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ABSTRACT
In this paper, we study the 𝑚-impact region problem (mIR). In a

context where users look for available products with top-𝑘 queries,

mIR identifies the part of the product space that attracts the most

user attention. Specifically, mIR determines the kind of attribute

values that lead a (new or existing) product to the top-𝑘 result for at

least a fraction of the user population.mIR has several applications,

ranging from effective marketing to product improvement. Impor-

tantly, it also leads to (exact and efficient) solutions for standing

top-𝑘 impact problems, which were previously solved heuristically

only, or whose current solutions face serious scalability limitations.

We experiment, among others, on data mined from actual user

reviews for real products, and demonstrate the practicality and

efficiency of our algorithms, both for mIR and for standing top-𝑘

impact problems.

CCS CONCEPTS
• Information systems→ Top-k retrieval in databases.
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1 INTRODUCTION
With the advent of e-commerce, users’ preferences over products

have been commonly captured by preference functions. The most

prevalent model encodes a user’s preferences by a user vector w
that comprises a numeric weight per product attribute. The suit-

ability (score) of a product p is expressed by the weighted sum of

its attribute values [30]. This intuitive scoring (and thus ranking)

mechanism has been shown by user studies to capture closely the
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way humans make multi-criteria decisions [51]. Shortlisting the 𝑘

products with the highest scores is an instance of the well-studied

top-𝑘 query [17, 24, 29]. Naturally, the presence of a product in

the top-𝑘 result for many users has been used as a measure of its

market impact [25, 57, 58, 66, 67].

In this context, we introduce the𝑚-impact region problem (mIR).
Its input includes a product set P, a user setU, and an integer𝑚

between 1 and |U|. Set U includes a vector w and the 𝑘 value

for each user. We say that a product covers a user if it belongs to

her top-𝑘 result. As output, mIR reports the region R in product

space (the domain of product attributes) where any existing or

hypothetical product covers at least 𝑚 users in U. Region R is

maximal, i.e., any product outside of it covers fewer than𝑚 users.

Typical product data may come from comparison shopping web-

sites for electronics (CNET.com), restaurants (Yelp.com), etc, which

provide ratings of available products on a predefined set of aspects

(attributes). User vectors, i.e., preference weights on these aspects,

may be explicitly provided by the users [57, 74], learned via in-

teractive polling [32, 51], inferred from their past purchases and

browsing history [13, 33], or extracted from the users’ product re-

views on the same websites [39, 50]. As a practical example, in our

evaluation we drew P andU from real hotel attributes and user

reviews on TripAdvisor.com [7]. For each hotel, the site maintains 7

attributes, i.e., ratings on 7 aspects (value, cleanliness, service, etc).

It also records the comments and overall score given by each user

who reviewed the hotel. To extract user vectors, we employ the

established method in [61]; designed specifically for the weighted

sum scoring model, it estimates the relative weights placed on each

aspect by a user from the text and scores in her reviews.

To exemplify mIR, we use a sample of the aforementioned ho-

tel/user data as input, keeping only two attributes (value and ser-

vice) for easy visualization, in Figure 1(a). Each row in the lower

table indicates a user’s vector w (comprising weights 𝑤 [1] and
𝑤 [2]), her 𝑘 value, and the respective top-𝑘 result. Assuming𝑚 = 3,

Figure 1(b) illustrates the mIR output, i.e., region R, shown shaded.

It is the union of cells R1,R2,R3, and R4. Every product inside R1
covers all four users, whereas a product inside R2,R3, or R4 covers
three. Any product outside the shaded region covers fewer than

𝑚 = 3 users. Observe that the mIR result (region R) is not convex.
The mIR problem has several important applications. Firstly, it

helps understand preference and market dynamics. In the prism

of existing product competition, it determines the “hottest” part of

the market, i.e., the part that attracts most of the users’ attention.

In our hotel scenario, for example, a travel agency would want to

identify the part of the hotel spectrum that concentrates most user

interest in the current competitive landscape. That may guide their
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(a) Product set P and user set U
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(b) mIR result (shown shaded)

Figure 1: mIR example (𝑚 = 3)

marketing and advertising strategy, and help craft their promotional

pricing tactics. Furthermore, mIR may guide the improvement (or

the design) of products. For instance, a hotel’s management who

plan to upgrade their premises/services aspiring to appeal to at

least a certain fraction of the user population, would aim for a

placement in region R, computed for the respective𝑚 value. With

R at hand, they can determine which aspects they need to boost

more aggressively to meet their goal (e.g., focus more on improving

value than service).

Importantly, in addition to its own applications, mIR leads to

solutions for existing top-𝑘 impact problems, whichwere previously

either not completely/exactly resolved, or whose available solutions

face serious performance limitations. Namely, CO and IS:

Influence-based cost optimization (CO): In designing a new

product p, Yang et al. [67] suggest that the primary requirement

for p is to be influential, i.e., to be top-1 for at least𝑚 users in a

given user set. As secondary criterion, p should incur minimum

creation cost, for some monotone and convex cost function of its

attributes (as is typically the case in practice [25, 47]). That work

is specific to 𝑘 = 1. Also, its exact algorithm exhibits long running

times, failing to terminate within a day in some cases. To bypass

this issue, a sampling alternative is described which, however, is

inevitably inexact. The CO problem, in its general form (i.e., for

𝑘 ≥ 1), can be solved exactly by processing mIR, and subsequently

computing the cost-optimal p in region R, by off-the-shelf convex

optimization solvers. Note that the maximality of R, as required in

mIR definition, is essential for the exactness of this approach. Our

mIR algorithms lead to at least one order of magnitude faster CO
processing than [67] for 𝑘 = 1, while applying for general 𝑘 too.

Improvement strategies (IS):Another top-𝑘 influence problem of

practical relevance is defined, but only heuristically solved, in [66].

It seeks to upgrade a product p, so that its updated version p′ covers
the maximum possible number of users in U, subject to a given

upgrade budget. The upgrade cost is defined by a function similar to

CO, applied to the improvement vector p′ − p, i.e., defined over the
per-attribute increments in p. We show that our mIR framework

can be extended to IS, and solve it exactly for the first time.

To summarize our contributions:

• We introducemIR, a practical problem in the multi-criteria top-𝑘

context, and propose a novel methodology for its processing;

• In addition to its direct applications, we show that mIR provides

exact and scalable solutions to important, standing problems on

top-𝑘 influence, i.e., CO and IS, as well as to crossbreeds of the

two, elaborated in Section 5.5; and

• We experiment, among others, with user preferences extracted

from actual reviews on real products, using an established data

mining approach. To our knowledge, the database literature so far

has only used synthetic preferences in top-𝑘-related evaluations.

2 RELATEDWORK
The most common preference queries are the top-𝑘 and the skyline

operators. There are many approaches for efficient top-𝑘 processing,

including indexing [54, 56], batching [26], and pre-computation [17,

29, 40]; a survey can be found in [30]. The skyline operator reports

those products that are not dominated by any other, i.e., there is no

competitor in P with higher values in all attributes [14, 48].

The skyline literature includes a few impact definitions, based on

dominance. Some studies deem a product marketable if it dominates

many, but is dominated by few [27, 36, 70], and use this as a guide

to design new products. Others consider the creation or upgrade

of products, so that they enter the skyline at minimum or budget-

constrained cost [38, 49, 60]. The dynamic skyline has also led to

similar definitions [31, 63]. Nevertheless, skyline-based influence

cannot capture the personalized semantics of the top-𝑘 model.

In spatial databases, influence is defined as the number of users

who have a product among their 𝑘 nearest [35]. Identifying spa-

tially influential products has been well-explored [55, 69], and has

given rise to influence maximization problems, like [62, 75]. Spatial

influence is effectively determined by containment in circles (or

rectangles [15, 37, 73]), and thus different from top-𝑘 influence.

Some studies consider Boolean decisions per product attribute to

enhance marketability. Miah et al. [41] determine which attributes

of a product to reveal in order to satisfy the most Boolean conjunc-

tive queries from a known set. Asudeh et al. [9] determine whether

to enhance a product with new features at a cost (as a Boolean de-

cision each), while Das et al. [22] aim to attract favorable tags from

online reviews. These settings are inherently different from mIR.
In the rest of this section, we focus on top-𝑘-centered problems.

Table 1 categorizes them into four types, depending on their pref-

erence input (specific user vectors versus preference regions) and

their output (points versus regions).mIR falls under Type PR, since
its preference input is a user setU, and its output is a region R. In-
cidentally,mIR is the only problem of Type PR in the top-𝑘 context.

Type Pref. Input Output

PP User vector(s) Point(s)

PR User vector(s) Region(s)

RP Pref. Region Point(s)

RR Pref. Region Region(s)

Table 1: Classification of top-𝑘 influence problems

Type PP: Given a user setU, a product set P, and a specific prod-

uct p in P, Vlachou et al. [57, 59] compute the reverse top-𝑘 set of

p as the set of those users who are covered by it (i.e., who hold

p in their top-𝑘 result). The same authors [58] identify the prod-

ucts in P that have the largest reverse top-𝑘 sets. These studies

employ algebraic bounds to prune the search space, as opposed to

the necessarily geometric computation of region R in our setting.

Yang et al. [67] define CO for 𝑘 = 1, as described in Introduction.

Their exact algorithm indexes the product space with a Quad-tree,

and employs cost and influence bounds to prune index nodes. When

the bounds fail to disqualify a leaf, they reduce CO to the (highly
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complex) k-level problem [12], which they solve by the algorithm

in [45]. As a faster, yet inexact alternative, they describe a sampling

method. The long version of [67] extends the work to batch CO
queries (still for 𝑘 = 1) [68]. Our mIR adaptation for CO does not

rely on ad hoc partitioning of the product space into quads, nor

does it build on the (particularly complex) k-level computation.

Moreover, it applies to general 𝑘 ≥ 1.

IS is introduced in [66], and formulated as an integer linear pro-

gramming problem. Due to the high complexity of the latter, the au-

thors propose a heuristic, greedy algorithm. Our mIR methodology

approaches IS geometrically, and solves it exactly for the first time.

Koh et al. [34] assume that𝑚 new products can be assembled

by drawing attributes from a set of component tables, resulting in

exponential possible combinations. Aiming to cover the most users,

they propose approximate assembling algorithms. Gao et al. [25]

consider a set of usersU not covered by a product p, and propose

a sampling method to compute the smallest perturbation required

in p, the vectors inU, and the 𝑘 values, so that p covers them all.

Given a user setU and a product set P, Zhang et al. [74] identify
the𝑚 users inU that rank a specific product the highest.

Type RP: Ciaccia and Martinenghi [20] assume that a user vector

w may lie anywhere in a given preference region in weight space,

and report all possible top-1 products. In the same setting, Moura-

tidis and Tang [43] compute all possible top-𝑘 results. A related

work [44] identifies the best rank a specific product p may achieve

for any possible w. These studies work in the weight space, i.e., in

the domain of w. The case inmIR is the opposite; user vectors have

discrete and known locations, while region R is in the product space

(not the weight space) and to be computed (not given as input).

Studies on regret minimization select a subset of the products in

P, with the objective that the top product in that subset for any

possible user vector will not score far worse than the top-scorer in

the entire P [10, 46, 64, 65]. That task is very different from mIR.
Type RR: Specified a product p in P, the monochromatic reverse

top-𝑘 query identifies the region(s) in weight space where any

user vector is covered by p. Tang et al. [52] propose a solution for

multiple dimensions, generalizing from the initial two-dimensional

approaches [19, 57]. In this problem, the preference input is the

entire weight space (as opposed to a specific user setU), and the

output does not include any region (or point) in the product space.

Another Type RR problem is presented in [53]. Given as input a

preference region (in weight space) and a product set, it computes

the region (in product space) where a new product p should be

created, so that it covers every possible user vector in the specified

preference region. The requirement that all (instead of 𝑚) user

vectors should be covered, renders that problem fundamentally

distinct from mIR, because it removes the combinatorial challenge

of covering any 𝑚 vectors from U. Also, the continuity of the

preference region (as opposed to a discrete user set inmIR) requires
very different treatment in weight space.

3 PROBLEM FORMULATION
Consider a product set P, where each product p has 𝑑 attributes,

i.e., 𝑝 [1], 𝑝 [2], · · · , 𝑝 [𝑑]. A user’s preference profile is represented

by a vector w = (𝑤 [1],𝑤 [2], · · · ,𝑤 [𝑑]) and a positive integer 𝑘 .

The top-𝑘 result of that user is denoted by 𝑇𝐾 (w), and comprises

the 𝑘 products with the highest scores, as defined by 𝑆 (p,w) =∑𝑑
𝑖=1 𝑝 [𝑖] · 𝑤 [𝑖]. Without loss of generality [17], we assume that∑𝑑
𝑖=1𝑤 [𝑖] = 1, and 𝑤 [𝑖] ≥ 0 for each 𝑖 ∈ [1, 𝑑]. We consider a

population of users, whose profiles are kept in a user setU. When

a product p belongs to the top-𝑘 result of a user, we say that p
covers that user. We define the𝑚-impact region problem (mIR) as
follows.

Problem 1 (mIR Problem). Given a product set P, a user setU,

and a positive integer𝑚, the mIR problem is to compute the maximal

region R in product space, inside which any (existing or hypothetical)

product p covers at least 𝑚 users from U, i.e., |{w|w ∈ U ∧ p ∈
𝑇𝐾 (w)}| ≥ 𝑚.

We stress that Rmust bemaximal, meaning that a product covers

at least𝑚 users if and only if it lies in R, i.e., any product outside R
covers fewer than𝑚. In the example of Figure 1, R is shown shaded.

Our objective is to design exact and efficient mIR algorithms.

Note that responsiveness is of the essence in our target applications.

For instance, a business analyst who examines preference/market

dynamics in an exploratory manner may need to solve mIR for

different𝑚 or 𝑘 values, or for different subsets of attributes (deci-

sion aspects). Even for fixed parameters, she may need to consider

different user categories in consecutive runs (e.g., according to net

worth or gender). Practical response times are important to support

this type of exploratory analysis.

In the following, we refer to a user vector w ∈ U simply as

userw. Users may have different𝑘 values; in order not to complicate

presentation, we use the generic notation 𝑘 to apply each time to

the individual users implied by context.

4 BASIC SOLUTIONS
In this section, we present two basic mIR algorithms, which reveal

important characteristics of the problem, but also bring out the

computational challenges it entails.

4.1 Naïve Algorithm
Let 𝑆𝑘w𝑖

be the top-𝑘-th score for user w𝑖 across the products in P.
In order for an (existing or hypothetical) product p to be in the

top-𝑘 result for w𝑖 , it should hold that 𝑆w𝑖
(p) ≥ 𝑆𝑘w𝑖

. This inequal-

ity corresponds to a halfspace in product space, whose supporting

hyperplane serves as an entry boundary to𝑇𝐾 (w𝑖 ). We denote that

halfspace as H𝑖 , and call it the influential halfspace of w𝑖 . Formally,

H𝑖 = {p|𝑆w𝑖
(p) ≥ 𝑆𝑘w𝑖

}

Due to the monotonicity of the scoring function,H𝑖 always includes

the top corner of the product space, i.e., the hypothetical product

with the maximum possible values in all 𝑑 attributes (dimensions).

Given P,U, and𝑚, the idea in the naïve mIR algorithm (NVE)
is to consider every possible𝑚-sized user setU𝑗 fromU. For each

of these𝑚-sized sets to (i) generate the influential halfspace H𝑖 for

every user w𝑖 in the set, and (ii) use a standard geometric library,

such as [5], to compute the intersection of their𝑚 influential half-

spaces. Let RU𝑗
denote that intersection for the 𝑗-th user set. By

definition, those and only those products in RU𝑗
cover all users in

U𝑗 . Following directly the formulation in Problem 1, themIR result
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(i.e., region R) is the union of all the RU𝑗
regions. Note that there

are

( |U |
𝑚

)
𝑚-sized user sets (and an equal number of RU𝑗

regions).

Lemma 1. The time complexity of NVE is𝑂 (
( |U |
𝑚

)
·𝑚 ⌊

𝑑
2
⌋ ), where

𝑑 is the number of product attributes.

Proof. It takes 𝑂 (𝑚 ⌊
𝑑
2
⌋ ) time to compute the intersection of𝑚

halfspaces [18]. Since there are

( |U |
𝑚

)
𝑚-sized user sets to consider,

the overall cost is 𝑂 (
( |U |
𝑚

)
·𝑚 ⌊

𝑑
2
⌋ ). □

The naïve algorithm is exact and technically correct, but it is

clearly not practical for real-sized problems, due to its excessive

computational cost. That said, it reveals a few interesting points

about mIR. First, since all influential halfspaces H𝑖 include the top

corner of the product space, so does each RU𝑗
region. Hence, all

RU𝑗
regions overlap with each other, which means that the mIR

result (being their union) is a single, connected region. Another

remark regards the extreme 𝑚 settings. When 𝑚 = 1, the mIR
result is simply the union of |U| halfspaces. When𝑚 = |U|, it is
the intersection of |U| halfspaces. These extremes represent the

easiest mIR settings. We expect the toughest settings to be when𝑚

is about half of |U|. As a final point, observe that the individual 𝑘
values of different users do not affect the algorithmic design at all,

as long as the influential halfspace for each of them is set according

to her personal 𝑘 setting. The same holds for all subsequent mIR
algorithms.

4.2 Baseline Algorithm
The naïve algorithm has more of a theoretical interest. Here we

describe a more workable baseline solution (BSL). It serves as a
stepping stone to present our advanced approach later.

We observe that several regions in the product space are con-

sidered multiple times by NVE. For example, in Figure 1, NVE
considers

(
4

3

)
= 4 user setsU𝑗 , whose respective RU𝑗

regions all

include cell R1 in Figure 1(b). On the other hand, some parts of

the product space are not included in any RU𝑗
. This motivates the

BSL approach, which follows a space-centric paradigm, as opposed

to considering all possible𝑚-sized user sets. With an appropriate

partitioning of the product space, many of its partitions can be

directly reported (as parts of the mIR result) or eliminated.

The main idea in BSL is that the influential halfspaces of all users
define a partitioning of the product space, formally called a halfspace

arrangement, and its partitions, called cells [12]. A cell belongs to the

mIR result if and only if it is inside at least𝑚 influential halfspaces.

In Figure 1, the complete arrangement includes 10 cells, out of which

only R1,R2,R3, and R4 cover enough users. Instead of building the

complete arrangement, BSL constructs it gradually by inserting

influential halfspaces one by one. This allows the early reporting

of cells that are already found to cover 𝑚 users, and the direct

elimination of those already certain not to reach that number.

In our running example, suppose we first insert H1 and H2 to the

arrangement, producing four cells. Referring to Figure 2(a), among

these four, cell R3 (shown striped) can be early eliminated, because

any product p ∈ R3 is already known not to cover w1 and w2, and

even if it is inside the (not yet inserted) H3 and H4, it still cannot

meet the𝑚 = 3 requirement. In contrast, after the insertion of H3,

cell R10 already covers𝑚 = 3 users (i.e.,w1,w2,w3) and can be early

p[1]

p[2] H1

H2p4

p3

p5

p2

p1

H3

H4

R10

R4

R12

R3

(a) Halfspace arrangement

TT

c1c1 c2c2

c4c4 c5c5

H1

H2H2

H3

c3c3

c9c9 c10c10

c6c6

c7c7 c8c8

H4

c11c11 c12c12

c4c4

H3 H3

c4c4

H4

(b) Binary tree representation

Figure 2: BSL example

reported as part of the final result R. Once eliminated or reported, a

cell is ignored (not split any further) by subsequent insertions. BSL
terminates when all cells are either eliminated or reported.

For the maintenance of the arrangement we follow the cell-

tree approach [52], although alternatives could be used, like the

Quad-tree in [71]. The cell-tree is a binary tree, whose root 𝑇 cor-

responds to the entire product space, and each leaf 𝑐 to a cell in the

current arrangement
1
. Inserting a halfspace, adds a level to the tree

by splitting the leaves it cuts through. Cell-tree nodes are implicitly

represented by the set of halfspaces that define them. That is, each

node 𝑐 is associated with a list 𝑐.𝑖𝑛 which stores the halfspaces that

include it, and a list 𝑐.𝑜𝑢𝑡 which stores those that exclude it; halfs-

paces that cut through 𝑐 are propagated down to its children (or, if

𝑐 is a leaf, cause it to split). Effectively, in addition to maintaining

the arrangement, that structure also allows to derive for any leaf

𝑐 (through referral to its own 𝑖𝑛 and 𝑜𝑢𝑡 lists, as well as those of

its ancestor nodes) the number of inserted halfspaces that include

it, i.e., Size(𝑐.𝑖𝑛), and of those that exclude it, i.e., Size(𝑐.𝑜𝑢𝑡). Fig-
ure 2(b) illustrates the tree for the final arrangement constructed in

Figure 2(a). The striped leaves correspond to eliminated cells, while

the shaded to those reported as parts of the result R, respectively.
Algorithm 1 summarizes BSL, including the recursive InsertHS()
module that inserts a new halfspace to the arrangement.

Lemma 2. The time and space complexity of BSL is 𝑂 ( |U|𝑑 ).

Proof. In the worst case, BSL fails to perform any early re-

porting/elimination, thus being equivalent to computing the com-

plete arrangement of |U| halfspaces, requiring 𝑂 ( |U|𝑑 ) time and

space [8]. □

5 ADVANCED APPROACH
Although the worst case scenario expressed by Lemma 2 (i.e., no

early reporting/elimination at all) is very unlikely, BSL is still im-

practical for large problem instances. In this section, we present

our advanced approach (AA) to solve the mIR problem efficiently,

while retaining the correctness and exactness of the solution. The

AA methodology differs from BSL in two major ways. First, instead

of processing the influential halfspaces one by one, we process

them in groups, formed according to geometric properties of the

problem. Second, unlike BSL where each halfspace insertion is

“global” and applies to all tree leaves (arrangement cells), in AA
1
We denote tree nodes by 𝑐𝑖 , but we may also refer to their respective regions R𝑖 in
product space interchangeably, depending on context.
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Algorithm 1 BSL(P,U, 𝑘,𝑚)
1: Initialize result set R← ∅
2: Initialize root𝑇 of the binary tree

3: for each user w𝑖 in U do
4: InsertHS(𝑇,H𝑖 ) ⊲ insert influential halfspace of w𝑖
5: for each leaf node 𝑐 do ⊲ i.e., for each cell in the arrangement

6: if Size(𝑐.𝑖𝑛) ≥𝑚 then
7: R← R ∪ 𝑐 ⊲ early reporting

8: Ignore 𝑐 onwards

9: else if |U | − Size(𝑐.𝑜𝑢𝑡 ) <𝑚 then
10: Ignore 𝑐 onwards ⊲ early elimination

11: Return R

12: Routine InsertHS(𝑐,H)
13: if 𝑐 ∩ H = 𝑐 then ⊲ H covers 𝑐
14: 𝑐.𝑖𝑛 ← 𝑐.𝑖𝑛 ∪ {H}
15: else if 𝑐 ∩ H = ∅ then ⊲ H excludes 𝑐
16: 𝑐.𝑜𝑢𝑡 ← 𝑐.𝑜𝑢𝑡 ∪ {H}
17: else ⊲ H cuts through 𝑐
18: if 𝑐 is leaf then ⊲ split 𝑐 into two parts

19: Initialize left leaf 𝑐.𝑙 and right leaf 𝑐.𝑟
20: 𝑐𝑙 .𝑜𝑢𝑡 ← H
21: 𝑐𝑟 .𝑖𝑛 ← H
22: else ⊲ H cuts through 𝑐 ; insert H to 𝑐’s children
23: InsertHS(𝑐𝑙 ,H)
24: InsertHS(𝑐𝑟 ,H)

we disassociate the partitioning performed at different cells, and

individualize the decision of which halfspace (or group of halfs-

paces, to be exact) will be inserted to each of them next. As we

demonstrate logically/analytically in this section, and empirically

in the experiments, these design principles are instrumental in our

two-fold objective to:

(1) Radically enhance the effectiveness of early reporting and

early elimination; and

(2) Keep the size of the arrangement (i.e., the number of cells cre-

ated) small, without compromising on pruning effectiveness.

The rest of this section is structured as follows. Section 5.1 de-

scribes group formation, and Section 5.2 the processing within each

group. Section 5.3 presents the complete AA algorithm, while Sec-

tion 5.4 includes further enhancements applicable to the special

𝑑 = 2 case. Finally, Section 5.5 adapts our methodology to CO, IS,
and other related problems.

5.1 Group Formation
Each user w𝑖 corresponds to an influential halfspace H𝑖 , thus, we

refer to grouping users and grouping halfspaces interchangeably.

We place into the same group G the users w𝑖 that have the same

top-𝑘-th product. Letting r be that product, the hyperplanes that
define any H𝑖 in G are all bound to pass through r.

To estimate the number of groups formed, assume that all

users have the same 𝑘 . The top-𝑘-th product for any user must

fall in the 𝑘-skyband of P [48], whose expected cardinality is

𝜂 =
𝑘 ln

𝑑−1 |P |
𝑑!

[28]. If each of the 𝜂 candidates is equally likely

to be the top-𝑘-th for a user, the probability that a candidate is the

top-𝑘-th for at least one user is 1 − ( 𝜂−1𝜂 )
|U |

. Hence, the expected

number of groups is 𝜂 (1 − ( 𝜂−1𝜂 )
|U |).

Next, we elaborate on the effectiveness of this grouping, i.e.,

how exactly it serves Objectives (1) and (2) set in the beginning

of Section 5. Consider the two-dimensional example in Figure 3,

where group G includes the influential halfspaces of 5 users, i.e.,

w1,w2, · · · ,w5, whose top-𝑘-th product is r. Assume that𝑚 = 5

and thatU includes |U| = 9 users in total.

p[1]

p[2]

c1

c2

rH1

H2

H3
H4 H5

c3

Figure 3: Effectiveness of grouping

Serving Objective (1): First, we demonstrate why considering G
in a batch facilitates early reporting and early elimination. We

observe in Figure 3 that any product or cell that falls in the shaded

area covers every user in G, while every product in the striped

one covers none. Considering G for 𝑐1 would directly report it

(since |G| ≥ 𝑚), while it would immediately eliminate 𝑐2 (since

the maximum number of users it may cover is |U| − |G| = 4, i.e.,

already smaller than𝑚 = 5). Even in the more general case where

𝑚 andU could be much larger, considering G would aggressively

increase the size of 𝑐1 .𝑖𝑛 and 𝑐2 .𝑜𝑢𝑡 by |G|, thus facilitating the

early reporting/elimination of those cells in subsequent processing.

The observation we made above applies to general dimensional-

ity, and is formalized by two lemmas. The first (Lemma 3) stipulates

the conditions where all users in G are covered by a product p,
while the second (Lemma 4) specifies the conditions which guar-

antee that p does not cover any of them. Effectively, they define

the shaded and striped regions in Figure 3, respectively; regarding

Lemma 4, note that H𝑖 denotes the complement of H𝑖 . Central to

both lemmas is the convex hull of G (in the weight space), i.e., the

smallest convex set that encloses all the users in G. The convex hull
is a standard concept in computational geometry, whose efficient

computation has been well explored [11, 21].

Lemma 3. Let G be a group of users who have a common top-𝑘-th

product r, andV be the set of vertices (user vectors) that define the

convex hull of G. A product p covers all users in G if and only if

∀v𝑗 ∈ V, 𝑆v𝑗 (p) ≥ 𝑆v𝑗 (r), i.e., if and only if p ∈ ∩v𝑗 ∈VHv𝑗 .

Proof. Any user vector w inside the convex hull can be ex-

pressed as a linear combination of its defining vertices [12], i.e.,

there is a set of |V| positive values 𝛼 𝑗 that sum to 1, such that

w =
∑
v𝑗 ∈V 𝛼 𝑗v𝑗 . Keeping in mind that ∀v𝑗 ∈ V, 𝑆v𝑗 (p) ≥

𝑆v𝑗 (r) ⇔ v𝑗 · p ≥ v𝑗 · r, the following holds:

𝑆w (p) = (
∑︁
v𝑗 ∈V

𝛼 𝑗v𝑗 ) · p =
∑︁
v𝑗 ∈V

(𝛼 𝑗v𝑗 · p)

≥
∑︁
v𝑗 ∈V

(𝛼 𝑗v𝑗 · r) , since ∀v𝑗 ∈ V, v𝑗 · p ≥ v𝑗 · r

= (
∑︁
v𝑗 ∈V

𝛼 𝑗v𝑗 ) · r = w · r = 𝑆w (r)

That is, 𝑆w (p) ≥ 𝑆w (r) for any w ∈ G.
For the lemma’s other direction, every defining vertex of the

convex hull is also a user vector in G. Thus, if 𝑆v𝑗 (p) < 𝑆v𝑗 (r) for
some v𝑗 ∈ V , there is a user in G (i.e., v𝑗 ) not covered by p. □
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Lemma 4. Let G be a group of users who have a common top-𝑘-th

product r, and V be the set of vertices that define the convex hull

of G. A product p does not cover any user in G if and only if ∀v𝑗 ∈
V, 𝑆v𝑗 (p) < 𝑆v𝑗 (r), i.e., if and only if p ∈ ∩v𝑗 ∈VHv𝑗 .

Proof. Same as Lemma 3, subject to replacing ‘≥’ with ‘<’. □

Note that, although the lemmas refer to points p in product space,

they define one convex area each, as an intersection of specific

halfspaces. Checking containment of an arrangement cell (i.e., a

convex region) in either of these areas is a commonplace operation.

However, in Section 5.3 we will describe an optimization which, in

many cases, may apply the lemmas without resorting to standard

containment tests, thus saving computations.

Serving Objective (2): To demonstrate that our grouping strategy

also produces fewer cells in the arrangement, consider the two-

dimensional example in Figure 3 again, and assume that we are

about to insert the first group G of influential halfspaces to our

arrangement. At that stage, the only cell in the arrangement covers

the entire product space. Due to the passing through a common

point r, inserting G leads to exactly 2 · |G| cells (i.e., 2 · 5 = 10 in

our example). That is a much smaller number than the 𝑂 ( |G|2)
cells expected in the arrangement of |G| general halfspaces in two

dimensions [8]. This reduction in cell numbers translates directly

to fewer splits, to a simpler arrangement, and to faster operations

in that arrangement. The said reduction is not specific to 𝑑 = 2

only. In any dimensionality, the zone theorem [23] suggests that

each halfspace inserted to a general arrangement will split𝑂 (𝑛𝑑−1)
pre-existing cells, but if the supporting hyperplanes of all halfspaces

pass through a common point, that is reduced to 𝑂 (𝑛𝑑−2).
Having elaborated on the usefulness of Lemmas 3 and 4, there are

still some cases like cell 𝑐3 in Figure 3 where they are inapplicable,

and therefore consideration of the halfspaces within a group G is

necessary. This does not mean that we resort to BSL-like halfspace
insertions. Instead, major optimizations are possible in this case too,

via inner group processing described next. In our experiments, inner

group processing is responsible for a 4- to 6-fold improvement in

processing time (see Section 6.4).

5.2 Inner Group Processing
When a group G is considered for a cell 𝑐 and is deemed undecided

by Lemmas 3 and 4, the inner group processing classifies the group’s

halfspaces into three categories: halfspaces that cover 𝑐 are placed

in set G𝑐
, those that exclude it are placed in G𝑒

, and those that cut

through it in G𝑖
. Sets in the first and second category are directly

inserted to 𝑐.𝑖𝑛 and 𝑐.𝑜𝑢𝑡 , while some (just some!) of those in the

third category will be used to partition 𝑐 . For cell 𝑐3 in Figure 3, the

three sets are G𝑐 = {H5}, G𝑒 = {H1}, and G𝑖 = {H2,H3,H4}.
While the above process is intuitive, to naïvely classify the half-

spaces in G one by one takes considerable time, since it requires

|G| containment tests for 𝑐 , each involving non-trivial geometric

calculations. We aim to avoid or defer such operations as much

as possible. Our approach to efficiently classify the halfspaces in

G relies on V , i.e., the set of vertices (user vectors) that define

the convex hull of G. Note thatV is expected to be much smaller

than G, e.g., |V| is only polylogarithmic in |G| for uniform/normal

product distributions [16]. Recall also thatV is already available,

w[2]

w[1]

w1

w2

w3
w4 w5

w6

w7

w8w9

w10

w11

w15

w12

w13

w14

(a) G in weight space

cc
H4

H9 H9

H12 H12 H12 H12

c7 c8 c9 c10 c11 c12 c13 c14

[6, 7] [7, 6] [7, 6] [7, 6][8, 5] [8, 5] [8, 5] [9, 4]

(b) Arrangement (sub-)tree of 𝑐

Figure 4: Inner group processing example

because it was computed when cell 𝑐 was considered by Lemmas 3

and 4. Classification into the three categories G𝑐
, G𝑒

, G𝑖
proceeds

as follows.

First, we classify the vertices in V into sets V𝑐
, V𝑒

, and V𝑖
,

depending on whether their influential halfspace covers, excludes,

or cuts through 𝑐 . That step is done by standard containment tests,

as usual. Next, we compute the convex hull ofV𝑐
. The beauty of

Lemma 3 is that it applies to every user vector that falls inside the

convex hull of V𝑐
; these user vectors can be inserted directly to

G𝑐
, since they are guaranteed to cover 𝑐 too! Similarly, we compute

the convex hull ofV𝑒
and, by Lemma 4, classify the user vectors it

includes under G𝑒
. The remaining vectors of G are placed in G𝑖

.

Consider Figure 4(a) and user group G = {w1,w2, · · · ,w15}
in weight space

2
. The set of vertices that define its convex hull

is V = {w1, · · · ,w9}. Given a cell 𝑐 , we test it for containment

against H1, · · · ,H9 one by one. From these tests, assume that we

deriveV𝑐 = {w5,w6,w7,w8} andV𝑒 = {w1,w2,w3}. Considering
the respective convex hulls ofV𝑐

andV𝑒
, we may readily produce

G𝑐 = {w5,w6,w7,w8,w13,w14} and G𝑒 = {w1,w2,w3,w10}. The
rest of the users form G𝑖 = {w4,w9,w11,w12,w15}.

After directly inserting G𝑐
and G𝑒

to lists 𝑐.𝑖𝑛 and 𝑐.𝑜𝑢𝑡 , respec-

tively, we consider G𝑖
for insertion to cell 𝑐 . Recall that 𝑐 is a leaf in

the binary tree that maintains the arrangement (see discussion on

Figure 2(b)), thus insertions will lead to repetitive splits, forming

a sub-tree rooted at 𝑐 . The leaves of the sub-tree correspond to

new cells in the arrangement. The more the inserted halfspaces,

the higher the computation cost spent on splits, and the more the

new levels and cells introduced in the arrangement tree. To avoid

the cost of this eager insertion, instead of inserting all the half-

spaces of G𝑖
, we employ a delayed insertion strategy, by (i) only

inserting halfspaces H𝑖 that correspond to user vectors w𝑖 on the

convex hull of G𝑖
, and (ii) propagating/deferring the insertion of

the remaining halfspaces in G𝑖
to the leaves of 𝑐’s sub-tree. The

rationale for the deferral is that when AA processes each of these

new leaves, alternative groups will also be considered, which could

lead to direct reporting/elimination for some of them (a situation

that, in hindsight, would render the eager partitioning of 𝑐 with all

halfspaces in G𝑖
an unnecessary waste of computations).

In Figure 4(a), the convex hull set of G𝑖
is V = {w4,w9,w12}.

The influential halfspaces of the three users are inserted one by one

to 𝑐 , in a manner similar to BSL. Figure 4(b) illustrates the sub-tree

2
The assumption that

∑𝑑
𝑖=1 𝑤 [𝑖 ] = 1 effectively reduces the weight space dimension-

ality by one, since 𝑤 [𝑑 ] = 1 − ∑𝑑−1
𝑖=1 𝑤 [𝑖 ]. Hence, to be accurate, the user set in

Figure 4(a) refers to𝑑 = 3, but this is a detail we choose not to confuse the reader with.
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of 𝑐 after the insertions, indicating the size of the 𝑖𝑛 and 𝑜𝑢𝑡 lists

under each new leaf (equivalently, new cell) created. These sizes

are checked for the early reporting/elimination of the cells, as per

normal. Regarding the surviving cells, we propagate to them the

remaining users in G𝑖
(i.e.,w11 andw15), to be considered (together

with other user groups) when these cells are chosen for processing

by AA. How exactly AA chooses the next cell to process, and how

the different user groups are considered for it, are among the topics

clarified in the complete AA process described in the next section.

5.3 AA Algorithm
To put all pieces in perspective, we outline AA, followed by its

pseudo-code in Algorithm 2. First, the user set U is divided into

different groups G1,G2, · · · ,G𝑔 , as explained in Section 5.1.

In each iteration, AA selects for processing one of the (not yet

reported or eliminated) cells in the arrangement
3
. That is the cell

𝑐 closest to being reported or eliminated, i.e., the cell with the

smallest value of 𝑚𝑖𝑛{𝑚 − Size(𝑐.𝑖𝑛), |U| −𝑚 − Size(𝑐.𝑜𝑢𝑡) + 1}
(the first compared quantity is the number of covering halfspaces

required to report 𝑐 , while the second is the number of excluding

halfspaces required to eliminate it). Having chosen the cell 𝑐 to pro-

cess, AA considers all user groups by Lemmas 3 and 4, and updates

lists 𝑐.𝑖𝑛 and 𝑐.𝑜𝑢𝑡 accordingly (routine Update()). If early report-

ing or elimination is not possible (routine Verify()), the largest

group G is chosen for insertion to 𝑐 . The group insertion (routine

InsertGroup()) follows the process in Section 5.2, by classifying the

users in G into three categories (i.e., G𝑒
, G𝑐

, G𝑖
), placing G𝑐

and G𝑒

to 𝑐.𝑖𝑛 and 𝑐.𝑜𝑢𝑡 , respectively, and eventually partitioning 𝑐 only

with halfspaces that correspond to the convex hull of G𝑖
. Note that

group insertion is specific to 𝑐 and it is the only cell it affects.

Individualized cell partitioning: Importantly, the leaves created

by the partitioning of 𝑐 receive an updated list of user groups that

remain to be inserted. We denote that individualized list as 𝑐.G.
While group insertion executes on 𝑐 , we remove from 𝑐.G all user

groups that were found (by Lemmas 3 and 4) to be entirely covered

or entirely not covered by 𝑐 , and update the inserted group 𝐺 to

only include the remaining halfspaces of G𝑖
(e.g., in Figure 4(a),

group 𝐺 is updated to {w11,w15}). The updated 𝑐.G list is passed

on to the new cells created by the partitioning of 𝑐 , and will be

considered when these cells are processed in a future iteration. The

role of group list 𝑐.G is essential in individualizing the search within

(and the partitioning of) each cell, as we set out to achieve in the

beginning of Section 5.

Algorithm 2 sketches the AA process described above. Group-

ing in Line 2 requires an all-top-𝑘 computation. We employ the

algorithm in [26] for that. To provide perspective, we note that

all-top-𝑘 computation is very fast compared to subsequent geo-

metric processing; e.g., in our default experimental setting, it ac-

counts for less than 1% of AA’s total time. On a different note,

to efficiently organize the arrangement cells according to their

𝑚𝑖𝑛{𝑚 − Size(𝑐.𝑖𝑛), |U| −𝑚 − Size(𝑐.𝑜𝑢𝑡) + 1} value, we use a min-

heap H (see Lines 4, 6, 14). In Line 43, InsertHS() refers to the

regular halfspace insertion routine provided in Algorithm 1. AA
terminates when the min-heapH becomes empty.

3
Originally there is a single cell (which corresponds to the entire product space), but in

subsequent iterations the arrangement includes many.

Algorithm 2 AA(P,U, 𝑘,𝑚)
1: Initialize result set R← ∅
2: G ← group users in U by top-𝑘-th product ⊲ Section 5.1

3: Initialize root𝑇 of the binary tree with𝑇 .G ← G
4: Initialize min-heap H.push(𝑇 )
5: while H is not empty do
6: 𝑐 ← H.top() ;H.pop()
7: Update(𝑐)
8: if Verify(𝑐,R) = False then
9: G← the largest group in 𝑐.G
10: InsertGroup(𝑐,G,R)
11: for each leaf 𝑐𝑖 in sub-tree rooted at 𝑐 do
12: 𝑐𝑖 .G ← 𝑐.G
13: if Verify(𝑐𝑖 ,R) = False then
14: H.push(𝑐𝑖 )
15: Return R

16: Routine Update(𝑐)
17: for each G in 𝑐.G do
18: V ← ConvexHull(G)
19: if ∩v𝑗 ∈VHv𝑗 ∩ 𝑐 = 𝑐 then ⊲ Lemma 3

20: 𝑐.𝑖𝑛 ← 𝑐.𝑖𝑛 ∪ G
21: 𝑐.G ← 𝑐.G − {G}
22: else if ∩v𝑗 ∈VHv𝑗 ∩ 𝑐 = 𝑐 then ⊲ Lemma 4

23: 𝑐.𝑜𝑢𝑡 ← 𝑐.𝑜𝑢𝑡 ∪ G
24: 𝑐.G ← 𝑐.G − {G}

25: Routine Verify(𝑐,R)
26: if Size(𝑐.𝑖𝑛) ≥𝑚 then
27: R← R ∪ 𝑐 ; Ignore 𝑐 onwards ⊲ early reporting

28: return True
29: else if |U | − Size(𝑐.𝑜𝑢𝑡 ) <𝑚 then
30: Ignore 𝑐 onwards ⊲ early elimination

31: return True
32: else ⊲ surviving cell

33: return False

34: Routine InsertGroup(𝑐,G,R) ⊲ Section 5.2

35: {G𝑐 ,G𝑖 ,G𝑒 } ← classify G
36: 𝑐.𝑖𝑛 ← 𝑐.𝑖𝑛 ∪ G𝑐

; 𝑐.𝑜𝑢𝑡 ← 𝑐.𝑜𝑢𝑡 ∪ G𝑒

37: G← G − G𝑒 − G𝑐

38: if Verify(𝑐,R) = False then
39: V ← ConvexHull(G𝑖 )
40: G← G − V
41: Update the copy of G in 𝑐.G
42: for each v𝑗 in V do
43: InsertHS(𝑐,Hv𝑗 )

Fast geometric testing: AA needs to perform numerous checks

of user groups G against cells 𝑐 according to Lemmas 3 and 4 (in

Lines 19 and 22, respectively). The containment tests involved take

non-trivial time. To improve on that, we use a fast test first, before

resorting to standard testing, in a filter-and-refine fashion.

Consider cell 𝑐2 in Figure 5(a), which is checked against group

{H1,H2,H3}. We may identify that Lemma 3 applies (i.e., that 𝑐2 lies

inside all halfspaces in the group) with little computational effort,

if we compute the minimum bounding box (MBB) of 𝑐 and detect

that its min-corner dominates the common point r of the halfspace
group. Indeed, since any product p in 𝑐 dominates the min-corner

of its MBB, from the transitivity of dominance, p also dominates r,
and thus outscores it for any user [14]. The situation is symmetric

for 𝑐1. The max-corner of its MBB is dominated by r. Hence, no user
in the group can be covered by any product in 𝑐1, i.e., they can be

directly placed in 𝑐1 .𝑜𝑢𝑡 . Clearly, when the MBB-based dominance

tests are inconclusive, we resort to standard containment tests.

In the same spirit, we apply a similar optimization for Line 35.

The classification of users into categories G𝑐
, G𝑖

, and G𝑒
, entails

multiple containment tests for a cell against halfspaces. These op-

erations can be expedited by using the MBB of the cell, again in

a filter-and-refine manner. In Figure 5(b), for example, 𝑐1 can be
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Figure 5: Filter-and-refine for fast testing

readily detected as lying outside H1. The fast test is inconclusive in

the case of 𝑐2, necessitating standard containment testing.

Regarding the complexity ofAA, in the worst case all its optimiza-

tions may fail, thus degenerating to BSL, and sharing its analysis in
Lemma 2. That scenario, however, is virtually impossible, with AA
demonstrating consistent efficiency and scalability on all standard

benchmarks tested in the experiments. Another important remark

is that AA is parallelizable in principle, since group insertion is

performed independently to each cell (Line 10 in Algorithm 2). That

property paves the way for even greater scalability.

5.4 AA in Special Case of d = 2
In the special case of 𝑑 = 2, AA can be significantly improved by

optimizations specific to that dimensionality. In Figure 6(a), assume

that the current cell 𝑐 corresponds to the entire product space, and

that we are inserting user groupG = {w1, · · · ,w7}, whose top-𝑘-th
product is r. Supposing that𝑚 = 2, we can visually identifyH2∪H6

(i.e., the colored area, both striped and otherwise) as themIR region

for G. Moreover, in the remainder region (white area), only w1 and

w7 may affect future AA iterations, renderingw2, · · · ,w6 irrelevant

to subsequent processing, and thus safely ignored. Juxtapose this

with the general AA in Section 5.3, which would unnecessarily

partition the striped area by H1 and H7, and fail to eliminate any

ineffective users. To simplify presentation, assume that w𝑖 is the

user with the 𝑖-th largest𝑤 [1] value in G.

Lemma 5. In the 𝑑 = 2 setting, let w𝑖 and w𝑗 be user vectors with

the same top-𝑘-th product r, and with𝑤𝑖 [1] < 𝑤 𝑗 [1]. In the part of

product space where 𝑝 [1] ≤ 𝑟 [1], it holds that H𝑗 ⊂ H𝑖 . Conversely,

in the part where 𝑝 [1] > 𝑟 [1], it holds that H𝑖 ⊂ H𝑗 .

Proof. The impact halfspace of w𝑖 is defined as

𝑆w𝑖
(p) = w𝑖 · p ≥ 𝑆𝑘w𝑖

= w𝑖 · r
⇔𝑤𝑖 [1]𝑝 [1] +𝑤𝑖 [2]𝑝 [2] ≥ 𝑤𝑖 [1]𝑟 [1] +𝑤𝑖 [2]𝑟 [2]
⇔𝑤𝑖 [1]𝑝 [1] + (1 −𝑤𝑖 [1])𝑝 [2] ≥ 𝑤𝑖 [1]𝑟 [1] + (1 −𝑤𝑖 [1])𝑟 [2]

⇔𝑝 [2] ≥ 𝑤𝑖 [1]
1 −𝑤𝑖 [1]

(𝑟 [1] − 𝑝 [1]) + 𝑟 [2]

Similarly, the impact halfspace of w𝑗 is defined as 𝑝 [2] ≥
𝑤𝑗 [1]

1−𝑤𝑗 [1] (𝑟 [1] −𝑝 [1]) +𝑟 [2]. Letting 𝜅𝑖 =
𝑤𝑖 [1]

1−𝑤𝑖 [1] and 𝜅 𝑗 =
𝑤𝑗 [1]

1−𝑤𝑗 [1] ,

since 0 < 𝑤𝑖 [1] < 𝑤 𝑗 [1], it holds that 0 < 𝜅𝑖 < 𝜅 𝑗 .

p[1]

p[2]

r
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r[1]

(a) 𝑚 = 2 ⟨ |G | ≥ 2 ·𝑚⟩
p[1]

p[2]

r

H1

H2

H3

H4
H5 H6 H7

(b) 𝑚 = 6 ⟨𝑚 ≤ |G | < 2 ·𝑚⟩

Figure 6: Specialized InsertGroup() for 𝑑 = 2

For any p ∈ H𝑗 with 𝑝 [1] ≤ 𝑟 [1], it holds that 𝑝 [2] ≥ 𝜅 𝑗 (𝑟 [1] −
𝑝 [1]) + 𝑟 [2] ⇒ 𝑝 [2] ≥ 𝜅𝑖 (𝑟 [1] − 𝑝 [1]) + 𝑟 [2], thus p ∈ H𝑖 . The

case for 𝑝 [1] > 𝑟 [1] is proven symmetrically. □

To exemplify, consider w1,w2, and their influential halfspaces

H1,H2 in Figure 6(a). On the left of the vertical dotted line we have

H2 ⊂ H1, while on the right H1 ⊂ H2.

Lemma 6. In the 𝑑 = 2 setting, let G be a group of user vectors

(that have a common top-𝑘-th product r), and 𝑡 be its cardinality.
If 𝑡 ≥ 2 · 𝑚, the mIR result for G is H𝑚 ∪ H𝑡−𝑚+1. Otherwise, if
𝑚 ≤ 𝑡 < 2 ·𝑚, the mIR result for G is H𝑚 ∩ H𝑡−𝑚+1.

Proof. In the part of product space where 𝑝 [1] ≤ 𝑟 [1], Lemma 5

implies that any p ∈ H𝑚 is also in H𝑖 ,∀𝑖 ∈ [1,𝑚], i.e., it covers
at least 𝑚 users. Similarly, in the part where 𝑝 [1] > 𝑟 [1], any
p ∈ H𝑡−𝑚+1 is also inH𝑖 ,∀𝑖 ∈ [𝑡−𝑚+1, 𝑡].When |G| ≥ 2·𝑚, themIR
result is H𝑚 ∪ H𝑡−𝑚+1 (case in Figure 6(a)). When𝑚 ≤ |G| < 2 ·𝑚,

the mIR result for G is H𝑚 ∩ H𝑡−𝑚+1 (case in Figure 6(b)). □

Having elaborated the first case (i.e., 𝑡 ≥ 2 ·𝑚) in Figure 6(a),

we demonstrate in Figure 6(b) the second case (i.e.,𝑚 ≤ 𝑡 < 2 ·𝑚),

assuming 𝑚 = 6. By Lemma 6, we deduce that the mIR region

for G is H2 ∩ H6 (shown colored). That saves the unnecessary

consideration of w1,w7, and the partitioning of the colored area by

H1,H7.

Benefits: Compared to group insertion in general AA, the special-
ized version: (i) removes the need to classify G’s users into G𝑐

,

G𝑒
, G𝑖

; (ii) avoids the convex hull computation for G𝑖
; (iii) reports

directly a part of 𝑐 to the mIR result; and (iv) when 𝑡 ≥ 2 · 𝑚,

eliminates from 𝑐.G users {w𝑖 |𝑖 ∈ [𝑚, 𝑡 −𝑚 + 1]}.
The only modification required in Algorithm 2 is to replace

InsertGroup() with the Insert2D() routine in Algorithm 3.

5.5 Extension to Standing Top-k Problems

Extension to CO: Following directly from the definition in Prob-

lem 1, the mIR result includes the cost-optimal position p∗ for the
CO problem. That is, since region R includes all possible positions

that cover at least𝑚 users fromU, we first executeAA to computeR,
and use the latter as the constraint in a standard optimization solver.

E.g., if the commonly assumed 𝐿2 norm is used as cost function, a

quadratic programming solver (e.g., [42]) could be invoked to derive

the cost-optimal placement of p∗ in R. Note that the current state of
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Algorithm 3 Insert2D(𝑐,G)
1: 𝑡 ← Size(G)
2: if 𝑡 ≥ 2𝑚 then ⊲ Lemma 6 (first case)

3: R← R ∪ (H𝑚 ∪ H𝑡−𝑚+1) ; 𝑐 ← 𝑐 − (H𝑚 ∪ H𝑡−𝑚+1)
4: G← G − {w𝑖 |𝑖 ∈ [𝑚, 𝑡 −𝑚 + 1] }
5: Update the copy of G in 𝑐.G
6: else
7: if𝑚 ≤ 𝑡 < 2𝑚 then ⊲ Lemma 6 (second case)

8: 𝑙 ←𝑚; 𝑟 ← 𝑡 −𝑚 + 1
9: else
10: 𝑙 ← 1; 𝑟 ← 𝑡

11: G← G − {w𝑙 ,w𝑟 }
12: Update the copy of G in 𝑐.G
13: InsertHS(𝑐,H1) ;
14: InsertHS(𝑐,H𝑡 ) ;

the art for CO [67] requires the cost function 𝑓 (p∗) to be monotone

and convex, yet our mIR adaptation extends to more general cost

functions, subject to the (orthogonal to our work) availability of an

efficient optimization solver to compute the cost-optimal p∗ in R.

Extension to IS: In IS, we need to compute the new position p′

that an existing product p should assume in product space, so that

it covers as many users fromU as possible, subject to the upgrade

cost 𝑓 (p′ − p) not exceeding a given budget 𝐵. As in the original

paper [66] (and also typically in practice), suppose that 𝑓 () is mono-

tone and convex. Since the problem considers strictly upgrades, i.e.,

enhancement of attribute values, we constrain search to the part of

the product space that dominates p. In the inner workings of AA, we
firstly modify the cell processing order to prioritize by Size(𝑐.𝑖𝑛),
but also we directly eliminate any encountered cells whose MBB’s

min-corner corresponds to an 𝑓 () value that exceeds 𝐵. When a

cell 𝑐 is chosen for processing (Line 6 in Algorithm 2), we compute

the minimum value of 𝑓 () in 𝑐 itself (not its MBB), and only process

𝑐 if it is within budget. During the process, we deem a cell finalized

if its 𝑐.G list becomes empty. Among finalized cells, we maintain

as interim result the one with the maximum Size(𝑐.𝑖𝑛) so far, and

use it for early elimination of cells whose 𝑜𝑢𝑡 lists are too large to

cover more users than the interim result. The process terminates

when there are no more unfinalized surviving cells.

Crossbreed problems: Whether it is a new product to be created

or an existing to be improved, and whether there is a specific cover-

age target𝑚 or a budget 𝐵, are two orthogonal matters in problem

formulation. For example, we may define the budgeted CO prob-

lem, where we wish to create a product with maximum coverage,

subject to a given budget 𝐵. Similarly, in the thresholded IS problem
(which was defined but, again, only heuristically solved in [66]),

we wish to identify the cost-optimal improvement for an existing

product, so that its upgraded version covers at least𝑚 users. Our

mIR framework extends to these variants too, with modifications

very similar to those for the original IS and CO, respectively.

6 EXPERIMENTAL EVALUATION
We start this experimental section with setup description. In Sec-

tion 6.1, we evaluate our mIR solution on realistic/real datasets. In

Section 6.2, we present the main performance evaluation, examin-

ing robustness to various parameters using common benchmark

datasets. In Section 6.3, we consider CO, IS, and their crossbreeds.

Finally, in Section 6.4, we assess the effectiveness of optimizations

within AA.

Parameter Tested values

Number of products |P | 0.1M, 0.5M, 1.0M, 1.5M, 2.0M

Dimensionality 𝑑 2, 3, 4, 5, 6, 7
Number of users |U | 1K, 5K, 10K, 100K, 1M

Value 𝑘 1, 5, 10, 20, 40 ,80
Value𝑚 (×|U |) 0.001, 0.01, 0.1, 0.3, 0.5 0.7, 0.9

Table 2: Experiment parameters
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Figure 7: TripAdvisor case study

We run all experiments on a machine with Intel Xeon Gold 5122,

3.6GHz CPU on CentOS. The algorithms are implemented in C++,

and complied by GCCwith Level 2 optimization.We use lp_solve [3]
and qhull [6] for basic geometric operations. Table 2 summarizes

the problem parameters, and their tested values. In each experiment,

we vary one parameter and set the rest to their defaults (in bold).

Unless otherwise specified, all users have the same 𝑘 .

6.1 Real and Realistic Datasets
TripAdvisor data: As explained in Introduction, we use real Tri-

pAdvisor data (TA), available at [7]. These data fit naturally our

setting, and help assess practicality and performance in as realistic a

testbed as possible. Furthermore, they demonstrate the availability

of product sets P in practice, and provide an example of how user

preferencesU can be realistically extracted from product reviews.

Regarding the product set, TA includes 7 ratings per hotel, on

value, room, location, cleanliness, front desk, service, and business

service. Regarding the user set, TA includes actual reviews of these

hotels, each comprising a comment and an overall score. To extract

user vectors, we employ the well-regarded method of [61], which

estimates the per-aspect weights of each user based on her reviews.

TA includes 137,563 user vectors inU, and 1,850 hotels in P.
Before any performance investigations, we visualize region R

in a case study. We use 𝑑 = 2 of the available attributes in TA
each time, and the default 𝑘 = 10 and𝑚 = 0.5. Figure 7(a) shows

the mIR output (shaded) and its defining influential halfplanes,

when executed in the room-location space. Similarly, Figure 7(b)

processes mIR in the cleanliness-front desk space. The figures are

truncated to the [0.8, 1]2 area for clearer visualization, and they

also demonstrate the hotels in that area. In the room-location space

there is a stronger correlation between the attributes (compared

to cleanliness-front desk), which leads to a larger R, and to fewer

hotels inside that R.
Turning to performance, Figure 8 presents the running time of

AA and BSL on TA, using the default values and testing ranges for

𝑘 ,𝑚, and 𝑑 from Table 2. Regarding |U|, we simulate its different

values by taking random samples of the entire user set, from 1K up
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Figure 8: TripAdvisor product and user sets

to its full cardinality; by default, the complete U is used. NVE is

excluded as it is too inefficient. Some measurements for BSL are

missing, because we force stop it when it exceeds 10 hours. We

leave the explanation of the trends for Section 6.2. Here, we evince

the practicality of AA’s response time in our most realistic testbed.

Additionally, we demonstrate the inefficiency of BSL, which is

2 to 3 orders of magnitude slower than AA. BSL fails to capital-

ize effectively on early reporting/elimination, because it processes

users individually and in random order, thus inserting more half-

spaces. To elaborate, although both algorithms output the same

region R, they report it as the union of multiple cells. In the default

setting, BSL breaks R to 3 thousand times more cells. Due to its

ineffectiveness, we exclude BSL from subsequent experiments.

Real product sets:Next, we experiment on three product sets used

very commonly in the top-𝑘 literature. HOTEL holds 418,843 hotel

records with 𝑑 = 4 attributes, such as stars, price, etc [1]. HOUSE
contains 315,265 records of household expenditures on 𝑑 = 6 as-

pects [2]. NBA includes 𝑑 = 8 statistics for 21,960 NBA players [4].

In lack of real preferences for them, we follow standard practice

(e.g., [57, 67]) to generate Clustered (CL) user sets. CL models the

practical scenario where many users share similar preferences; user

vectors form 5 Gaussian clusters of equal size, with variance 0.052.

Figure 9 reports the running time and memory consumption of

AA on these data. The time and space requirements of AA demon-

strate its practicality and general applicability. Processing in NBA
is faster than HOTEL and HOUSE for small𝑚, but slower for larger

𝑚. When𝑚 is small, themIR problem is simpler, and NBA’s smaller

cardinality matters. However, for tougher problem instances, the

effect of its higher dimensionality outweighs that of its cardinality.

6.2 Main Performance Evaluation
In this section, we use synthetic product sets of typical distributions

in multi-criteria decisions [14], i.e., Independent (IND), Correlated
(COR), and Anti-correlated (ANTI). As user sets, we employ CL, the
user set of TA, and uniform (UN). The default product set is IND
and the default user set is CL.
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Figure 9: Results on real product sets
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Figure 10: Effect of product distribution and𝑚

Product distribution: Figure 10(a) considers product sets of differ-
ent distributions, and reports the running time of AA as a function

of𝑚 (using the defaultCL user set). Processing is the fastest inCOR,
and the slowest in ANTI. In COR, a product with a large value in

one attribute, tends to have large values in the others too. In ANTI,
a large value in one attribute typically implies small values in the

rest. This directly affects the performance of AA, and especially the

effectiveness of its grouping; there are 95, 167, and 365 groups for

COR, IND, and ANTI, respectively.
Next, we use IND products, and test AA forCL, TA, andUN users,

varying one problem parameter each time. For TA users, we use

random samples of the required cardinality in each setting.

Varying𝑚: Figure 10(b) shows that AA takes the longest for mid-

range𝑚 values, as expected. AA is more efficient in CL, because
clustered users are more likely to have the same top-𝑘-th product,

thus forming fewer/larger groups, with AA benefiting the most

from its group-based optimizations. In contrast, UN users are the

most likely to have different top-𝑘-th products. On the average, in

CL and UN there are 167 vs. 221 groups, containing 60 vs. 45 users.

Varying 𝑘: Figure 11(a) illustrates that the running time of AA
increases with 𝑘 . As 𝑘 grows, it becomes less likely for users to have

a common top-𝑘-th product, thus the number of groups increases

which, in turn, affects performance. To verify this, in Figure 11(b)

we report the average number of groups and, in the embedded chart,

the average group size. The results validate our intuition and the

analysis in the beginning of Section 5.1.

Varying 𝑑: Figure 12(a) shows that the running time increases

with 𝑑 , which is common for problems of geometric nature; as

we demonstrate in Figure 12(b), the total number of cells gener-

ated in the arrangement grows quickly with 𝑑 . That said, perfor-

mance remains acceptable, e.g., for CL with 𝑑 = 7 we need 964.4s.

We note that score-based ranking, including the traditional top-𝑘

query, generally loses its meaning for more than 5-6 dimensions,

because the scores of all competitors (products) converge to the

same value [44, 72].
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Figure 13: Effect of |P | and |U|

Varying |P | and |U|: Figures 13(a) and 13(b) investigate the effect
of |P | and |U|, respectively. AA scales well with both cardinalities.

E.g., for |P | = 1M and 2M in CL, it takes 130.5s and 181.8s, respec-

tively. |U| has a more pronounced effect on performance, because

more users imply more influential halfspaces, and hence a higher

computational geometric load. Note that the TA user set includes

137,563 vectors, thus its line stops earlier in Figure 13(b).

6.3 CO, IS, and Crossbreed Problems
In this section, we apply AA to previous top-𝑘 influence problems.

Influence-based cost optimization (CO): We compare against

the exact CO algorithm by Yang et al. [67] (denoted as YZZL from

their initials), which applies specifically to 𝑘 = 1. To be as fair as

possible, we use their code and their default experimental setup.

They randomly selected 𝑑 = 3 dimensions from HOUSE to form P,
and used CL with 1M user vectors as U. Figure 14(a) compares

YZZL with the AA adaptation for CO for their tested𝑚 values. Our

approach is 9.5 times to 10.9 times faster. The main reason for this

difference is the high complexity of their k-level building block [45],

which is a 𝑂 (𝑛 ⌊𝑑/2⌋𝑘 ⌈𝑑/2⌉ ) module. In Figure 14(b), we repeat the

experiment of [67] on dimensionality. As also noted in that work,

YZZL fails to terminate within a day for 𝑑 = 5. That is reasonable,

given the exponential complexity of the k-level module in 𝑑 . The

adapted AA, on the other hand, scales without issues.
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Figure 14: Adaptation to CO problem
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Figure 15: Adaptation to IS and to budgeted CO

Improvement strategies (IS): Next, we consider the IS problem.

Since the only previous method [66] is heuristic, we focus on our

exact mIR-based approach, and aim to demonstrate its practicality.

Similarly to [25, 66], we model the upgrade cost by the 𝐿2 norm,

i.e., the Euclidean distance between p and its upgraded version p′.
In Figure 15(a), we choose at random the product p to be improved,

and vary the available budget 𝐵. We plot the running time of AA
for CL, TA, and UN user sets, on IND products in our default set-

ting. AA produces exact IS solutions, requiring at most 27s in all

cases. We deem that performance practical for real applications,

especially since the past attempts on IS resorted to heuristics, due

to its complexity.

Crossbreeds: In Figure 15(b), we consider the budgeted CO, where

a maximum-coverage product p is to be created, subject to a budget

𝐵 on creation cost. Wemodel the cost by the 𝐿2 norm, i.e., the square

root of the summed squared values in p, and plot the running time of

the adapted AA for CL, TA, and UN users, on IND products. The top

corner of the product space (i.e., the ultimate product) has creation

cost 2, thus we test up to 𝐵 = 1.9 which is close to that extreme.

AA performs well in all cases, e.g., for the largest budget 𝐵 = 1.9, it

takes 179s, 209s, and 238s for CL, TA, and UN, respectively.
Regarding thresholded IS, i.e., the second crossbreed in Sec-

tion 5.5, our adaptation first processes mIR and then invokes a

convex optimization solver to derive the cost-optimal p′ in R. The
latter step adds insignificant overhead, yielding a very similar over-

all performance to the experiments on vanilla mIR, in Sections 6.1

and 6.2.

6.4 Effectiveness of Optimizations
In this section, we investigate the effect of several optimizations.

By default, we use CL users and IND products.

In Figure 16(a), we compare the specialized with the generic AA
in 𝑑 = 2, by varying |U|. The specialized AA for 𝑑 = 2 is one to two

orders of magnitude faster. E.g., it achieves a 128-fold improvement

for |U| = 1M. Next to selected points in the chart, we also report
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Figure 16: Effectiveness of optimizations

the number of generated cells. For better visualization, we omit that

number for |U| < 10K, but the reduction is drastic for those values

too, i.e., the specialized AA produces 13 vs. 57 cells for |U| = 1K,

and 15 vs. 113 for |U| = 5K. The results attest to the significance of

the four benefits we elaborated at the end of Section 5.4.

Next, we assess the power of the inner group processing tech-

nique in Section 5.2. Recall that AA could determine a cell 𝑐 as

completely covering or not covering a user group G in some cases,

but that is not enough (and not all AA does). The major bottleneck

still regards the undecided cases (like 𝑐3 in Figure 3), which require

the consideration of individual halfspaces within G. For that task,
we developed the inner group processing technique. In Figure 16(b),

we compare AA with and without this enhancement, revealing that

it is responsible for a 4.4 to 5.8 times speedup. To offer more insight,

reducing the number of containment tests was one of the main

motivations in Section 5.2. Therefore, next to selected points in

Figure 16(b), we report the number of containment tests performed,

demonstrating a 2.7 to 3.2 times reduction.

In Figure 16(c), we assess the effectiveness of the fast geomet-

ric testing described in Section 5.3. In particular, we run AA with

and without it, while varying 𝑚. The running time comparison

reveals that this lightweight filter-and-refine optimization offers

AA a speedup of up to 5.6 times.

In Figure 16(d), we investigate the power of early reporting and

early elimination. Specifically, we vary 𝑚 and plot the ratio of

produced cells that are reported or eliminated early. This ratio is

between 46% and 48% for CL, between 36% and 49% for TA, and
between 33% and 46% for UN. We also present the breakdown

of the ratio into early reporting and early elimination. When 𝑚

is small, a cell is easier to report early. Conversely, when 𝑚 is

large, a cell is harder to report, but easier to eliminate early. Hence,

as𝑚 grows, the effectiveness of early reporting gives way to the

effectiveness of early elimination. As a result, they complement each

other, delivering a combined pruning that is consistently strong

across the board.

Next, we consider choices related to grouping, and assess its

effectiveness in more general scenarios. Having chosen a cell 𝑐
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to process, AA inserts to it the largest group in 𝑐.G (Line 9 in Al-

gorithm 2). The rationale is that the larger the group, the more

aggressively it can push 𝑐 towards early reporting or early elimi-

nation. In Figure 17(a), we consider AA variants which choose for

insertion (i) the smallest group in 𝑐.G, or (ii) the next group in a

(randomly initialized) round robin order. Our strategy is the fastest.

Round robin is the runner up, being 6% to 17% slower. The smallest

group strategy, which is the exact opposite of ours, is the slowest.

The results justify our choice.

Due to the need for a common top-𝑘-th product, diverse 𝑘 values

among users may affect the effectiveness of grouping and, in turn,

the performance of AA. In Figure 17(b), we compare the running

time of AA when (i) 𝑘 = 10 for all users, (ii) 𝑘 for different users is

drawn uniformly from range [1, 20), and (iii) 𝑘 for different users

is drawn from a normal distribution with mean 10 and standard

deviation 5. We observe that AA’s performance is only moderately

affected by the diversity in 𝑘 , and infer that the effectiveness of

grouping is rather robust to users with individual 𝑘 values.

7 CONCLUSION
In this paper, we introduce the mIR problem, which identifies the

region where any product would be in the top-𝑘 for a desired frac-

tion of a user population. mIR finds application in understanding

preference/market dynamics, effective marketing, product improve-

ment, etc. In addition to its direct applications, mIR can be adapted

to solve exactly some practical top-𝑘 influence problems that were

previously either not completely resolved, or only heuristically ad-

dressed. We develop an algorithmic mIR framework, which offers

exact answers and practical response times, both for mIR and for

the previous problems. A direction for future work is to consider

highly dynamic user sets (e.g., users currently online) for applica-

tions such as online advertising. Incremental result maintenance

and approximation are likely avenues to deal with the real-time

nature of these applications.
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