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Abstract
With rapid population growth and increasing demand for urban mobility, metropoli-
tan areas such as Singapore, Tokyo, and Shanghai are increasingly dependent on
public transport systems. Various strategies are proposed to improve the service qual-
ity and capacity of bus and subway systems. Express trains—i.e., trains that skip
certain stations—are commonly used because they can travel at higher speeds, poten-
tially reduce travel time, and serve more passengers. In this paper, we study cyclic
express subway service (CESS), in which express trains provide routine transport
service with cyclic (periodic) station-skip patterns that can be used in daily service.
We propose an exact Mixed Integer Programming (MIP) model to optimize cyclic
station-skip patterns for express trains operating in a single-track subway system. The
objective is to reduce passengers’ total travel time—i.e., the sum of waiting time and
riding time—while considering demand intensity and distribution and train headway,
frequency, and capacity. We implement the model in a set of numerical experiments
using real data from Singapore. To solve the optimization problem more efficiently,
we also propose a heuristic to solve large-scale problems. We observe that the exact
MIP model for CESS provides optimal cyclic express service patterns within a rea-
sonable computational time, and the heuristic method can significantly reduce the
computational time and provide a good solution. The case study demonstrates that
passengers’ average travel time could be significantly reduced compared to local train
service. We also discuss the potential transfer of passengers between express trains
and evaluate its effects using numerical experiments.
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1 Introduction

With rapid population growth and increasing demand for urban mobility, metropoli-
tan areas such as Shanghai, Tokyo, and Singapore are increasingly dependent on
public transport, such as bus and subway systems. For example, Singapore’s popu-
lation of 5.6 million is served by a metro system with five lines and 106 stations,
and more than 2 million commuters use the subway every day. In Shanghai, the
average daily metro system ridership is nearly 10 million. With such high demand,
various strategies are proposed to improve the quality and capacity of subway sys-
tems. At the planning level, massive investment is required to improve and extend
subway infrastructure—e.g., by building more lines and increasing the number of
service trains. However, the construction of new infrastructure cannot keep up with
the increase in passenger demand, especially in cities with fast-growing populations.
Many strategies have been implemented at the operational level, including limiting
the number of passengers who enter certain stations during peak hours (which, essen-
tially, reduces demand by rejecting passengers) and skipping specific stations under
high demand, even without advance notice to passengers.

Despite the merits of urban subway systems—large capacity, high reliability, and
high efficiency—they also have disadvantages that cannot be ignored. One is long
riding time due to frequent stops at many stations. This paper studies cyclic express
subway service (CESS), which provides routine train service with cyclic and periodic
station-skip patterns. CESS express trains follow well-optimized cyclic station-skip
patterns and selectively skip certain stations. Express trains reduce travel time for
passengers due to fewer speed decelerations and accelerations and fewer passengers
alighting and boarding at skipped stations. We aim to reduce passengers’ average
travel time.

An example of CESS is depicted schematically in Fig. 1. The subway service has
three station-skip patterns—the red node indicates the station is skipped, while the
green node indicates the station should be stopped—and express trains follow the
three patterns periodically. Each train serves a subset of all of the stations along the
subway line. Using information about express train service displayed on the platform,
passengers can decide which train to board according to their destination stations.

Once the CESS implemented in urban subway systems, the main challenge in
practical daily operation is how to accurately convey information of trains arrival

Fig. 1 Example of cyclic express subway service
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and departure to travelers, especially for subway lines under high demand. While
with the rapid development of IoT (The Internet of Things), information sharing
platforms of urban subway system have been widely used in many cities, such as
Singapore’s “Mass Rapid Transit” (MRT) and Shanghai metro transit system. In Sin-
gapore, plasma displays with Station Travel Information System (STIS) programmed
by Closed-loop Technology are located in stations at the concourse and on platforms,
as shown in Fig. 2. At the concourse, displays show the destination and the estimated
arrival times of the next two trains at each platform. At the platforms, the displays
show the arrival times and destination of the next two trains. At terminal stations,
the departure time is shown too. Some advanced sensors are also used in new sub-
way lines (e.g., Downtown Line), and passengers can even see the load level of each
car through the plasma displays. Another most used and effective real-time train
information sharing tool is mobile application. As shown in Fig. 2c, “MyTransport”
application is developed by Singapore government can provide bus and train travel
guidance, which helps passengers easily obtain subway lines timetable and make
travel plans accordingly by their mobile phones.

The main contribution of this paper is to propose an exasct Mixed Integer Pro-
gramming (MIP) model to optimize cyclic station-skip patterns for express trains
operating in a single-track subway system. The problem is challenging. First, CESS
aims to provide routine express train service with cyclic station-skip patterns that

Fig. 2 Communications between passengers and subway: information sharing and guidance



J. Yang et al.

can be used daily—instead of temporary express train service under disruptions or
extraordinary events—and therefore the combination of periodic station-skip patterns
is critical. If, we assume that there have a line with 15 stations and the number of
trains in one cycle equals 3, then the total number of possible station-skip patterns
is more than 3 × 215. Second, many cities, such as Singapore and Shanghai, have
single-track subway systems; as a result, we must consider headway between consec-
utive express trains to avoid train overtaking. In this paper, we consider implementing
the routine express trains with cyclic station-skip patterns at certain times of the day,
e.g., off-peak hours. Express trains with headway constraints make the problem com-
plicated and hard to solve. We do not combine the regular trains and express trains
in one model. Otherwise, train overtaking, which is not allowed in a single-track, is
hard to avoid. Third, there are complicated trade-offs between passengers’ in-vehicle
riding time and out-of-vehicle waiting time under cyclic station-skip patterns. While
passengers in the express subway system tend to have less in-vehicle riding time, they
will suffer longer waiting time for the train that serves their destination station. Dur-
ing off-peak hours, we can skip low demand stations and save passengers travel time
by providing express subway services. While for peak hours, express subway service
may make passengers waiting at platform and cause congestion. The trade-off will be
much more complicated if we consider the potential transfer of passengers between
express trains.

2 Literature Review

Literature on the design and operation of urban transit services (e.g., buses and sub-
ways) can be classified into two groups. The first group focuses on the design of
public transit network—for example, determining a set of lines and stations given
demand distribution and city topology, such as work by Ceder and Wilson (1986),
Yang and Bell (1998), Melkote and Daskin (2001), Guihaire and Hao (2008), and Yin
et al. (2009) and Farahani et al. (2013). The second group focuses on the timetable
of public transit service, e.g., optimizing timetables to reduce passenger waiting time
in the context of either no congestion or oversaturation, such as Liebchen (2008) and
Kaspi and Raviv (2013), and Sun et al. (2014).

Much research has been conducted on express service for bus systems. For exam-
ple, Leiva et al. (2010) develop optimization models for the design of limited-stop
services for an urban bus corridor to minimize social costs. Chiraphadhanakul and
Barnhart (2013) propose an optimization model to determine a limited-stop express
service route to operate in parallel with local bus service to maximize total user
welfare. Chen et al. (2015) develop a mathematical model for the optimal stopping
strategy on a bus line given stochastic travel time and vehicle capacity. Larrain et al.
(2010) conduct experimental simulations and find that average trip length is a cru-
cial parameter for the potential benefits of express service with high demand. As an
extension, Larrain et al. (2015) propose heuristics for express service configuration
of a bus corridor with and without congestion. Furth and Rahbee (2000) propose a
discrete approach to study the impacts of changing bus-stop spacing, and identify the
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optimal bus-stop location through dynamic programming. Stewart and El-Geneidy
(2016) propose a new bus stop consolidation method to improve the quality of a
transit agency. Cao and Ceder (2019) also use the skip-stop tactic on autonomous
shuttle bus service in Auckland, New Zealand, which shows a reduction of 1.83%
passengers’ travel time and 8.11% number of vehicles compared to no skip-stop
operation.

Literature on express service for subway systems is limited. The work of Suh
et al. (2002) is among the earliest studies on express service for subway systems.
They consider three typical train-stopping patterns. (1) All-stopping: Trains stop at
all stations along the subway line. It is essentially a local train service. (2) Skip-
stopping: Trains visit a subset of stations along the subway line, and some passengers
must transfer between trains if no direct service is provided to their destination. (3)
A combination of all-stopping and skip-stopping for multiple track systems: Trains
on some tracks stop at a subset of stations, while trains on other tracks serve all
stations.

Other work approaches the problem from diverse perspectives. Ulusoy et al.
(2010) develop a model for cost-efficient operation that optimizes all-stopping short-
term express rail services under heterogeneous demand. Gao et al. (2016) propose
an optimization model to deal with the express subway rescheduling problem in the
case of overcrowding after disruptions, and show that express service outperforms
common service in that context. Gao et al. (2018) propose an optimization model
for combined service with express trains and local trains on double tracks, in which
express trains can overtake local trains. They present numerical results from Bei-
jing’s Metro Line to demonstrate the reduction in energy consumption and travel
time. Jamili and Aghaee (2015) propose an operation mode for express subway ser-
vice under uncertainty; a robust mathematical model and two heuristic algorithms
are developed with the objective of increasing train speed and reducing operational
costs. Freyss et al. (2013) study subway express service in a one-way single-track sys-
tem given two types of stop patterns. Niu et al. (2015) aim to minimize passengers’
waiting time given predetermined station-skip patterns with temporal demand. Parbo
et al. (2018) formulate the skip-stop problem as a bi-level optimization model and
implement it on the suburban railway network in the Greater Copenhagen Region.
Results show the skip-stop strategy achieves 5.5% passengers’ in-vehicle time and
3.2% travel cost reduction. Dong et al. (2020) study the integrated train stop planning
and timetabling problem, which is modeled as a mixed-integer nonlinear program-
ming problem and further solved using an extended adaptive large neighborhood
search algorithm.

Some gaps are identified in the literature. Many previous studies focus on tem-
porary express subway service under specific circumstances (e.g., disruption or
overcrowding) instead of routine express subway service with cyclic station-skip pat-
terns. In addition, in this paper we focus on a subway system with a single track,
which imposes strong constraints on station-skip patterns due to the infeasibility
of train overtaking. We also discuss the potential transfer of passengers—which
is ignored in the literature—between express trains and evaluate its effects using
numerical experiments.
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3 The Cyclic Express Subway Service Problem

This section first describes the CESS problem for a single-track urban subway sys-
tem, then proposes an exact MIP model to optimize cyclic station-skip patterns for
routine express subway service.

3.1 Problem Description and Notation

We aim to optimize the cyclic station-skip patterns for express trains with the
objective of minimizing passengers’ average travel time. We consider a single-track
subway system in which S = {1, 2, ..., |S|} is the set of subway stations, and
K = {

1, 2, ..., |K|} is the set of express trains with cyclic station-skip patterns. If we
are given the number of station-skip patterns K in one service cycle and the number
of skipped stations for each express train, the problem is to determine which stations
s ∈ S should be skipped by each train k. Figure 3 presents an example of a service
cycle with 3 station-skip patterns (|K| = 3). Green nodes denote the stations that are
served by a train, and the red nodes denote the stations that are skipped by a train. In
this example, train 1 skips stations 2, 4, and 6; train 2 skips stations 3, 5, and 7; and
train 3 skips stations 2, 5, and 8. With more stations skipped, the entire travel time
from the first station to the last station on the subway line could be reduced, which
could reduce passengers’ travel time but increase passengers’ waiting time.

The CESS problem is a combinatorial optimization problem. Before presenting
the exact optimization model, we introduce the mathematical notation as follows:

3.2 An Exact Mixed Integer ProgrammingModel

We now propose an exact MIP model that optimizes the cyclic station-skip patterns
for express trains operating in a single-track subway system We introduce notation
in Table 1.

3.2.1 Objective Function

In general, passengers using express service will have less in-vehicle riding time
due to time reduction at the skipped stations. However, they will suffer longer out-
of-vehicle waiting time for the train that serves both their origin and destination

Fig. 3 Example of cyclic express subway service with three trains (|K| = 3)
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Table 1 Notation for the exact MIP model

Sets

S = {1, 2, ..., |S|}, set of subway stations

K = {1, 2, ..., |K|}, set of express trains in one service cycle

Parameters and Variables for Trains

Parameters

ti travel time from station i to station i + 1, i ∈ S \ {|S|}

p service time for trains in each served station, i.e., passenger
boarding and alighting time

hmin minimum allowed safety headway between express service trains

hmax maximum allowed headway between express service trains

C train capacity

β input parameter, represents the estimated average waiting time
for passengers waiting for the next train which can take them to
their destination

Decision Variables

xk
i binary variable, 1 if station i ∈ S is served by train k ∈ K , 0

otherwise

yk
ij binary variable, 1 if both stations i and j are served by train k ∈

K , 0 otherwise

Intermediate Variables

hL headway between local trains service

Ak
i arrival time of train k at station i in one service cycle

ck
i maximum number of passengers allowed to board train k at

station i due to capacity

Parameters and Variables for Passengers

Parameters

λij number of passengers from station i to station j per unit of time

Intermediate Variables

dk
ij number of passengers entering station i with destination j who

want to board train k

rk
ij number of passengers at station i with destination j before the

arrival of train k

rk
i total number of passengers wait at station i before the arrival of

train k

Rk
ij number of passengers at station i with destination j who have

chance to board train k

Rk
ij total number of passengers at station i who have chance to board

train k

bk
ij number of boarding passengers at station i with destination j for

train k

bk
i total number of boarding passengers at station i for train k

wk
ij number of passengers at station at station i with destination j

who fail to board k

wk
i total number of passengers at station i who fail to board train k

nk
i total number of passengers in train k after passing station i
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stations. To minimize passengers’ total travel time, we choose an objective function
as follows:

maximize �T = �Triding − β · �Twaiting

=
|K|∑

k=1

|S|−1∑

i=2

nk
i−1 · p · (1 − xk

i ) − β ·
|K|∑

k=1

|S|−1∑

i=2

wk
i (1)

Objective function (1) maximizes total travel time reduction for passengers using
express service in one service cycle, which equivalently minimizes total travel time
for passengers in one service cycle. In the first component, nk

i−1 denotes the number
of onboard passengers in train k after its departure from station i − 1, and xk

i denotes
whether train k serves station i. If xk

i = 1, train k serves station i and there is no riding
time reduction at station i for passengers on train k; if xk

i = 0, train k skips station
i and the corresponding riding time reduction is nk

i−1 · p. In the second component,
wk

i denotes the total number of passengers at station i after the departure of train k, β
denotes the estimated average waiting time at each station. So β ·wk

i is the increment
of out-of-vehicle waiting time for passengers that cannot board train k at station i.

If we denote �T ∗ as the optimal value of equation (1) (i.e., the optimal travel time
reduction for passengers in one service cycle), then the benefits of the express service
can be evaluated using the average travel time reduction for each passenger:

�T ∗
avg = �T ∗

|K| · |T | · ∑|S|
i=1

∑|S|
j=1 λij

(2)

where |K| · |T | · ∑|S|
i=1

∑|S|
j=1 λij is the total number of passengers requesting train

service during one service cycle.

3.2.2 Constraints

There are four types of constraints in the exact MIP model, which are express ser-
vice constraints, train headway constraints, train capacity constraints and passenger
boarding and alighting constraints. We present all constraints as follows:

Express Service Constraints

|K|∑

k=1

xk
i ≥ 1 ∀i ∈ S (3)

xk
1 = xk|S| = 1 ∀k ∈ K (4)

yk
ij = xk

i · xk
j ∀i, j ∈ S, k ∈ K (5)

|K|∑

k=1

yk
ij ≥ 1 ∀i, j ∈ S (6)

xk
i ∈ {

0, 1
}

(7)

yk
ij ∈ {

0, 1
}

(8)
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Constraint (3) ensures that for each station i ∈ S, at least one train stops and serves
it in one service cycle. Constraint (4) ensures that all trains start from and serve the
first station (i = 1) and terminate service at the last station (i = |S|). For each train
k, constraint (5) ensures that it can bring passengers from origin i to destination j if
and only if it serves both station i and station j . Constraint (6) ensures that at least
one train will stop at both station i and station j at one cycle, which guarantee that
the system can serve passengers with any origins and destinations pairs. Constraints
(7) and (8) define the domain of decision variables.

Train Headway Constraints

A1
1 = 0 (9)

Ak
i = Ak

1 +
i−1∑

i=1

ti−1 + p ·
i−1∑

i=1

xk
i ∀i ∈ S \ {

1
}
, k ∈ K (10)

hmin ≤ Ak+1
i − Ak

i ≤ hmax ∀i ∈ S, k ∈ K \ {|K|} (11)

Equation (9) indicates the arrival time of the first train (k = 1) at the first station
is set to 0. Constraint (10) computes the arrival time of each express train at each sta-
tion, and constraint (11) guarantees a minimum safety headway between successive
express trains, and no train over-taking is allowed in the single-track subway system.

Train Capacity Constraints

ck
1 = C ∀k ∈ K (12)

ck
i = C − nk

i−1 +
i−1∑

j<i

bk
ji ∀i ∈ S \ {

1, |S|}, j ∈ S, j > i, ∀k ∈ K (13)

nk
1 = bk

1 ∀k ∈ K (14)

nk
i = nk

i−1 −
i−1∑

j=1

bk
ji +

|S|∑

j=i+1

bk
ij ∀i ∈ S \ {

1, |S|}, ∀k ∈ K (15)

Constraints (12) and (13) represent the maximum number of passengers allowed
to board at station i for train k due to train capacity. nk

i in constraints (14) and (15)
represents the total number of onboard passengers on train k after its departure from
station i, which equals the number of passengers on train k at station i − 1 minus
the total number of alighting passengers, then plus the total number of boarding
passengers at station i

Passenger Boarding and Alighting Constraint

dk
ij = λij · (Ak

i − Ak−1
i ) ∀i, j ∈ S, j > i, ∀k ∈ K \ {

1
}

(16)

rk
ij = dk

ij + wk−1
ij ∀i, j ∈ S, j > i, ∀k ∈ K \ {

1
}

(17)

rk
i =

|S|∑

j=i+1

rk
ij ∀i ∈ S, ∀k ∈ K (18)
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Equation (16) obtains the number of passengers entering origin station i with
destination station j who want to board train k. Term (Ak

i − Ak−1
i ) denotes the

departure time interval between successive express trains. Constraint (17) obtains the
total number of passengers at station i with destination j before the arrival of train
k, which equals the number of new passengers entering the station i during time
interval [Ak−1

i , Ak
i ], plus the number of passengers failed to board train k − 1. Con-

straint (18) obtains the total number of passengers at station i before the arrival of
train k.

Rk
ij = rk

ij · yk
ij ∀i, j ∈ S, j > i, ∀k ∈ K (19)

Rk
i =

|S|∑

j=i+1

Rk
ij ∀i ∈ S, ∀k ∈ K (20)

In constraints (19) and (20), Rk
ij denotes the number of passengers at station i

with destination j who have chance to board the express train k. If variable yk
ij = 1,

the value of Rk
ij equals rk

ij . While if yk
ij = 0, we have yk

ij = 0, so passengers
waiting at station i who want to board train k must wait for next train k + 1. Vari-
able Rk

i is the total number of passengers in station i that has opportunity to board
train k.

The total number of passengers who can board the train k at station i is represented
by variable bk

i . Since the capacity in a train is limited, over-saturated conditions are
often observed during peak-hours, some passengers cannot board the train they want
(e.g., express train k), and need to wait for next service (e.g., express train k + 1).
Hence, variable bk

i must satisfy following constraint:

bk
i = min

⎧
⎨

⎩
Rk

i , C − nk
i−1 +

i−1∑

j<i

bk
ji

⎫
⎬

⎭
for i ∈ S \ {

1
}
, and k ∈ K (21)

Term
∑i−1

j<i bk
ji calculates the total number of passengers alighting at station i

from train k. Variable bk
ij is the number of passengers at station i with destination

j who can board train k. When the capacity constraint is not violated, which means
train k has enough capacity, we have bk

i = Rk
ij . If available capacity of train k is

less than Rk
i , then we have bk

i = C − nk
i−1 + ∑i−1

j<i bk
ji . While to calculate variable

bk
i , we need to calculate variable bk

ij first. In this paper, we follow the well-mixed
assumption Gao et al. (2016), which assumes passengers with different destinations
randomly arrive and are well mixed in each station i ∈ S. Hence, we have following
equation:

bk
ij

bk
i

= Rk
ij

Rk
i

=⇒ bk
ij = Rk

ij

Rk
i

· bk
i for i, j ∈ S, j > i, for k ∈ K (22)
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Once the available capacity of train k ∈ K is less than the number of passengers
who want to board the train, some passengers are left behind at station i and need to
wait for next train k + 1. Constraints (23) and (24) obtain the values of variable wk

ij

and wk
i .

wk
ij = Rk

ij − bk
ij for i, j ∈ S, j > i, for k ∈ K (23)

wk
i =

|S|∑

j=i+1

wk
ij for i ∈ S, for k ∈ K (24)

3.2.3 Model Linearization

To reduce the computational requirements of the problem, we must linearize objec-
tive function (1) and constraints (5), (19), (21), and (22).

For the first component in objective function (1), we introduce a nonneg-
ative variable zk

i = nk
i−1 · (1 − xk

i ) to represent the in-vehicle riding time
reduction for passengers on train k at station i; we can then linearize the com-
ponent with the following auxiliary linear constraints (note that M is a large
number):

zk
i ≤ nk

i−1 for i ∈ S \ {
1, |S|}, for k ∈ K

zk
i ≤ M · (1 − xk

i ) for i ∈ S \ {
1, |S|}, for k ∈ K

zk
i ≥ nk

i−1 − M · xk
i for i ∈ S \ {

1, |S|}, for k ∈ K

If decision variable xk
i = 0, we have zk

i = nk
i−1; while if xk

i = 1, the value of zk
i

equals 0.
For constraint (5), it can be linearized using the following auxiliary linear

constraints:

yk
ij ≤ xk

i for i, j ∈ S, j > i, and k ∈ K

yk
ij ≤ xk

j for i, j ∈ S, j > i, and k ∈ K

yk
ij ≥ xk

i + xk
j − 1 for i, j ∈ S, j > i and k ∈ K

Constraint (19) can be linearized using the following auxiliary linear constraints:

Rk
ij ≤ rk

ij for i, j ∈ S, j > i, and k ∈ K

Rk
ij ≤ M · yk

ij for i, j ∈ S, j > i, and k ∈ K

Rk
ij ≥ rk

ij − M · (1 − yk
ij ) for i, j ∈ S, j > i, and k ∈ K
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Constraint (21) can also be linearized using the following auxiliary linear con-
straints:

bk
i ≤ Rk

i for i, j ∈ S \ {
1
}
, j > i, and k ∈ K

bk
i ≤ C − nk

i−1 +
i−1∑

j<i

bk
ji for i, j ∈ S \ {

1
}
, j > i, and k ∈ K

bk
i ≥ Rk

i − M · (1 − θk
i ) for i, j ∈ S \ {

1
}
, j > i, and k ∈ K

bk
i ≥ C − nk

i−1 +
i−1∑

j<i

bk
ji − M · θk

i for i, j ∈ S \ {
1
}
, j > i, and k ∈ K

Here we introduce new a binary variable θk
i to denote the relation between variable

Rk
ij and C − nk

i−1 + ∑i−1
j<i bk

ji . The value of θk
i is determined by following rule:

θk
i =

{
1 if Rk

i ≤ C − nk
i−1 + ∑i−1

j<i bk
ji

0 if Rk
i > C − nk

i−1 + ∑i−1
j<i bk

ji

(25)

If θk
i = 1, we have bk

i = Rk
i ; while if θk

i = 0, the number of passengers who can

board the express train (bk
i ) equals C − nk

i−1 + ∑i−1
j<i bk

ji . We can further linearize
constraint (25) as following:

θk
i >

(C − nk
i−1 + ∑i−1

j<i bk
ji) − Rk

i

M

θk
i ≤ 1 + (C − nk

i−1 + ∑i−1
j<i bk

ji) − Rk
i

M

θk
i ∈ {0, 1}

Finally, we linearize constraint (22) by using linear functions to approximate the
quadratic term:

bk
ij ≤ Rk

ij for i, j ∈ S, j > i, and k ∈ K

bk
ij = min

{
λij∑

j=i+1 λij

}

for i, j ∈ S, j > i, and k ∈ K

Parameter ηk
ij is the ratio of passenger demand for each origin-destination pair

(i, j) and the sum of passengers at station i. This is a reasonable assumption which
is also used in Gao et al. (2016) to deal with the skip-stop train scheduling under
over-crowded situation after disruption.

4 Discussion of CESS with Potential Passenger Transfer

Note that the exact MIP model proposed in Section 3 aims to optimize cyclic station-
skip patterns while assuming that passengers will not transfer between express trains.
In practice, however, some passengers may transfer between express trains. Instead of
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boarding a train that serves their destination station directly, they could board a train
that stops at any intermediate station (i.e., transfer station) along the subway line and
transfer to another train that serves their destination station. Transfer behavior and
passengers’ corresponding travel time are notoriously difficult to analyze. To the best
of our knowledge, no previous work addresses the behavior and effects of passen-
ger transfer. In this section, we discuss potential passenger transfers and their effects
on passenger travel time. Specifically, we provide a simple approximated compo-
nent to the objective function to capture the travel time reduction due to passenger
transfer, and evaluate CESS performance with passenger transfer using numerical
experiments.

Passenger transfer imposes great complexity on the problem. An example is illus-
trated in Fig. 4. For passengers entering origin station i = 3 with destination station
j = 6 before arrival of express train k = 1, there are two route choices: either (1)
waiting at platform until the arrival of train k = 3, which will take them to desti-
nation station j = 6 directly, or (2) taking train k = 1 to station 4 firstly, and then
transferring to train k = 2, which will finally take them to destination station j = 6.

4.1 Simple Approximated Revision to the Objective Function

For a passenger with specific origin and destination stations, express service with
cyclic station-skip patterns can be represented as a network graph. In the example
illustrated in Fig. 4, three station-skip patterns (|K| = 3) operate in every service
cycle. Nodes (red represent skipped stations) denote all stations between origin i and
destination j for the three station-skip patterns. Solid lines denote passengers riding,
and dashed lines denote passengers transferring or waiting.

To obtain the best transfer route for a passenger with any specific origin and desti-
nation stations, we must solve a shortest path problem on the network graph in Fig. 5.
However, the network graph is unknown before we determine the cyclic station-skip
patterns, and it is difficult or even impossible to obtain an exact closed-form formula
for passengers’ travel time on the best route under unknown station-skip patterns. In
this subsection, we provide a simple approximated component to revise the objective
function to capture passenger travel time due to passenger transfer. We intend to eval-
uate the additional benefits due to passenger transfer using numerical experiments,
rather than providing an exact formula theoretically.

Fig. 4 Example of passenger transfer between express trains
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Fig. 5 Network graph representation for passenger riding and transfer

As described in Section 3, the objective function contains two components: in-
vehicle riding time �Triding and out-of-vehicle waiting time �Twaiting . When we
take passenger transfer into consideration, in-vehicle riding time:

�Triding =
|K|∑

k=1

|S|−1∑

i=2

nk
i−1 · p · (1 − xk

i )

is still valid, so we only need to revise the waiting time function �Twaiting . If pas-
sengers can transfer between express trains, waiting time will be further reduced
compared to the case in which passengers are limited to using direct service. Specifi-
cally, with passenger transfer, wk

i , the number of waiting passengers at each station i

after the departure of each train k will be reduced, which leads to less out-of-vehicle
waiting time.

Intuitively, with a larger K , passengers will have more feasible transfer routes, so
out-of-vehicle waiting time will decrease; with many stations be skipped, passengers
will have fewer feasible transfer routes, so out-of-vehicle waiting time will increase.
Hence, we select four most representative features in CESS, which are list as follows:

• average train headway in CESS: havg;
• average number of stations skipped for each express train: m;
• total number of trains operations: |K| ;
• total number of waiting passengers:

∑
i∈S wk

i

What needs to be emphasized here is that the variable m is a given parameter, not

a decision variable, it equals
∑

i,k xk
i

|K| , where the value of xk
i is obtained by solving the

CESS without passenger transfer. Besides, we do not set any constraints on the num-
ber of stations we need to skipped in CESS without passenger transfer. So variable m

is only used in passenger transfer case. We test different formulas through numerical
experiments, and obtain a simple approximated term:

�transf er = havg · |K| ·
(

∑

i∈S

wk
i + 1

m

)

(26)

Equation (26) will be added as a third component in the objective function to cap-
ture waiting time reduction due to passenger transfer. We evaluate the approximated
formula using numerical experiments and find that it works well.
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4.2 Heuristic

Although the CESS is a planning problem for which we do not need to solve the MIP
model in a short time, for subway lines with a lot of stations (|S| is large) or number
of trains (value of |K|) in one cycle is large, it is hard for the commercial solvers
to find a optimal solution within hours. Thus we propose a heuristic to reduce the
computational time. The main idea of this heuristic arises from the observation that
the optimal express subway service pattern with number of |K| trains in one cycle is
almost identical to the optimal express subway service pattern with number of |K|−1
trains in one cycle. In other words, we assume that increasing the value of |K| in the
MIP model will affect the station-skip plan of the last train |K|, while the optimal
station-skip plan for trains 1 to |K| − 1 will not change too much. Then an optimal
solution with |K|−1 trains can be a valuable input to the MIP model with |K| trains.
Here we describe the main steps of this heuristic to solve the large CESS problem as
follows:

• Input: number of trains |K| = n, where n is large and the CESS is hard to be
solved to optimal; kmax is the maximum number of trains in one cycle which the
CESS can be solved exactly in 60 minutes; we have kmax ≤ |K|;

• Step 1. let variable k′ denotes the number of trains in one cycle in CESS,
initialize the value of k′ = kmax ;

• Step 2. solve the exact CESS model with the number of trains in one cycle with
k′, get the optimal solution xk

i , for k ≤ k′;
• Step 3. check the solution obtained in step 2, if xk

i = 0, add the constraint xk
i = 0

into the exact CESS model with the number of trains in one cycle k′ = k′ + 1;
• Step 4. repeat steps 2 and 3 until we have k′ = |K| = n.

In this paper, we first try to solve the exact MIP model with small number of
stations |S| and trains |K| in one cycle. With the value of |K| increases and it cannot
be solved by solvers within hours, we use the heuristic method to solve it.

5 Case Study

In this section, we implement the proposed exact MIP model for both CESS with
and without passenger transfer in a set of numerical experiments using real data on
passenger transactions from Singapore’s MRT (Mass Rapid Transit) system; data are
recorded by a smart card-based automated fare collection system. We choose two
subway lines, as is shown in Fig. 6: (1) a section of Downtown Line consists of 10
stations (from MacPherson MRT station to Expo MRT station), and (2) the whole
North East Line consists of 15 stations (from HarbountFront MRT station to Punggol
MRT station).
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Fig. 6 Singapore metro map

5.1 Inputs and Parameters

Table 2 summarizes input and parameters. We implement the MIP model to optimize
cyclic express train service during the evening off-peak hour (2:00 p.m.–3:00 p.m.).
The arrival rate of passengers can be obtained from the automatic fare collection
system, which records the passenger ID, boarding station, alighting station, ride start
time, and ride end time. Sun et al. (2014) analyze smart card data from Singapore’s
MRT system for metro service timetable design, and distinguish two types of metro
trips: full trips and partial trips. In this paper, we use the same method to reconstruct

Table 2 Input and parameters in case study

Inputs & Parameters North East Line Downtown Line

p: service time at each station 1 min 1 min

hL: headway for local service train 3 min 3 min

hmin: minimum safety headway 30 sec 30 sec

hmax : maximum allowed headway 4 min 4 min

C: capacity 1920 per train 931 per train

β: average waiting time in CESS 30, 60 sec 30, 60 sec

|K|: number of patterns in a CESS 2 to 4 trains 2 to 4 trains

D: demand distribution with dif-
ferent values of λij (average travel
distance)

1 (6.54km), 2 (7.00km), 3 (8.35km) 1 (9.65km)
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Fig. 7 Origin and destination distribution along the subway line

travel trips and estimate passenger demand λij . Here, in the last row of Table 2,
we use set D = {

1, 2, 3
}
to denote tested three demand distributions with different

values of λij for the North East Line with the average travel distance for each demand
distribution in parentheses. Same for the Downtown Line. Figure 7 shows the origin
and destination distribution along the North East Line, and Fig. 8 shows the boarding
and alighting passengers demand at each station. The width of each arc indicates the
intensity of demand on each origin and destination pair. We can see from the figure
that demand distribution is unbalanced.

The exact MIP model for the CESS problem is mathematically similar to the
facility location problem, with many additional constraints. Model linearization has
brought a larger number of auxiliary decision variables and constraints. The total

Fig. 8 Number of passengers boarding and alighting at each station
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number of possible station-skip patterns increases exponentially with the total num-
ber of stations in one cyclic express service. So the CESS problems with or without
passenger transfers are both NP-hard problems. In this paper, we first employ stan-
dard solvers (e.g., Cplex and Gurobi) to solve the CESS problem with two express
service trains (|K| = 2) on the section of Downtown Line with total number of 10
MRT stations (|S| = 10). For larger instances with more trains (|K| ≥ 3) and more
stations (|S| = 15), it is hard for the commercial sovlers to find an optimal solution
within 1 hour, thus a heuristic is further proposed to reduce the computational time.
All experiments were conducted on a PC with an Intel Core i7 3.40 GHz with 16 GB
RAM. The optimization model is coded in Python and Gurobi solver 8.1, with the
standard configuration.

5.2 Computational Results

In this section, we implement the exact MIP model with heuristic (if needed) and
evaluate the performance of the cyclic express subway service with and without pas-
senger transfer. Note that parameter |K| denotes the number of station-skip patterns
in one service cycle. Because we aim to provide the CESS be operated with regular
trains as daily service in the real world urban subway system, the total number of
trains in one service cycle should not be too large. As mentioned in Section 1, with
the help of plasma displays in MRT station, passengers can know the running sched-
ule of next two trains. So with more trains in one cycle may also cause complexity in
practical train scheduling and communication. So in this paper, we evaluate the cases
with |K| ∈ [2, 4], most of which can be solved exactly within 60 minutes. Since the
CESS problem is a design problem at the planning level, this computational time is
acceptable. Table 3 lists all instances we test and the methods we used to solve them.

By solving instances No.1 to No.3, corresponding optimal cyclic station-skip pat-
terns for certain values of |K| are shown in Fig. 9. As can be seen in the figure, the
red nodes represent stations will be skipped while the green nodes represent stations
must be stopped. Each train k will skip different sets of stations. Stations with low
boarding and alighting demand are more likely to be skipped. For example, both sta-
tions 7 and 9 have low demand, and are skipped by some train(s) (e.g., k = 1 in
Fig. 9a, k = 1 in Fig. 9b and k = 1, 4 in Fig. 9c) in all of the example cases; both
stations 2 and 3 have high demand, and are rarely skipped by any train in all of the
example cases.

To further explore the benefits of CESS, we calculate the average travel time
reduction for passengers with different values of passenger average waiting time β

on Downtown Line with instances No.11 to No.15. The results are shown in Table 4.
we find that the percentage of average passenger travel time reduction is 10.09%,
12.70% and 12.72% for |K| = 2, 3 and 4, respectively. With the given number of
trains in one cycle increases, the average passenger travel time will also increase,
but with a slower growth rate (2.70% from |K| = 2 to |K| = 3, while 0.02% from
|K| = 3 to |K| = 4), which means that a more flexible CESS (i.e., a larger |K|) will
bring limited benefits in general. Of course, with higher passenger average waiting
time (β = 60 sec), the average passenger travel time reduction will then decrease or
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Table 3 Case study instances

Instance Line Trains Avg Waiting Time Avg Travel Distance Transfer Method

No.1 NE |K| = 2 β = 30 sec 6.54 km × exact

No.2 NE |K| = 3 β = 30 sec 6.54 km × exact

No.3 NE |K| = 4 β = 30 sec 6.54 km × heuristic

No.4 NE |K| = 2 β = 30 sec 7.00 km × exact

No.5 NE |K| = 3 β = 30 sec 7.00 km × exact

No.6 NE |K| = 4 β = 30 sec 7.00 km × heuristic

No.7 NE |K| = 2 β = 30 sec 8.35 km × exact

No.8 NE |K| = 3 β = 30 sec 8.35 km × exact

No.9 NE |K| = 4 β = 30 sec 8.35 km × heuristic

No.10 DT |K| = 2 β = 30 sec 9.65km × exact

No.11 DT |K| = 3 β = 30 sec 9.65km × exact

No.12 DT |K| = 4 β = 30 sec 9.65km × exact

No.13 DT |K| = 2 β = 60 sec 9.65km × exact

No.14 DT |K| = 3 β = 60 sec 9.65km × exact

No.15 DT |K| = 4 β = 60 sec 9.65km × exact

No.16 NE |K| = 2 β = 30 sec 9.65km � exact

No.17 NE |K| = 3 β = 30 sec 9.65km � exact

No.18 NE |K| = 4 β = 30 sec 9.65km � heuristic

even drop below 0, in which case the increment of waiting time caused by the express
train cannot be compensated by the riding time reduction.

5.3 Sensitivity Analysis

The numerical results presented in the previous subsection are based on real pas-
senger demand during the evening off-peak hour (2:00 p.m.–3:00 p.m.). In this
subsection, we examine CESS performance when passenger demand changes—e.g.,
when passenger origin and destination demand distributions changes. To evaluate
CESS performance with different passenger origin and destination demand distri-
butions, we implement the model in the cases of different demand distributions,
especially different average passenger travel distance in the subway system. In the
original demand, the average travel distance of passengers in the subway system is
6.54 km. In this subsection, we construct two distribution scenarios with longer aver-
age passenger travel distances. Figure 10 shows a hypothetical demand distribution
with average passenger travel distance equals to 7.00 km and 8.35 km. Table 5 shows
the corresponding performance of the CESS.

Typically, with a longer average passenger travel distance in the subway system,
the in-vehicle riding time reduction will become larger, and hence the average pas-
senger travel time reduction will increase. In the case of 6.54 km average passenger
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Fig. 9 Optimal cyclic station-skip patterns for instances No.1, No.2 and No.3

travel distance, the percentage of average passenger travel time reduction is 5.95%,
8.28% and 9.15% for |K| = 2, 3 and 4; in the case of 7.00 km average passenger
travel distance, the percentage of average passenger travel time reduction is 7.51%,
8.58% and 9.31%; and in the case of 8.35 km average passenger travel distance, the
percentage of average passenger travel time reduction is 8.90%, 10.50% and 11.59%.
In general, as the average passenger travel distance increases, express train service
brings comparatively more value to passengers.

Table 4 Average passenger
travel time reduction for
instances No.10 to No.15

Instance |K| β Avg Time Reduction (percent)

No.10 2 30 sec 70.69 sec (10.09%)

No.11 3 30 sec 88.93 sec (12.70%)

No.12 4 30 sec 89.07 sec (12.72%)

No.13 2 60 sec 58.06 sec (8.290%)

No.14 3 60 sec 70.30 sec (10.04%)

No.15 4 60 sec 74.59 sec (10.65%)
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Fig. 10 Demand origin destination distribution with different average travel distance

Table 5 Average passenger travel time reduction for instances No.1 to No.9

Instance |K| Avg Travel Distance Avg Time Reduction (percent)

No.1 2 6.54 km 51.50 sec (5.95%)

No.2 3 6.54 km 71.70 sec (8.28%)

No.3 4 6.54 km 79.20 sec (9.15%)

No.4 2 7.00 km 64.97 sec (7.51%)

No.5 3 7.00 km 74.21 sec (8.58%)

No.6 4 7.00 km 80.52 sec (9.31%)

No.7 2 8.35 km 77.02 sec (8.90%)

No.8 3 8.35 km 90.85 sec (10.50%)

No.9 4 8.35 km 100.3 sec (11.59%)
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Table 6 Average passenger
travel time reduction for
instances No.16 to No.18

Instance |K| β Avg Time Reduction (percent)

No.16 2 30 sec 56.63 sec (6.54%)

No.17 3 30 sec 79.31 sec (9.17%)

No.18 4 30 sec 89.69 sec (10.36%)

5.4 Passenger Transfer

We implement the model with the revised objective function in a set of numerical
experiments including instances No.16 to No.18, and evaluate the performance of
CESS considering passenger transfer. The average passenger travel time reduction in
CESS with passenger transfer is greater compared to that in CESS without passenger
transfer. In the case of the original demand with average passenger travel distance
equals to 6.54km. As the results shown in Table 6, the percentage of average pas-
senger travel time reduction for CESS with passenger transfer is 6.54%, 9.17% and
10.36% for |K| = 2, 3 and 4, respectively (compared to 5.95%, 8.28% and 9.15%
for CESS without passenger transfer). Potential passenger transfer between express
trains will enhance the benefits of express subway service to a larger extent.

6 Conclusion

This paper addresses the cyclic express subway service (CESS) problem. We study
routine express subway service with cyclic station-skip patterns and propose an opti-
mization model to determine cyclic station-skip patterns for express trains operating
in a single-track subway system. The aim is to reduce passenger travel time, given
demand intensity and distribution and train headway, frequency, and capacity. An
exact Mixed Integer Programming (MIP) model is formulated.

We implement the model in numerical experiments using real-world data from
Singapore MRT, the North East Line and the Downtown Line. We find that the
proposed exact MIP can provide optimal cyclic express service patterns for the
Downtown Line with 10 stations within a reasonable computational time. For larger
instances of the North East Line with 15 stations, a heuristic is proposed to improve
computational efficiency further. Average travel time for passengers could be sig-
nificantly reduced compared to local train service. We also discuss the potential
transfer of passengers between express trains and evaluate its effects using numerical
experiments.

A natural extension for future research would be extending the model from one
subway line to a subway network with multiple lines, in which train synchronization
and passenger transfer between lines at transfer stations are important. Another exten-
sion would be to include the stochastic passenger demand in MIP modeling. In this
paper, we model the stochastic passenger demand by doing experiments with many
instances with different demand distributions. Robust or stochastic optimization
methodology could be valuable in future research.
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