very similar to that of prior
manifold discovery techniques. This suggests semantic manifolds
are indeed distinctive-shells. As shell fitting is much simpler
than manifold discovery, this perspective opens the possibility
for significant gains in algorithmic efficiency, an issue that the
following section discusses in detail.

Finally, Table 2 shows the result of repeating the STL-10 eval-
uation with different features. It is noticeable that the performance
of all algorithms vary significantly with feature choice; however,
the previously observed trends remain observable, with shell
normalization pre-processor providing significant performance
improvement and shell fitting having an accuracy that matches
traditional manifold discovery.

6.3 Efficient Manifolds

In classic machine learning, semantic manifolds are complex
entities which require large numbers of parameters to model
faithfully. This has led to manifold representations that employ
as many parameters as the availability of training data permits.

In such representations, parameters often increase linearly with
quantity of training data. As a result, the time required to evaluate
a test point also increases with the number of parameters, giving
rise to a test time complexity of O(N), where N is the number of
training data-points. Such representations are also slow to train, as
the pairwise comparison of data-points needed for manifold fitting
tend to result in training time complexities of O(N2).

In shell theory, semantic manifolds are distinctive-shells. This
suggests that increasing manifold complexity will only provide
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limited performance gains, as Theorem 3 has already guaran-
teed the distinctive-shell’s distinctiveness. By decoupling model
complexity from the availability of training data, a shell fitting
approach provides a test time complexity of O(1). In addition,
distinctive-shells can be estimated without pairwise comparisons,
reducing training complexity to O(N). Table 3 shows the impact
of these efficiency gains, while Table 1 shows that the gains do
not come at the expense of performance.

6.4 Limitations
The previous results serve as a strong validation of shell theory.
However we must make four caveats:

First, shell theory assumes data is high dimensional. This
causes approximation noise on simple data-sets like Fashion
MNIST. While naively applying shell theory yields respectable
performance, additional research is needed to bridge the gap
between low and high dimensions.

Second, the paper only provides a preliminary noise analysis.
Better understanding of noise’s impact on shell distinctiveness
and normalization is critical for enhancing machine learning
performance.

Third, the effectiveness of the distinctive-shell depends on
feature quality. However, shell theory does not explain how feature
quality can be ensured. This represents yet another gap in our
knowledge that requires further investigation.

Fourth, the paper assumes each semantic is a reference to a
single generator. In practice, a semantic may consist of a number
of distantly related generators. For example, the word apple is used
to refer to a fruit and an electronic device. A less obvious example
would be the use of the term church to refer to both the outside
and inside of christian religious buildings. In such cases, provided
the number of unrelated generators encapsulated by the semantic
is small, the semantics would still possess a “semi-distinctive-
shell”. This is because an instance that is unusually close to a
semantic’s generator mean would also be unusually close to the
overall semantic mean. This paper does not consider this cases,
which is more about how generative processes are represented in
language, rather than about the generative processes themselves.
However, in practical implementation, it is an important caveat
readers should keep in mind.

7 ONE-CLASS TO MULTI-CLASS

Multi-class classification is the classic problem of machine learn-
ing and is almost always formulated in terms of adversarially
defined class boundaries. Shell learning suggests an intriguing
alternative.

Theorem 3 predicts that a semantics’ distinctive-shell encapsu-
lates only instances of itself, while the previous section shows that
each semantics’ distinctive-shell can be estimated using instances
of itself. This creates the possibility of a multi-class classifier that
learns by incrementally fusing independently trained distinctive-
shells that have been learned in a one-class manner.

7.1 Experiment Setup and Discussion
We divide the algorithms used in the experiments into two groups:
The first group consists of traditional multi-class classification al-
gorithms like linear SVM [50], [51], kernel SVM [52] and PSDML
(a multi-class manifold learner) [53], all of which are discrimi-
native classifiers that learn partition boundaries between classes.

Average AUROC for each data-set
Fashion
-MNIST STL-10 Internet

STL-10
MIT-
Places ASSIRA

Deep A.D. [42]-I 0.935 0.730 0.717 0.722 0.888
DSEBM [43]-I 0.884 0.571 0.560 0.613 0.516
DAGMM [44]-I 0.518 0.554 0.517 0.530 0.485
AD-GAN [45]-I 0.884 0.602 0.555 0.499 0.534
OC-VAE [46]-I 0.605 0.624 0.610 0.597 0.559
Shell [Ours]-F 0.893 0.874 0.827 0.793 0.815
OCSVM [47]-F 0.892 0.799 0.557 0.765 0.824
Mahalanobis [48]-F 0.893 0.940 0.819 0.845 0.924
Shell [Ours]-FN 0.921 0.992 0.987 0.981 0.999
OCSVM [Ours]-FN 0.932 0.993 0.987 0.982 0.999
Mahalanobis [Ours]-FN 0.892 0.988 0.926 0.936 0.987

TABLE 1: AUROC scores of one-class learners. The best algo-
rithm in each group is highlighted in bold. Observe that shell
learning is competitive with far more sophisticated manifold fitting
techniques. In addition, our theory’s suggested normalization pre-
processor (denoted by the suffix -FN), gives a huge boost to
one-class learning performance. These results provide empirical
validation for our theory of distinctive-shells.

Average AUROC on STL-10, using different features
ResNet
-50 [34]

ResNet
-50* [34]

VGG
-16 [33]

ResNet
-101 [34]

Conv.
Auto

KAZE
Feat. [49]

Shell-F 0.874 0.629 0.865 0.868 0.607 0.530
OCSVM-F 0.799 0.634 0.881 0.883 0.624 0.529
Mahalanobis-F 0.940 0.573 0.909 0.938 0.668 0.516
Shell-FN 0.992 0.885 0.992 0.995 0.775 0.728
OCSVM-FN 0.993 0.897 0.993 0.996 0.803 0.737
Mahalanobis-FN 0.988 0.695 0.987 0.991 0.756 0.536

TABLE 2: AUROC scores of one-class learners using differ-
ent features. Evaluations are performed on STL-10. Features
tested are: deep-learned features trained on imageNet (ResNet-
50, ReseNet-101, VGG-16); features trained on tiny imageNet
(ResNet-50*); features trained on STL-10 with a convolution
autoencoder (Conv. Auto); hand-crafted features (KAZE Feat.).
Shell normalization and shell fitting remain consistently effective
across all features.

These algorithms are denoted with the suffix -MC. The second
group consists of multi-class classification algorithms created by
fusing independently trained one-class learners. For these algo-
rithms, we apply a traditional normalization pre-processor before
conducting one-class learning. Note that, as discussed in Sec. 4.1,
in the context of multi-class classification, shell-normalization is
identical to traditional normalization. Such algorithms are denoted
with the suffix -FN.

Shell theory suggests multiple distinctive-shells can be fused
into a multi-class classifier by simply assigning test instances to
their closest shell. It is unclear what the equivalent procedures for
the other one-class learners; hence, we heuristically modify each
algorithm to maximize performance. For one-class SVM [47], we
divide scores by the number of training instances. This (mysteri-
ously?) provides a great improvement to results. The scheme is
denoted OCSVM*. For Mahalanobis [48], we find assigning each
instance to its highest scoring class works best.

Algorithms are evaluated on the same five datasets used in the
previous section, with mean accuracy and mean average precision
of each algorithm tabulated in Table 4.
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Computational Time
Algo Shell Learning One-Class SVM Mahala. [48] DSEBM [43] Deep A.D. [42] DAGMM [44] AD-GAN [45]
Training Time 0.00301 Sec 0.578 Sec 0.615 Sec 165 Sec 191 Sec 53.713 Sec 2558 Sec
Testing Time 0.0999 Sec 3.524 Sec 0.953 Sec 1.33 Sec 983 Sec 1.203 Sec 2539 Sec
Device CPU CPU CPU GPU GPU GPU GPU

Training Time against size of training set Test Time against size of training set
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TABLE 3: Top: Training and test time of one-class learning algorithms. Timing is measured on STL-10, with each class divided into
650 training and 650 testing data-points. CPU refers to a single thread of the AMD Ryzen 7 2700 processor; GPU refers to a Nvidia
1080Ti graphics card. We observe that shell learning is an order of magnitude faster than most of its counterparts. Bottom: A plot of
training and test time as training set size increases, with shell learning being compared to the classic one-class SVM algorithm. Shell
learning is based on a new interpretation of semantic manifolds which leads to lower computational complexity. Section 6.3 discusses
this issue in more detail.

Table 4 shows distinctive-shells are surprisingly good at multi-
class classification. Compared to other one-class learning tech-
niques, shell based multi-class classification shows a consistent
3-4% improvement in both accuracy and mean average precision,
with some performance gains as high as 10-20%.

Indeed, for most data-sets, shell based classification is almost
comparable to traditional multi-class classifiers. The one excep-
tion is Fashion-MNIST, which (as discussed in Sec. 6) may be
inappropriate for our model.

These results act as additional empirical validation of shell
theory; however, they also provide a new perspective to machine
learning that we explore in the next section.

7.2 From Machines to Humans and Back Again
Shell theory may be the answer to one of the great riddles
of our time: What is the mechanics of human learning? When
teaching children a semantic class, we typically show them mul-
tiple exemplars of the class. There is notably less emphasis on
explicitly showing what examples do not belong to the class,
something which children are expected to infer for themselves.
This mechanics differs greatly from the adversarial boundary
training employed in classic machine learning but is remarkably
similar to distinctive-shell fitting.

Accepting the hypothesis that humans learn through
distinctive-shells may answer one question but it creates another
puzzle. Learning distinctive-shells is less optimal than learning
explicit adversarial boundaries. Why would humans evolve to
learn or teach in a sub-optimal fashion? We believe this is because
distinctive-shell learning has advantages which make it uniquely
suited to unstructured environments:

• Incremental learning: As demonstrated in the experi-
ments of the previous subsection, it is easy to incorporate
new semantic concepts by learning their distinctive-shells.
Thus, shell based learning can commence before all train-
ing classes are collected in one place. This is necessary for
humans but is also important for machine learning, where

such problems are termed life-long learning or never-
ending learning [54], [55], [56];

• Robustness to failure: Shell theory allows each class to
be trained independently. This allows the overall system
to survive training inconsistencies that affect only a few
classes, providing the robustness that humans need to
function in the “wild”. Such robustness is also critical to
machine learning problems that use noisy internet data;

• Accommodate overlapping class membership: Class
memberships are often not mutually exclusive. When
overlaps are known a priori, they can be handled within the
classic partition boundary discovery framework. However,
mistakenly considering overlapping classes to be non-
overlapping can disastrously impact such classifiers. This
problem is notably less acute in shell based learning,
which need not assume mutually exclusive class member-
ship.

In summary, shell theory may help explain how humans
effortlessly accommodate challenging learning environments. By
applying these lessons to machine learning, we may be able to
make a generational leap in artificial intelligence capability.

8 ANOMALY DETECTION

The term anomaly detection is used to refer to two different
machine learning problems. Both problems share a common goal
of differentiating instances of an interest class (normality) from
other instances (anomalies). However, the problems make different
assumptions regarding the information available.

The first problem, which is sometimes termed supervised
anomaly detection, assumes the availability of training data that
consists only of normal instances. In this paper, we refer to this
problem as one-class learning, which is discussed in Sec. 6.

The second problem, which is sometimes termed unsupervised
anomaly detection, assumes a clean set of normal data is not
available for training. The task is to identify the anomalies in
a data-set of mixed, normal and anomalous instances, without
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Mean accuracy on each data-set
Fashion
-MNIST STL-10 Internet

STL-10 MIT-Places ASSIRA

Shell-FN 0.617 0.945 0.878 0.903 0.985
OCSVM*-FN 0.579 0.917 0.862 0.865 0.984
Mahalanobis-FN 0.677 0.922 0.453 0.770 0.979
SVM(linear)-MC 0.810 0.944 0.880 0.926 0.988
SVM(RBF-kernel)-MC 0.809 0.969 0.915 0.939 0.987
PSDML-MC 0.680 0.961 0.858 0.920 0.987

Mean average precision on each data-set
Fashion
-MNIST STL-10 Internet

STL-10 MIT-Places ASSIRA

Shell-FN 0.730 0.991 0.970 0.981 0.999
OCSVM*-FN 0.652 0.958 0.914 0.946 0.999
Mahalanobis-FN 0.598 0.923 0.768 0.827 0.991
SVM(linear)-MC 0.818 0.990 0.954 0.968 0.999
SVM(RBF-kernel)-MC 0.823 0.988 0.955 0.973 0.999
PSDML-MC 0.566 0.977 0.914 0.916 0.999

TABLE 4: Mean accuracy and mean average precision on multi-
class classification problems. Suffix -FN indicates algorithms
based on fusing independently trained one-class learners; suffix
-MC denotes traditional multi-class classifiers. Shell learners are
conceptually very different from traditional multi-class classifiers
but attain a similar level of accuracy. This may represent the
emergence of a new framework for machine learning.

any prior reference to clean normal data. The second problem is
notably more difficult than the first. In this paper, the term anomaly
detection refers exclusively to the second problem.

Traditional anomaly detection is based on the principle that
normal instances will be related by a consistency that is absent
from the anomalies. Thus, it is assumed that fitting a manifold to a
data-set that consists of a mix of normal and anomalous instances
will cause the anomalies (if present) to stand out as instances that
will not fit the manifold.

Shell theory suggests the above approach may be flawed,
since, for any given set of data-points, there will be a most recent
common ancestor on whose distinctive-shell (manifold), all data-
points would lie.

Shell theory also suggests an alternative framework, in which
anomaly detection can be formulated in terms of robust distinctive-
shell fitting. This can be implemented through iterative robust
least squares, with an algorithm that alternates between estimating
a distinctive-shell from hypothesized inliers, and re-estimating
inliers based on the hypothesized distinctive-shell. Following the
conventions of robust least squares, the threshold between inliers
and outliers is set to a multiple of the estimated standard-deviation
of inlier points from the shell, with the standard-deviation esti-
mated as being 1.42 times the median absolute deviation. The
process is summarized in Algorithm 2.

As in the one-class learning of the previous section, perfor-
mance can be enhanced through shell-normalization; however, it
is hard to know a priori what the normalization vector should
be. In this section, we use the mean of Flickr11k [57] as the nor-
malization vector. This implicitly assumes Flickr11k approximates
a random sample of all images in the world, thus preventing the
anomaly detector from being biased to any specific class. If we can
estimate the mean of the most recent common ancestor of both the
normal and anomalous data, we can use it as the normalization
vector. This would specialize the distinctive-shell to the data-
set at hand and is achieved through the re-normalization option

of Algorithm 2. The impact of re-normalization is illustrated in
Fig. 3.

8.1 Experiment Setup and Discussion
Anomaly detectors are evaluated on the data-sets: STL-10, MIT-
Places-5 and Assira Dog vs Cat. For each data-set, we treat one
class at a time as the normal class, with the other classes being
anomalies. Anomalous data is mixed with the normal data. The
anomaly detection algorithm is tasked with assigning each data
instance an anomaly score which will separates that the normal
and anomalous data. i.e. normal data and anomalous data instances
should receive very different scores. The reliability of the anomaly
score is measured by its receiver operating characteristics (ROC).
The ROC for different percentages of anomalies is plotted in
Fig. 4.

When interpreting results, readers should bear in mind that
anomaly detection is only a meaningful problem if the normal
class makes up a clear plurality of the data-set (i.e. is the largest
subset by a significant margin). Further, the impact of anomaly
percentages on normal class plurality depends on the number of
classes per data-set. These are: 10, 5 and 2, for STL-10, MIT-
Places-5 and Assira Dog vs Cat respectively.

When anomalies come from many different classes, the normal
class may retain a clear plurality even if the percentage of
anomalies is high. Thus, in data-sets like STL-10 and MIT-Places-
5, the anomaly detection problem remains well defined, even if
anomaly percentages exceed 50%.

Assira is an exceptional data-set because it comprises of only
two classes. As a result, all anomalies come from a single class.
This causes the normal class to loose plurality rapidly as the
percentages of anomalies increases. Thus, when measured in terms
of normal class plurality, 20% anomalies in Assira is equivalent to
50% anomalies in MIT-Places-5. Thus, when evaluated on Assira,
all anomaly detection algorithms show sharp performance declines
after the 20% anomaly threshold.

Focusing on shell based anomaly detection, we see that it
maintains high ROC scores even when anomalies make up a large
percentage of the data-set. This is very challenging, as attested
to by the performance of one-class SVM, the classic baseline
evaluating anomaly detection. Shell based anomaly detection is
also simpler and faster than one-class SVM; this suggests that
shell based techniques may serve as useful baselines in future
anomaly detection evaluations. Qualitative evaluation is provided
in Fig. 5.

9 GENERAL DISCUSSION

Thus far, we have used shell theory to address specific machine
learning problems. However, shell theory can also provide general
insights, some of which are useful, others just quirky.

9.1 Statistical Maximum Distance of
√

2 for Unit-
Normalized Data
The geometric maximum distance between two unit-vectors is
2. Our theory suggests the existence of a previously unknown,
statistical maximum distance, that is substantially lower than the
geometric maximum. This is illustrated in Fig. 6.

The proof is as follows. For unit-vector-normalized data,

d2(A− 0)
a.s.
= vA + d2(µA − 0) = 1,

a.s. ⇒ vA ≤ 1.
(20)
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Fig. 3: Histogram of distances from inlier class mean; inliers are denoted with orange and anomalies with blue. Left: Interpreting the
histogram as distance from distinctive-shell re-centers it. Inlier distances can be modeled as a zero mean, Gaussian perturbation of the
shell. Anomalies can be identified as data points that cannot be explained with the Gaussian. Right: Iteratively re-normalizing the data
based on hypothesized anomalies widens the gap between inliers and anomalies, enabling finer anomaly detection results.
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Fig. 4: ROC scores for anomaly detection algorithms. Shell fitting provides significant improvement over classic one-class SVM.
*Assira is a two class data-set, in which the problem of anomaly detection is no longer well defined when anomalies exceed 20%. This
is elaborated in Sec. 8.1.

Algorithm 2: Anomaly Detection
Input:
Features: F = {f1, f2, . . . , fn};
Anomaly Threshold: thres = 2;
Normalization Vector: m
Re-Normalize = True/ False

1 Finlier = F;
2 Foutlier = ∅;
3 for i = 1 to # iterations do
4 F̃ = Shell-Normalization(Finlier,m);
5 s′α = S(µ′α, r′α) = Shell-Fit(F̃);
6 e = {ei|ei = ‖f̃i − µ′α‖ − r′α};
7 emad = median(absolute(e));
8 Finlier = {fi|ei < 1.42 ∗ thres ∗ emad};
9 Foutlier = Fcinlier;

10 if Re-Normalize then
11 m = average(Foutlier);

Output: Finlier,Foutlier, e

Hence, from Corollary 1, the average variance of some generator
Aθm is almost-surely less than or equal to one. i.e.

a.s. vθm ≤ 1. (21)

From Corollary 1, the squared distance between any two data-

points is almost-surely two times the average variance. of their
most recent shared generator. Hence, from Eq. (21), the distance
between two data-points a1,a2 is

a.s.
√
d2(a1 − a2) ≤

√
2. (22)

9.2 Deep Learners are Easily Fooled
This paradox was raised by Nguyen et al. [58], who showed that
deep-learned classifiers are robust in practice but vulnerable to
small deliberate perturbations, which can fool the classifier into
making ridiculous conclusions.

This paradox becomes comprehensible if we assume deep
learners are representing semantic classes with distinctive-shells
that are adjacent to each other. The adjacency of shells will
not affect classification because the almost-surely convergence in
high dimensions, means instances almost never jump the small
gap between shells. However, such small gaps are vulnerable to
deliberate perturbations, giving rise to the effect reported by the
authors.

9.3 “Contrast-Loss”
“Contrast-loss” refers to proof by Argarwal et al. [6] which
suggests machine learning in high dimensions is intrinsically



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Anomaly detection using shell re-normalization

Anomaly detection using one-class SVM

Fig. 5: Anomaly based ranking of airplane images crawled from the internet based; anomaly scores decrease from left to right, top to
bottom. Shell based anomaly detection provides rankings which are noticeably more consistent than that of one-class SVM.
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Fig. 6: Log histogram of pairwise distances between unit-vectored
ResNet features descriptions [34] of STL-10 images [38]. The
distances seem to abide by our predicted statistical maximum,
which is much lower than the geometric maximum.

impossible because the distance between almost-all instances
converge to a constant. This proof is widely accepted by the
machine learning community [8]. However, it is inconsistent with
empirical evidence which shows deep-learned features are both
effective and high dimensional.

The hierarchy of dependencies proposed by shell theory re-

solves this paradox. In shell theory, the constraints used to prove
“contrast-loss” are used to show that distances between high
dimensional instances reflect shared dependencies (Theorem 1).
This makes “contrast-loss” a special case of shell theory, which
occurs in the unlikely event of all instances being statistically
independent outcomes of a single generator.

10 CONCLUSION

This paper proposes a distance based technique that makes high
dimensional statistical models possible. The technique is used
to develop shell theory, a stochastic model of the generative
processes that underlie natural data.

While the majority of the paper is dedicated to the mathe-
matical formulation and empirical evaluation of shell theory, we
believe its primary contribution lies not in theory itself but in the
research philosophy the theory represents: Understand machine
learning requires an understanding of the underlying patterns we
seek to learn. As such, we invite readers to consider shell theory
as a proof of concept, rather than a theory of everything; may it
be the first step in a journey of a thousand miles. 5

5. Code is available at: https://www.kind-of-works.com/
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APPENDIX A
PROOF OF NORMALIZATION RULES 1 AND 2 IN
SEC. 4.1
Let Aθt is the generator whose mean is the normalization vector
µθt . The normalization rules 1 and 2 derive from the following
corollary:

Corollary 2. After normalization with µθt , the distance of a non-
α point, ãα, from shell s̃α is almost-surely:

G(Ãθc , s̃α)

a.s.
=


2(vθc − vθn)

vθt

a.s.
=
G(Aθc , sα)

vθt

, if 0 ≤ t ≤ c ≤ n;

2(vθt − vθn)

vθt

a.s.
=
G(Aθt , sα)

vθt

, if 0 ≤ c ≤ t ≤ n.
(23)

For unit-vector data, 1 ≥ vA. Further, from Corollary 1,

1 ≥ vA > vθt|t=1 > vθt|t=2 > . . . > vθn .

Thus, the first case in Eq. (23) shows that as t increases from zero,
the distance of ãα from shell s̃α increases, peaking at t = c.

If t increases past c, the distance of ãα from shell s̃α, is
defined by the second case in Eq. (23) and decreases to zero at
t = n.

These findings are summarized by normalization rules one
and two in Sec. 4.1. Their proof is as follows.

Proving the first case of Corollary 2: This proof requires the
following Lemma.

Lemma 1. Let B be the data-point outcome of some generator.
C is the data-point outcome of an ancestral generator of B that is
independent of B. z is an instantiated vector that is independent
of both B and C. The squared distance of B and C from z is
almost-surely equal to a shared constant, we denote as z. i.e.

a.s. d2(B− z)
a.s.
= d2(C− z)

a.s.
= z (24)

Proof. From Eq. (3), we know that the random variable d2(C−z)
is almost-surely a constant. We denote that constant as z, such that

d2(C− z)
a.s.
= z.

As an instance of B can be considered an instance of C generated
independently of z, the above relation implies:

a.s. d2(B− z)
a.s.
= z.

For the first case of Eq. (23), Aθt is ancestral to Aθc and
Aθn , from Eq. (3), and Lemma 1,

d2(Aθt − µθt)
a.s.
= vθt ,

a.s. d2(Aθc − µθt)
a.s.
= vθt , d2(Aθn − µθt)

a.s.
= vθt .

(25)

Thus the impact of this normalization on Aθc ,Aθn is to translate
their instances by µθt , then scale the result by 1√

vθt
. i.e.

Ãθn
a.s.
=

Aθn − µθt

√
vθt

, Ãθc
a.s.
=

Aθc − µθt

√
vθt

. (26)

As aα is an instance of Aθc ,

a.s. ãα =
aα − µθt

√
vθt

. (27)

From Eq. (25), we know Ãθn data-points lie on shell

s̃α = S
(
µ̃θn =

µθn − µθt

√
vθt

,
√
ṽθn =

√
vθn

vθt

)
. (28)

and ãα’s distance from s̃α is

a.s. G(Ãθc , s̃α) =
G(Aθc , sα)

vθt

a.s.
=

2(vθc − vθn)

vθt

. (29)

This proves the first case of Corollary 2.

Proving the second case of Corollary 2: Here, Aθt is a
descendant of Aθc but ancestor of Aθn . To prove this case, we
need the following Lemma.

Lemma 2. Let Aθt be some intermediate generator. It’s mean,
one of it’s descendant generator’s mean and an independent point
z ∈ Rk almost- surely form a right-angled triangle:

d2(MθtΘj − z)
a.s.
= d2(µθt − z) + d2(MθtΘj − µθt). (30)

Proof. From Eq. (3) and Theorem 2,

d2(Aθt − z)
a.s.
= VθtΘj + d2(MθtΘj − z)
a.s.
= vθt − d2(MθtΘj − µθt) + d2(MθtΘj − z)

(31)

From Eq. (3),

d2(Aθt − z)
a.s.
= vθt + d2(µθt − z). (32)

Combining Eq. (31) and Eq. (32), yields

d2(MθtΘj − z)
a.s.
= d2(µθt − z) + d2(MθtΘj − µθt).

Note that after normalization with µθt , from Eq. (3), we have
the following constraints:

µ̃θt = 0;

ṽθn + d2(µ̃θn) = 1; because d2(Ãθn − 0)
a.s.
= 1

ṽθc + d2(µ̃θc) = 1; because d2(Ãθc − 0)
a.s.
= 1

(33)

Replacing Aθt , z in Lemma 2, with Ãθt , µ̃θc respectively:

d2(M̃θtΘj − µ̃θc)
a.s.
= d2(µ̃θt − µ̃θc) + d2(M̃θtΘj − µ̃θt).

(34)
As µ̃θn is an instance of M̃θtΘj , from Eq. (33) and Eq. (34),

a.s. d2(µ̃θn − µ̃θc) = d2(µ̃θt − µ̃θc) + d2(µ̃θn − µ̃θt)

= d2(µ̃θc) + d2(µ̃θn).
(35)

As ãα is an instance of Ãθc that is independent of µ̃θn

(Ãθc is their most recent common ancestor), combining Eq. (3),
Eq. (33), Eq. (35), the distance of ãα from shell center µ̃θn is
almost-surely

d2(Ãθc − µ̃θn)
a.s.
= ṽθc + d2(µ̃θc − µ̃θn)

= ṽθc + d2(µ̃θc) + d2(µ̃θn)

= 2− ṽθn .

(36)

Combing the above results with Eq. (28), the distance of ãα to the
shell s̃α is:

a.s. G(Ãθc , s̃α) = 2(1− ṽθn) =
2(vθt − vθn)

vθt

. (37)

This proves the second case of Corollary 2.
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APPENDIX B
IMPACT OF NORMALIZATION ON NOISE: PROOFS
FOR SEC. 4.2
In machine learning, deviations from expected results are modeled
as noise. The most commonly investigated noise model is sensor-
noise. In this scenario, the data-points are not faithful represen-
tations of reality and the deviation is modeled as noise. In this
paper, we assume data is captured accurately and sensor noise is
negligible.

Instead, we consider shell learning to be a framework for
predicting distances between data-points In this context, noise
refers to deviations from these theoretical distance predictions.
Noisy distances are distinguished by the notation d2N . Thus, the
noisy distance between random vector Z and an independent
vector c is denoted

d2N (Z− c)
a.s.
= d2(Z− c) +N . (38)

with the random variable N used to denote additive noise. N is
assumed to be independent of the hierarchical generative process
and have zero mean.

Note that as we do not consider sensor noise, there is no noisy
version of Z. However, since normalization involves dividing
data-points by their magnitude, it is impacted by noise in the
distance estimate. As defined in Sec. 4.2, the outcome of noisy
normalization is denoted by appending ′̃ to instances or random
vectors.

The impact of noise on distinctive-shells must be studied with
respect to the gap (distances of points from distinctive-shells). In
theory, there are four possible cases: Large noise with small gap;
large noise with large gap; small noise with large gap; and small
noise with small gap. Of these, only the last case is important.
In the first two cases where noise is large, it would be more
reasonable to consider an alternative model. In the third case, the
impact of noise would be too small to interfere with the gap and is
unlikely to affect machine learning performance. This, leaves the
last case, which we consider below.

We show that in this case, if normalization is performed
optimally, it will cancel out the first order noise terms. This is
beneficial to fine grained recognition based on small differences
in the gap. More formally:

Corollary 3. Let s̃α denote a post-normalized distinctive-shell;
ãα is a similarly normalized non-α point; and Ãθc the normal-
ized, most recent common ancestor between aα and α. The post-
normalization gap between ãα and s̃α is G(Ãθc , s̃α).

If the gap between ãα and s̃α is small and normalization is
optimal, the first order Taylor approximation of the gap in the
noisy case is

a.s. G(Ã′θc , s̃′α)
a.s.≈ G(Ãθc , s̃α), (39)

with all first order terms being zero.
Thus, in this case, when noise is small, we can approximate

the noisy gap with the noise free gap.

Below, we show how Corollary 3 is derived.

Proof of Corollary 3: Let B be the outcome of some generator
that is independent of m. We use m to denote the expected
squared distance of B to normalization vector m, i.e.

d2(B−m)
a.s.
= m.

Th corresponding noisy distance is:

d2N (B−m)
a.s.
= d2(B−m) +N . (40)

where, as mentioned earlier, random variable N denotes noise.
The normalization of B in the presence of noise is:

B̃′ =
B−m√
d2N (B−m)

. (41)

In the noiseless case, the normalized instances, B̃, are encom-
passed by the distinctive-shell, s̃B, where

s̃B = S
(
µ̃B =

µB −m√
m

,
√
ṽB =

√
vB

m

)
. (42)

We use s̃′B to denote the distinctive-shell after noisy normal-
ization. s̃′B’s center is the mean of B̃′, denoted µ̃′B. s̃′B’s radius
is the expected distance of B̃′ from µ̃′B. i.e.

s̃′B = S
(
µ̃′B, r̃′B = E

(√
d2N (B̃′ − µ̃′B)

))
. (43)

where r̃′B is used to denote the radius of shell s̃′B.
Next, we show that the conditions stated in corollary 3 mean

that s̃′B is approximately equal to s̃B and use this result to show
the noisy distance of a test point, ãα

′ from s̃′B is approximately
the same as the distance of ãα from s̃B.

In the following Lemma 3, we prove that when noise is small,
the centers of s̃′B and s̃B are approximately the same:

Lemma 3. The first order Taylor series approximation of µ̃′B is
almost-surely its noise free counterpart µ̃B, i.e.

a.s. µ̃′B ≈ µ̃B, (44)

with all first order noise terms being zero.
Thus, if noise is small, we can approximate µ̃′B with µ̃B.

Proof. As E(N ) = 0 and N is independent of B,

µ̃′B = E(B̃′)

= E

 B−m√
d2N (B−m)


a.s.
= E

(
B−m√
m+N )

)

≈ E
(

B−m√
m

(
1− N

2m

))
= E

(
B−m√

m

)
= E(B̃) = µ̃B

(45)

To derive an expression for the radius of s̃′B, we take a
slightly circuitous route and first develop Lemma 4 to relate noisy
normalized instances of ancestral generators of B to µ̃′B. We reuse
this Lemma later to simplify the subsequent proofs.

Lemma 4. Let c be an instantiated data-point of generator C,
which is also c’s most recent common ancestral generator with
B. cB is used to denote the value that d2(C−µB) converges to,
i.e.

d2(C− µB)
a.s.
= cB. (46)



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 18

The above is the theoretically predicted distance of c from
the center of shell sB. We will prove that the corresponding
theoretically predicted, normalized distance of c̃ from the center
of the normalized shell s̃B is:

d2(C̃− µ̃B)
a.s.
=

cB
m
. (47)

Further, we show that given the conditions of Corollary 3, the
first order Taylor approximation of the squared distance of c̃′ from
to µ̃′B is:

a.s. d2(c̃′ − µ̃′B) ≈ d
2(c̃− µ̃B) =

cB
m
. (48)

This means that, when noise is small and the conditions in
Corollary 3 are true, the noisy distance of c from distinctive-shell
centers is approximately the noiseless distance.

Proof. The conditions in Corollary 3 focus on the case where
normalization is optimal and the gap is small. From Sec. 4.2 we
know that a small gap implies that µC → µB. While optimal
normalization implies m = µC → µB and that m is independent
of C.

As m is independent of C, from Lemma 1,

d2(C−m)
a.s.
= m. (49)

Fusing Eq. (49) and the normalization definition in Eq. (19), we
have

a.s. d2(C̃− µ̃B)
a.s.
=

d2(C− µB)

m
a.s.
=

cB
m
,

thus proving Eq. (47).
The noisy distance of c from distinctive shell center µB and

normalization vector m are:

d2N (C− µB) = cB +N1, d2N (C−m) = m+N2, (50)

respectively. The corresponding normalized distance from normal-
ized shell center is given by

d2N (C̃′ − µ̃B
′
).

Using Eq. (50) with Lemma 3, the first order Taylor approximation
of d2N (C̃′ − µ̃B

′
) is:

d2N (C̃′ − µ̃B
′
)

a.s.≈ d2N (C̃′ − µ̃B)

a.s.
= d2N

(
C−m√
m+N1

− µB −m√
m

)

a.s.
=

d2N

(
C−m− (µB −m)

√
m+N1

m

)
m+N1

a.s.≈
d2N

(
C−m− (µB −m)(1 + N1

2m )
)

m+N1

a.s.
=
d2N

(
C− µB − (µB −m)(N1

2m )
)

m+N

a.s.
=
d2N (C− µB) +

(
N1

m

)2
k1 +

(
N1

m

)4
k2

m+N1

a.s.≈ d2N (C− µB)

m+N1

a.s.
=
cB +N2

m+N1
,

(51)

where k1 and k2 are coefficients for the higher order terms.
Note that as m → µB, d2N (C −m) → d2N (C − µB) and

thus N2 → N1. This allows the above expression to be further
simplified to

d2N (C̃′ − µ̃B
′
)

a.s.≈ cB +N2

m+N1

≈
(
cB
m

+
N2

m

)(
1− N1

m

)
≈cB
m

+
N1

m

(N2

N1
− cB
m

)
≈cB
m
.

(52)

Combining Eq. (52) with Eq. (47), we get:

a.s. d2(c̃′ − µ̃′B) ≈ d2(c̃− µ̃B) =
cB
m
,

thus proving Eq. (48).

Note that we can set C = B in Lemma 4. This means

d2N (B̃′ − µ̃′B) = d2(B̃− µ̃B). (53)

Thus, the radius of distinctive shell s̃′B is:

r̃′B ≈ E
(√

d2(B̃− µ̃B)

)
a.s.
=
√
ṽB. (54)

Combining this result with Lemma 3, the first-order approximation
Taylor approximation of s̃′B is

a.s. s̃′B ≈ s̃B. (55)

Given this expression for s̃′B, the gap between a point c̃′ in
Lemma 4 and distinctive-shell s̃′B is:

a.s. d2(c̃′ − µ̃′B)− (r̃′B)2 ≈ cB
m
− ṽB. (56)

This can also be expressed in terms of random vectors as:

G(C̃′, s̃′B)
a.s.≈ cB

m
− ṽB. (57)

In the noiseless case, Eq. (42) and Eq. (47) mean the gap from
c̃ from s̃B is

G(C̃, s̃B)
a.s.
=

cB
m
− ṽB. (58)

From the above two equations, the first order Taylor approxi-
mation of G(C̃ ′, s̃′B) is:

G(C̃′, s̃′B) ≈ G(C̃, s̃B). (59)

Let the α generator be denoted Aθn , a non-α point aα, and
their most recent common ancestor with α is Aθc . Mapping B to
Aθn , c to aα and C to Ãθc . Hence, given the conditions stated
in Corollary 3,

a.s. G(Ã′θc , s̃′α)
a.s.≈ G(Ãθc , s̃α). (60)

This proves Corollary 3.
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