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Abstract:  

We propose a Recursive Logit (STD-RL) model for routing policy choice in a stochastic time-dependent 
(STD) network, where a routing policy is a mapping from states to actions on which link to take next, and 
a state is defined by node, time and information. A routing policy encapsulates travelers’ adaptation to 

revealed traffic conditions when making route choices. The STD-RL model circumvents choice set 
generation, a procedure with known issues related to estimation and prediction. In a given state, travelers 
make their link choice maximizing the sum of the utility of the outgoing link and the expected maximum 
utility until the destination (a.k.a. value function that is a solution to a dynamic programming problem). 
Existing recursive route choice models and the corresponding solution approaches are based on the 
assumption that network attributes are deterministic. Hence, they cannot be applied to stochastic networks 
which are the focus of this paper. 

We propose an efficient algorithm for solving the value function and its gradient, critical for parameter 
estimation. It is based on partitioning the state space and decomposing costly matrix operations into a 
series of simpler ones. We present numerical results using a synthetic network and a network in 
Stockholm, Sweden. The estimation running time has a 20-30 times speed-up due to matrix 
decomposition. The estimated model parameters have realistic interpretations. Specifically, travelers are 
more likely to be adaptive to realized travel times during a longer trip, and more sensitive to travel time 
when travel time variability is higher. The STD-RL model performs better in predicting route choices than 
the RL model in a corresponding static and deterministic network. 

 

Keywords: Routing policy choice, Stochastic time-dependent networks, Recursive logit, Decomposition 
algorithm 

 

1. Introduction 

Predicting traffic flow in road networks is of importance in many transport applications. Discrete choice 
models based on the random utility maximization framework are often used for this purpose and model 
parameters can be estimated by maximizing likelihood defined over trajectory data. The route choice modeling 
literature mainly focuses on networks where link or path attributes are static and deterministic even though 
most models can be extended to a deterministic and time-dependent case. A recent exception is de Moraes 
Ramos et al. (2020) that compares static and dynamic travel time representations in terms of estimation and 
prediction results. 
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Transportation Research Part B 151 (2021) 42–58

43

T. Mai et al.

The assumption of deterministic network attributes is restrictive since many transportation systems are inherently uncertain, for
instance, due to incidents and weather. Real-time traffic information can allow travelers to adapt their route choices to unfolded
traffic conditions and thus potentially mitigate the adverse impact of uncertainty for travelers. In recent years, the advances in
telecommunication and information technologies coupled with the prevalence of smartphones and in-vehicle navigation systems
have made real-time traffic information increasingly a norm, instead of a privilege. It is so prevalent that the diversion of traffic to
local communities by Waze users has become newspaper headlines as residents complain about disruptions (Littman, 2019). It is
therefore imperative that route choice models incorporate travelers’ adaptation to traffic information (see, e.g., Zhang et al., 2018;
Moghaddam et al., 2019; Zhang et al., 2019; Jiang et al., 2020, for some recent studies on route choice with traffic information).
Existing recursive route choice models and corresponding solution algorithms cannot be used for this purpose as they crucially
depend on network attributes being deterministic.

In this paper, we focus on modeling adaptive route choices (i.e., routing policy choices) in stochastic and time-dependent (STD)
networks where link travel times are random variables with time-dependent distributions. This is considerably more challenging than
modeling non-adaptive route choices, i.e., path choices, in deterministic networks. We propose a Recursive Logit (RL) model (see,
e.g., Fosgerau et al., 2013; Nassir et al., 2019; de Moraes Ramos et al., 2020, for its application in deterministic auto and transit
networks) for an STD network and present estimation and prediction results for a case study in the city of Stockholm. In the following
we provide a background on related literature and outline the paper contributions.

1.1. Background and contributions

Ding-Mastera et al. (2019) tackle the adaptive route choice modeling problem in an STD network with revealed preference (RP)
data, following a series of previous work on adaptive route choice based on synthetic and laboratory data (e.g., Gao et al., 2008;
Razo and Gao, 2013). The adaptive behavior is encapsulated in the definition of a routing policy, which is a mapping from states
to actions on which link to take next, and a state is defined by node, time and information. A routing policy can be realized as
different paths depending on the realizations of travel times; a path is a special routing policy where the action is independent of
time or information. Travelers are assumed to choose a routing policy at the origin, instead of a fixed path. They generate a choice
set of routing policies for each origin–destination (OD) pair by generalizing a number of path choice set generation algorithms, and
develop a Policy-Size Logit model where Policy Size is a generalization of Path Size (Ben-Akiva and Ramming, 1998) to account for
overlapping of routing policies.

The disadvantages of the approach in Ding-Mastera et al. (2019) are those inherent to choice set generation for route choice
modeling. Even in the simpler network setting of deterministic travel times, it is challenging to design models that can be consistently
estimated and that can produce accurate forecasts in short computational time, in particular for large-scale networks. The literature
can be divided into path-based and link-based (recursive) models. The former relies on choice sets of paths that are sampled using
a path generation algorithm, typically a kind of repeated shortest path search (Prato, 2009, presents a survey). While consistent
parameter estimates can be obtained by correcting the utilities for the choice set sampling (e.g., Frejinger et al., 2009; Guevara
and Ben-Akiva, 2013; Lai and Bierlaire, 2015), it is unclear how to accurately define path choice sets for prediction. Ad-hoc
procedures may lead to inaccurate forecasts and counter-intuitive accessibility measures (Nassir et al., 2014; Zimmermann et al.,
2017). Moreover, sampling choice sets of paths is computationally costly and it does not scale well, since the number of paths
connecting each OD pair increases exponentially with the size of the network. The disadvantage of sampling alternatives becomes
more acute in modeling routing policy choice, since calculating an optimal routing policy in an STD network, a basic procedure
in the process, is more computationally expensive than calculating the shortest path in a deterministic network. Furthermore, a
possible sampling bias has not yet been investigated.

Motivated by these issues, a link-based RL model is proposed by Fosgerau et al. (2013) that allows to estimate path choice models
in deterministic networks without sampling any choice sets of paths. Moreover, the RL model is straightforward and fast to use for
prediction. The model has been extended to deal with correlated utilities and to relax the Independence from Irrelevant Alternative
(IIA) assumption (Mai et al., 2015, 2018; Mai, 2016). The RL model is based on the dynamic discrete choice framework, where
the choice of path corresponds to a sequence of link choices. Travelers make their link choice maximizing the sum of the utility
of the outgoing link and the expected maximum utility until the destination (a.k.a. value function that is a solution to a dynamic
programming problem).

The objective of this paper is to develop STD-RL, an RL model for STD networks, so that routing policy choice models can be
estimated without sampling any choice sets and used for prediction at a reasonable computational cost. The key challenge lies in
the solution of the value function, which in this case is more expensive to solve than for deterministic networks. Indeed, the state
space is large due to the representation of joint realizations of random travel times and discretization of the study period into small
time intervals. Unlike in the deterministic case, state transition probabilities are not degenerate, which renders a non-linear system
rather than a linear system as in the deterministic case.

This paper makes both methodological and empirical contributions. Firstly, we propose an RL model for STD networks and we
propose an algorithm for solving the value function. The key to the efficient solution algorithm is to decompose the state space,
which is finite but very large, into two sub-spaces: one corresponding to the physical network, and one that contains information.
This allows us to decompose the computation into simple matrix operations. Secondly, we present estimation and prediction results
for a network in Stockholm, Sweden, and demonstrate the computational efficiency, modeling realism and accurate predictive
performance of the proposed model and solution algorithm.
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1.2. Paper structure

The remainder of the paper is structured as follows. In Section 2, we delineate the STD-RL model for adaptive route choice
and define the corresponding log-likelihood function. We describe the decomposition method for maximum likelihood estimation in
Section 3. Section 4 presents numerical results from a synthetic network and a case study using GPS trajectory data in a sub-network
of Stockholm, Sweden. Finally, conclusions and future research directions are presented in Section 5.

2. A recursive logit model in stochastic time-dependent networks

In this section we describe the recursive model formulation for routing policy choice in networks where travel times are uncertain.
The model is based on the same behavioral assumptions as previous work on routing policy choice (e.g., Ding-Mastera et al., 2019).
Namely, we assume that travelers have access to real-time traffic information and they may adapt their route choices en route
based on this information. This means that their choice cannot be represented by a simple path choice at the origin. Consider for
example a traveler who, en route, observes congestion and adjusts her route choice based on her new expectation of travel time to
the destination. The behavioral assumption is hence that the travelers are forward-looking — they plan their route to the destination
and adapt their plan according to the information they receive. Crucial in this context is how to formalize information access. In
this section we therefore start by introducing the network representation and describe how we formalize the information concept.
We note that it corresponds to the perfect online information (POI) representation in Gao and Chabini (2006). We then introduce
the recursive logit formulation that we propose (Section 2.2). In Section 2.3 we define choice probabilities and discuss maximum
likelihood estimation for this new model. As the routing policy choice is latent, we hence link the recursive routing policy choice
model to the observed paths.

2.1. The stochastic network and traveler information

We consider a physical transportation network represented by a graph  = ( ,), where  and  are the sets of nodes and
links, respectively. For each node 𝑘 ∈  , we denote by 𝐴(𝑘) the set of outgoing nodes from 𝑘. The study period, e.g., AM peak, is
discretized into equal-length intervals. A time interval is represented by a non-negative integer, 𝑡 = ⌊𝑡∕𝛿⌋, where 𝑡 is the original
time and the length of a time interval 𝛿 is equal to the shortest link travel time. The set of time indices,  , starts from 0 and covers
the study period.

Link travel times are jointly distributed, time-dependent random variables, which leads to an STD network. A support point 𝜔𝑟,
𝑟 = 1, 2,… , 𝑅, is defined as a distinctive vector of joint realization of link travel times at all times during the study period with a
dimension ||| |. The joint distribution of the time-dependent link travel time variables is thus represented by the set of support
points {𝜔1, 𝜔2,… , 𝜔𝑅}.

The set of states is 𝑆 = {(𝑘, 𝑡,q) ∣ 𝑘 ∈  , 𝑡 ∈  ,q ∈ Q(𝑡)}, where 𝑘 is the node, 𝑡 the time and 𝐪 the event collection. Assume the
information that a traveler has at node 𝑘 and time 𝑡 is represented by realized travel time values revealed to the traveler (through,
say, a smartphone app) on a subset of time-dependent link travel time random variables. The corresponding index set in a support
point is denoted (𝑘, 𝑡). Let {𝜋𝑖, 𝑖 ∈ (𝑘, 𝑡)} represent the set of realized link travel times. An event collection, 𝐪, is a representation
of the information that is conducive to the calculation of attribute values and state transition probabilities (Gao and Chabini, 2006).
It is composed of support points that are consistent with realized link travel times revealed to the traveler at node 𝑘 and time 𝑡, that
is, 𝐪 = {𝜔𝑟

|𝜔𝑟
𝑖 = 𝜋𝑖,∀𝑖 ∈ (𝑘, 𝑡)}. As the traveler moves in the network and collects potentially more information, the size of (𝑘, 𝑡)

increases or remains the same, and as a result the size of the event collection decreases or remains the same. That is, the network
becomes potentially less stochastic. When the event collection becomes a singleton, the network is deterministic. Define Q(𝑡) as
the set of all possible event collections at time 𝑡, and Q(𝑡) can be generated a priori for a given process of information progression
over time. Note that any predictive information, whether provided by Google Maps or deduced by experienced drivers, is based on
observed travel times in the past. We do not differentiate by the entities who perform the prediction, but go to the sources and define
the information by realized travel times. Furthermore, we denote the destination node by 𝑑 ∈  , and by 𝑆𝑑 the corresponding set
of absorbing destination states, 𝑆𝑑 = {(𝑑, 𝑡,q) ∣ 𝑡 ∈  ,q ∈ Q(𝑡)}.

We illustrate the support point, event collection and routing policy concepts in a small example. It is based on the information
reported in Fig. 1 and Table 1. We assume that travelers’ information only comes from their own experience on traversed links.
Moreover, for the sake of simplicity, we assume a time-independent network so the focus lies is on the stochastic travel times and the
role of information. The path (𝑘1, 𝑘2, 𝑘4) represents a highway subject to congestion, while (𝑘2, 𝑘3, 𝑘4) is a detour from the highway
starting from a midpoint 𝑘2.

There are two support points, 𝜔1 and 𝜔2, each represented by a vector of joint realization of link travel times in Table 1. Support
point 𝜔1 can be viewed as the ‘‘free flow’’ scenario where travel times on both highway links are low, while 𝜔2 can be viewed as
the ‘‘congested’’ scenario where travel times on both highway links are high. The detour has a fixed travel time regardless of the
support point.

Consider a traveler going from 𝑘1 to 𝑘4. There is just one possible event collection {𝜔1, 𝜔2} at the origin 𝑘1. The event collection
{𝜔1, 𝜔2} then splits into two event collections, {𝜔1} and {𝜔2}, at node 𝑘2, when the traveler learns of the realized travel time on
(𝑘1, 𝑘2). Information on traversed links thus helps the traveler to make inferences about the future. Specifically, if the travel time
on (𝑘1, 𝑘2) is one, the traveler can infer that s/he is in support point 𝜔1 and the travel time on (𝑘2, 𝑘4) is also one. Thus, it is better
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Fig. 1. An illustrative network.

Fig. 2. Illustration of all the possible routing policies.

Table 1
Stochastic link travel times.
Link(s) Support Points

𝜔1 𝜔2

(𝑘1 , 𝑘2) 1 2
(𝑘2 , 𝑘4) 1 3
(𝑘2 , 𝑘3), (𝑘3 , 𝑘4) 1, 1 1, 1

to stay on the highway. If the travel time on (𝑘1, 𝑘2) is two, the traveler can infer that s/he is in support point 𝜔2 and the travel
time on (𝑘2, 𝑘4) is three. Thus, it is better to take the detour.

There are four possible routing policies in this example. The traveler starts from an initial state (𝑘1, 0, {𝜔1, 𝜔2}), arriving at node
𝑘2 with two possible states, (𝑘2, 1, {𝜔1}) or (𝑘2, 2, {𝜔2}), due to the stochastic link travel time on link (𝑘1, 𝑘2). At state (𝑘2, 1, {𝜔1}), the
traveler may continue on the highway, arriving at the destination with state (𝑘4, 2, {𝜔1}), or take the detour and arrive at destination
with state (𝑘4, 3, {𝜔1}). Similarly, at state (𝑘2, 2, {𝜔2}), the traveler continue on the highway, arriving at the destination with state
(𝑘4, 5, {𝜔2}), or take the detour and arrive at the destination with state (𝑘4, 4, {𝜔2}).

The four policies are illustrated in Fig. 2. The upper two are truly adaptive, in the sense that the decision at node 𝑘2 depends
on realized travel time on link (𝑘1, 𝑘2), in other words, event collection {𝜔1} or {𝜔2}. Travelers who follow a truly adaptive
routing policy therefore could take different paths, depending on the manifested network conditions. The lower two routing policies
correspond to paths, in that the decision at node 𝑘2 does not change with the event collection. Note that a truly adaptive routing
policy is not necessarily good. For example, the second policy takes the highway while it is congested and takes the detour when
the highway is not congested.
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2.2. The recursive logit model for routing policy choice

At each state 𝑠 ∈ 𝑆, an instantaneous utility, 𝑢(𝑎|𝑘, 𝑡,𝐪; 𝛽) = 𝑣(𝑎|𝑘, 𝑡,𝐪; 𝛽) + 𝜇𝜖(𝑎), is associated with the action of choosing node
𝑎 ∈ 𝐴(𝑘). These utilities depend on the parameter vector 𝛽 associated with attributes of the action. In order to simplify the notation,
henceforth we omit the explicit dependence on 𝛽. Assuming a Logit choice model at each state, the random terms 𝜖(𝑎) are i.i.d.
extreme value type I with zero mean and they are independent of everything else in the model. The traveler chooses the next node
sequentially assuming that he/she maximizes the sum of the instantaneous utility 𝑢(𝑎|𝑘, 𝑡,𝐪) and the expected maximum downstream
utility (until reaching the destination). The latter is defined by taking the continuation of this sequential process into account via
the Bellman equation. Specifically, the expected maximum utility at state (𝑘, 𝑡,𝐪), 𝑉 𝑑 (𝑘, 𝑡,𝐪) with a destination node 𝑑, also known
as the value function, is defined as follows:

𝑉 𝑑 (𝑘, 𝑡,𝐪) =
⎧

⎪

⎨

⎪

⎩

E

[

max
𝑎∈𝐴(𝑘)

{

𝑣(𝑎|𝑘, 𝑡,𝐪) + 𝜇𝜖(𝑎) + 𝜌
∑

𝐪′∈𝐐(𝑡′)
𝑃
(

𝐪′ | 𝐪
)

𝑉 𝑑 (𝑎, 𝑡′,𝐪′
)

}

]

, ∀(𝑘, 𝑡,q) ∈ 𝑆∖𝑆𝑑 ,

0, ∀(𝑘, 𝑡,q) ∈ 𝑆𝑑 ,

(1)

where 0 < 𝜌 ≤ 1 is a discount factor, 𝑡′ = 𝑡 + 𝜏(𝑎|𝑘, 𝑡,𝐪) is the arrival time at the chosen node 𝑎 and 𝜏(𝑎|𝑘, 𝑡,𝐪) is the travel time
between node 𝑘 and node 𝑎 conditional on state (𝑘, 𝑡,𝐪). The definition of 𝜏(𝑎|𝑘, 𝑡,𝐪) depends on the information the traveler has
access to. If we assume POI, that is, (𝑘, 𝑡) = ×{0, 1,… , 𝑡}, the traveler knows realized travel times on all links up to and including
time 𝑡, and 𝜏(𝑎|𝑘, 𝑡,𝐪) and 𝑡′ are both deterministic values conditional on state (𝑘, 𝑡,𝐪). This is a reasonable assumption with the
present sensing and telecommunication technologies (Gao and Chabini, 2006).

The key difference with respect to a deterministic setting (e.g., as the one in Fosgerau et al., 2013) is the stochastic transition
to the next state, in that the sum in (1) corresponds to the expected value of 𝑉 𝑑 (𝑎, 𝑡′,𝐪′) taken over 𝐐(𝑡′), all event collections 𝐪′ at
time 𝑡′. The conditional probability of 𝐪′ given 𝐪, 𝑃

(

𝐪′|𝐪
)

, is derived in Gao and Chabini (2006) as follows:

𝑃
(

𝐪′ | 𝐪
)

=
𝑃 (𝐪′ ∩ 𝐪)
𝑃 (𝐪)

=
∑

𝑟|𝜔𝑟∈𝐪′∩𝐪 𝑝𝑟
∑

𝑟|𝜔𝑟∈𝐪 𝑝𝑟
, (2)

where 𝑝𝑟 is the probability of support point 𝑟. Note that 𝐪′ ⊆ 𝐪, that is, an event collection at a later time is no larger than that at
the current time.

Under the assumption that 𝜖(𝑎) are i.i.d. extreme value type I, the value function is the well-known ‘‘logsum’’,

𝑉 𝑑 (𝑘, 𝑡,𝐪) =
⎧

⎪

⎨

⎪

⎩

𝜇 ln

(

∑

𝑎∈𝐴(𝑘) exp
(

1
𝜇 (𝑣(𝑎|𝑘, 𝑡,𝐪) + 𝜌

∑

𝐪′∈𝐐(𝑡′)
𝑃
(

𝐪′ | 𝐪
)

𝑉 𝑑 (𝑎, 𝑡′,𝐪′))
)

)

, ∀(𝑘, 𝑡,q) ∈ 𝑆∖𝑆𝑑 .

0, ∀(𝑘, 𝑡,q) ∈ 𝑆𝑑 .

(3)

The transition probability from state (𝑘, 𝑡,𝐪) to state
(

𝑎, 𝑡′,𝐪′
)

is given by the product of the probability of choosing node 𝑎 given
state (𝑘, 𝑡,𝐪) – 𝑃 𝑑 (𝑎|𝑘, 𝑡,𝐪) – and the probability of 𝐪′ at 𝑡′ = 𝑡+ 𝜏(𝑎|𝑘, 𝑡,𝐪) given 𝐪 – 𝑃 (𝐪′|𝐪). The former is given by the Logit model.
The latter is given by Eq. (2), and its dependence on the choice of node 𝑎 is implicitly accounted for in the arrival time 𝑡′ at node
𝑎. Combining these, the transition probability is

𝑃 𝑑 (𝑎, 𝑡′,𝐪′|𝑘, 𝑡,𝐪) = 𝑃 𝑑 (𝑎|𝑘, 𝑡,𝐪)𝑃 (𝑡′,𝐪′|𝐪, 𝑎)
= 𝑃 𝑑 (𝑎|𝑘, 𝑡,𝐪)𝑃 (𝐪′|𝐪)

=
exp

(

1
𝜇

(

𝑣(𝑎|𝑘, 𝑡,𝐪) + 𝜌
∑

𝐪′∈𝐐(𝑡′) 𝑃 (𝐪′|𝐪)𝑉 𝑑 (𝑎, 𝑡′,𝐪′)
)

)

∑

𝑎′∈𝐴(𝑘) exp
(

1
𝜇

(

𝑣(𝑎′|𝑘, 𝑡,𝐪) + 𝜌
∑

𝐪′′∈𝐐(𝑡′′) 𝑃 (𝐪′′|𝐪)𝑉 𝑑 (𝑎′, 𝑡′′,𝐪′′)
)

)𝑃 (𝐪′|𝐪)

= exp

[

1
𝜇

(

−𝑉 𝑑 (𝑘, 𝑡,𝐪) + 𝑣(𝑎|𝑘, 𝑡,𝐪) + 𝜌
∑

𝐪′∈𝐐(𝑡′)
𝑃 (𝐪′|𝐪)𝑉 𝑑 (𝑎, 𝑡′,𝐪′)

)]

𝑃 (𝐪′|𝐪).

(4)

While the derivation in the case of an STD network follows the same steps as Fosgerau et al. (2013), the resulting model has
different properties which leads to distinct challenges. The value function (3) is a non-linear system (as opposed to linear in the
deterministic case) over a larger state space. Indeed, the state space is defined over all possible values of (𝑘, 𝑡,𝐪) as opposed to all 𝑘
for a deterministic and static network, or all (𝑘, 𝑡) for a deterministic and dynamic network. Before describing a solution approach
in Section 3, we next define choice probabilities and the associated likelihood function.

2.3. Choice probabilities and maximum likelihood estimation

A routing policy cannot be observed as it is a contingency plan in a decision maker’s mind. An observation is thus the realization
of a routing policy in a specific STD network, that is, a sequence of states 𝜎 = {(𝑘1, 𝑡1,𝐪1),… , (𝑘𝐼 , 𝑡𝐼 ,𝐪𝐼 )} that corresponds to path
{𝑘1,… , 𝑘𝐼}. Consider the illustrative example from the previous section, where four routing policies are presented in Fig. 2. A
modeler might observe a sequence (𝑘1, 0, {𝜔1, 𝜔2}), (𝑘2, 1, {𝜔1}), (𝑘4, 2, {𝜔1}), however, this could be the result of a traveler taking
the first routing policy, which realizes as an observed path (𝑘1, 𝑘2, 𝑘4) in support point 𝜔1, or that of a traveler simply taking path
(𝑘1, 𝑘2, 𝑘4), namely, the third routing policy.
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The probability of 𝜎 given the initial state (𝑘1, 𝑡1,𝐪1) is the joint probability of the sequence of subsequently observed states, in
this case the product of probabilities (4):

𝑃 (𝜎) =
𝐼−1
∏

𝑖=1
𝑃 𝑘𝐼 (𝑘𝑖+1, 𝑡𝑖+1,𝐪𝑖+1|𝑘𝑖, 𝑡𝑖,𝐪𝑖). (5)

As demonstrated in Fosgerau et al. (2013), in a deterministic network, the RL is equivalent to a Logit model at the origin with a
universal choice set of paths. Such an equivalence does not hold for the proposed STD-RL model in an STD network. That is, (5) is
not equivalent to a Logit model at the origin with a universal set of routing policies. The latter corresponds to the so-called ‘‘non-RL’’
model that is studied in Ding-Mastera et al. (2019). The reader is referred to Yu et al. (2020) for a detailed conceptual discussion
with numerical examples on the comparison of the RL and non-RL models of routing policy choice. Moreover, the Independence
from Irrelevant Alternatives property (IIA) does not hold for ratios of path probabilities (5). This is trivial to see as each probability
in the product depends on value functions associated with all alternatives at each choice stage that do not cancel out in the product.
In turn, the probabilities depend on the states of the network.

We use the nested fixed point algorithm (Rust, 1987) for maximum likelihood estimation of the instantaneous utility parameters
𝛽. In brief, this algorithm combines an outer iterative nonlinear optimization algorithm for searching over the parameter space with
an inner algorithm solving the value function. The outer optimization problem maximizes the log-likelihood function defined over
observations 𝑛 = 1,… , 𝑁 ,

𝐿𝐿(𝛽) =
𝑁
∑

𝑛=1

𝐼𝑛−1
∑

𝑖=0
ln𝑃 𝑘𝐼𝑛 (𝑘𝑛𝑖+1, 𝑡

𝑛
𝑖+1,𝐪

𝑛
𝑖+1|𝑘

𝑛
𝑖 , 𝑡

𝑛
𝑖 ,𝐪

𝑛
𝑖 ), (6)

where 𝐼𝑛 is the number of observed states in observation 𝑛. We use first-order nonlinear optimization algorithms. We can compute
the gradient of (6) via first-order derivatives of probabilities 𝑃 𝑘𝐼𝑛 (𝑘𝑛𝑖+1, 𝑡

𝑛
𝑖+1,𝐪

𝑛
𝑖+1|𝑘

𝑛
𝑖 , 𝑡

𝑛
𝑖 ,𝐪

𝑛
𝑖 ). The partial derivative 𝑃 𝑑 (𝑎, 𝑡′,𝐪′|𝑘, 𝑡,𝐪)

with respect to a parameter 𝛽 is

𝜕 ln𝑃 𝑑 (𝑎, 𝑡′,𝐪′|𝑘, 𝑡,𝐪)
𝜕𝛽

= 1
𝜇

(

−
𝜕𝑉 𝑑 (𝑘, 𝑡,𝐪)

𝜕𝛽
+

𝜕𝑣(𝑎|𝑘, 𝑡,𝐪)
𝜕𝛽

+ 𝜌
∑

𝐪′∈𝐪(𝑡′)

𝜕𝑉 𝑑 (𝑎, 𝑡′,𝐪′)
𝜕𝛽

𝑃 (𝐪′|𝐪)
)

. (7)

Thus, 𝑉 𝑑 (𝑘, 𝑡,𝐪) and 𝜕𝑉 𝑑 (𝑘,𝑡,𝐪)
𝜕𝛽 are needed to compute the log-likelihood and its gradient. Given that the state space can be very large,

the value functions are destination specific and they need to be computed repeatedly, an efficient solution algorithm is crucial. For
this purpose, we present a decomposition algorithm in the following section.

3. Decomposition algorithm for maximum likelihood estimation

The nested fixed point algorithm (Rust, 1987) combines an outer iterative nonlinear optimization algorithm (e.g., trust region or
line search algorithm) for searching over the parameter space with an inner algorithm solving value functions. Given that the inner
algorithm is called a large number of times, it is crucial to compute value functions quickly. Furthermore, gradients of value functions
are needed for the search over the parameter space. In this section we start by defining the value function and the corresponding
gradient. With the purpose of speeding up the computations, we then propose to decompose costly matrix operations into several
simpler ones. We do this without changing the network representation, that is, we solve the value functions for all states.

3.1. Computation of the value function and its gradient by value iteration

We consider the stochastic network with the set of states 𝑆 = {(𝑘, 𝑡,q)| 𝑘 ∈  , 𝑡 ∈  ,q ∈ Q(𝑡)}. For notation simplicity,
the destination index is dropped in the remainder of the presentation. For each state 𝑠 = (𝑘, 𝑡,q) ∈ 𝑆 we define mappings
𝑛(𝑠) = 𝑘 ∈  , 𝜋(𝑠) = 𝑡, and 𝑖(𝑠) = q, i.e., 𝑛(𝑠) refers to the physical node in the transportation network associated with state
𝑠, 𝜋(𝑠) refers to the time, and 𝑖(𝑠) refers to the event collection q ∈ Q(𝑡). We define the set of links in the stochastic network as
𝑆 = {(𝑠, 𝑠′)| 𝑛(𝑠′) ∈ 𝐴(𝑛(𝑠)), 𝑃 (𝑖(𝑠′)|𝑖(𝑠)) > 0}, where 𝑃 (𝑖(𝑠′)|𝑖(𝑠)) is defined in (2). In other words, two nodes 𝑠 and 𝑠′ in 𝑆 are
connected if their corresponding physical nodes are connected, and the transition probability from 𝑖(𝑠) to 𝑖(𝑠′) is greater than zero.
For notation simplicity, we define 𝑊 (𝑠′|𝑠) such that

𝑊 (𝑠′|𝑠) =

{

𝑃 (𝑖(𝑠′)|𝑖(𝑠)) if (𝑠, 𝑠′) ∈ 𝑆

0 otherwise.
(8)

The value function as defined in (3) can be written as

𝑉 (𝑠) =

⎧

⎪

⎨

⎪

⎩

𝜇 ln
(

∑

𝑎∈𝐴(𝑛(𝑠)) exp
(

1
𝜇 𝑣(𝑎|𝑠) +

𝜌
𝜇
∑

𝑠′∈𝑆
𝑛(𝑠′)=𝑎

𝑉 (𝑠′)𝑊 (𝑠′|𝑠)
))

𝑠 ∈ 𝑆∖𝑆𝑑

0 𝑠 ∈ 𝑆𝑑 .
(9)
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If we define a vector 𝑍 of size |𝑆| with elements 𝑍𝑠 = exp( 𝑉 (𝑠)
𝜇 ), ∀𝑠′ ∈ 𝑆, the value function can be rewritten as

𝑍𝑠 =

⎧

⎪

⎨

⎪

⎩

∑

𝑎∈𝐴(𝑛(𝑠)) exp
(

1
𝜇 𝑣(𝑎|𝑠)

)

∏

𝑠′∈𝑆
𝑛(𝑠′)=𝑎

𝑍𝜌𝑊 (𝑠′|𝑠)
𝑠′ if 𝑠 ∈ 𝑆∖𝑆𝑑

1 if 𝑠 ∈ 𝑆𝑑 .
(10)

Now we define matrices 𝑀 and 𝑈 of size |𝑆| × | |

𝑀𝑠𝑎 =

⎧

⎪

⎨

⎪

⎩

exp
(

1
𝜇 𝑣(𝑎|𝑠)

)

∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑛(𝑠))

0 otherwise,
𝑈𝑠𝑎 =

⎧

⎪

⎨

⎪

⎩

∏

𝑠′∈𝑆
𝑛(𝑠′)=𝑎

𝑍𝜌𝑊 (𝑠′|𝑠)
𝑠′ ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑛(𝑠))

0 otherwise,
(11)

as well as a vector 𝑏 of size |𝑆| such that 𝑏𝑠 = 0, if 𝑠 ∈ 𝑆∖𝑆𝑑 , and 𝑏𝑠 = 1 if 𝑠 ∈ 𝑆𝑑 . The recursive formulation in (10) can then be
written as

𝑍 = (𝑀◦𝑈 )𝑒 + 𝑏, (12)

where 𝑒 is a vector of size | | with unit entries, and ◦ is the element-by-element product. Based on this recursive formulation, we
could compute the value of 𝑍 by simple value iteration. More precisely, at the beginning (iteration 𝑙 = 0), we start with an initial
value 𝑍0. At iteration 𝑙, given that the current value of vector 𝑍 is 𝑍(𝑙), we update the next value 𝑍𝑙+1 by performing the two
following steps.

1. Compute 𝑈 (𝑙) by (11), using 𝑍(𝑙),
2. 𝑍(𝑙+1) ← (𝑀◦𝑈 (𝑙))𝑒 + 𝑏.

We stop the iterative process when a fixed point solution is found, i.e., ‖𝑍(𝑙+1) −𝑍(𝑙)
‖ ≤ 𝛾 for a given threshold 𝛾 > 0. The method

converges to a unique fixed point solution after (log 𝛾−1) iterations, if 𝜌 < 1 (Rust, 1987).
The first-order derivatives of the log-likelihood function are critical for the maximum likelihood estimation. Similar to the

computation of the value function, we formulate the computation of the gradient as matrix operations, which then can be
decomposed into a sequence of simpler steps. The following proposition shows that the Jacobian of 𝑍 in (12) can be obtained
by solving a system of linear equations.

Proposition 1. For each parameter 𝛽𝑗 , the gradient vector of 𝑍 w.r.t. 𝛽𝑗 is a solution to the following system of linear equations

𝜕𝑍
𝜕𝛽𝑗

(𝐼 −𝐷) = 𝐽 𝑗𝑒, (13)

where 𝐼 is the identity matrix of appropriate size, 𝐽 𝑗 and 𝐷 are matrices of size (|𝑆| × | |) and (|𝑆| × |𝑆|), respectively, with entries

𝐽 𝑗
𝑠𝑎 =

1
𝜇
𝐾𝑠𝑎

𝜕𝑣(𝑎|𝑠)
𝜕𝛽𝑗

, ∀𝑠 ∈ 𝑆, 𝑎 ∈  (14)

𝐷𝑠𝑠′ =
𝜌𝐾𝑠𝑎𝑊 (𝑠′|𝑠)

𝑍𝑠′
, ∀𝑠, 𝑠′ ∈ 𝑆, 𝑎 = 𝑛(𝑠′), (15)

where 𝐾 is matrix of size |𝑆| × | | with entries

𝐾𝑠𝑎 = 𝑒
1
𝜇 𝑣(𝑎|𝑠)

∏

𝑠′∈𝑆
𝑛(𝑠′)=𝑎

𝑍𝜌𝑊 (𝑠′|𝑠)
𝑠′ , ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝑁.

Proof. The proof is straightforward taking the first-order derivative of 𝑍𝑠 given in (12). See Appendix. ■

Moreover,
𝜕𝑉 (𝑠)
𝜕𝛽𝑗

=
𝜇
𝑍𝑠

𝜕𝑍𝑠
𝜕𝛽𝑗

, ∀𝑠 ∈ 𝑆,

which allows us to compute the gradient of the log-likelihood function using (6) and (7). We note that the linear system in (13) has
a unique solution if (𝐼 −𝐷) is invertible. We do not have explicit conditions for the invertibility of 𝐼 −𝐷, as they depend, e.g., on
the magnitudes of parameters 𝛽. We note, however, that provided the magnitudes are large enough, it is invertible.

3.2. Decomposition-based estimation algorithm

While the value function and its gradient can be computed by solving (12) and (13), it is costly due to the large number of
states. Matrix 𝑈 (11) for the computation of 𝑍 (12), and matrices 𝐽 (14) and 𝐷 (15) for computing 𝜕𝑍∕𝜕𝛽𝑗 (13) are critical. In
the following, we present a way to compute these matrices through a series of simple matrix operations. The underlying idea is to
partition the state space into two subsets: one that characterizes the physical network (deterministic attributes) and the other the
probabilistic transitions between states (event collection and travel time distributions).
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First, to facilitate the exposition, we define a matrix 𝐹 (|𝑆| × |𝑆|) of the state transition probabilities

𝐹𝑠𝑠′ = 𝑊 (𝑠′|𝑠), ∀𝑠, 𝑠′ ∈ 𝑆.

Let 𝑇 denote a matrix of size |𝑆| × | | with entries

𝑇𝑠𝑘 =

{

1 if 𝑘 = 𝑛(𝑠),
0 otherwise,

∀𝑠 ∈ 𝑆,

recall that 𝑘 = 𝑛(𝑠) represents the node in the physical network associated with 𝑠.
Given any matrix 𝑋 of size |𝑆| × |𝑆|, we denote by ln(𝑋) and exp(𝑋) two matrices of the same size with elements

[exp(𝑋)]𝑠𝑠′ =

{

exp(𝑋𝑠𝑠′ ) if (𝑠, 𝑠′) ∈ 𝑆

0 otherwise,
and [ln(𝑋)]𝑠𝑠′ =

{

ln(𝑋𝑠𝑠′ ) if (𝑠, 𝑠′) ∈ 𝑆

0 otherwise.

If 𝑋 is a matrix of size |𝑆| × | |, then ln(𝑋) and exp(𝑋) are defined as

[exp(𝑋)]𝑠𝑎 =

{

exp(𝑋𝑠𝑎) if 𝑎 ∈ 𝐴(𝑛(𝑠))
0 otherwise,

and [ln(𝑋)]𝑠𝑎 =

{

ln(𝑋𝑠𝑎) if 𝑎 ∈ 𝐴(𝑛(𝑠))
0 otherwise.

Finally, if 𝑋 is a vector of size |𝑆|, then ln(𝑋) and 1∕𝑋 are also of size |𝑆| with entries [ln(𝑍)]𝑠 = ln(𝑍𝑠), [1∕𝑍]𝑠 = 1∕𝑍𝑠, ∀𝑠 ∈ 𝑆.
We are now ready to show our main result in Proposition 2 which leads to Algorithms 1 and 2 for computing the value function

and the Jacobian, respectively. The algorithms make use of a series of simple matrix operations. While the matrices remain large
in size, they are sparse. Importantly, the computational complexity of sparse operations is proportional to the number of non-zero
elements and the row and column sizes.

Proposition 2. The matrices 𝑈, 𝐽 𝑗 , 𝐷 defined in (11), (14) and (15) can be computed as

ln(𝑈 ) =
[

𝐹 × diag (ln(𝑍))
]

× 𝑇

𝐽 𝑗 = 𝐻 𝑗◦ (𝑀◦𝑈 )

𝐷 =
[(

𝐾 × 𝑇 T) ◦𝐹
]

× diag(1∕𝑍),

where 𝐻 𝑗 is a matrix of size |𝑆| × | | with entries 𝐻 𝑗
𝑠𝑎 = 𝜕𝑣(𝑎|𝑠)∕𝜕𝛽𝑗 , ∀𝑠 ∈ 𝑆, 𝑎 ∈  , diag(𝑍) is a square diagonal matrix with the

elements of vector 𝑍 on the main diagonal.

Proof. See Appendix. ■

Algorithm 1: Computing the value function 𝑉
# 1. Initializing the value function and the discount factor
𝑍 = 𝑍0; 𝜌 ≤ 1; 𝛾 > 0
# 2. Value iteration
do

𝑍𝑝𝑟𝑒𝑣 = 𝑍
𝑌 =

[

𝐹 × diag (ln(𝑍))
]

× 𝑇 ;
𝑈 = exp(𝑌 );
𝑍 = (𝑀◦𝑈 )𝑒 + 𝑏;

while ||𝑍𝑝𝑟𝑒𝑣 −𝑍|| < 𝛾;
𝑉 = 𝜇 ln(𝑍);

Algorithm 2: Computing the Jacobian of the value function 𝑍

𝑌 =
[

𝐹 × diag (ln(𝑍))
]

× 𝑇 ;
𝐾 = 𝑀◦ exp(𝑌 );
𝐽 𝑗 = 𝐻 𝑗◦ (𝑀◦𝑈 ) ;
𝐷 =

[(

𝐾 × 𝑇 T
)

◦𝐹
]

× diag(1∕𝑍);
foreach q do

Solve 𝜕𝑍
𝜕𝛽𝑗

(𝐼 −𝐷) = 𝐽 𝑗𝑒 to obtain 𝜕𝑍
𝜕𝛽𝑗

;

𝜕𝑉
𝜕𝛽𝑗

= 𝜇
(

𝜕𝑍
𝜕𝛽𝑗

)

◦ (1∕𝑍) ;
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Fig. 3. Small network used for synthetic data generation.
Source: Adapted from Mai (2016b).

4. Numerical experiments

In this section we present two sets of numerical results. First, we use synthetic data to illustrate the difference between the
proposed STD-RL model and the deterministic RL model developed in Fosgerau et al. (2013). Second, we use revealed preference (RP)
data collected in Stockholm, Sweden to compare the same two models and assess their respective performance in a real large-scale
setting. Results from synthetic data show differences between the stochastic and deterministic models as functions of systematically
varied parameters, while results from RP data shed light on the pros and cons of the two models as they are tested with real-world
data.

4.1. Synthetic data

The proposed STD-RL model is more complex and, as we detail in Section 4.2.4, computationally more costly to estimate, than
a deterministic RL model. It is therefore relevant to investigate if a deterministic RL model can be a good approximation of the
STD-RL one. The objective of this section is to illustrate how different the deterministic RL model results are in terms of parameter
estimates and prediction accuracy, if the true model is an STD-RL one. For this purpose, we use a static network and focus on
comparing stochastic versus deterministic settings. We start by presenting the network and the synthetic data generation, followed
by an analysis of the results.

Network scenarios. The network (adapted from Mai, 2016b) is shown in Fig. 3. It consists of 15 nodes and 27 links with two origins
𝑂1 and 𝑂2 and one destination 𝐷. There are two support points (probability 0.5 each) defining the link travel time distribution.
They represent one uncongested scenario and one congested scenario. The number associated with each link in the figure represents
the uncongested travel times. A link with a congested travel time different from the uncongested one is depicted in solid line. We
define the congested travel time by multiplying the uncongested time of each link by a factor 𝛾(𝛥+1), where 𝛾 is a random number
uniformly distributed in [0.5, 1.5], and 𝛥 > 0 is a scalar and is the same over links. The use of 𝛾 here is to avoid the situation that the
congested and uncongested link travel times are proportional. We can hence interpret 𝛥 as the level of stochasticity of the network.
To illustrate the difference between the STD-RL and deterministic RL models, we present results for different levels of stochasticity,
𝛥 ∈ [0, 5]. We consider a deterministic RL model, denoted as RE-RL, which is based on a deterministic network with link travel
times set as the averages of congested and uncongested ones.

Synthetic data generation. The STD-RL model is assumed to be the true model with a linear-in-parameters function of two attributes,
namely, link travel time (TT) and link constant (LC). The latter is included to penalize intersections. We fix the values of the
associated parameters to −2.0 and −0.5 for travel time and link constant, respectively. For each level of stochasticity, each OD pair
and each scenario, we generate 500 observations. Thus, we have 2000 observations for each level of stochasticity. Furthermore, we
divide each of the generated sets of observations into two sets: one used for estimation (80% of the observations) and one (20% of
the observations) used to assess prediction accuracy.

Parameter estimates. The observations have been generated assuming STD-RL as a true model, therefore we analyze if the
deterministic RL model is nevertheless able to recover the true parameter values. For this purpose we present in the left-hand
graph of Fig. 4 the 𝑝-values of 𝑡-tests where the null hypothesis is that the estimated parameter values are equal to the true ones. As
expected, for the deterministic model, the null hypothesis cannot be rejected for the STD-RL models as well as for the deterministic
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Fig. 4. Comparisons of parameter estimates between the stochastic RL (STD-RL) and deterministic RL (DE-RL) models.

Fig. 5. In and out-of-sample fit comparisons between the stochastic RL (STD-RL) and deterministic RL (DE-RL) models.

model when the level of stochasticity is relatively low (𝛥 ≤ 2). However, for more stochastic settings the parameter estimates of
the deterministic RL model are significantly different from the true values. Furthermore, based on the right-hand graph in Fig. 4
we analyze the extent of the differences compared to the true model by plotting parameter ratios. The ratios of the STD-RL model
are close to the true ratio, while those given by the deterministic model decrease with increasing values of 𝛥. In other words, when
average link travel times are poor approximations of the true travel times (uncongested and congested scenarios), the parameter
estimates can have a strong bias. The travel time parameter even has the wrong sign for 𝛥 = 5. This is consistent with the findings
in de Moraes Ramos et al. (2020) albeit in a different setting. They observe a strong bias when comparing parameter estimates from
static and dynamic networks using revealed preference data. Biased parameter estimates can have important practical implications
if they are used to analyze, for example, value of time measures.

In- and out-of-sample fit. We evaluate the in- and out-of-sample fits given by the STD-RL and DE-RL models. Fig. 5 presents
two graphs: in-sample fit (left-hand side) and out-of-sample fit (right-hand side). For each value of 𝛥 (x-axis), we compare the
deterministic RL and STD-RL models. Similar to the parameter estimates, the in- and out-of-sample fit are quite similar when the
network has a low level of stochasticity but the difference increases with increasing value of 𝛥. Again we make an observation
similar to one made in de Moraes Ramos et al. (2020) when they compare static and dynamic networks on real data: The difference
in prediction performance is less pronounced than the difference in parameter estimates. The parameters of deterministic RL model
are estimated such that the model achieves the best log-likelihood value. The relative prediction performance is hence improved at
the price of biased parameter estimates. Nevertheless, as expected, the prediction performance is worse than that of the true model.

4.2. Revealed preference data

This section is devoted to a numerical analysis of the proposed model using a dataset collected in Stockholm, Sweden. We start
by describing the network and the corresponding observed trajectories. We then present estimation and prediction results followed
by a discussion on computing times.

4.2.1. Path observations and STD network definition
We consider a subnetwork of Stockholm, Sweden, which includes the Arlanda airport area, the northeast inner city, and the

connecting corridor. The data consists of 500 path observations obtained by GPS tracking during morning peak hours (Mondays
through Fridays, 6:30 to 9 AM) over a period of 56 days (November 1, 2012 through January 18, 2013). The GPS data was map-
matched as part of another project (see, Rahmani and Koutsopoulos, 2013, for details). Furthermore, the data was used for modeling
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routing policy choice in Ding-Mastera et al. (2019). We refer to these papers for more details about the data collection, including a
map of the study area.

The graph representation of the physical network comprises 2772 nodes and 5447 links. The challenge in defining the related
STD network resides in the travel time distributions. For this purpose we rely on the work of Rahmani et al. (2015) which we
summarize in the following.

There are 56 support points, one for each day covered by the path observations. Each support point comprises travel times on
all links over all 10-second time intervals. A non-parametric method and map-matched GPS data are used to compute the link travel
times per time interval for each support point, hence producing an empirical, joint travel time distribution. A link is treated as
deterministic when there is not enough variation of travel time over time and day, or not enough observations to derive reliable
travel time estimates. In this case, a single mean travel time is estimated across all days and time intervals. The resulting STD
network has 619 stochastic links (11.4% of the total number of links in the physical network representation). The effective study
period length for a given destination is determined by the maximum duration of observed trips to the destination. Therefore, the
number of states ranges from 33,476 to 445,315, and the number of links in the state network between 65,364 and 844,285,
depending on the destination.

4.2.2. Instantaneous utility function specification
We specify a linear-in-parameter instantaneous utility function of individual 𝑛 for link (𝑘, 𝑎) ∈  at time 𝑡 with information (𝑡,q)

as

𝑣𝑛(𝑎|𝑘, 𝑡,q) = DL𝑛
(

𝛽1𝑇𝑇 TT(𝑎|𝑘, 𝑡,q)DHV(𝑎|𝑘) + 𝛽2𝑇𝑇 mTT(𝑎|𝑘)(1 − DHV𝑛(𝑎|𝑘))

)

+
(

1 − DL𝑛
)

𝛽𝑚𝑇𝑇 mTT(𝑎|𝑘) + 𝛽𝐿𝐶LC(𝑎|𝑘) + 𝛽𝑃𝑆PS𝑛(𝑎|𝑘).
(16)

DL𝑛 and DHV𝑛 are both binary variables, and together they determine which travel time variable and the associated parameter
apply to an observed trip by individual 𝑛. Results from Ding-Mastera et al. (2019) show that travelers are adaptive in longer trips
and not so much in shorter ones. Therefore, we define the dummy-long-trip variable, DL𝑛, which is equal to 1 if the travel time
of trip 𝑛 is greater then 15 min, and 0 otherwise. It is also conceivable that travelers are more likely to be adaptive when travel
time variability is high, since the value of information and adaptation is high in reducing uncertainty. Therefore, we define the
dummy-high-variance-travel-time variable, DHV𝑛(𝑎|𝑘), which is equal to 1 if the standard deviation of travel time on link (𝑘, 𝑎) is
more than 20% of the average travel time on link (𝑘, 𝑎) over all time periods and support points, and 0 otherwise. As such, the
instantaneous utility function, 𝑣𝑛(𝑎|𝑘, 𝑡,q), contains the realized travel time TT(𝑎|𝑘, 𝑡,q) and the associated parameter 𝛽1TT only when
the trip is longer than 15 min (DL𝑛 = 1) and the travel time variability on link (𝑘, 𝑎) is large enough (DHV𝑛(𝑎|𝑘) = 1). Otherwise,
the average travel time variable, 𝑚TT(𝑎|𝑘), averaged over all time periods and support points, is used, with a trip length-specific
parameter, that is, 𝛽2TT for a long trip with low variability (DL𝑛 = 1, DHV𝑛(𝑎|𝑘) = 0), and 𝛽𝑚TT for a short trip (DL𝑛 = 0).

Two other variables are included in 𝑣𝑛(𝑎|𝑘, 𝑡,q). The link constant LC(𝑎|𝑘), is designed to penalize intersections, and is equal to 1
for every (𝑘, 𝑎) ∈ . The Policy Size, PS𝑛(𝑎|𝑘) is a heuristic correction to the utility function to penalize overlapping routing policies.
The attribute is similar to the Link Size (LS) attribute proposed by Fosgerau et al. (2013) for deterministic networks. We use the
fraction of flow that starts at the origin of trip 𝑛 and arrives at the current node 𝑘 as an indicator of the level of overlapping for
link (𝑘, 𝑎). The vector of node flow 𝐹 of size | | is computed by solving the flow conservation equation, 𝐹 𝑛 = 𝐺𝑛 + (𝑃 𝑛)T𝐹 𝑛, such
that 𝐹 𝑛 = [𝐼 − (𝑃 𝑛)T]−1𝐺𝑛. We note that [𝐼 − (𝑃 𝑛)T] is always invertible (Baillon and Cominetti, 2008). The vector of demand 𝐺𝑛 of
size | | has the entry at the origin of trip 𝑛 equal to 1, and 0 otherwise. 𝑃 𝑛 is a matrix of averaged node probabilities computed
based on the policy choice model as follows:

𝑃 𝑛(𝑎|𝑘) =
∑

𝑡∈

1
| |

∑

q∈Q(𝑡)

1
|Q(𝑡)|

∑

𝑡′ ,q′
𝑃 𝑛(𝑎, 𝑡′,q′|𝑘, 𝑡,q), ∀𝑎, 𝑘 ∈  , (17)

where 𝑃 𝑛(𝑎, 𝑡′,q′|𝑘, 𝑡,q) is computed based on the utility function defined in Eq. (16), with the term 𝛽𝑃𝑆PS𝑛(𝑎|𝑘) excluded, and
parameters [𝛽1𝑇𝑇 , 𝛽

2
𝑇𝑇 , 𝛽𝑚𝑇𝑇 , 𝛽𝐿𝐶 ] = [−1.8,−3.7,−3.6,−1.0]. We then set 𝑃𝑆𝑛(𝑎|𝑘) = 𝐹 𝑛(𝑘), ∀𝑘, 𝑎 ∈  .

We note that both LC and PS variables can be artificially inflated if a node does not represent a real intersection (i.e., a node
with both indegree and outdegree equal to one). It is therefore advisable to include a pre-processing step to remove artificial nodes
from the network.

4.2.3. Estimation and prediction results
We report estimation results for both STD-RL and DE-RL models for the sake of comparison. For the STD-RL model, we use the

aforementioned utility specification of the STD-RL model with different values of the discount factor, 𝜌 = 0.98, 0.95, 0.90, 0.85, and
for the DE-RL model we employ the following utility function

𝑣𝑛(𝑎|𝑘) = 𝛽𝑎𝑇𝑇 aTT(𝑎|𝑘) + 𝛽𝐿𝐶LC(𝑎|𝑘) + 𝛽𝐿𝑆LS𝑛(𝑎|𝑘), (18)

where aTT(𝑎|𝑘) is the average travel time on link (𝑘, 𝑎). This is the same as mTT(𝑎|𝑘) but we use different notations to distinguish
between the two RL models. LS𝑛(𝑎|𝑘) are the Link Size attributes (Fosgerau et al., 2013) computed based on an RL model with the
utility function 𝑣(𝑎|𝑘) = −3.6 ⋅ aTT(𝑎|𝑘) − 1.0 ⋅ LC(𝑎|𝑘). We do not include any discount factor in the DE-RL model.

In Table 2 we report the estimation results for both RL models. For the STD-RL, we note that the parameter ratios are stable
across different 𝜌 values and the interpretation are hence the same. Intuitively, a unit travel time is penalized more on shorter
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Table 2
Estimation results for the STD-RL and RE-DL models.

STD-RL DE-RL
Value of discount factor 𝜌

0.98 0.95 0.90 0.85

𝛽1𝑇𝑇 −3.20 −3.19 −3.14 −3.11 –
Rob. Std. Err. 0.28 0.27 0.28 0.28 –
Rob. 𝑡-test(0) −11.43 −11.91 −11.26 −11.11 –

𝛽2𝑇𝑇 −1.16 −1.14 −1.11 −1.10 –
Rob. Std. Err. 0.22 0.22 0.21 0.21 –
Rob. 𝑡-test(0) −5.27 −5.15 −5.33 −5.24 –

𝛽𝑚𝑇𝑇 −4.21 −4.18 −3.98 −3.98 –
Rob. Std. Err. 0.33 0.32 0.36 0.35 –
Rob. 𝑡-test(0) −12.93 −11.00 −11.37 −11.37 –

𝛽𝑎𝑇𝑇 – – – – −1.65
Rob. Std. Err. – – – – 0.67
Rob. 𝑡-test(0) – – – – −2.48

𝛽𝐿𝐶 −1.03 −1.02 −0.98 −0.98 −3.89
Rob. Std. Err. 0.04 0.04 0.05 0.05 0.28
Rob. 𝑡-test(0) −25.75 −23.01 −20.95 −19.60 −14.1

𝛽𝑃𝑆 −0.12 −0.12 −0.12 −0.12 –
Rob. Std. Err. 0.02 0.02 0.02 0.02 –
Rob. 𝑡-test(0) −6.00 −5.58 −5.63 −6.00 –

𝛽𝐿𝑆 – – – – −1.07
Rob. Std. Err. – – – – 0.42
Rob. 𝑡-test(0) – – – – −25.5

Log-likelihood −3385.01 −3354.68 −3329.42 −3315.14 −3006.17

Fig. 6. Final log-likelihood values with discount factor from 0.50 to 0.98.

trips than on longer ones (𝛽𝑚𝑇𝑇 compared to 𝛽1𝑇𝑇 and 𝛽2𝑇𝑇 ). Moreover, a unit travel time on a high-variance link is over two times
more penalized than that on a low-variance link (comparing 𝛽1𝑇𝑇 and 𝛽2𝑇𝑇 ). We note that the Policy Size parameter has its expected
negative sign, penalizing overlapping among routing policies. For the DE-RL model, all the parameter estimates also have their
expected signs. We note that the final log-likelihood values from the two models cannot be directly compared, as the choice set of
routing policies in the STD-RL model and the choice set of physical routes in the DE-RL model are different.

We now turn our attention to the values of the discount factors. Unlike Oyama and Hato (2017), who analyze the degree of
myopic route choice behavior by estimating discount factors in deterministic networks, we cannot infer the values from data. Indeed,
this leads to a highly nonlinear constrained and costly optimization problem exhibiting numerical issues. Instead we fix the values
of the discount factor to analyze the resulting parameter estimates and the numerical behavior of the model. Fig. 6 shows the final
log-likelihood for varying discount factor values. We note that, as expected, there are numerical issues fixing the discount factor
to 1 or below 0.44. In the former case, there is no proof that the fixed point solution exists, which we observe numerically. In the
latter case, the close to myopic behavior implied by the factor results in numerical issues, possibly because the observations do not
align with that assumption.

As a further step in analyzing the difference across the values of the discount factor, we investigate numerically the number
of cycles that occur in the physical network. For this purpose we estimate six models using 𝜌 ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.98}, and
simulate 200 paths for each observed OD pair with the resulting models. In total, we simulate 100,000 paths and Table 3 reports
the number of simulated paths without and with cycles. We note that approximately 98% of the simulated paths are cycle-free, for
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Table 3
Number of paths with cycles over 100,000 simulated paths.
Discount factor Number of paths with cycles

0 1 2 3 4 5 6

0.50 98,020 1,937 29 8 2 1 3
0.60 97,968 1,989 23 14 2 2 2
0.70 97,990 1,964 33 8 2 1 2
0.80 98,026 1,948 23 2 1 0 0
0.90 98,123 1,862 14 1 0 0 0
0.98 97,896 2,082 21 1 0 0 0

Fig. 7. Average log-likelihood values over holdout samples.

all values of 𝜌. For 𝜌 = 0.50, 0.60, 0.70, there are a few paths with 4, 5 and 6 cycles, while for 𝜌 ≥ 0.9 there is no path having more
than 3 cycles. Nevertheless, the results indicate that in this network a model with low discount factor does not have the issue of
generating a significant share of paths with cycles. We note that if a given application requires cycle free path predictions, the path
distribution can be truncated to exclude paths with cycles. Indeed, cycles can be easily detected. Since the share is small, this does
not significantly impact the distribution.

Before comparing the out-of-sample prediction performance of the STD-RL and the DE-RL models, we compare ratios of the
parameter estimates. For this analysis we focus on the STD-RL model with a discount factor 0.95. For the DE-RL model, 𝛽𝑎𝑇𝑇 ∕𝛽𝐿𝐶 =
0.42. As we do not have the corresponding travel time attribute in the STD-RL model, we compare this value to three different
ratios: 𝛽1𝑇𝑇 ∕𝛽𝐿𝐶 = 3.12, 𝛽2𝑇𝑇 ∕𝛽𝐿𝐶 = 1.12 and 𝛽𝑚𝑇𝑇 ∕𝛽𝐿𝐶 = 4.10. Similar to the results on synthetic data case, we see that different
representations of travel time (static-deterministic versus stochastic) lead to substantially different parameter ratios, and hence
different behavioral interpretations.

We further evaluate the out-of-sample prediction performance of the STD-RL model (again we use a discount factor of 0.95) and
the DE-RL model. We use a cross-validation approach where the sample of observations is repeatedly (20 iterations in our case)
divided into two sets by drawing observations at random with a fixed probability: 80% of the observations are used for estimation
and 20% are used as holdout to compute predicted probabilities by applying the estimated model.

For each holdout sample 𝑖, we compute the average log-likelihood values of the holdout samples as 𝐿𝐿𝑖 = 1∕|𝐻𝐷𝑖|
∑

𝜎𝑖∈𝐻𝐷𝑖
ln

𝑃 (𝜎𝑖|𝛽𝑖), where 𝐻𝐷𝑖 is the set of observations in holdout sample 𝑖 and 𝛽𝑖 are the parameter estimate from the corresponding training
set. To have unconditional values, we compute the averages of 𝐿𝐿𝑖 over samples as 𝐿𝐿𝑝 = 1∕𝑝

∑𝑝
𝑖=1 𝐿𝐿𝑖, for 𝑝 = 1,… , 20. These

average log-likelihood values are plotted in Fig. 7, which clearly shows that the STD-RL model in the STD network outperforms the
static-deterministic counterpart in terms of prediction performance.

4.2.4. Computing time
In this section, we briefly discuss the computing time required to estimate the STD-RL model. Our code is implemented in

MATLAB 2015 and we use an Intel(R) 3.20 GHz machine with a x64-based processor. It runs with Window 8 64-bit operating
system.

It requires 30 min to 2 h to compute a log-likelihood value, if the code is not parallelized. The optimization algorithm (i.e., the
outer one) needs around 30 to 40 iterations to converge. Therefore, it takes about 15 to 30 h to estimate the model with a non-
parallelized code. A 20 to 30 times speedup is achieved thanks to the decomposition method presented in Algorithms 1 and 2.
Decomposing the matrix operations into a series of simpler ones hence leads to an important gain. Further speedup can be obtained
by parallelizing the code. The exact speed up depends on a number of factors, such as the characteristics of the data set and the
number of cores. As an example, we reduce the estimation time by a factor of seven when using a machine with eight CPUs.
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Value iteration (Algorithm 1) needs 100 to 150 iterations. The computing time required to solve the value functions as well as
their gradients varies between two and 100 s for each destination. In contrast, the DE-RL model for static and deterministic networks
(Fig. 7) requires only approximately 0.04 s for any destination. This large difference in computing times is due to the size of the
graph and the non-linearity of the value functions in the STD case. Importantly, the computational effort associated with simulating
path predictions or computing link flows using these value functions is the same for DE-RL and STD-RL.

Notwithstanding the substantial additional computational effort associated with the STD-RL model, the bulk of it can be done
offline. In this case the computational budget is typically less restricted (e.g., the budget for estimating models) than the online one
(that is, when the predictions are used by an other algorithm, e.g., computing a traffic equilibrium).

5. Concluding remarks

We proposed STD-RL, a RL model for routing policy choice in an STD network, so that the choice of the next link out of a given
node is conditional on the time of day and information on realized link travel times, reflecting the ever increasing role of real-time
information on travelers’ route choices. The model is a significant expansion from its counterparts in a deterministic – static or
time-dependent – networks (e.g., Fosgerau et al., 2013; de Moraes Ramos et al., 2020). Conceptually, it incorporates the important
behavior of traveler adaptation to real-time traffic conditions. Computationally, the resulting system of equations for value functions
is challenging to solve due to its nonlinear nature and large size. We proposed a decomposition algorithm that reduced computing
time by writing costly matrix operations as a series of simple ones.

We presented two sets of numerical results based on synthetic and revealed preference data, respectively. The results on synthetic
data showed that the less complex deterministic RL model is not a good approximation if the network is highly stochastic and
travelers behave according to a STD-RL model. In this case, the parameter estimates can have a strong bias. The results based on a
subnetwork of Stockholm (Sweden) showed that the STD-RL model produced realistic parameter estimates, and that we achieved a
significant computing time speedup due to decomposition and parallelization. The STD-RL model produced better out-of-sample fit
than the DE-RL model in a corresponding deterministic, static network, suggesting a gain of prediction performance by capturing
the stochasticity of travel times and travelers’ adaptive behavior. The parameter ratios were substantially different comparing the
DE-RL and STD-RL models. Thus, it is important to use the STD-RL model, if the purpose of a study is to interpret travel behavior
(analyze parameter estimates) in a network with high travel time variability.

While the results showed good accuracy and that the model for stochastic networks is computationally tractable, the associated
computing times are much higher than their deterministic counterpart. For large-scale applications, it is necessary to strike a balance
between the realism of the representation of time and information and the computational efficiency of the estimation algorithm.
We see three avenues for future research. First, improving the definition of the joint distribution of time-dependent link travel time
variables. It should reflect conditions in real data while keeping the dimension as low as possible. A possible direction is to use a
relatively small number of features to represent the realized traffic conditions, for example, travel times at strategic locations in the
network instead of on all links. Second, further speed-up could be achieved by using heuristics to compute the value functions. In
this context it can be worth exploring methodologies from approximate dynamic programming and reinforcement learning to solve
the value functions approximately (e.g., Powell, 2011; Bertsekas, 2019). Third, future research can also be dedicated to avoiding a
stochastic travel time representation. That is, improving the deterministic approximation of the stochastic travel times. This could
potentially be done through the graph representation and the utility specifications. In this case, the model proposed in this paper
constitutes an important baseline.

As highlighted in Zimmermann and Frejinger (2020) and Mai and Jaillet (2020), recursive route choice models and logit-based
dynamic discrete choice modeling are linked to the literature on maximum causal entropy inverse reinforcement learning and
regularized Markov Decision Processes (Ng et al., 2000; Ziebart et al., 2010; Geist et al., 2019). Future work will focus on exploring
learning algorithms designed to speed up the training of inverse reinforcement algorithms as, e.g., Ermon et al. (2015).
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Appendix

Proof of Proposition 1. We first derive the analytical formula of 𝜕𝑍𝑠∕𝜕𝛽, 𝑠 ∈ 𝑆, with respect to the model parameters 𝛽. From
(12) we can write

𝑍𝑠 = 𝑏𝑠 +
∑

𝑎∈𝐴(𝑛(𝑠))
𝑒

1
𝜇 𝑣(𝑎|𝑠)

∏

𝑠′∈𝑆
𝑛(𝑠′)=𝑎

𝑍𝜌𝑊 (𝑠′|𝑠)
𝑠′ , ∀𝑠 ∈ 𝑆. (19)

Let define a matrix 𝐾(|𝑆| × | |) with entries

𝐾𝑠𝑎 = 𝑒
1
𝜇 𝑣(𝑎|𝑠)

∏

𝑠′∈𝑆
𝑛(𝑠′)=𝑎

𝑍𝜌𝑊 (𝑠′|𝑠)
𝑠′ , ∀𝑠 ∈ 𝑆, 𝑎 ∈  .

We have

ln𝐾𝑠𝑎 =
1
𝜇
𝑣(𝑎|𝑠) + 𝜌

∑

𝑠′∈𝑆
𝑛(𝑠′)=𝑎

𝑊 (𝑠′|𝑠) ln𝑍𝑠′ , ∀𝑠 ∈ 𝑆, 𝑎 ∈  . (20)

Taking the first derivative of (20) with respect to a parameter 𝛽𝑗 we obtain

𝜕𝐾𝑠𝑎
𝜕𝛽𝑗

= 𝐾𝑠𝑎

⎛

⎜

⎜

⎜

⎝

1
𝜇
𝜕𝑣(𝑎|𝑠)
𝜕𝛽𝑗

+
∑

𝑠′∈𝑆
𝑛(𝑠′)=𝑎

𝜌𝑊 (𝑠′|𝑠)
𝑍𝑠′

𝜕𝑍𝑠′

𝜕𝛽𝑗

⎞

⎟

⎟

⎟

⎠

. (21)

Note that

𝑍𝑠 = 𝑏𝑠 +
∑

𝑎∈𝐴(𝑘)
𝑘=𝑡(𝑠)

𝐾𝑠𝑎, ∀𝑠 ∈ 𝑆. (22)

So if we take the derivative of (22) and substitute to (21), then we have

𝜕𝑍𝑠
𝜕𝛽𝑗

=
∑

𝑎∈𝐴(𝑘)
𝑘=𝑡(𝑠)

𝐾𝑠𝑎

⎛

⎜

⎜

⎜

⎝

1
𝜇
𝜕𝑣(𝑎|𝑠)
𝜕𝛽𝑗

+
∑

𝑠′∈𝑆
𝑛(𝑠′)=𝑎

𝜌𝑊 (𝑠′|𝑠)
𝑍𝑠′

𝜕𝑍𝑠′

𝜕𝛽𝑗

⎞

⎟

⎟

⎟

⎠

=
∑

𝑎∈𝐴(𝑘)
𝑘=𝑡(𝑠)

1
𝜇
𝐾𝑠𝑎

𝜕𝑣(𝑎|𝑠)
𝜕𝛽𝑗

+
∑

𝑠′∈𝑆

(

𝜌𝐾𝑠𝑎𝑊 (𝑠′|𝑠)
𝑍𝑠′

)

𝜕𝑍𝑠′

𝜕𝛽𝑗
.

(23)

So, if we define two matrices 𝐽 (|𝑆| × | |), 𝐷(|𝑆| × | |) as in (14) and (15), then (23) can be written in a matrix form as
𝜕𝑍
𝜕𝛽𝑗

= 𝐽𝑒 +𝐷 𝜕𝑍
𝜕𝛽𝑗

, (24)

which is the desired system of linear equations. ■

We introduce three lemmas to support the proof of Proposition 2.

Lemma 3. Given a matrix 𝑋 of size |𝑆|×|𝑆|, and a matrix 𝑈 (|𝑆|×| |) with entries 𝑈𝑠𝑎 =
∑

𝑠′∈𝑆
𝑛(𝑠′)=𝑎

𝑋𝑠𝑠′ , ∀𝑠 ∈ 𝑆, 𝑎 ∈  , then 𝑈 = 𝑋×𝑇 .

Proof. Indeed, each element (𝑠, 𝑎) of matrix 𝑋 × 𝑇 can be computed as

(𝑋 × 𝑇 )𝑠𝑎 =
∑

𝑤∈𝑆
𝑋𝑠𝑤𝑇𝑤𝑎.

Moreover, according the definition of 𝑇 we have, given 𝑤 ∈ 𝑆, 𝑇𝑤𝑎 = 1 if and only if 𝑛(𝑤) = 𝑎, so, we have the following result

(𝑋 × 𝑇 )𝑠𝑎 =
∑

𝑤∈𝑆,𝑛(𝑤)=𝑎
𝑋𝑠𝑤 = 𝑈𝑠𝑎. ■

Lemma 4. Given matrices 𝑋, 𝑌 of size |𝑆| × |𝑆|, and a matrix 𝑈 (|𝑆| × | |) with entries 𝑋𝑠𝑠′ = 𝑈𝑠𝑎𝑌𝑠𝑠′ , ∀𝑠, 𝑠′ ∈ 𝑆, a = n(s’), then
𝑋 = (𝑈 × 𝑇 T)◦𝑌 , where T is the transpose operator.

Proof. Each element 𝑠𝑠′ of (𝑈 × 𝑇 T)◦𝑌 can be computed as

[(𝑈 × 𝑇 T)◦𝑌 ]𝑠𝑠′ = 𝑌𝑠𝑠′
∑

𝑎∈
𝑈𝑠𝑎𝑇

T
𝑎𝑠′ = 𝑌𝑠𝑠′𝑈𝑠𝑎𝑇𝑠′𝑎 = 𝑌𝑠𝑠′𝑈𝑠𝑎,

where 𝑎 = 𝑛(𝑠′). ■
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Lemma 5. Given matrices 𝑋, 𝑌 of size |𝑆| × |𝑆|, and a vector 𝑏(|𝑆|) with entries 𝑋𝑠𝑠′ = 𝑌𝑠𝑠′𝑏𝑠′ , ∀𝑠, 𝑠′ ∈ 𝑆, then 𝑋 = 𝑌 × diag(𝑏).

Proof. Each element 𝑠𝑠′ of 𝑌 × diag(𝑏) can be computed as

[𝑌 × diag(𝑏)]𝑠𝑠′ =
∑

𝑤∈𝑆
𝑌𝑠𝑤diag(𝑏)𝑤𝑠′ = 𝑌𝑠𝑠′diag(𝑏)𝑠′𝑠′ = 𝑌𝑠𝑠′𝑏𝑠′ .

We obtain the result. ■

Proof of Proposition 2. First, we validate the formulation for ln(𝑈 ). Each element of this matrix can be written as

ln𝑈𝑠𝑎 =
∑

𝑠′∈𝑆
𝑛(𝑠′)=𝑎

𝜌𝑊 (𝑠′|𝑠) ln𝑍𝑠′ , ∀𝑠 ∈ 𝑆, 𝑎 ∈  . (25)

According to Lemmas 3 and 5, the matrix ln(𝑈 ) can be computed as

ln(𝑈 ) =
[

𝐹 × diag (ln(𝑍))
]

× 𝑇 .

Now we turn our attention to the computation of matrices 𝐽 𝑗 and 𝐷, defined in (14) and (15), which is necessary for the gradients
of the value function as well as the log-likelihood function. We note that, 𝐾 = 𝑀◦𝑈 , so 𝐽 𝑗 can be written as

𝐽 𝑗 = 𝐾◦𝐻 𝑗 = 𝐻 𝑗◦ (𝑀◦𝑈 ) ,

where 𝐻 𝑗 is a matrix of size |𝑆| × | | with entries 𝜕𝑣(𝑎|𝑠)∕𝜕𝛽𝑗 . Moreover, according to (15), matrix 𝐷 can be computed based on
matrix 𝐾 (of size |𝑆| × | |) and matrices 𝐹 (of size |𝑆| × |𝑆|) and vector 𝑍(|𝑆|). So, using Lemmas 4 and 5, 𝐷 can be obtained
through 𝐾, 𝐹 , 𝑍 and 𝑇 as follows

𝐷 =
[(

𝐾 × 𝑇 T) ◦𝐹
]

× diag(1∕𝑍),

which is the desired equation. ■
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