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Simchi-Levi et al. (2014, 2015a) proposed a novel approach using the Time-To-Recover (TTR) parameters

to analyze the Risk Exposure Index (REI) of supply chains under disruption. This approach is able to

capture the cascading effects of disruptions in the supply chains, albeit in simplified environments – TTRs

are deterministic, and at most one node in the supply chain can be disrupted. In this paper, we proposed

a new method to integrate probabilistic assessment of disruption risks into the REI approach and measure

supply chain resiliency by analyzing the Worst-case CVaR (WCVaR) of total lost sales under disruptions.

We show that the optimal strategic inventory positioning strategy in this model can be fully characterized

by a conic program. We identify appropriate cuts that can be added to the formulation to ensure zero duality

gap in the conic program. In this way, the optimal primal and dual solutions to the conic program can be

used to shed light on comparative statics in the supply chain risk mitigation problem. This information can

help supply chain risk managers focus their mitigation efforts on critical suppliers and/or installations that

will have a greater impact on the performance of the supply chain when disrupted.

Key words : supply chain risk management; disruption management; time-to-survive; sensitivity analysis;

completely positive programming.

1. Introduction

“ Limited resources mean it is essential to focus risk management efforts

where they are most needed and will deliver the biggest benefits.”

- Geraint John, Senior Vice President, Research, SCM World, 2014
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In 2014, Typhoon Halong hit South East Asia, and wreaked havoc on the supply chains of many

companies with operations in this region. The magnitude of the financial impact was not only

huge (more than 10 billion, according to ‘Apparel,” March 12, 2015), but the ripple effects of

the disruption reached and affected even companies with no operational footprint in South East

Asia. This is not a rare phenomenon confronting supply chain planners; a survey of 151 supply

chain executives by Accenture shows that 73% of companies surveyed have experienced supply

chain disruptions in the past five years (Ferrer J et al. (2007)). Companies must therefore build

more robust and resilient supply chains to cushion their supply chain operations from unforeseen

disruptions.

Supply chain disruptions may include events such as fire or machine breakdown in a production

facility, an unexpected surge in demand or a reduction in supply, natural disasters, or customs

delays in a node of the supply chain. Its impact on performance depends on the system’s ability

to discover and then recover after the disruption has occurred. Even if we ignore the possibility of

long-term damage on facilities and consumer markets, it is nevertheless challenging to model the

ripple effects of disruptions as they propagate down the supply chain. Levermann (2014) estimated

that a cessation of export in the Philippines due to typhoon Haiyan could affect up to 6% of all

US production, reflecting that supply chains have become more interconnected and global.

Hopp and Yin (2006) is an early attempt to analyze how disruption effect propagates in a

simplified supply chain (i.e., assembly network), with the additional assumption that only a single

node can be disrupted to simplify the model. Simchi-Levi et al. (2014, 2015a) proposed a simpler

but novel approach using the Time-To-Recover (TTR) notion to quantify the financial impact of

disruptions on the entire supply chain, measured by the Risk Exposure Index (REI). Companies

can rank their direct or indirect suppliers using REI to identify the “weak link” in the supply

chain. Simchi-Levi et al. (2015b) also introduced the Time-To-Survive (TTS) concept, defined as

the maximum length of time the entire supply chain can continue to function normally before the

ripple effects of the disruption affect the performance. The notion of TTR, REI and TTS have

been implemented in Ford Motor Company, Cisco and the United Nations etc., to manage supply

chain risks (cf. Simchi-Levi et al. (2015b)).

In general, there are numerous ways to measure the resiliency of a supply chain. We focus here on

the case of lost sales suffered when the supply chain is disrupted. Figure 1 shows the hypothetical

performance of a typical supply network during disruption, from onset to final recovery, and the

level of sales sustained throughout the disruption. We define a supply chain’s TTS to be the initial

time interval after disruption during which the supply chain is still capable of serving normal

demands; whereas the supply chain’s TTR is the time duration between the disruption and the
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Figure 1 Performance of a supply chain during disruption

time when the supply chain recovers to full functionality. In the rest of this paper, when TTS or

TTR is mentioned, it refers to the supply chain’s TTS or TTR.

Several measures are identified in Gurnani et al. (2012) as pertinent protection strategies to

reduce lost sales, including (i) inventory protection, (ii) capacity protection, (iii) information pro-

tection and (iv) supply chain structure design. Note that inventory is one of the most effective

risk mitigation strategies used in practice (cf. Geraint, 2014). In this paper, we focus on the use of

the inventory protection to cushion the impact of shortages of parts in affected facilities, as these

shortages propagate down the supply chain and affect sales to end customers. For instance, in

the case of the US West Coast Port lockout in September 2002, manufacturers need to build up

inventories in their supply chains in anticipation of the strike, without knowing the duration of the

strike and also its impact on other modes of transportation in the network. Our goal in this paper

is to develop a model to help guide these inventory protection decisions.

The mitigation strategy adopted is affected by how companies perceive and assess risks in the

supply chain. More companies these days are developing early detection capability through weather

or social media monitoring, news tracking, and sensor deployment, etc., to sense and respond to

supply chain disruptions. CISCO, for instance, uses a six-step incident management system to

obtain warning of disruptive events, leading to more accurate and better informed assessment of

the disruption risks to its operations (cf. Sheffi (2015)). Tomlin and Snyder (2007) describe how

companies like Eaton and UTC have deployed supply-chain monitoring software to “give advance

notice of potential supplier instability in time to put safeguards in place.” In fact, in August 2004,

the system generated a financial alert for a key castings supplier, prompting UTC to increase its

inventory buffer as an added layer of protection, averting a disaster heading its way.
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As an illustration, consider the following hypothetical supply chain (adapted from Golany (2014))

that will be used throughout our computational study (see Figure 2a): eight key components,

ranging from analog display and circuits (ABX and ABN) to different connectors (JK1 to JK3),

can be assembled into 4 different configurations (CFG1 to CFG4) and sold in 4 markets (nodes in

N). Each configuration in M2 can be used to serve demands from two markets in N . Items in M1

are boxed in the figure if they are produced by the same vendor (e.g. ABX and ABN), and hence

will be jointly affected if the vendor’s facility is disrupted. We call each item node by “plant node”

or simply “node”; and each vendor by “vendor node”. For instance, ABX is (Plant) Node 1 and it

belongs to Vendor Node 1.

(a) The bill-of-material structure is indicated in

the graph and the BOM values are shown in the

boxes if greater than one.

(b) Strategic inventory deployed for each node

in the supply chain, based on the LP and COP

strategies

Figure 2 Supply Chain Network and the Inventory Deployment using different strategies

What is the optimal way to ramp up inventory in this supply chain when certain disruption

risk has been identified? The performance of any mitigation strategy depends essentially on (i)

the entire duration of the supply chain disruption, (ii) production loss and time-to-recover at each

facility, and (iii) the inventory available in the supply chain to cushion the impact of the disruption.

Figure 2b shows the inventory deployment for two classes of mitigation strategies (called “LP”

and “COP”) studied in this paper. The LP strategy ensures that there will be no lost sales when

at most one vendor node in the supply chain is disrupted (as in the REI methodology). This

strategy invested a substantial portion of inventory in Node 6 and 8, augmented with a small pool

of inventory in Node 9. This is necessary despite the much higher holding cost in vendor node 9,
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since Node 6 and 8 do not serve Node 9 in the supply chain. With the same budget, the COP

strategy opted to invest more in Node 3 and 8, since these are the more flexible nodes in the supply

chain, and reduced the inventory investment in Node 9.

The two strategies led to different performance in the risk of lost sales in the supply chain.

For instance, when both Vendor Node 4 and 7 are disrupted at the same time (with TTRs of 1.6

and 2.2 respectively), the total lost sales and the resilience curves over time of the two strategies

are as shown in Figure 3. Clearly the COP strategy performs better than the LP strategy in this

scenario. However, it is foreseeable that the LP strategy will outperform the COP strategy in

other disruption scenarios. Is there a formal model to quantify the risk exposure of each inventory

deployment strategy?

(a) The resilience curve under COP inventory

allocation

(b) The resilience curve under LP inventory allo-

cation

Figure 3 Resilience Curves for the two strategies under disruption

More importantly, for a given inventory mitigation strategy, we need to understand how addi-

tional effort can be further directed to “where they are most needed and will deliver the biggest

benefits.” To do this, we need to understand the comparative statics of the planning parameters on

the performance of the supply chain under disruption. For instance, how do we determine whether

it is more important to shorten the TTR, increase production rate, or install more inventory at a

node? We address these and other issues in the paper. Our main contributions are as follows:

1. Risk Modeling Using Resilience Curve. Given the risk assessments, and the accompany-

ing TTR information, we use the framework pioneered by Simchi-Levi et al. (2014, 2015a) to model

the cascading effects of disruption on aggregate lost sales in the resilience curve. To account for

ambiguity and errors in the risk/probability assessment, we use the “worst-case CVaR” objective

to calibrate the performance of the mitigation strategy. More specifically, using a distributionally

robust model and assuming only that the first-two moments on disruption probability are known,

we show that the optimal inventory allocation under the worst-case CVaR performance of the lost
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sales under disruption can be fully characterized by a co-positive program under mild technical

conditions. A relaxation of the co-positive cone can be efficiently solved via a semi-definite program.

2. Disruption Modeling Using Co-positive Cone. In practice, it is difficult to model the

cascading effect of the disruption, especially when these events at different facility may be cor-

related. We use conic program to model these complicated disruption scenarios, and develop a

general approach on adding cuts to ensure that the conic program obtained has no duality gap.

3. Sensitivity Analysis. To understand the impact of the key planning parameters on the

overall performance of the supply chain under disruption, we show that the optimal solutions of

the conic programs can be used to perform rough cut sensitivity analysis on the lost sales sustained

during disruption. This exploits a key connection between the conic program and the supply chain

disruption problem in the worst-case setting.

4. Insights on Optimal Protection Strategy. The optimal mitigation strategy involves a

delicate trade-off between the cost and value of inventory at each node. This is in general deter-

mined, not only by the operating cost and structure of the supply chain, but also by the budget

available to build up these inventories. For instance, for a small budget, the optimal solution may

build up inventory on the upstream nodes, increasing such deployments as the budget grows. Sur-

prisingly, beyond certain budget threshold (affected by the TTRs and supply chain structure), the

optimal solution will switch to build up inventory at the downstream nodes, and at the same time

decrease the inventory deployment at upstream nodes. This feature indicates that supply chain

risk mitigation cannot be done purely by looking at the centrality and betweenness of the network

structure, as advocated by some scholars (cf. Yan et al. (2015)).

The rest of the paper is organized as follows. In §2, we review the related literature. In §3, we

present a general modeling framework and it provides a technique which can be used to reformulate

a class of distributionally robust problem into a completely positive program. In §4, we present

our risk mitigation model and apply the general framework to determine the optimal inventory

allocation across a supply chain with the goal of building a highly resilient supply chain. In §5, by

conducting sensitivity analysis on the key parameters, we show how to make use of the solutions

obtained in the risk mitigation model to study the effect on lost sales when the supply chain

environment changes. In §6, we use a case study to illustrate the performance of our proposed

solution. We conclude in §7. All the proofs are presented in the online companion.

2. Literature Review

This paper covers a wide range of topics in supply chain management. We divide our literature

review along the key concepts used in our study.
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(1) Inventory Strategy in Risk Mitigation There are extant literature exploring and present-

ing different facets of risk management in supply chain. We focus here only on those studies related

to the use of inventory as mitigation strategies for supply chain disruption. Meyer et al. (1979) is

arguably the first study on supply chain disruption risk mitigation using inventory management

strategy, followed by Song and Zipkin (1996), Arreola-Risa and DeCroix (1998), etc. However, most

of these papers presented insights only on single product or simplified version of the supply chain.

Gurnani et al. (1996) succeeded to extend the problem to two-period, two-component assembly

system. More recently, DeCroix (2013) studies the problem under the multiple-period and assem-

bly system settings. Simchi-Levi et al. (2015b), on the other hand, considered a general supply

chain network with multiple products. Facing random demands and random disruption events, they

adopted a distributionally robust approach to obtain the optimal inventory allocation plan with

minimal total inventory from the worst-case perspective. The uncertainty set structure they used

is, however, too coarse to capture interdependencies between different nodes in the supply chain.

In our paper, we built on the model developed in Simchi-Levi (2015b), but adopt a conic program-

ming approach to solve for the optimal inventory deployment strategy, capturing the correlational

structure between different disruption events.

(2) High-risk Supplier Identification The assessment of disruption impacts are mostly studied

from the perspective of identifying key factors contributing or helping to mitigate the disruption

impact (Craighead et al. (2007), Tang (2006), Braunscheidel and Suresh (2009), Kleindorfer and

Saad (2005), etc.). Simchi-Levi et al. (2015a), introducing the concepts of TTR, REI and TTS,

is one of the first few papers to propose a scheme to rank suppliers by the magnitudes of disrup-

tion impacts. Their method is embraced and implemented by several leading businesses. However,

this approach assumes only one node is disrupted in each disruption scenario, and hence cannot

offer insights when there are breakdowns at multiple nodes in the supply chain. Yan et al. (2015)

proposes another method to identify critical suppliers by introducing the concept of a nexus sup-

plier. However, their method is purely based on supply chain network structure and also cannot

incorporate the disruption probability information. Our approach is an attempt to fill this gap in

the literature, to develop a risk-adjusted approach to find high-risk suppliers based on disruption

impacts.

(3) Completely Positive and Co-positive Programming. A completely positive program is

defined as a linear program over a completely positive cone, whereas a co-positive program is a

linear program over a co-positive cone. In general, completely positive and co-positive programs

are NP-hard problem. A completely positive cone is defined as

CPn := {M ∈ Sn|∃V ∈Rn×m+ , such that M = V V T}

:= {M ∈ Sn|∃v1,v2, ...,vm ∈Rn+, such that M =

m∑
i=1

viv
T
i }
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where, Sn is the set of n×n symmetric matrices. A co-positive cone is defined as

COn := {M ∈ Sn|∀v ∈Rn+,vTMv≥ 0}

Completely positive cones and co-positive cones are dual cones to each other. There are rich

literature on completely positive and co-positive programming. For more information we refer

readers to Berman and Shaked-Monderer (2003). We only present those mostly related to our study.

Burer (2009) showed that the well-known NP-hard problem, nonconvex quadratic problems with

a mixture of binary and continuous variables has an equivalent completely positive formulation. It

is followed by Natarajan et al.(2011), who proposed a Completely Positive Cross-Moment Model

(CPCMM) giving an equivalent completely positive formulation of the moment-based bound for

mixed 0-1 linear programs with random coefficients.

The problem of checking whether a cone is a completely/co-positive cone is already NP hard.

In our paper, we approximate the completely positive cone by a “doubly nonnegative cone (DNN

cone)”, which is defined to be a positive semi-definite cone with nonnegative entries, i.e. {M |M <

0,M ≥ 0}. DDN cone is an outer approximation to completely positive cones. For co-positive cones,

they are dealt with by an inner approximation, which is the sum of a SDP cone and a nonnegative

cone, i.e. {M |M =M1 +M2,M1 < 0,M2 ≥ 0} (cf. de Klerk et al.(2002), Parrilo (2000)).

(4) Conditional Value-at-Risk (CVaR) and Worst-case CVaR (WCVaR). In the case of

disruption mitigation, we need to measure the downside risk of lost sales. The well known Value-at-

risk (VaR) concept takes such asymmetry into account, but fails to satisfy some natural consistency

properties. Fortunately, a related risk measure known as CVaR is shown to be a “coherent risk

measure” (Pflug (2000)). Furthermore, Rockafellar and Uryasev (2000, 2002) showed that CVaR

can be equivalently solved as a convex optimization problem. In this paper, we use CVaR to

quantify the disruption risk on lost sales. Moreover, in order to account for the ambiguity and

errors in the risk/probability assessment, we apply distrubitionally robust approach and study this

risk measure under the worst-case distribution given partial moment information.

Specifically, CVaR and VaR can be defined as follow. Let Z(r, ṽ) denote the lost sales associated

with decision r and random disruption event ṽ. Given a confidence level 1− η, say η = 0.05 (i.e.

at 95% confidence level), let

V aR1−η(r) := argmin

{
t

∣∣∣∣P(Z(r, ṽ)≥ t
)
≤ η
}
.

CV aR1−η(r) is defined as

1

η
E

[
Z(r, ṽ)

∣∣∣∣Z(r, ṽ)≥ V aR1−η(r)

]
.
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Rockafellar and Uryasev (2000, 2002) show that CVaR can be equivalently solved by minimizing

an auxiliary convex function with respect to the variable θ, i.e.,

CV aR1−η(r) := min
θ
θ+

1

η
E

[
(Z

(
r, ṽ)− θ

)+]
.

The work by Rockafellar and Uryasev (2000, 2002) has helped to popularize the use of CVaR

as a replacement for the computationally intractable notion of VaR. Incorporating the flavor of

distributionally robust optimization, WCV aR1−η(r) is defined as

max
p(ṽ)∈P

{
min
θ
θ+

1

η
E
[
(Z(r, ṽ)− θ)+

]}
.

where P is a family of distributions that can be used to describe the risk profile ṽ. Applying the

minmax theorem, Zhu and Fukushima (2009) further showed that it can be equivalent reformulated

as

min
θ

{
θ+

1

η
max
p(ṽ)∈P

E
[
Z(r, ṽ)− θ)+

]}
.

In our paper, we will adopt the above WCVaR formulation in dealing with lost sales due to dis-

ruption, using only the means and covariances of node disruption to capture the interdependencies

between disruption events.

3. General Completely Positive and Co-positive Framework

Before we introduce the supply chain risk mitigation model, we firstly present the main modelling

methodology we apply in the paper. This general modeling framework provides a technique which

can be used to reformulate a class of distributionally robust problem into a completely positive

program. It will be clear to the reader later that the supply chain risk mitigation model is an

application of this framework.

Specifically, consider a stochastic mixed 0-1 quadratic problem with complimentary constraint

as follows.
Z(ṽ) = max cT1x+ ṽTC2x+xTC3x

s.t. A1x= b1

A2x= b2−M ṽ
(A3x) ◦ (A4x) = 0
xj ∈ {0,1} ∀j ∈B
x≥ 0

(1)

Here, both the linear objective coefficients and the right-hand side parameters are random, modelled

using a random vector, ṽ. Note that x∈Rn+ is the decision variables; and B is the set of indices of

binary decision variables. All other parameters such as cj, bj, Cj, Aj and M are pre-determined

inputs. ◦ indicates the elementary multiplication.

Given the distribution of random vector ṽ, it is of interest to find the expected value of the

optimal objective E[Z(ṽ)]. In our paper, we adopt the distributional robustness concept, and
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assume only the first-two moments and support information of randomness are known. Specifically,

assume ṽ lies in the support set D, with µ= E[ṽ], Σ = E[ṽṽT]. The central problem we solve is

Zm = max
ṽ∼(D,µ,Σ)

E [Z(ṽ)] (2)

We further make the following assumptions on the inner maximization problem.

(A1) The feasible region is not empty and is bounded;

(A2) If decision variables satisfy the linear constraints, then those decision variables with indices

in B are between 0 and 1 and they also satisfy A3x≥ 0 and A4x≥ 0.

This class of distributionally robust problem is general enough to include some of the problems

studied in literature as special cases (cf. Burer (2009) and Natarajan et al.(2011)). We will show

in this section that under assumptions (A1) to (A2), when the uncertainty set has certain special

structures that can be modelled using complementary and linear equations, Problem (2) can also

be equivalently reformulated as a completely positive program.

To reformulate the uncertainty set as a completely positive program, we need to address the

feasibility issue of the presumed moments.

Definition 1. (Bertsimas and Sethuraman (2000)) A sequence (µ,Σ) is a feasible (n,2,D)-

moment sequence if there is a multivariate random variable v = (v1, ..., vn) with domain D ⊆Rn,

whose moments are given by (µ,Σ), that is µk = E[vk],Σij = E[vivj],∀k, i, j = 1, ..., n.

The theory of moments attempts to characterize valid moment sequences using semidefinite pro-

gram. Specifically, when D=Rn, the first-two valid moment sequences can be exactly represented

by a semidefinite matrix. Natarajan et al.(2001)’s result implies when D=Rn
+, the first-two valid

moments can be equivalently characterized by a completely positive matrix. The following propo-

sition gives the conditions on the support set D and the conditions on feasible moment sequences

such that the uncertainty set can be represented by a completely positive matrix.

Proposition 1. When the support set D takes the following form,

D=

 ṽ ∈Rn+
∣∣∣∣∣∣
M1ṽ= b
(M2ṽ) ◦ (M3ṽ) = 0
ṽi ∈ {0,1},∀i∈ UB


and under the following assumptions,

(AM1) D is nonempty and bounded (Endnote 1. )

(AM2) For all v≥ 0 satisfying M1v= b, we have vi ∈ [0,1] for all i∈ UB, M2v≥ 0 and M3v≥ 0,

the sequence (µ,Σ) is a feasible (n,2,D)-moment sequence if and only if the following is not empty.

M=

 (w,X)

∣∣∣∣∣∣∣∣∣
w=µ, X = Σ,
M1w= b, diag(M1XM

T
1 ) = b ◦ b,

wi =Xii,∀i∈ UB diag(M2XM
T
3 ) = 0,(

1 wT

w X

)
<cp 0
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where diag(·) denotes the diagonal elements of a matrix.

An example of such an uncertainty set is a family of multivariate Bernoulli distributions with

given first-two moments. In this case, the support set is as follows.

D(B) =
{
ṽ ∈Rn+

∣∣ ṽi ∈ {0,1},∀i= 1, ..., n
}

Consequently, we would have the following characterization of the feasible moment sequence (µ,Σ).

M(B) =


(w,X)

∣∣∣∣∣∣∣∣∣∣∣

w=µ; X = Σ;
wi =Xii,∀i= 1, ..., n; si =Xs

ii,∀i= 1, ..., n;
wi + si = 1,∀i= 1, ..., n; Xii +Xs

ii + 2Y s
ii = 1,∀i= 1, ..., n; 1 wT sT

w X Y s

s Y sT Xs

<cp 0


In the following, we will show Problem (2) has an equivalent completely positive program formu-

lation under the assumptions (A1) to (A2) and when the uncertainty set satisfies the requirements

in Proposition (1) Note that our result can be generalized to the case that only a subvector of

random variable is specified with moment information. Consider an a subvector of ṽ with indices

in U with E[ṽi] = µi and E[ṽivj] = Σij for all i, j ∈ U . To simplify the notation and discussion, we

focus on the following problem.

Zm = max
ṽ∼(D,µi,Σij ,∀i,j∈U

E[Z(ṽ)] when D=

{
ṽ ∈Rn+

∣∣∣∣M1ṽ= b
ṽi ∈ {0,1} ∀i∈ UB

}
(3)

Let x(v) be the optimal solutions to the inner maximization problem of Problem (3) for a real-

ization v. It is possible that there are multiple optimal solutions in the support of strictly positive

measure. We define x(v) to be a randomly selected optimal solution at v, and

px := E[x(ṽ)], pw := E[(ṽ)], ps := E[(s̃)]

Xx := E[x(ṽ)x(ṽ)
T

], Xw := E[ṽṽT ], Xws := E[ṽs̃T ]

Y x := E[x(ṽ)ṽT ], Y xs := E[x(ṽ)s̃T ], Y ws := E[ṽs̃T ]

The objective function in (2) can be written as

E

[
c1

Tx(ṽ) +C2 ·x(ṽ)ṽT +C3 ·x(ṽ)x(ṽ)
T

]
= c1

Tpx +C2 ·Y x +C3 ·Xx.

where · represents inner product. We reformulate the distributionally robust problem into a com-

pletely positive cone problem in Theorem 1.
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Theorem 1. Problem (3) is equivalent to the following completely positive program.

Zm = max c1
Tpx +C2 ·Y x +C3 ·Xx

s.t. Constraints on Decision Variables Dual Variables
A1p

x = b1 φx
diag(A1X

xAT
1) = b1 ◦ b1 εx

A2p
x +Mw = b2 φxv

diag
( (
A2 M

)( Xx Y x

Y xT Xw

)(
A2 M

)T )
= b2 ◦ b2 εxv

diag(A3X
xAT

4) = 0 λ
pxj =Xx

jj, ∀j ∈B ψx

Constraints on Random Variables
M1w= b φv
diag(M1X

wMT
1 ) = b ◦ b εv

wj =Xw
jj, ∀j ∈ UB ψv

wj = µj, ∀j ∈ U νv
Xw

ij = Σij, ∀i, j ∈ U Θv

CP =

 1 wT pxT

w Xw Y xT

px Y x Xx

<cp 0 ρ

(4)

where U denotes the set of random variables with specified moments. We assume there is a partition

of principal sub-matrices of Xw specified with moments. UB denotes the set of Bernoulli random

variable.

The proof applies similar techniques employed in the proof of the main result in Natara-

jan et al.(2011) and the details are given in the online companion. Note that the constraint

diag(A3X
xAT

4) = 0 can also be written as diag(A4X
xAT

3) = 0. This is needed to obtain symmetry

in the dual formulation. The corresponding dual co-positive program can be written as follows.

min ρ+µTνv + Σ ·Θv + bT1φx + bT1(εx ◦ b1) + bT2φxv + bT2(εxv ◦ b2) + bTφv + bT(εv ◦ b)

s.t.

 ρ 1
2
(νv +ψv +MTφxv +MT

1 φv)
T 1

2
(BTψx +A1

Tφx +AT
2φxv − c1)T

1
2
(νv +ψv +MTφxv +MT

1 φv) Θv +MTΛ(εxv)M +MT
1 Λ(εv)M1−Λ(ψv) (AT

2Λ(εxv)M − C2
2

)
T

1
2
(BTψx +A1

Tφx +AT
2φxv − c1) AT

2Λ(εxv)M − C2
2

A1
TΛ(εx)A1 +AT

2Λ(εxv)A2 +AT
4Λ(λ)A3 +AT

3Λ(λ)A4−BTΛ(ψx)B−C3


<co 0

(5)

where Λ(u) transforms the vector u into a diagonal matrix with all off-diagonal entries equal 0,

and B is a diagonal matrix with 1 in the (j, j) entry if the decision variable xj is binary, 0 otherwise.

3.1. Conic Strong Duality

Strong duality between Problem (4) and Problem (5) does not hold in general. In the following,

we present a sufficient condition on the problem structure to ensure strong duality holds. The key
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idea is to construct an interior point in the co-positive cone in (5). Then the strong duality holds

according to Slater condition. Our construction is inspired by Hanasusanto and Kuhn (2017).

Lemma 1 (Co-positive Schur Complement (Hanasusanto and Kuhn (2017))). Consider

a symmetric matrix

D=

(
A B
BT C

)
with A� 0. Then D�co 0 if C −BTA−1B �co 0.

Proposition 2. Consider the completely positive program (4) and its dual co-positive program

(5). If (AT
1A1−C3)�co 0, then there is no duality gap between the two problem.

When the random cost function is linear (i.e. C3 = 0) and the constraint matrix A1 is non-negative

with no zero column, the condition holds and the distributionally robust problem studied in this

paper has no duality gap using this framework. This includes for instance the maximum order

statistic problem as a special case.

In the case when the objective function is quadratic in the decision variables (i.e. C3 6= 0), we

can remove the dependence on the cost efficient C3 by exploiting the problem structure to derive

similar strong duality result.

Proposition 3. If the decision variable x can be decomposed into two parts

(
x1

x2

)
, such that (i)

the objective of Problem (1) can be rewritten as ĉT1x1 +vTĈ2x1 +xT
2 Ĉ3x1, (ii) the linear constraint

A1x = b1 can be decomposed to A1
1x1 = b

(1)
1 and A2

1x2 = b
(2)
1 , and (iii) the coupling constraint

A2x+Mw= b2 can be rewritten as A2
2x2 +Mw= b2, then strong duality holds provided A1T

1 A
1
1 �co

0, and A2T
1 A

2
1 +A2T

2 A
2
2 � 0.

To establish the condition A1T
1 A

1
1 �co 0, the following observation will be useful.

Lemma 2 (Lemma 3 in Hanasusanto and Kuhn (2017)). If there exists a real vector z such

that A1
1
T
z > 0, then A1

1
T
A1

1 �co 0.

Given this result, suppose for an A1
1, there does not exist such a vector z. It implies A1

1 does

not have full row rank. In this case, we can add rows in A1
1 to increase the row rank. As long as

the added rows constitute valid cuts to the problem (1), we will have a valid completely positive

program formulation. In the next section, we demonstrate how this approach can be used to derive

strong duality result for the risk management problem we studied in this paper.
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4. Risk Mitigation Models

In this section, we solve a two-stage distributionally robust problem. In the first stage, given

reported TTRs by each vendor, we obtain the optimal inventory levels at each node, so that in

the second stage (after disruption events happen), there are no or minimal lost sales during the

disruption period.

Network Structure:

We consider a supply chain network consisting p vendor nodes (in set P) and n customer nodes (in

set N ). For those plants supplying multiple products, we split them into multiple nodes such that

each node represents one type of product. For instance, supposing vendor node k ∈ P produces x

different products, we replace vendor k in the network by x “plant nodes” (grouped into set Ak)

and obtain a new supply chain graph. Figure 4 gives a simple example. Vendor 1 in this example

(a) Original supply chain (b) Rebuilt network

Figure 4 Example for a rebuilt network

produces both steel and copper. We split it into two nodes with one node for steel production

and the other for copper production. We refer to the nodes before splitting as “vendor nodes” and

those nodes after splitting as “plant nodes” or simply “nodes”. In this example, Vendor node 1 is

split in to Plant node 1 and Plant node 2. Vendor node 2 only produces rubber and is not split.

It is then also labeled as Plant node 3. After rebuilding the supply chain in this way, we now have

a new network, G, containing an enlarged number of plant nodes, say m plant nodes (in set M).

We partition those nodes in M into set M1 if the production requires no input from other nodes,

and M2 otherwise. Let T p denote the set of all product types; Tj denote the set of raw material

types needed by plant node j,∀j ∈M2 (We do not consider the raw material flows to the highest

tier suppliers). Let tp = |T p|. For ease of reading, the notations, parameters and assumptions used

in our model are summarized in Table 1.
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Table 1 Notations, parameter, and assumptions

Notation Definition Assumptions

The first-stage
inventory problem

Decision
variables

ri ∈R+, i∈M
The finished good inventory

in plant i

We assume plant nodes hold
finished good inventory instead of

unprocessed parts.

Parameters
hi ∈R+, i∈M

Unit inventory holding cost
for plant node i.

br ∈R+
The total inventory budget
for the whole supply chain.

The second-stage
production problem

Decision
variables

xij ∈R+, (i, j)∈ G
the material flow from plant

node i to plant node j.

ui ∈R+, i∈M
The number of goods

produced at plant node i.

li ∈R+, i∈N
The lost sales at customer

node i.

Parameters

di ∈R+, i∈N
The demand rate at

customer node i.
We assume demand rates are

deterministic.

fi ∈R+, i∈N
The penalty cost for one unit
of lost sales at customer node

i.

ci ∈R+, i∈P
Production capacity per unit

time of vendor node i.

We assume producing one unit of
finished goods (regardless of the

types of finished goods) consumes
one unit of capacity.

B ∈Rtp×m+

BOM matrix, with Btj
denoting number of type t

product needed to produce 1
unit of item in plant node j.

IPT ∈ {0,1}m×tp

The indicator matrix with
the entry on row i and

column t equal to 1 if the
product produced by plant

node i is of type t.

Disruption risk
and duration

Random
variables

vi ∈ {0,1}, i∈P

the survival indicator for
vendor node i,,i.e. if vendor i

is not disrupted, vi = 1,
otherwise, vi = 0.

We assume once vendor i is
disrupted, and all the plant nodes
split from vendor node i cannot

produce anything.

TR(v)∈R+

The supply chain’s TTR.
The value of supply chain

TTR depends on disruption
scenarios. So we represent it

as a function of survival
indicator.

Parameters T ri ∈R+, i∈P
The time-to-recover (TTR)
reported by vendor node i;

We assume each vendor’s TTR is
deterministic.

4.1. Supply Chain Resilience under Disruption

In general, there are many ways to measure the resiliency of a supply chain. We focus first on

the performance of lost sales in this paper, with deterministic TTRs of vendors, and discuss later

how this methodology can be used for other classes of disruption problems under more general

settings. More specifically, for a given disruption scenario v and strategic inventory deployment r,

the optimal recovery operation to minimize total cost of lost sales during the disruptions can be
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modelled as an LP:

Z(v,r) = min
(xij ,u,l)

∑
j∈N

fjlj

s.t.
∑

i∈M,(i,j)∈G
xij + lj ≥ djTR(v), ∀j ∈N∑

j∈M∪N ,(i,j)∈G
xij −ui ≤ ri, ∀i∈M∑

i∈M,(i,j)∈G

xijI
PT
it

Btj
−uj ≥ 0, ∀j ∈M2, t∈ Tj∑

i∈Ak

ui ≤ (TR(v)−T rk (1− vk))ck, ∀k ∈P

xij ≥ 0,u, l≥ 0

(6)

Note that TR(v) denotes the supply chain’s Time-To-Recovery, and (TR(v)−T rk (1−vk))ck denotes

the total production capacity available during the disruption duration, after accounting for the lost

production if vendor node k is disrupted. The first constraint defines the lost sales during supply

chain TTR for each final goods. The second constraint specifies the total outflow of a plant must be

bounded by units produced and inventory held. The third constraint means the total production

in a plant is constrained by the raw materials supplied from upstream. Finally, the last constraint

indicates the total units produced in all plant nodes split from a single vendor node cannot exceed

available capacity during supply chain’s TTR of this vendor node.

There are numerous ways to model the supply chain TTR (i.e., TR(v)), as a function of the

disruption indicated by the random variables v. For instance, we could assume that all disruption to

the supply chain happens at the same time, i.e., TR(v) = maxk(T
r
k (1−vk)), or model the cascading

effect of allowing one facility to fail due to disruption at a nearby facility, after some random

duration. In this way, we need to model TR(v) using a more refined stochastic model. In our

distributionally robust approach, we assume that only the means and covariances of v and TR(v)

are known, and enforce only the weaker constraint

TR(v)≥ T rk (1− vk), ∀ k.

To rule out pathological cases, we assume further that the system is carefully configured such

that all production and replenishment activities in the supply chain are needed during normal

operation. To enforce this, we assume that when the production capacity is properly scaled by a

factor of 1 + ε for some ε > 0, all flows and production nodes can work at a positive rate during

normal operation. In other words, there exists strictly positive x0
ij and u0 such that

∑
i∈M,(i,j)∈G

x0
ij >dj, ∀j ∈N

−
∑

j∈M∪N ,(i,j)∈G
x0
ij +u0

i > 0, ∀i∈M∑
i∈M,(i,j)∈G

x0ijI
PT
it

Btj
−u0

j > 0, ∀j ∈M2, t∈ Tj∑
i∈Ak

u0
i < (1 + ε)ck, ∀k ∈P

x0
ij > 0,u0 > 0


(7)
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It turns out that this assumption is crucial for strong duality to hold in our conic programming

reformulation of this problem.

We show next how some of the more restrictive assumptions used in the model development can

be removed, to address more general disruption mitigation problem.

4.1.1. Random Time-To-Recovery. Suppose TTR for each vendor is not deterministic but

follows a discrete distribution, says T ri = Ti(k) with probability pi(k), k= 0, . . . ,K, with Ti(0) = 0

indicating no disruption.

We duplicate the vendor node i into K + 1 copies, each with capacity ci, but with TTR equals

Ti(k) for the kth copy. The disruption event for each node satisfies: vi(k)∈ {0,1},
∑

k(1−vi(k)) = 1,

and each vi(k) = 0 with probability pi(k).

We link the kth copy to the (k+ 1)th copy, replacing the vendor node i in the network with a

serial graph with K+ 1 nodes. All arcs entering vendor node i now enter via the first copy (k= 0),

and all arcs leaving vendor node i now leave via the Kth copy. In this way, we ensure that the total

production capacity coming from this serial graph is not more than max(TR(v)−maxk(Ti(k)(1−

vi(k)))ci.

We put all strategic inventory at the Kth copy, to ensure that the inventory will not be destroyed

due to disruption at vendor node i. This transformation ensures that we can convert the random

TTR problems into one with deterministic TTR, and solved using the model proposed earlier.

4.1.2. Resiliency using general measurement. Note that the performance of any risk

mitigation strategy depend on the following key parameters:

• TR(v): The duration of the supply chain disruption;

• T rk (1− vk)ck: The amount of production affected due to disruption; and

• ri: Inventory deployed at plant node i in anticipation of the disruption.

While we restrict our discussion to the model used in the Risk-Exposure-Index literature, our

approach is applicable as long as the resiliency measurement Z(v,r) is a piecewise linear convex

in the variables TR(v),r, and TR(v)−T rk (1− vk) for each vendor node k in the network.

For example, we can interpret the penalty cost fj as emergency shipment cost for unmet demand,

and change the objective function in (6) to
∑

j fjlj +
∑

i,j ci,jxi,j, where ci,j is unit shipment cost

from i to j, to measure resiliency of the supply chain using the notion of ‘total shipment cost under

disruption”. Note that the objective function is a piecewise linear convex function in the variables

TR(v),r, and TR(v)− T rk (1− vk). The co-positive cone framework can be easily extended to this

case.
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4.2. Inventory Mitigation Model - Distributionally Robust Approach

We assume that the disruption distribution information is partially revealed to the decision maker.

Specifically, survival indicator vi, i = 1, ..., p are random binary variables. We assume the set of

distribution of ṽ∼ (D(B),µv,Σv), is defined by the binary support {0,1}p+, with finite mean µv and

second-moment matrix Σv. We use ṽi to indicate vi here is a random variable. To get the first two

moments of TR(v), we can simulate the disruptions according to moments of ṽ. By the definition

of TR(v), we can summarize the mean and standard deviation from the simulation results. We

denote the mean and the second moment as µT , σT respectively.

The objective is to explore the optimal inventory allocations so that the WCVaR of total lost

sales during disruption period is within a threshold, say c0. Specifically, we consider the following

problem:

Given confidence level 1− η,

min
r≥0

hTr

s.t. WCV aR1−η = min
θ

{
θ+ 1

η
maxṽ∼(D(B),µv ,Σv),TR(v)∼(R+,µT ,σT ) E[(Z(ṽ, TR(ṽ), r)− θ)+]

}
≤ c0

(8)

or equivalently,

min
r≥0, θ

hTr

s.t. θ+ 1
η

maxṽ∼(D(B),µv ,Σv),TR(v)∼(R+,µT ,σT ) E[(Z(ṽ, TR(ṽ), r)− θ)+]≤ c0

(9)

where Z(ṽ, TR(ṽ), r) denotes the minimum lost sales given disruption scenario ṽ and inventory

deployment r.

Alternately, we can minimize the CVaR of lost sales, with given inventory budget br,using the

following formulation:

min
r≥0

θ+ 1
η

maxṽ∼(D(B),µv ,Σv),TR(v)∼(R+,µT ,σT ) E[(Z(ṽ, TR(ṽ), r)− θ)+]

s.t. hTr≤ br
(10)

4.3. Benchmark Inventory Mitigation Model 1 - The Traditional REI Approach

We use the REI approach as the first benchmark for our analysis. This builds on the standard

stochastic programming methodology, using scenario decomposition to synthesize the impact of

the mitigation strategy in each scenario. Furthermore, we assume that in each scenario only one

vendor node can be disrupted (i.e., all the corresponding plant nodes are disrupted). Each scenario

w is indexed by elements in {1,2, . . . , p}, and TR
(w)

denotes the supply chain TTR in scenario w.
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To ensure that we have sufficient inventory in the system to prevent lost sales in all scenarios, we

solve a related LP in (11).

min hTr

s.t.
∑

i∈M:(i,j)∈G
x

(w)
ij ≥ djT

R(w)
, ∀j ∈N ,w ∈ {1,2, .., p}∑

j∈M∪N :(i,j)∈G
x

(w)
ij −u

(w)
i ≤ ri, ∀i∈M,w ∈ {1,2, .., p}∑

i∈M:(i,j)∈G

x
(w)
ij IPTit

Btj
−u(w)

j ≥ 0, ∀j ∈M2, t∈ Tj,w ∈ {1,2, .., p}∑
i∈Ak

u
(w)
i ≤ (TR

(w)−T rk (1− v(w)
k ))ck, ∀k ∈P,w ∈ {1,2, .., p}

v(w)
w = 1 ∀w ∈ {1,2, .., p}
v

(w)
k = 0 ∀k 6=w,∀w ∈ {1,2, .., p}
x

(w)
ij ≥ 0, u

(w)
j ≥ 0, ∀w ∈ {1,2, .., p}

r≥ 0

(11)

Note that v
(w)
k denotes the event that vendor node k is operational in scenario w, and TR

(w)
=

maxk T
r
k (1−v(w)

k ) as there is only one disruption in each scenario. This model can be used to find an

inventory allocation strategy r with the smallest total investment, so that the supply chain always

has zero lost sales when at most one vendor is disrupted. The first constraint guarantees no lost

sales are incurred in each demand node for all p scenarios. The second and third constraints are

flow conservation constraints based on the inventory available. The fourth constraint indicates for

each vendor, its total production units are bounded by its capacity during recovered time period.

The next two constraints give corresponding disruption indicators’ values for scenario w.

4.4. Benchmark Inventory Mitigation Model 2 - The Stochastic Programming Approach

In another extreme, we assume the disruption probability distribution is fully known to the decision

maker, and the risk measure adopted is CV aR. Specifically, let p(w),w ∈ S, denote the probability

of disruption scenario w occurring, where S is the set of all disruption scenarios. We would like to

solve the following stochastic program.

min
r≥0,θ

θ+ 1
η

∑
w∈S

p(w)[(Z(w)(r)− θ)+]

s.t. hTr≤ br
(12)

Where Z(w) is the total lost sales under disruption scenario w. Note that we fix the total inventory

budget in this formulation, rather than minimizing the total inventory cost as in the first REI

benchmark case. This is to facilitate the comparison among the REI model, the stochastic model

and the distributionally robust model. Specifically, we will first solve REI problem (11) to obtain

the minimum total inventory cost. Then we use the minimum total inventory cost value as a

fixed total budget for both stochastic model and our distributionally robust model to obtain the

respective inventory strategies so that all three strategies are with the same total inventory cost.
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Note that Problem (12) can be equivalently reformulated as the following linear program.

min θ+ 1
η

∑
w∈S

p(w)Q(w)(r, θ)

s.t. hTr≤ br
r≥ 0

(13)

where for any w= 1, ..., |S|,

Q(w)(r, θ) = min y(w)

s.t. y(w) ≥
∑
j∈N

f
(w)
j l

(w)
j − θ∑

i∈M:(i,j)∈G
x

(w)
ij + l

(w)
j ≥ djTR

(w)
, ∀j ∈N∑

j∈M∪N :(i,j)∈G
x

(w)
ij −u

(w)
i ≤ ri, ∀i∈M∑

i∈M:(i,j)∈G

x
(w)
ij IPTit

Btj
−u(w)

j ≥ 0, ∀j ∈M2, t∈ Tj∑
i∈Ak

u
(w)
i ≤ (TR

(w)−T rk (1− v(w)
k ))ck, ∀k ∈P

y(w) ≥ 0

x
(w)
ij , u

(w)
j , l

(w)
j ≥ 0,∀i∈M, j ∈N

(14)

Classical Benders decomposition technique can be used to find an approximate solution to this

large scale LP problem.

4.5. Distributionally Robust Inventory Mitigation Model

Consider the lost sales problem (6). Let α ∈R|N |+ ,β ∈R|M|+ ,γ ∈Rtp+ ,δ ∈R
|P|
+ denote the dual vari-

ables corresponding to each set of constraints in Problem (6). s1, s2, s3, s4, s5 are slack variables.

Due to strong duality property of linear program, we have an equivalent dual formulation as follows.

max
∑
j∈N

djαjT
R(v)−

∑
i∈M

riβi−
∑
k∈P

ckδk(T
R−T rk (1− vk))

s.t. (α,β, γ, δ, s1, s2, s3, s4, s5)∈F
(15)

where F is the feasible polyhedron of dual problem.

F =



αj −βi + s1
l = 0, ∀j ∈N , (i, j)∈ G1

−βi +
∑
t∈Tj

γ
j
t I
PT
it

Btj
+ s2

l = 0, ∀i∈M,∀j ∈M2, (i, j)∈ G

−δk +βi(k)−
∑

t∈Ti(k)
γ
i(k)
t + s3

l = 0, ∀k ∈P, i(k)∈Ak, i(k)∈M2

−δk +βi(k) + s4
l = 0, ∀k ∈P, i(k)∈Ak, i(k)∈M1

αj + s5
j = fj ∀j ∈N

α∈Rn+,β ∈Rm+ ,γ ∈R
tp
+ ,δ ∈Rp+

s1 ∈R|G2|+ ,s2 ∈R|G1|+ ,s3 ∈Rm2
+

s4 ∈Rm1
+ ,s5 ∈Rn+
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The nonsmooth nature of CVaR and WCVaR poses a challenge in modeling and numerical com-

putation. We overcome it by reformulating (Z(ṽ, TR(ṽ), r)− θ)+ into the following:

(Z(v, TR(ṽ),r)− θ)+ = max (
∑
j∈N

djαj −
∑
k∈P

ckδk)T
R−

∑
i∈M

riβi +
∑
k∈P

ckδkT
r
k (1− ṽk)− θy

s.t. (α,β, γ, δ, s1, s2, s3, s4, s5)∈F
(1− y)(

∑
j∈N

αj +
∑
i∈M

βi +
∑
k∈P

δk) = 0

y ∈ {0,1}

(16)

The introduction of binary variable y guarantees (Z(v, TR(ṽ), r) − θ)+ takes value of

Z(v, TR(ṽ), r)−θ when it is greater than 0, and 0 otherwise. The last quadratic constraint ensures

that the dual variables take value 0 when y 6= 1, since they are assumed to be nonnegative.

To make the formula more compact, we can add some valid cuts in the model. First we observe

Lemma 3. The optimal dual variables (α∗,β∗,γ∗,δ∗) in Problem (15) satisfies:
∑
j∈N

djα
∗
j ≤

∑
k∈P

ckδ
∗
k

Lemma 3 indicates that we can add the cut
∑
j∈N

djαj ≤
∑
k∈P

ckδk in Problem (15) without cutting

off the optimal solutions. We introduce a slack variable s7 to make this cut a equality form.

Notice that for assumption (A1) in Section 3 to hold, the feasible region has to be bounded.

By analysing the structure of feasible region F , we add several valid cuts ((16a) to (16f) given in

Lemma 4) to Problem (16) to bound the feasible region.

Lemma 4. We have following constraints as valid cuts to the problem.

βj + s8
j =
(

n
max
i=1

fi

)
y,∀j = 1, . . . ,m (17a)

δk + s9
k =

(
n

max
i=1

fi

)
y,∀k= 1, . . . , p (17b)

y+ s10 = 1 (17c)

αis
5
i = 0,∀i= 1, . . . , n (17d)

αj + s11
j = fjy (17e)

s8,s9, s10,s11 ≥ 0 (17f)

According to the definition of TR(v), TR(v) ≥ T rk (1− vk),∀k ∈ P. Hence we can also add this

constraint to the problem by introducing slack variable s6 as follows:

TR(v)− s6
k = T rk (1− vk),∀k ∈P (18a)

s6 ≥ 0 (18b)
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Let Zm(r, θ) denote maxṽ∼(D(B),µv ,Σv),TR(v)∼(R+,µT ,σT ) E[(Z(ṽ, TR(ṽ), r)−θ)+]. We can reformulate

the problem as:

Zm(r, θ) = max
ṽ∼(D(B),µv ,Σv),TR(v)∼(R+,µT ,σT )

E

[
max

∑
j∈N

djαjT
R(v)−

∑
i∈M

riβi−
∑
k∈P

ckδks
6
k− θy

]
s.t. (α,β, γ, δ, s1, s2, s3, s4, s5)∈F

(1− y)(
∑
j∈N

αj +
∑
i∈M

βi +
∑
k∈P

δk) = 0

y ∈ {0,1}∑
j∈N

djαj + s7 =
∑
k∈P

ckδk

(16a)− (16f), (17a)− (17b)
(19)

It turns out that these valid cuts are extremely important to the approach used, since we can

only obtain good numerical performance after adding these cuts. Our theoretical analysis also

shows that the conic program has zero duality gap if these cuts are added into the model. To

see it, noticed that Problem (19) falls in the realm of framework considered in Proposition 3.

Specifically, we decompose the decision variables into two parts: x2 represents s6 in (17a) and the

slack variables s in the valid moment matrix, M(B); x1 includes α,β, γ, δ and si, for i 6= 6. With

this decomposition, Problem (19) satisfies problem structure requirements (i) to (iii) in Proposition

3. Moreover, A2
2 =

(
−I O
O I

)
, which meets the condition A2T

1 A
2
1 +A2T

2 A
2
2 � 0. Therefore, to show

the strong duality, it is sufficient to show A1T
1 A

1
1 �co 0.

Lemma 5. If there exists strictly positive solution to feasible region defined by (7), A1
1 defined in

(19) satisfies A1T
1 A

1
1 �co 0.

According to Proposition 3, there is therefore no duality gap between the completely positive

formulation and co-positive formulation of Zm(r, θ).

4.6. First-Stage Co-positive Formulation

With the dual formulation to the second stage problem which is denoted as Zmco, we can convert

the following two stage problem

min
r≥0,θ

hTr

s.t.
{
θ+ 1

η
Zmco(r, θ)

}
≤ c0

(20)

into an equivalent co-positive cone problem

min
r≥0

hTr

s.t. θ+ 1
η
(ρ+µvTν + Σv •Θ + bT1φx + bT1Λ(εx)b1 + 1T

pφw + 1T
pεw1p)≤ c0

CO<co 0

(21)

where CO is the dual co-positive matrix. We omit the explicit expression for simplicity.
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4.7. Fixed Inventory Budget

Recall that when there is a budget on the total holding cost, the optimal inventory allocation for

a fixed inventory budget can be formulated as Problem (10). By exactly the same derivation, we

can obtain its corresponding co-positive program presented below.

min
r≥0

θ+ 1
η
(ρ+µvTν + Σv •Θ + bT1φx + bT1Λ(εx)b1 + 1T

pφw + 1T
pεw1p)

s.t. hTr≤ br
CO<co 0

(22)

4.8. The Worst-Case Expected Lost Sales

For the sake of completeness, we next show that the worst-case “expected lost sale” under optimal

inventory allocation, Z ê(r∗), can be solved as a special case of the worst case CVaR.

Lemma 6. Given the optimal inventory allocation r∗, let Z ê(r∗) be the worst-case expected lost

sales, i.e.

Z ê(r∗) := max
ṽ∼(D(B),µv ,Σv),TR(v)∼(R+,µT ,σT )

E[Z(ṽ,r∗)] (23)

Then Z ê(r∗) can be solved by the completely positive reformulation of the worst-case CVaR by

setting r= r∗ and θ= 0, i.e. Z ê(r∗) =Zmcp(r
∗,0).

5. Sensitivity Analysis

In the previous section, we have obtained a characterization of the worst-case solution to a distri-

butionally robust supply chain disruption problem, using recent results developed in the theory of

conic programming. While there are various ways to formulate such problems in a robust manner,

our approach has the advantage that it admits a probabilistic interpretation in terms of the worst-

case distribution to the robust problem, and uses directly the parsimonious set of risk estimates

often encountered in practice. This approach can be used to derive insightful information on the

sensitivity analysis of the key parameters used in the model. We provide the intuition behind the

sensitivity results using the worst-case distribution interpretation, and relegate the rigorous proof

utilizing the conic program to the online companion.

5.1. Impact of Supplier’s TTR

Note that in our risk mitigation model, the TTR values for the vendors are self reported. The risk

mitigation strategy is predicated on the assumption that these values reflect accurately vendors’

ability to recover from disruption. This assumption requires the vendor to have a reliable procedure

to estimate the time duration within which it can recover from a certain type of disruption. What

happen if suppliers can be nudged to reduce their TTRs? Which vendor should we focus on to

reduce the TTR? In this section, we apply sensitivity analysis on the reported TTR to see how the
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changes in supplier’s TTR affect the worst-case expected lost sales. Note that our analysis focused

on sensitivity analysis in the worst-case scenario, instead of the more traditional expected lost sales

setting.

Recall that for fixed v and r, the lost sales are given by

Z(v,r) = min
(xij ,u,l)

∑
j∈N

fjlj Dual Variables

s.t.
∑

i∈M,(i,j)∈G
xij + lj ≥ djTR(v), ∀j ∈N α∑

j∈M∪N ,(i,j)∈G
xij −ui ≤ ri, ∀i∈M β∑

i∈M,(i,j)∈G

xijI
PT
it

Btj
−uj ≥ 0, ∀j ∈M, t∈ Tj γ∑

i∈Ak
ui ≤ (TR(v)−T rk (1− vk))ck, ∀k ∈P δ

xij ≥ 0,u, l≥ 0

This is an LP, and the optimal dual solution δ provides valuable information on the sensitivity of

the input T rk for our problem. In particular, we know that in the optimal solution,

• If vk = 1, then change in T rk does not affect the optimal solution Z(v,r).

• If vk = 0 and T rk <TR(v), then a unit decrease in T rk resulted in a decrease of ckδk(v), where

δk(v) is the corresponding dual solution.

• The situation when vk = 0 and T rk = TR(v) is more complicated, and depends on whether there

are multiple facilities attaining the same TR(v) in the system. In the case that vendor k attains

the maximum TTR alone, (and assuming after a unit decrease, k’s TTR is still the largest among

all,) then a unit decrease in T rk will result in a change of −
∑

j∈N αj(v)dj +
∑

i 6=k ciδi(v) in lost

sales. This change is therefore at least −ckδk(v) according to Lemma 3. On the other hand, when

k attains the maximum TTR along with other disrupted vendor nodes, a decrease of a unit in T rk

will result in a decrease of ckδk(v) units in lost sales, as in the previous case.

In summary, we expect the function ckδk(v)(1− vk) to be a upper bound on the lost sales when

T rk decreases by a unit. Since ṽ is random, we expect the function ckE[δk(v)(1−vk)] to be an upper

bound for the corresponding impact on the expected lost sales, where the expectation is taken over

the worst-case distribution.

Proposition 4. Suppose px∗, Y x∗ be the optimal solution obtained from the conic program to

problem (23), where p∗δ := E[δ∗(v∗)]; and Y ∗δ := E[δ∗(v∗)v∗T ]. Let p∗δk denote the k-element in p∗δ,

and Y ∗δkk the (k, k)-th element of matrix Y ∗δ . Then the decrease in lost sales when T rk decreases by

a unit is bounded above by ck(p
∗
δk−Y ∗δkk).

As the dual information obtained constitutes an upper bound of the actual impact with unit change

in TTR, we could use this information to identify nodes in the supply chain whose reported TTRs

will have minimal effect of the performance of lost sales - the accuracy of the reported TTRs in

nodes with low value of ck(p
∗
δk−Y ∗δkk) will have minimal impact on the performance of lost sales.
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5.2. Impact of Capacity and Inventory

In a similar vein, we can use the probabilistic interpretation of the worst-case distribution to the

conic program to perform sensitivity analysis on other planning parameters. For instance, we can

use dual variables to analyze the impact on the change in the vendors’ capacities. The optimal dual

solution δ, or more specifically, (TR−T rk (1−vk))δk provides valuable information on the sensitivity

of the input ck. Notice that TR− T rk (1− vk) is exactly the slack variable s6
k defined by constraint

(8a). By the same logic as what we have for the sensitivity analysis on vendors’ TTR, we expect

the effect on vendor’s capacity change should depend on the E[δ∗(v∗)s6∗T(v∗)].

Proposition 5. Let X∗
δs6

be the submatrix in the optimal solution to the conic program that

correspond to E[δ∗(v∗)s6
∗
(v∗)]. Note that X∗

δs6
is a p-by-p matrix. Let X∗

δs6kk
be the (k, k)-element

in X∗
δs6

, where k = 1, ..., p. Then the decrease in lost sales when ck increases by a unit is bounded

above by X∗
δs6kk

.

In this way, we can use the dual information to rule out expanding the capacity of vendor nodes

with low X∗
δs6kk

, since the impact on lost sales will be small in these cases. We can apply the same

logic to study the sensitivity analysis on inventory level at each plant node.

Proposition 6. Let p∗β be the vector px∗ in the optimal solution to the conic program that corre-

spond to E[β∗(v∗)]; and p∗βi is the i-element in p∗β. Then we have

∂Z ê(r∗)

∂ri
=−p∗βi

In this way, we can use the dual information to assess the impact of locally modifying the inven-

tory strategy r by examining the value of p∗βi . In the next section, we use numerical simulation to

demonstrate that although our results are obtained in the worst-case setting, the insights obtained

can still be valuable for the traditional expected lost sales setting, when the risk probabilities are

given explicitly.

6. Numerical Studies

We develop the experimental setup using a case study motivated by a large internet service provider

serving four different markets. This experiment setup is adapted from a case study of risk analysis in

Golany (2014). This company provides four types of internet configurations (CFG1, CFG2, CFG3,

and CFG4). In the four markets, to incorporate the issues of flexible supply, we assume that some

configurations can be used exchangeably. More specifically, in Market 1, CFG 1 and 4 can be used

exchangeably; in Market 2, CFG 1 and 2 can be used exchangeably; in Market 3, CFG 2 and 3 can

be used exchangeably; and in Market 4, CFG 3 and 4 can be used exchangeably. Demand rates at

the four markets are 0.18, 0.21, 0.2, and 0.21, respectively. Lost sale penalty cost at all customer



Gao et al.: Disruption Risk Mitigation in Supply Chains
26 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Table 2 Bill of Material Information

Item ID Vendor Geographic Location CFG1 CFG2 CFG3 CFG4
ABX

1 US
1 1 1 0

ABN 1 1 1 0
GHY 2 Mexico 1 1 2 1
KIU 3 Mexico 1 0 1 0
PFR 4 US 1 0 1 0
JKI1

5 Mexico
0 3 0 0

JKI2 3 0 0 0
JKI3 2 0 3 2

CFG 1 6 US 1 - - -
CFG 2 7 US - 1 - -
CFG 3 8 US - - 1 -
CFG 4 9 US - - - 1

nodes is 7. The items needed for each configuration, and the corresponding vendor, are listed in

Table 2. We map the supply chain network in Figure 5. Supply chain parameters are summarized

in Table 3. The disruption probabilities are generated randomly with the sum of probabilities set

to 1, so that the average number of vendor nodes disrupted is 1. This is to facilitate comparison

with the traditional REI approach, where exactly one vendor node is disrupted in each scenario.

Note that in reality, the disruption probabilities should be much lower. We consider also that

the disruptions are correlated. We assume Vendor 4 and Vendor 7 are disrupted with correlation

coefficient of 0.9; whereas Vendor 1 and Vendor 9 are disrupted with correlation coefficient of 0.9.

Instead of simulating TR(v) to obtain the corresponding moments in our experiments, we let the

model determine these value in our numerical computation. The machine used to perform all the

computations is Dell computer with Intel(R) Core(TM) 3.40 GHz, RAM 8 GB, Microsoft Windows

Windows 7 Enterprise cvx Mosek solver. We use Doubly Nonnegative Matrix(DNN) to approximate

co-positive matrix in solving the model. The size of the matrix for our numerical study is 141×141

and the computation time for each DNN approximation is around 256s.

Figure 5 Supply chain network
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Table 3 Supply Chain Parameters

Plant
Inventory Cost

(100 units)
Vendor Capacity

Disruption
Probability (1−µ)

TTR of vendor

1. ABX 31
1 1.2 0.0667 1

2. ABN 30
3. GHY 32 2 0.9 0.1333 1.2
4. KJU 29 3 0.5 0.2000 1.4
5. PFR 30 4 0.5 0.1667 1.6
6. JKI1 30

5 2.4 0.0667 1.87. JKI2 33
8. JKI3 31
9. CFG1 500 6 0.2 0.0667 2
10. CFG2 550 7 0.4 0.1667 2.2
11. CFG3 600 8 0.3 0.0667 2.4
12. CFG4 505 9 0.2 0.0667 2.6

6.1. The Effect of Inventory Budget to Inventory Deployment and WCVaR of Lost Sales

To see how the inventory budget influence the inventory deployment and the corresponding change

in WCVaR, we solve Problem (22) again for total inventory budgets ranging from 0.2 to 16, and

confidence level 1−η at 70%, 80% and 90% respectively. The WCVaR of lost sales with respect to

Figure 6 WCVaR of lost sales for different inventory budgets

different level of budget is plotted in Figure 6.

Note that it is easy to reduce lost sales to zero with a high enough inventory budget. In fact,

with the maximum TTR at 2.6, we can pre-position the total demand for the 4 markets for 2.6

unit time at the 4 plant nodes in the set M2, incurring a total inventory cost of

2.6× (0.18× 5 + 0.21× 5.5 + 0.2× 6 + 0.21× 0.505) = 11.203.

The challenge is therefore to pre-position the inventory with a much smaller budget. Interestingly,

our WCVaR model essentially recovers this insight, and shows the diminishing return on inventory
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budget on lost sales mitigation - when total inventory budget is small, a small increase in budget

can significantly decrease the WCVaR of lost sales. However, when the inventory budget reaches

10.5 to 11, the lost sales effectively reduces to 0, and any further increase in inventory budget will

not affect the WCVaR of lost sales. There is thus a diminishing returns to the value of additional

inventory budget in controlling for WCVaR.

6.2. Inventory Strategy Comparison with REI Model

We compare the optimal inventory deployment levels under two environments, one without disrup-

tion distribution information (LP based on the REI model, ignoring the disruption risk estimates),

and the other one with limited distribution information (COP model).

For the first case, optimal inventory allocations and total inventory budgets are obtained by

solving Problem (11). The total inventory budget obtained is 2.6186, with inventory allocation

as shown by the white bar in Figure 7. Note that this strategy is obtained with the optimistic

assumption that there is a disruption to at one vendor node in the system. This is often justified

because of the low disruption risk to each vendor node in the system. We use this case as a

benchmark to evaluate the performance of the COP model for this experimental setup.

With this fixed inventory budget (2.6186), and given the first-two moment information, how

would the optimal inventory allocation change using the COP model? We solve the fixed inventory

budget problem (22) with budget of br = 2.6186. To study the risk-aversion effect, we test our

model under three cases of confidence levels, 70% (η= 0.3), 80% (η= 0.2) and 90% (η= 0.1). The

new optimal inventory allocation strategies are compared with the one obtained from LP model in

Figure 7. We further analyze how large the lost sales perform under inventory strategies obtained

by the optimistic-LP-based model using REI, and the pessimistic-based-COP model assuming

worst-case distributions. Specifically, given the disruption moment information, we simulate the

performance of different inventory strategies and the accompanied lost sales. When we assume that

both models have the same inventory budget of 2.6186, the cumulative distribution functions of

lost sales under these inventory strategies are given in Figure 8 with average lost sales, standard

deviations, 70% CVaR, 80% CVaR, and 90% CVaR given in Table 4. From both the CDFs of

Table 4 Statistics of simulated lost sales under the same budget

Mean STD 70% CVaR 80% CVaR 90% CVaR
COP Model (Confidence level 70%) 0.5633 1.1475 1.8720 2.4019 3.5173
COP Model (Confidence level 80%) 0.5372 1.1286 1.7846 2.3869 3.4562
COP Model (Confidence level 90%) 0.5612 1.1621 1.8623 2.4642 3.6396

LP Model 0.9569 1.9128 3.1897 4.6952 5.1541

lost sales and mean-variance comparison, we can see that the COP models perform significantly
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Figure 7 Inventory levels for each plant under same budget

Figure 8 CDFs of simulated lost sales using inventory obtained from two models under the same budget

better than LP model. The optimistic assumption that at most one vendor node can be disrupted

can therefore lead to poor inventory deployment strategy. Our numerical example shows that

the incorporation of risk estimates (probabilities of disruption) can therefore be valuable for this

problem, even if the model can only be solved for the worst-case setting.

6.3. Inventory Strategy Comparison with the Stochastic Programming Model

Based on the disruption probabilities at each node, we first generate random scenarios with up

to 4 vendors being disrupted, assuming (wrongly) that the disruption risk of each vendor node



Gao et al.: Disruption Risk Mitigation in Supply Chains
30 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

in the supply chain are independent. We remove all scenarios with more than four vendors being

disrupted. Note that the probability that five or more vendors are simultaneously disrupted is

less than 0.004% according to the disruption probabilities in Table 3. In this way, we completely

enumerate 255 scenarios to build the stochastic programming model in (11). We then apply Benders

decomposition method to find the optimal solution.

In order to make a fair comparison, we compare the inventory strategies obtained from stochastic

model to the one obtained from COP model under the belief that disruptions are uncorrelated. This

is to ensure both models use the same amount of information on the disruption risk assessments.

The supply chain network and all the problem parameters are unchanged. We set the total

inventory budget to be 2.6186. We obtain three sets of inventory strategies with CVaR confidence

level of 70%, 80%, and 90%. The true underlying disruption distributions are however correlated, as

in our base case. Specifically, both vendor nodes 4 and 7, and vendor nodes 1 and 9, are correlated,

each with correlation coefficient of 0.9.

Note that we do not assume the true disruption probabilities among companies are independent.

This is because if so, the stochastic programming model, which is solved assuming (correctly)

disruptions are independent, will always outperform the worst-case COP model under simulation,

since the stochastic programming approach solves the right optimization problem.

Figure 9 Inventory Strategy Comparison

In Figure 9, we present the inventory deployment strategy obtained from the stochastic pro-

gramming model and the one obtained from COP models. To compare the performance of these
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two strategies, we conduct simulation study by assuming the true disruption distribution are cor-

related. We plot the cumulative distribution functions for different inventory strategies and under

different confidence levels in Figure 10 with average lost sales, standard deviations, 70% CVaR,

80% CVaR, and 90% CVaR in Table 5.

Figure 10 Simulated Lost Sales CDFs Comparison

Table 5 Statistics of simulated lost sales under the same budget

Mean STD 70% CVaR 80% CVaR 90% CVaR
COP Model (Confidence level 70%) 0.5673 1.1675 1.8851 2.4305 3.6178

Stochastic Model(Confidence level 70%) 0.5623 1.2343 1.8745 2.6999 3.7901
COP Model (Confidence level 80%) 0.5383 1.1339 1.7884 2.3937 3.4969

Stochastic Model(Confidence level 80%) 0.5341 1.2635 1.7803 2.4339 4.0535
COP Model (Confidence level 90%) 0.5605 1.1626 1.8603 2.4669 3.6391

Stochastic Model(Confidence level 90%) 0.5476 1.2681 1.8254 2.4472 4.0676

From the CDF plots, we can see the CDF curves corresponding to the inventory strategies from

the stochastic programming model are more skewed compared with the ones corresponding to the

COP model. This implies the COP model performs slightly better than the stochastic model in

the tail. In Table 5, we see that the COP model is inferior to the stochastic programming model in

terms of mean lost sales. However, in terms of spread (standard deviation), COP model outperforms

the stochastic programming model. At the same time, COP model controls the tails much better
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than the stochastic model (c.f. CVaR statistics). Since downside risk is more critical than simply

mean lost sales, COP model is better in controlling for the disruption risk.

In terms of computation time, COP model outperforms the stochastic model significantly. The

computation time to obtain the inventory strategy from stochastic model is about 45mins, com-

pared with less than 5 mins in the case of running the COP model.

6.4. Sensitivity Analysis

In this section, given the optimal inventory deployment with the fixed inventory budget 2.6186

obtained by the COP model, we would like to analyze the effects of the key planning parameters on

the performance of the supply chain. The inventory strategy we use here is the one obtained with

confidence level 70%. By setting θ to be 0, we first solve Problem (23) to obtain the corresponding

primal and dual optimal solution, to perform the sensitivity analysis on vendors’ TTRs, capacities

and inventory deployment.

To validate this result, we use simulation to check the impact when these parameters change one

at a time. For instance, for the analysis on TTR, we have 9 cases where each case corresponds to

decreasing one vendor’s TTR by 0.1 units. We sample 105 disruption scenarios to estimate the mean

lost sales for each of these cases, and obtain the estimated change in performance level (lost sales).

We perform the same analysis for the cases when capacities or inventory positions are changed, by

increasing the vendor’s capacity by 0.1 units,and inventory position by 0.001 units each.

The comparisons are shown in Figure 11. The simulated changes in the mean lost sales are

normalized to be the change with respect to a unit change of TTR, capacity or inventory position.

(a) Sensitivity analysis on ven-

dors’ TTRs

(b) Sensitivity analysis on ven-

dors’ capacities

(c) Sensitivity analysis on nodes’

inventory levels

Figure 11 Sensitivity analysis

It is interesting that while vendors 6-9 are those with the highest TTR, our sensitivity analysis

on TTR (cf. Figure 11a) shows that the effect of decreasing the TTR at Vendor node 6, 8 and 9

have the lowest impact on the performance of the supply chain, since our analysis yields the lowest
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upper bound for these vendor nodes. Hence the TTR from these nodes, despite having the largest

value, are not critical to the performance of the system under disruption. In fact, the simulation

results confirmed this finding, since changing the TTR at these nodes has a negligible impact on

the expected performance on lost sales. On the other hand, the upper bound on the effect of the

TTR of Vendor 5 is shown to be large in the supply chain. This is not surprising, since Vendor

5 is responsible for 3 items in the set M1, and holds a large amount of the strategic inventory

positioned in the system.

More interestingly, in the case of capacity parameters, the situation is reversed and our sensitivity

analysis shows that Vendor 6, 8 and 9 now played the most important role in the performance of

the supply chain, with the simulation results confirming this findings (cf. Figure 11b). The capacity

parameters for other vendors do not appear to be significant, except possibly Vendor 1 and 2, based

on sensitivity analysis. Simulation confirms that capacity parameter at Vendor 1, but not Vendor

2, has a non-negligible impact on the performance.

The situation with the impact of inventory positioning is more intuitive - vendors 6, 7, 8 and

9 are significant, and a slight increase in the inventory positions in these nodes will have a larger

impact of the performance in lost sales. This is arguably due to the fact that these nodes are closer

to markets, and the inventory will not be destroyed in the case of disruption, unlike the case with

capacity. This possibly explains why Vendor 7 is now a significant node in the supply chain, despite

having also a larger disruption probability. The inventory positioning at all other nodes are not as

important, according to our sensitivity analysis, and again confirmed by simulation.

6.5. Effect of Budget: Optimal Inventory Strategy is not monotone

Given that the budget for strategic inventory positioning may change from time to time, it is

important to understand how we could build up the strategic inventory position over time. To

understand this effect, we obtain the optimal inventory positioning strategy for a range of budgets.

We show the different inventory positions for different levels of inventory budget in Figure 12, with

confidence level 70%. Note that our earlier numerical results suggest that the inventory positions

are not sensitivity to the confidence level, since the solutions are similar even at confidence levels

80% and 90%.

We can see tier-two vendors (Plant Node 1-8) and tier-one vendors (Plant Node 9-12) respond

to the increase in total budget in different manner. When the total inventory budget is sufficiently

low, it is optimal to spread any additional inventory investment across all vendors to increase their

respective inventory level. However, when the total amount of budget crosses a certain threshold

(in our case, it is about 4 to 6), it is optimal to continue to invest more in the inventory levels

of tier-one vendors, and also to strategically reduce the inventory positions in selected tier-two
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vendors. This follows from the complex trade-offs between the higher inventory holding cost of tier-

one vendors, and their relative proximity to end demands compared to tier-2 vendors. Essentially

the optimal inventory positioning strategy uses the following principle - when the total inventory

budget is small, the supply chain has to invest more on the tier-two vendors. When the budget

is sufficient, the balance will be titled towards the tier-one vendors, allowing the supply chain to

invest more on holding inventories for these vendors. The numerical results also reveal a consistent

Figure 12 Inventory levels under different inventory budgets

pattern - over the range of budgets considered, Plant Node 8 and 3 hold the largest and second

largest share of the amount of strategic inventory available, with close to zero strategic inventory

maintained at Plant Node 11.

7. Concluding Remarks

In this paper, we introduce a risk mitigation framework, which incorporates disruption risk esti-

mates into supply chain planning. Our mitigation framework is developed based on the supply

chain resilience curve on the performance of lost sales. We present a framework to determine the

optimal inventory allocation strategy such that the anticipated lost sales are minimized. Specifi-

cally, we assume the first-two moment of the disruption distribution are known, and by adopting

the notion of distributionally robust model, we obtained the optimal inventory allocation across

the supply chain which gives minimal value of WCVaR of the lost sales.

We showed that this problem can be fully characterized by a co-positive program, which can be

solved via SDP relaxation. Moreover, our distributionally robust model can be used to perform
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sensitivity analysis, and to estimate the changes in the worst-case expected lost sales when certain

supply chain parameters change. We finally apply our framework to a numerical study. We show

that in both cases when the disruptions are either independent or correlated, the optimal inventory

strategy obtained by our co-positive program model outperforms that obtained from the traditional

REI model.

There are several interesting implications our numerical study reveals. Specifically, our numerical

results highlight the important role that total inventory budget plays in supply chain risk manage-

ment. On one hand, we show there is a diminishing return effect to the value of additional inventory

budget in controlling WCVaR of lost sales. On the other hand, we find that the optimal inventory

strategy is not always monotone with respect to total inventory budget. The single-crossing con-

dition does not hold in this case. When the total inventory budget passes certain thresholds, the

optimal inventory for certain nodes may begin to drop.

We also would like to make some remarks and highlight several limitations in our model. Firstly,

our risk mitigation model does not incorporate the factor of lead times. Introducing lead times,

even deterministic lead times, would impose another layer of difficulties in modeling and solutions.

The reason why we find it is not essential to include lead times is that the inventory allocation

strategy we proposed in our model is specifically used to hedge against random supply shortage. It

can be viewed as an extra buffer held in addition to those inventory already installed in the supply

chain system, which is used to dampen the variability in demand and lead times. We decouple the

two sources of uncertainties and only focus on determining the inventory position after receiving

risk alerts on possible disruption threats.

Secondly, we solve the SDP relaxation of the corresponding co-positive and completely positive

programs using the standard Doubly-Non-Negative (DNN) relaxation. In general, the gap between

the exact and the relaxed model may be large, and we have introduced additional constraints that

can be added to the formulation to reduce the gap and ensure convergence. Note that there are

cases in which exact SDP formulation can be found to be equivalent to the co-positive/completely

positive program. Specifically, in Natarajan and Teo (2016), they explicitly showed that the order-

statistic problem is one such case. It is not difficult to show that when the supply network is a

balanced serial chain, our risk management problem is an order statistic problem. Hence, we can

have an exact SDP model for this special structure. Whether there any other networks possessing

such tight formulations or, more generally, whether there are any conditions under which we can

have a tight formulation, is a promising future research question.

Finally, in terms of numerical study, CVX Mosek cannot be used to solve large scale DNN

problems. When the supply chain is large, one possible way to apply our framework is to decompose

the network into blocks, and solve each block one at a time to fix the inventory levels. It will be

interesting to see if there is a more compact way to model the supply chain disruption problem.
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Endnotes

1. In fact, we can extend the result to the case when the support set is unbounded by explicitly

characterizing the recession cone of the completely positive cone. For simplicity, in our paper, we

only study the case when the support set is bounded.
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Proofs of Main Results

EC.1. Proofs of Main Results

Proof of Proposition 1 Necessity: Let (w,Xw) be a element in the setM. Consider the decom-

position of the completely positive matrix:(
1 wT

w Xw

)
=
∑
k∈κ

(
ζk
v̂k

)(
ζk
v̂k

)T

where ζk ∈ R+,
∑
k∈κ

ζ2
k = 1, v̂k ∈ Rp+,∀k ∈ κ . Let κ = κ+ ∪ κ0, where κ+ = {k ∈ κ | ζl > 0}, and

κ0 = {k ∈ κ | ζl = 0}. We have w=
∑
k∈κ

ζkv̂k, and Xw =
∑
k∈κ
v̂kv̂

T
k .

Following the result in Proposition 3.1 and Proposition 3.2 in Natarajan et al. (2011) (also from

Burer(2009)), we have ∀k ∈ κ+,
v̂k
ζk

is feasible to linear constraints and binary constraints in support

set D; and v̂k = 0,∀k ∈ κ0.

Before we proceed with the proof, we would like to first establish the following lemma.

Lemma EC.1. ∀k ∈ κ+,
v̂k
ζk

is feasible to the quadratic constraint, (M2ṽ) ◦ (M3ṽ) = 0, in support

set D,

Proof. diag(M2X
wMT

3 ) = 0 can be rewritten as
∑
k∈κ+

ζ2
k(M2

v̂k
ζk

)(M3
v̂k
ζk

)T = 0. Because M2 and M3

satisfies the condition that for all v feasible to linear constraint M1ṽ= bv1 , M2v≥ 0 and M3v≥ 0.

We have M2
v̂k
ζk
≥ 0, and M3

v̂k
ζk
≥ 0,∀k ∈ κ+. Therefore, the constraint diag(M2X

wMT
3 ) = 0 will force

(M2
v̂k
ζk

)(M3
v̂k
ζk

)T = 0,∀k ∈ κ+. Q.E.D.

With this lemma, we conclude ∀k ∈ κ+,
v̂k
ζk

is feasible to all constraints in support set D. We can

rewrite the decomposition as (
1 wT

w Xw

)
=
∑
k∈κ+

(
1
v̂k
ζk

)(
1
v̂k
ζk

)T

We can construct a distribution of a binary random vector ṽ in the following way. P (ṽ= v̂k
ζk

) =

ζ2
k ,∀k ∈ κ+. The probability of ṽ taking values other than v̂k

ζk
,∀k ∈ κ+ is 0. This binary random

vector satisfies all the constraints in support set D almost surely. We then have µ=w=
∑
k∈κ+

P (ṽ=

v̂k
ζk

) v̂k
ζk

;Σ =Xw = P (ṽ= v̂k
ζk

) v̂k
ζk

v̂Tk
ζk

. Hence, we can see µ and Σ are feasible first-two moments of this

binary random vector ṽ.

Sufficiency: Supposing (µ,Σ) is a feasible (n,2,D)-moment sequence, we have µ = E[ṽ]; Σ =

E[ṽṽT]. Define w = E[ṽ], Xw = E[ṽ]. Then w = µv;Xw = Σv. By taking expectation of all the

constraints in D, we have M1w = bv1, diag(M1X
wMT

1 ) = bv1 · b
v
1, and diag(M2X

wMT
3 ) = 0. Due to
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the fact that ṽi ∈ {0,1} we have ṽi = ṽ2
i , Taking expectations gives wi =Xw

ii ,∀i∈Bv. Finally, ṽ≥ 0

almost surely implies

(
1 wT

w Xw

)
<cp 0 This completes the proof. Q.E.D.

Proof of Theorem 1. By the construction the Problem (4), it is a relaxation of Problem (2). To

see the equivalence, let px∗,w∗,Xx∗,Xw∗, and Y x∗ be the optimal solution to Problem (4), and

consider the rank-1 decomposition of the completely positive matrix at this optimal solution, i.e., 1 px∗T w∗T

px∗ Xx∗ Y x∗

w∗ Y x∗T Xw∗

=
∑
k∈κ

 αk
βk
γk

 αk
βk
γk

T

=
∑
k∈κ

α2
k

 1
βk
αk
γk
αk

 1
βk
αk
γk
αk

T

where αk ∈ R+,
∑
k∈κ

α2
k = 1, βk,γk ∈ Rn+,∀k ∈ κ . Similarly, let κ = κ+ ∪ κ0, where κ+ =

{k ∈ κ | αk > 0}, and κ0 = {k ∈ κ | αk = 0}.
From the result in Proposition 3.1, Proposition 3.2 in Natarajan et al.(2011) and Lemma EC.1,

we have βk
αk
,∀k ∈ κ+ be the feasible solutions to Problem (2) and βk = 0,∀k ∈ κ0. Similarly, these

three lemmas also implies γk
αk
,∀k ∈ κ+ be the feasible solutions to the feasible moment problem and

γk = 0,∀k ∈ κ0. We can rewrite the decomposition as 1 px∗T w∗T

px∗ Xx∗ Y x∗

w∗ Y x∗T Xw∗

=
∑
k∈κ+

α2
k

 1
βk
αk
γk
αk

 1
βk
αk
γk
αk

T

Assume a random vector v∗ and its corresponding feasible solutions x∗(v∗) follow the joint

distribution as below.

P ((x∗(ṽ∗), ṽ∗) = (
βk
αk
,
γk
ζk

)) = α2
k,∀k ∈ κ+.

It can be easily verified this is a valid and feasible distribution which satisfies the first-two moments

of ṽ. By the same argument as in Natarajan et al.(2011), Problem (2) is equivalent to Problem

(4). Q.E.D.

Proof of Proposition 2. We establish strong duality via constructing an interior point of the

following co-positive cone in Problem (5). We first set νv = 0,ψv = 0,φv = 0,φxv = 0,ψx = 0,λ=

0,εxv = 0,εv = ρ1,Θv = ρI, and εx = 1, where I is the identity matrix. The co-positive matrix

becomes

CO0 =


ρ 0T 1

2
(A1

Tφx− c1)T

0 ρ(I+MT
1 M1) −C2

2

T

1
2
(A1

Tφx− c1) −C2
2

A1
TA1−C3


We then make use of the co-positive Schur complement result in Hanasusanto and Kuhn (2017).

Lemma EC.2 (Co-positive Schur Complement (Hanasusanto and Kuhn (2017))).

Consider a symmetric matrix

D=

(
A B
BT C

)
with A� 0. Then D�co 0 if C −BTA−1B �co 0.
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According to Schur complement, because I+MT
1 M1 � 0, we have CO0 �co 0 if

A1
TA1−C3 �co

1

ρ

(
1
2
(A1

Tφx− c1)T

−C2

2

T

)T(
1 0T

0 I+MT
1M1

)−1( 1
2
(A1

Tφx− c1)T

−C2

2

T

)
.

It holds when we set ρ to be a very large number under the condition that A1
TA1 − C3 �co 0.

Q.E.D.

Proof of Proposition 3. When there exists a partition of decision variable x into two subvectors(
x1

x2

)
such that the objective of Problem (1) can be rewritten as ĉT1x1 + vTĈ2x1 + xT

2 Ĉ3x1, we

rewrite the completely positive program which have decision variables corresponding to decomposed

subvectors x1 and x2 as follows.

max ĉ1
Tp1 + Ĉ2 ·Y 1 + Ĉ3 ·X12

s.t. Constraints on Decision Variables Dual Variables(
A1

1 O
)(p1

p2

)
= b

(1)
1 φ(1)

x(
O A2

1

)(p1

p2

)
= b

(2)
1 φ(2)

x

diag
( (
A1

1 O
)( X1 X12

X12T X2

)(
A1

1 O
)T

) = b
(1)
1 ◦ b

(1)
1 ε(1)

x

diag
( (
O A2

1

)( X1 X12

X12T X2

)(
O A2

1

)T
) = b

(2)
1 ◦ b

(2)
1 ε(2)

x

A2
2p

2 +Mw = b2 φxv

diag
( (
A2

2 M
)( X2 Y 2

Y 2T Xw

)(
A2

2 M
)T )

= b2 ◦ b2 εxv

diag(A3

(
X1 Y 12

Y 12T X2

)
AT

4) = 0 λ

p1
j =X1

jj, ∀j ∈B1 ψx1

p2
j =X2

jj, ∀j ∈B2 ψx2

Constraints on Random Parameters
M1w= b φv
diag(M1X

wMT
1 ) = b ◦ b εv

wi =Xw
ii , ∀i∈ V ψv

w= µv ν
Xw = Σv Θ

CP =


1 wT p2T p1T

w Xw Y 2T Y 1T

p2 Y 2 X2 X12T

p1 Y 1 X12 X1

<cp 0 ρ

Set ν = 0,ψv = 0,φv = 0,φxv = 0,ψx1 = 0,ψx2 = 0,φ(1)
x = 0,φ(2)

x = 0,Θ = ρI,λ= 0,εxv = ρ1,εv =

ρ1, ε(1)
x = 1 and ε(2)

x = ρ1 in the copositive program. Note that I denote the identity matrix. Then

we have

CO0 =


ρ 0T 0T 1

2
(−ĉ1)T

0 ρ(I+MTM +MT
1 M1) ρMTA2

2 − Ĉ2
2

0 ρ(MTA2
2)T ρ(A2T

2 A
2
2 +A2T

1 A
2
1) − Ĉ3

2
1
2
(−ĉ1) (− Ĉ2

2
)T − ĈT

3
2

A1T
1 A

1
1
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According to copostive Schur complement lemma, if

(
I+MTM +MT

1 M1 MTA2
2

(MTA2
2)T A2T

2 A
2
2 +A2T

1 A
2
1

)
� 0,

CO0 is a strictly copositive matrix under the condition that A1T
1 A

1
1 �co 0. In the following, we show

that the condition A2T
2 A

2
2 +A2T

1 A
2
1 � 0 can guarantee this condition.

Consider an arbitrary vector

(
v1

v2

)
,

(
v1

v2

)T( I+MTM +MT
1 M1 MTA2

2

(MTA2
2)T A2T

2 A
2
2 +A2T

1 A
2
1

)(
v1

v2

)
= vT

1(I+MT
1 M1)v1 +vT

1M
TMv1 +vT

1M
TA2

2v2 +vT
2A

2T
2 Mv1 +vT

2A
2T
2 A

2
2v2 +vT

2A
2T
1 A

2
1v2

(EC.1)

Notice that vT
1M

TMv1 +vT
1M

TA2
2v2 +vT

2A
2T
2 Mv1 +vT

2A
2T
2 A

2
2v2 = (A2

2v2 +Mv1)T(A2
2v2 +Mv1)≥ 0,

A2T
1 A

2
1 � 0 implies vT

2A
2T
1 A

2
1v2 ≥ 0 and I+MT

1 M1 � 0 implies vT
1(I+MT

1 M1)v1 > 0 for any v1 6= 0.

Hence for any vectors

(
v1

v2

)
with v1 6= 0, (EC.1)> 0. On the other hand, if v1 = 0,

(EC.1) = vT
2A

2T
2 A

2
2v2 +vT

2A
2T
1 A

2
1v2 = vT

2(A2T
2 A

2
2 +A2T

1 A
2
1)v2 > 0

since A2T
2 A

2
2 +A2T

1 A
2
1 � 0. Q.E.D.

Proof of Lemma 3. Denote the optimal dual variables to the dual problem (15) as (α∗,β∗,γ∗,δ∗).

Consider the following lost sale problem with zero inventory when there is no disruption. In order

for the supply chain to sustain normal operation, the lost sale in this case should be 0, i.e. the

optimal value in (EC.2) is 0.

Z(v,r) = min
(xij ,u,l)

∑
j∈N

fjlj

s.t.
∑

i∈M,(i,j)∈G
xij + lj ≥ dj, ∀j ∈N∑

j∈M∪N ,(i,j)∈G
xij −ui ≤ 0, ∀i∈M∑

i∈M,(i,j)∈G

xijI
PT
it

Btj
−uj ≥ 0, ∀j ∈M, t∈ Tj∑

i∈Ak
ui ≤ ck, ∀k ∈P

xij ≥ 0,u, l≥ 0

(EC.2)

Its corresponding dual problem is

max
∑
j∈N

djαj −
∑
k∈P

ckδk

s.t. (α,β, γ, δ, s1, s2, s3, s4, s5)∈F
(EC.3)

Let (α0,β0,γ0,δ0) denote the optimal dual variable of Problem (EC.3). Due to LP strong duality,

this dual problem also has optimal value of 0, i.e.
∑
j∈N

djα
0
j −

∑
k∈P

ckδ
0
k = 0. Furthermore, since the

feasible region of Problem (15) coincide with that of Problem (EC.3), (α∗,β∗,γ∗,δ∗) is also a

feasible solution to Problem (EC.3). Therefore, we have
∑
j∈N

djα
∗
j −

∑
k∈P

ckδ
∗
k ≤

∑
j∈N

djα
0
j −

∑
k∈P

ckδ
0
k =

0. Q.E.D.
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Proof of Lemma 4.

Notice the structure of the feasible region of Problem (15) (F in EC. 2). For any fea-

sible solution (α,β, γ, δ, s1, s2, s3, s4, s5), we can always find (α,Kβ,Kγ,Kδ,Ks1 + (K −

1)α,Ks2,Ks3,Ks4, s5) feasible for arbitrary large K.

Notice in the objective of Problem (19), the coefficients of β and δ are all non-positive. Hence, the

optimal solution β∗, δ∗ will not exceed the maximum value of α. We already know α≤ f . Hence

we can add valid cuts βj ≤
n

max
i=1

fi,∀j = 1, . . . ,m, δk ≤
n

max
i=1

fi,∀k= 1, . . . , p. We also know that βj,∀j

and δk,∀k has to be 0 if y is 0. We then have βj ≤
n

max
i=1

fiy,∀j = 1, . . . ,m; δk ≤
n

max
i=1

fiy,∀k= 1, . . . , p.

Using a similar construction idea, we can see (Kα,Kβ,Kγ,Kδ,Ks1,Ks2,Ks3,Ks4, s5) is

always a feasible solution to Problem (19) as long as Kα ≤ f . Therefore, one can verify that

αi ∈ {0, fi} holds in optimal. In other words, αis
5
i = 0,∀i= 1, . . . , n.

Next, we already have the constraint on α that αj + s5
j = fj. Since when y = 0, αj = 0,∀j, it is

valid to add the cut αj + s12
j = fjy.

Finally, y≤ 1 is valid due to the fact that y is binary. Q.E.D.

Proof of Lemma 5 We write down A1
1x1 = b

(1)
1 specifically as follows



αj −βi + s1
l = 0, ∀j ∈N , (i, j)∈ G1

−βi +
∑
t∈Tj

γ
j
t I
PT
it

Btj
+ s2

l = 0, ∀i∈M,∀j ∈M2, (i, j)∈ G

−δk +βi(k)−
∑

t∈Ti(k)
γ
i(k)
t + s3

l = 0, ∀k ∈P, i(k)∈Ak, i(k)∈M2

−δk +βi(k) + s4
l = 0, ∀k ∈P, i(k)∈Ak, i(k)∈M1

αj + s5
j = fj ∀j ∈N∑

j∈N
djαj −

∑
k∈P

ckδk + s7 = 0

βj + s8
j =
(

n
max
i=1

fi

)
y,∀j = 1, . . . ,m

δk + s9
k =

(
n

max
i=1

fi

)
y,∀k= 1, . . . , p

y+ s11 = 1
αj + s12

j = fjy
s8,s9, s11,s12 ≥ 0
α∈Rn+,β ∈Rm+ ,γ ∈R

tp
+ ,δ ∈Rp+

s1 ∈R|G2|+ ,s2 ∈R|G1|+ ,s3 ∈Rm2
+

s4 ∈Rm1
+ ,s5 ∈Rn+, s7 ≥ 0



(EC.4)

Denote the dual variable of each constraint defined by A1
1x = b1

(1) as xij,∀j ∈N , (i, j)∈ G, xij,∀i∈

M,∀j ∈M2, (i, j) ∈ G, u ∈RM , l ∈RN and θ(i) for i= 1, . . . ,5. We use y to represent all the dual
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variables defined above and then we can write down A1T
1 y explicitly as

A1T
1 y =



∑
i∈M,(i,j)∈G

xij + lj + djθ
(1) + θ

(5)
j , ∀j ∈N (αj)

−
∑

j∈M∪N ,(i,j)∈G
xij +ui + θ

(2)
i , ∀i∈M (βi)∑

i∈M,(i,j)∈G

xijI
PT
it

Btj
−uj, ∀j ∈M, t∈ Tj (γj)

−
∑
i∈Ak

ui− ckθ(1) + θ
(3)
k , ∀k ∈P (δk)

−f
∑
j∈M

θ
(2)
j − f

∑
k∈P

θ
(3)
k + θ(4)−

∑
j∈N

fjθ
(5)
j (y)(

xT uT lT θ(1)T . . . θ(5)T
)T

(s)


where f =

n
max
i=1

fi. Consider l= ε1, θ(5) = ε1, θ(1) = ε, θ
(2)
i = ε, θ

(3)
k = ck + 2ckε, θ

(4) =Mfε+ f(2ε+

1)
∑
k∈P

ck+
∑
j∈N

fjε+ ε, where ε > 0. Notice that we assume there exists an interior point in the linear

program (6) when there is no disruption and zero inventory in the supply chain. In other words,

there exists strictly positive x0
ij and u0 such that

∑
i∈M,(i,j)∈G

x0
ij >dj, ∀j ∈N

−
∑

j∈M∪N ,(i,j)∈G
x0
ij +u0

i > 0, ∀i∈M∑
i∈M,(i,j)∈G

x0ijI
PT
it

Btj
−u0

j > 0, ∀j ∈M, t∈ Tj∑
i∈Ak

u0
i < (1 + ε)ck, ∀k ∈P

x0
ij > 0,u0 > 0


Therefore, A1T

1

x
0

u0

l
θ

> 0, i.e. there exists a y0 such that A1T
1 y0 > 0. According to Lemma 3 in

Hanasusanto and Kuhn (2017), we prove the claim. Q.E.D.

Proof of Lemma 6.

Recall that by Theorem 1, we have an equivalent completely positive reformulation (??) of

Zm(r, θ) = maxṽ∼(µv ,Σv)E[(Z(ṽ, r) − θ)+]. If we set r = r∗ and θ = 0, we have Zm(r∗,0) =

maxṽ∼(µv ,Σv)E[(Z(ṽ, r∗))+]. Since the lost sales are always greater than 0, we have (Z(ṽ, r∗))+ =

Z(ṽ, r∗). Therefore, we get Zm(r∗,0) = maxṽ∼(µv ,Σv)E[Z(ṽ, r∗)] =Z ê(r∗). Q.E.D.

Proof of Proposition 4 to Proposition 6

Suppose (px∗,pw∗,ps∗,Xx∗,Xw∗,Xs∗, Y x∗, Y xs∗, Y ws∗) is the optimal solution of Problem (23).

Consider the decomposition of the optimal completely positive matrix.


1 px∗T pw∗T ps∗T

px∗ Xx∗ Y x∗ Y xs∗

pw∗ Y x∗T Xw∗ Y ws∗

ps∗ Y xs∗T Y ws∗T Xs∗

=
∑
k∈κ+

ζ∗2k


1
τ∗k
ζ∗
k
v̂∗k
ζ∗
k
ŝ∗k
ζ∗
k




1
τ∗k
ζ∗
k
v̂∗k
ζ∗
k
ŝ∗k
ζ∗
k


T

(EC.5)



e-companion to Gao et al.: Disruption Risk Mitigation in Supply Chains ec7

Where ζ∗2k ,∀k ∈ κ+ specifies the worst-case probability of each scenario. The proof in the following

is to construct feasible solutions to the completely positive program (23) when a certain parameter

changes based on
τ∗k
ζ∗
k
,∀k ∈ κ+.

Proof of Proposition 4.

With a bit abuse of notation, for each scenario k, notice that
τ∗k
ζ∗
k

indeed corresponds to the dual

and slack variables {αk,βk,γk,δk, TRk , yk,sjk(∀j 6= 6), s6
k}. If T rt decreases by ε, i.e., T rt ← T rt − ε.

We consider following three cases:

• For those k such that
v̂∗kt
ζ∗
k

= 1,
τ∗k
ζ∗
k

will remain feasible after changing T rt to T rt − ε.
• For those k such that

v̂∗kt
ζ∗
k

= 0 and T rt < TR(v), then construct ŝ6
tk := s6∗

tk + ε and the other

variables remain the same values as
τ∗k
ζ∗
k

. Then the new solution, denoted as τ̂k
ζ∗
k

, is feasible under

the new parameter T rt − ε, with the objective value decreased by εctδ
∗
t .

• For those k such that
v̂∗kt
ζ∗
k

= 0 and T rt = TR(v), if vendor t attains the maximum TTR alone

( ε is small enough such that t’s TTR is still the largest among all), then we construct a new

solution with T̂Rk := TR− ε, ŝ6
ik := s6∗

ik − ε≥ 0,∀i 6= t and ŝ6
tk := s6∗

tk . The objective value is decreased

by ε(
∑

j∈N αj(v)dj −
∑

i6=t ciδi(v)), which is no less than εctδt(v) according to Lemma 3.

• For those k such that
v̂∗kt
ζ∗
k

= 0 and T rt = TR(v) but there are other vendors attaining the

maximum TTR together with vendor t. Then let ŝ6
tk := s6∗

tk + ε and the other variables remain the

same values as
τ∗k
ζ∗
k

. It would be a feasible solution to the problem when T rt decreases by ε. In this

case, the objective value is decreased by εctδ
∗
t .

In summary, we have Z ê(r∗,
v̂∗k
ζ∗
k

)|T r−ε−Z ê(r∗,
v̂∗k
ζ∗
k

)|T r ≥−εctδ∗t (1−
v̂∗kt
ζ∗
k

),∀k ∈ κ+.

Then the corresponding completely positive matrix
1 px

′T
pw
′T
ps
′T

px
′
Xx′ Y x′ Y xs′

pw
′
Y x′T Xw′ Y ws′

ps
′
Y xs′T Y ws′T Xs′

=
∑
k∈κ+

 ζ∗k
τ̂ k
v̂∗
k

ŝ∗k


 ζ∗k
τ̂ k
v̂∗
k

ŝ∗k


T
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is a feasible solution to (23) with Z ê(r∗)|T r−ε − Z ê(r∗)|T r ≥ −εct(p∗δt − εY ∗δtt). Therefore,

limε→0+
Zê(r∗)|Tr−Z

ê(r∗)|Tr−ε
ε

≤ ct(p∗δt−Y ∗δtt). Q.E.D.

Proof of Proposition 5.

This proof follows the exactly same logic as the one for Proposition 4, we omit the details here.

Proof of Proposition 6.

It is easy to see the completely positive program (23) is convex in ri, i = 1, ...,m. Consider

decrease rt by ε≥ 0, i.e., rt← rt − ε,
τ∗k
ζ∗
k

will remain feasible. Therefore Z ê(r̂∗)|rt−ε −Z ê(r∗)|rt ≥
εp∗βt. In contrast, consider increasing rt by ε≥ 0, i.e., rt← rt + ε,

τ∗k
ζ∗
k

will remain feasible. There-

fore Z ê(r̂∗)|rt+ε − Z ê(r∗)|rt ≥ −εp∗βt. In summary, we have limε→0+
Zê(r̂∗)|rt+ε−Z

ê(r∗)|rt
ε

≥ −p∗βt,
limε→0+

Zê(r̂∗)|rt−Z
ê(r∗)|rt−ε

ε
≤−p∗βt. Hence ∂Zê(r∗)

∂rt
=−p∗βt. Q.E.D.
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