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Abstract. Fairness is crucial for neural networks which are used in ap-
plications with important societal implication. Recently, there have been
multiple attempts on improving fairness of neural networks, with a focus
on fairness testing (e.g., generating individual discriminatory instances)
and fairness training (e.g., enhancing fairness through augmented train-
ing). In this work, we propose an approach to formally verify neural
networks against fairness, with a focus on independence-based fairness
such as group fairness. Our method is built upon an approach for learning
Markov Chains from a user-provided neural network (i.e., a feed-forward
neural network or a recurrent neural network) which is guaranteed to fa-
cilitate sound analysis. The learned Markov Chain not only allows us to
verify (with Probably Approximate Correctness guarantee) whether the
neural network is fair or not, but also facilities sensitivity analysis which
helps to understand why fairness is violated. We demonstrate that with
our analysis results, the neural weights can be optimized to improve fair-
ness. Our approach has been evaluated with multiple models trained on
benchmark datasets and the experiment results show that our approach
is effective and efficient.

1 Introduction

In recent years, neural network based machine learning has found its way into
various aspects of people’s daily life, such as fraud detection [25], facial recogni-
tion [47], self-driving [13], and medical diagnosis [56]. Although neural networks
have demonstrated astonishing performance in many applications, there are still
concerns on their dependability. One desirable property of neural networks for
applications with societal impact is fairness [2]. Since there are often societal bi-
ases in the training data, the resultant neural networks might be discriminative
as well. This has been demonstrated in [53]. Fairness issues in neural networks are
often more ‘hidden’ than those of traditional decision-making software programs
since it is still an open problem on how to interpret neural networks.

Recently, researchers have established multiple formalization of fairness re-
garding different sub-populations [24,9,21,28]. These sub-populations are often
determined by different values of protected features (e.g., race, religion and eth-
nic group), which are application-dependent. To name a few, group fairness re-
quires that minority members should be classified at an approximately same rate
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as the majority members [24,9], whereas individual discrimination (a.k.a. causal
fairness) states that a machine learning model must output approximately the
same predictions for instances which are the same except for certain protected
features [21,28]. We refer readers to [51] for detailed definitions of fairness. In
this work, we focus on an important class of fairness called independence-based
fairness, which includes the above-mentioned group fairness.

Recently, there have been multiple attempts on analyzing and improving
fairness of neural networks, with a focus on fairness testing (e.g., generating in-
dividual discriminatory instances) and fairness training (e.g., enhancing fairness
through augmented training). Multiple attempts [27,54,4,58] have been made on
testing machine learning models against individual discrimination, which aims
to systematically generate instances that demonstrate individual discrimination.
While these approaches have impressive performance in terms of generating such
instances, they are incapable of verifying fairness. Another line of approaches is
on fairness training [16,3,12,36,14,28], this includes approaches which incorpo-
rate fairness as an objective in the model training phase [16,3,12], and approaches
which adopt heuristics for learning fair classifiers [36]. While the experiment re-
sults show that these approaches improve fairness to certain extent, they do not
guarantee that the resultant neural networks are fair.

In this work, we investigate the problem of verifying neural networks against
independence-based fairness. Our aim is to design an approach which allows us
to (1) show evidence that a neural network satisfies fairness if it is the case; (2)
otherwise, provide insights on why fairness is not satisfied and how fairness can
be potentially achieved; (3) provide a way of improving the fairness of the neu-
ral network. At a high-level, our approach is designed as follows. Given a neural
network (i.e., either a feed-forward or recurrent neural network), we systemat-
ically sample behaviors of the neural network (e.g., input/output pairs), based
on which we learn a Markov Chain model that approximates the neural net-
work. Our algorithm guarantees that probabilistic analysis based on the learned
Markov Chain model (such as probabilistic reachability analysis) is probably ap-
proximately correct (hereafter PAC-correct) with respect to any computational
tree logic (CTL [11]) formulae. With the guarantee, we are thus able to verify
fairness property of the neural network. There are two outcomes. One is that
the neural network is proved to be fair, in which case the Markov Chain is
presented as an evidence. Otherwise, sensitivity analysis based on the Markov
Chain is carried out automatically. Such analysis helps us to understand why
fairness is violated and provide hints on how the neural network could be im-
proved to achieve fairness. Lastly, our approach optimizes the parameters of the
‘responsible’ neurons in the neural network and improve its fairness.

We have implemented our approach as a part of the SOCRATES frame-
work [45]. We apply our approach to multiple neural network models (includ-
ing feed-forward and recurrent neural networks) trained on benchmark datasets
which are the subject of previous studies on fairness testing. The experiment
results show that our approach successfully verifies or falsifies all the models.
It also confirms that fairness is a real concern and one of the networks (on the
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German Credit dataset) fails the fairness property badly. Through sensitivity
analysis, our approach locates neurons which have the most contribution to the
violation of fairness. Further experiments show that by optimizing the neural pa-
rameters (i.e., weights) based on the sensitivity analysis result, we can improve
the model’s fairness significantly whilst keeping a high model accuracy.

The remaining of the paper is organized as follows. In Section 2, we review
relevant background and define our problem. In Section 3, we present each step of
our approach in detail. In Section 4, we evaluate our approach through multiple
experiments. We review related work in Section 5 and conclude in Section 6.

2 Preliminary

In this section, we review relevant background and define our problem.

Fairness For classification problems, a neural network N learns to predict a
target variable O based on a set of input featuresX . We write Y as the prediction
of the classifier. We further write F ⊆ X as a set of features encoding some
protected characteristics such as gender, age and race. Fairness constrains how
N makes predictions. In the literature, there are multiple formal definitions
of fairness [24,9,21,28]. In this work, we focus on independence-based fairness,
which is defined as follows.

Definition 1 (Independence-based Fairness (strict)). A neural network
N satisfies independence-based fairness (strict) if the protected feature F is sta-
tistically independent to the prediction Y . We write L as the prediction set and
we have ∀l ∈ L, ∀fi, fj ∈ F such that i 6= j,

P (Y = l | F = fi) = P (Y = l | F = fj) (1)

The definition states that, N ’s prediction is independent of the protected feature
F . This definition is rather strict and thus unlikely to hold in practice. The
following relaxes the above definition by introducing a positive tolerance ξ.

Definition 2 (Independence-based Fairness). Let N be a neural network
and ξ be a positive real-value constant. N satisfies independence-based fairness,
with respect to ξ, if and only if, ∀l ∈ L ∀fi, fj ∈ F such that i 6= j,

| P (Y = l | F = fi)− P (Y = l | F = fj) | ≤ ξ (2)

Intuitively, the above definition states that N is fair as long as the probability
difference is within the threshold ξ. In the following, we focus on Definition 2 as
it is both more general and more practical compared to Definition 1.

Example 1. Let us take the network trained on the Census Income dataset [18]
as an example. The dataset consists of 32k training instances, each of which
contains 13 features. The task is to predict whether an individual’s income
exceeds $50K per year. An example instance x with a prediction y will be
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x : 〈3 5 3 0 2 8 3 0 1 2 0 40 0〉, y : 〈0〉. Note that all features are categor-
ical (i.e., processed using binning). Among all features, gender, age and race
are considered protected features. The model N trained based on the dataset
is in the form of a six-layer fully-connected feed-forward neural network. The
following is a fairness property defined based on the protected feature gender.

| P (Y = 1 | F = male)− P (Y = 1 | F = female) | ≤ 0.1 (3)

Intuitively, the difference in the probability of predicting 1, for males and females,
should be no more than 10%.

Our Problem We are now ready to define our problem.

Definition 3 (The verification problem). Let N be a neural network. Let
φ be an independence-based fairness property (with respect to protected feature
F and a threshold ξ). The fairness verification problem is to verify whether N
satisfies φ or not.

One way of solving the problem is through statistical model checking (such
as hypothesis testing [40]). Such an approach is however not ideal. While it is
possible to conclude whether N is fair or not (with certain level of statistical
confidence), the result often provides no insight. In the latter case, we would
often be interested in performing further analysis to answer questions such as
whether certain feature or neuron at a hidden layer is particularly relevant to the
fairness issue and how to improve the fairness. The above-mentioned approach
offers little clue to such questions.

3 Our Approach

In this section, we present details of our approach. Our approach is shown in
Algorithm 1. The first step is to learn a Markov Chain D which guarantees that
probabilistic analysis such as probabilistic reachability analysis based on D is
PAC-correct with respect to N . The second step is to apply probabilistic model
checking [39] to verify D against the fairness property φ. In the third step, if the
property φ is not verified, sensitivity analysis is performed on D which provides
us information on how to improve N in terms of fairness. That is, we improve the
fairness of the model by optimizing the neuron weights based on the sensitivity
analysis results.

Note that our approach relies on building an approximation of the neural net-
work in the form of Markov Chains. There are three reasons why constructing
such an abstraction is beneficial. First, it allows us to reason about unbounded
behaviors (in the case of a cyclic Markov Chains, which can be constructed from
recurrent neural networks as we show below) which are known to be beyond the
capability of statistical model checking [40]. Second, the Markov Chain model
allows us to perform analysis such as sensitivity analysis (e.g., to identify neu-
rons responsible for violating fairness) as well as predict the effect of changing
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certain probability distribution (e.g., whether fairness will be improved), which
are challenging for statistical methods. Lastly, in the case that the fairness is
verified, the Markov Chain serves as a human-interpretable argument on why
fairness is satisfied.

In the following, we introduce each step in detail. We fix a neural network N
and a fairness property φ of the form |P (Y = l |F = fi)−P (Y = l |F = fj) | ≤
ξ. We use the neural network trained on the Census Income dataset (refer to
Example 1) as a running example.

Algorithm 1: verify repair(N,φ, µǫ, µδ)

1 Fix the set of states S;
2 Learn DTMC D by

learn(N,S, µǫ

2
, 1−

√
1− µδ);

3 Estimate P (Y = l | F = fi) ∀fi ∈ F ;
4 Verify φ against ξ; if φ is verified then
5 return “Verified” and D;

6 else
7 Conduct sensitivity analysis on D;
8 Perform automatic repair of N ;
9 return N ′;

Algorithm 2: learn(N,S, ǫ, δ)

1 W := 0;
2 AW := 0;
3 do
4 generate new sample

trace ω

5 W := W + ω;
6 update AW (p, q) for all

p ∈ S and q ∈ S;
7 update H(n);

8 while ∃p ∈ S, np < H(n)
Output: AW

3.1 Step 1: Learning a Markov Chain

In this step, we construct a Discrete-Time Markov Chain (DTMC) which ap-
proximates N (i.e., line 2 of Algorithm 1). DTMCs are widely used to model the
behavior of stochastic systems [10], and they are often considered reasonably
human-interpretable. Example DTMCs are shown in Figure 1. The definition of
DTMC is presented in Appendix A.2. Algorithm 2 shows the details of this step.
The overall idea is to construct a DTMC, based on which we can perform var-
ious analysis such as verifying fairness. To make sure the analysis result on the
DTMC applies to the original N , it is important that the DTMC is constructed
in such a way that it preserves properties such as probabilistic reachability anal-
ysis (which is necessary for verifying fairness as we show later). Algorithm 2
is thus base on the recent work published in [10], which develops a sampling
method for learning DTMC. To learn a DTMC which satisfies our requirements,
we must answer three questions.

(1) What are the states S in the DTMC? The choice of S has certain con-
sequences in our approach. First, it constrains the kind of properties that we
are allowed to analyze based on the DTMC. As we aim to verify fairness, the
states must minimally include states representing different protected features,
and states representing prediction outcomes. The reason is that, with these
states, we can turn the problem of verifying fairness into probabilistic reachabil-
ity analysis based on the DTMC, as we show in Section 3.2. What additionally
are the states to be included depends on the level of details that we would like to
have for subsequent analysis. For instance, we include states representing other
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features at the input layer, and states representing the status of hidden neurons.
Having these additional states allows us to analyze the correlation between the
states and the prediction outcome. For instance, having states representing a
particular feature (or the status of a neuron of a hidden layer) allows us to check
how sensitive the prediction outcome is with respect to the feature (or the status
of a neuron). Second, the choice of states may have an impact on the cost of
learning the DTMC. In general, the more states there are, the more expensive
it is to learn the DTMC. In Section 4, we show empirically the impact of having
different sizes of S. We remark that to represent continuous input features and
hidden neural states using discrete states, we discretize their values (e.g., using
binning or clustering methods such as Kmeans [42] based on a user-provided
number of clusters).

(2) How do we identify the transition probability matrix? The answer is to
repeatedly sample inputs (by sampling based on a prior probability distribu-
tion) and then monitor the trace of the inputs, i.e., the sequence of transitions
triggered by the inputs. After sampling a sufficiently large number of inputs,
the transition probability matrix then can be estimated based on the frequency
of transitions between states in the traces. In general, the question of estimat-
ing the transition probability matrix of a DTMC is a well-studied topic and
many approaches have been proposed, including frequency estimation, Laplace
smoothing [10] and Good-Turing estimation [26]. In this work, we adopt the fol-
lowing simple and effective estimation method. Let W be a set of traces which
can be regarded as a bag of transitions. We write np where p ∈ S to denote the
number transitions in W originated from state p. We write npq where p ∈ S and
q ∈ S to be the number of transitions observed from state p to q in W . Let m
be the total number of states in S. The transition probability matrix AW (esti-

mated based on W ) is: AW (p, q) =

{ npq

np
if nq 6= 0

1
m

otherwise
. Intuitively, the probability

of transition from state p to q is estimated as the number of transitions from
p to q divided by the total number of transitions taken from state p observed
in W . Note that if a state p has not been visited, AW (p, q) is estimated by 1

m
;

otherwise, AW (p, q) is estimated by
npq

np
.

(3) How do we know that the estimated transition probability matrix is ac-
curate enough for the purpose of verifying fairness? Formally, let AW be the
transition probability matrix estimated as above; and let A be the actual tran-
sition probability matrix. We would like the following to be satisfied.

P (Div(A,AW ) > ǫ) ≤ δ (4)

where ǫ > 0 and δ > 0 are constants representing accuracy and confidence;
Div(A,AW ) represents the divergence between A and AW ; and P is the proba-
bility. Intuitively, the learned DTMCmust be estimated such that the probability
of the divergence between AW and A greater than ǫ is no larger than the con-
fidence level δ. In this work, we define the divergence based on the individual
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transition probability, i.e.,

P (∃p ∈ S,
∑

q∈S

∣

∣A(p, q)−AW (p, q)
∣

∣ > ǫ) ≤ δ (5)

Intuitively, we would like to sample traces until the observed transition proba-
bilities AW (p, q) =

npq

np
are close to the real transition probability A(p, q) to a

certain level for all p, q ∈ S. Theorem 1 in the recently published work [10] shows
that if we sample enough samples such that for each p ∈ S, np satisfies

np ≥
2

ǫ2
log(

2

δ′
)
[1

4
−
(

maxq

∣

∣

∣

1

2
− npq

np

∣

∣

∣
− 2

3
ǫ
)2]

(6)

where δ′ = δ
m
, we can guarantee the learned DTMC is sound with respect to N

in terms of probabilistic reachability analysis. Formally, let H(n) = 2
ǫ2
log( 2

δ′
)[ 1

4
−

(maxq| 12 −
npq

np
| − 2

3
ǫ)2],

Theorem 1. Let (S, I, AW ) be a DTMC where AW is the transition probability
matrix learned using frequency estimation based on n traces W. For 0 < ǫ <

1 and 0 < δ < 1, if for all p ∈ S, np ≥ H(n), we have for any CTL property ψ,

P (
∣

∣γ(A,ψ)− γ(AW , ψ)
∣

∣ > ǫ) ≤ δ (7)

where γ(AW , ψ) is the probability of AW satisfying ψ.

Appendix A.3 provides the proof. Intuitively, the theorem provides a bound
on the number of traces that we must sample in order to guarantee that the
learned DTMC is PAC-correct with respect to any CTL property, which provides
a way of verifying fairness as we show in Section 3.2.

We now go through Algorithm 2 in detail. The loop from line 3 to 8 keeps
sampling inputs and obtains traces. Note that we use the uniform sampling by
default and would sample according to the actual distribution if it is provided.
Next, we update AW as explained above at line 6. Then we check if more samples
are needed by monitoring if a sufficient number of traces has been sampled
according to Theorem 1. If it is the case, we output the DTMC as the result.
Otherwise, we repeat the steps to generate new samples and update the model.

Example 2. In our running example, for simplicity assume that we select gender
(as the protected feature) and the prediction outcome to be included in S and
the number of clusters is set to 2 for both layers. Naturally, the two clusters
identified for the protected feature are male and female (written as ‘M’ and ‘F’)
and the two clusters determined for the outcome are ‘ ≤ 50K ′ and ‘ > 50K ′.
A sample trace is w = 〈Start, ‘M ′, ‘ > 50K ′〉, where Start is a dummy state
where all traces start. Assume that we set accuracy ǫ = 0.005 and confidence
level δ = 0.05. Applying Algorithm 2, 2.85K traces are generated to learn the
transition matrix AW . The learned DTMC D is shown in Figure 1a.
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Start

M

F

> 50K

≤ 50K

0.4982

0.5018

0.8796

0.8483
0.1204

0.1517

1

1

(a) Learned from a FFNN

Start

W

B

O

h1

h2

T

NT

0.36

0.49

0.15

1

0.99

0.01
1

0.67 0.03

0.3

0.96

0.01

0.02

0.0002

0.0086

1

1

(b) Learned from an RNN

Fig. 1: Sample learned DTMCs

3.2 Step 2: Probabilistic Model Checking

In this step, we verify N against the fairness property φ based on the learned
D. Note that D is PAC-correct only with respect to CTL properties. Thus it
is infeasible to directly verify φ (which is not a CTL property). Our remedy
is to compute P (Y = l | F = fi) and P (Y = l | F = fj) separately and then
verify φ based on the results. Because we demand there is always a state in S
representing F = fi and a state representing Y = l, the problem of computing
P (Y = l | F = fi) can be reduced to a probabilistic reachability checking prob-
lem ψ, i.e., the probability of reaching the state representing Y = l from the
state representing F = fi. This can be solved using probabilistic model checking
techniques. Probabilistic model checking [39] of DTMC is a formal verification
method for analyzing DTMC against formally-specified quantitative properties
(e.g., PCTL). Probabilistic model checking algorithms are often based on a com-
bination of graph-based algorithms and numerical techniques. For straightfor-
ward properties such as computing the probability that a U (Until), F (Finally)
or G(Globally) path formula is satisfied, the problem can be reduced to solving
a system of linear equations [39]. We refer to the readers to [39] for a complete
and systematic formulate of the algorithm for probabilistic model checking.

Example 3. Figure 1b shows a DTMC learned from a recurrent neural network
trained on Jigsaw Comments dataset (refer to details on the dataset and network
in Section 4.1). The protected features is race. For illustration purpose, let us
consider three different values for race, i.e., White (W ), Black (B) and Others
(O). For the hidden layer cells, we consider LSTM cell 1 only and cluster its
values into two groups, represented as two states h1 and h2. The output has two
categories, i.e., Toxic (T ) and Non-Toxic (NT ). The transition probabilities are
shown in the figure. Note that the DTMC is cyclic due to the recurrent hidden
LSTM cells in the network. We obtained P (Y = ‘T’ | F = ‘W’) by probabilistic
model checking as discussed above. The resultant probability is 0.0263. Similarly,
P (Y = ‘T’|F = ‘B’) and P (Y = ‘T’|F = ‘O’) are 0.0362 and 0.0112 respectively.

Next we verify the fairness property φ based on the result of probabilistic
model checking. First, the following is immediate based on Theorem 1.
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Proposition 1. Let D = (S, I, AW ) be a DTMC learned using Algorithm 2.
Let P (Y = l | F = fi) be the probability computed based on probabilistic model
checking D and Pt(Y = l | F = fi) is the actual probability in N . We have

P
(
∣

∣P (Y = l | F = fi)− Pt(Y = l | F = fi)
∣

∣ > ǫ
)

≤ δ

Theorem 2. Let X be an estimation of a probability Xt such that P (|X−Xt| >
ǫ) ≤ δ. Let Z be an estimation of a probability Zt such that P (|Z −Zt| > ǫ) ≤ δ.
We have P (|(X − Z)− (Xt − Zt)| > 2ǫ) ≤ 2δ − δ2.

Appendix A.4 provides the proof. Hence, given an expected accuracy µǫ and a
confidence level µδ on fairness property φ , we can derive ǫ and δ to be used in
Algorithm 2 as: ǫ = µǫ

2
and δ = 1 −

√
1− µδ. We compute the probability of

P (Y = l | F = fi) and P (Y = l | F = fj) based on the learned D (i.e., line 3 of
Algorithm 1). Next, we compare |P (Y = l |F = fi)−P (Y = l |F = fj)| with ξ.
If the difference is no larger than ξ, fairness is verified. The following establishes
the correctness of Algorithm 1.

Theorem 3. Algorithm 1 is PAC-correct with accuracy µǫ and confidence µδ,
if Algorithm 2 is used to learn the DTMC D.

Appendix A.5 provides the proof.

The overall time complexity of model learning and probabilistic model check-
ing is linear in the number of traces sampled, i.e., O(n) where n is the total
number of traces sampled. Here n is determined by H(n) as well as the prob-
ability distribution of the states. Contribution of H(n) can be determined as
O( logm

µǫ2 logµδ
) based on Equation 6, where m is the total number of states. In the

first case, for a model with only input features and output predictions as states,
the probability of reaching each input states are statistically equal if we apply
uniform sampling to generate IID input vectors. In this scenario the overall time
complexity is O( m logm

µǫ2 logµδ
). In the second case, for a model with states repre-

senting the status of hidden layer neurons, we need to consider the probability
for each hidden neuron states when the sampled inputs are fed into the network
N . In the best case, the probabilities are equal, we denote m′ as the maximum
number of states in one layer among all layers included, the complexity is then

O( m′
logm

µǫ2 logµδ
). In the worst case, certain neuron is never activated (or certain pre-

defined state is never reached) no matter what the input is. Since the probability
distribution among the hidden states are highly network-dependent, we are not
able to estimate the average performance.

Example 4. In our running example, with the learned AW of D as shown in
Figure 1a, the probabilities as P (Y = 1 |F = ‘F’) = 0.8483 and P (Y = 1 |F =
‘M’) = 0.8796. Hence, |P (Y = 1 |F = ‘F’)−P (Y = 1 |F = ‘M’) | = 0.0313. Next,
we compare the probability difference against the user-provided fairness criteria
ξ. If ξ = 0.1, N satisfies fairness property. If ξ = 0.02, N fails fairness. Note that
such a strict criteria is not practical and is used for illustration purpose only.
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3.3 Step 3: Sensitivity Analysis

In the case that the verification result shows φ is satisfied, our approach outputs
D and terminates successfully. We remark that in such a case D can be regarded
as the evidence for the verification result as well as a human-interpretable ex-
planation on why fairness is satisfied. In the case that φ is not satisfied, a nat-
ural question is: how do we improve the neural network for fairness? Existing
approaches have proposed methods for improving fairness such as by training
without the protected features [55] (i.e., a form of pre-processing) or training
with fairness as an objective [16] (i.e., a form of in-processing). In the following,
we show that a post-processing method can be supported based on the learned
DTMC. That is, we can identify the neurons which are responsible for violat-
ing the fairness based on the learned DTMC and “mutate” the neural network
slightly, e.g., adjusting its weights, to achieve fairness.

We start with a sensitivity analysis to understand the impact of each prob-
abilistic distribution (e.g., of the non-protected features or hidden neurons) on
the prediction outcome. Let F be the set of discrete states representing different
protected feature values. Let I represent a non-protected feature or an internal
neuron. We denote Ii as a particular state in the DTMC which represents certain
group of values of the feature or neuron. Let l represent the prediction result
that we are interested in. The sensitivity of I (with respect to the outcome l) is
defined as follows.

sensitivity(I) =
∑

i

reach(S0, Ii)∗reach(Ii, l)∗ max
{f,g}⊆F

(

reach(f, Ii)−reach(g, Ii)
)

where reach(s, s′) for any state s and s′ represents the probability of reaching
s′ from s. Intuitively, the sensitivity of I is the summation of the ‘sensitivity’
of every state Ii, which is calculated as maxf,g

(

reach(f, Ii)− reach(g, Ii)
)

, i.e.,
the maximum probability difference of reaching Ii from all possible protected
feature states. The result is then multiplied with the probability of reaching
Ii from start state S0 and the probability of reaching l from Ii. Our approach
analyzes all non-protected features and hidden neurons and identify the most
sensitive features or neurons for improving fairness in step 4.

Example 5. In our running example, based on the learned DTMC D shown in
Figure 1a, we perform sensitivity analysis as discussed above. We observe that
feature 9 (i.e., representing ‘capital gain’) is the most sensitive, i.e., it has the
most contribution to the model unfairness. More importantly, it can be observed
that the sensitivities of the neurons vary significantly, which is a good news as
it suggests that for this model, optimizing the weights of a few neurons may be
sufficient for achieving fairness. Figure 3 in Appendix A.6 shows the sensitively
analysis scatter plot.

3.4 Step 4: Improving Fairness

In this step, we demonstrate one way of improving neural network fairness based
on our analysis result, i.e., by adjusting weight parameters of the neurons identi-
fied in step 3. The idea is to search for a small adjustment through optimization
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techniques such that the fairness property is satisfied. In particular, we adopt the
Particle Swarm Optimization (PSO) algorithm [37], which simulates intelligent
collective behavior of animals such as flocks of birds and schools of fish. In PSO
multiple particles are placed in the search space and the optimization target is
to find the best location, where the fitness function is used to determine the best
location. We omit the details of PSO here due to space limitation and present
it in Appendix A.7.

In our approach, the weights of the most sensitive neurons are the subject
for optimization and thus are represented by the location of the particles in the
PSO. The initial location of each particle is set to the original weights and the
initial velocity is set to zero. The fitness function is defined as follows.

fitness = Probdiff + α(1− accuracy) (8)

where Probdiff represents the maximum probability difference of getting a de-
sired outcome among all different values of the sensitive feature; accuracy is the
accuracy of repaired network on the training dataset and constant parameter
α ∈ (0, 1) determines the importance of the accuracy (relative to the fairness).
Intuitively, the objective is to satisfy fairness and not to sacrifice accuracy too
much. We set the bounds of weight adjustment to (0, 2), i.e., 0 to 2 times of
the original weight. The maximum number of iteration is set to 100. To further
reduce the searching time, we stop the search as soon as the fairness property is
satisfied or we fail to find a better location in the last 10 consecutive iterations.

Example 6. In our running example, we optimize the weight of ten most sensi-
tive neurons using PSO for better fairness. The search stops at the 13rd iteration
as no better location is found in the last 10 consecutive iterations. The resul-
tant probability difference among the protected features dropped from 0.0313 to
0.007, whereas the model accuracy dropped from 0.8818 to 0.8606.

4 Implementation and Evaluation

Our approach has been implemented on top of SOCRATES [45], which is a
framework for experimenting neutral network analysis techniques. We conducted
our experiments on a machine with 1 Dual-Core Intel Core i5 2.9GHz CPU and
8GB system memory.

4.1 Experiment Setup

In the following, we evaluate our method in order to answer multiple research
questions (RQs) based on multiple neural networks trained on 4 datasets adopted
from existing research [54,4,58,28], i.e., in addition to the Census Income [18]
dataset as introduced in Example 1, we have the following three datasets. First is
the German Credit [19] dataset consisting of 1k instances containing 20 features
and is used to assess an individual’s credit. Age and gender are the two protected
features. The labels are whether an individual’s credit is good or not. Second
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Table 1: Fairness Verification Results

Dataset Feature #States #Traces Max Prob. Diff. Result Time

Census Race 8 12500 0.0588 PASS 4.13s
Census Age 12 23500 0.0498 PASS 6.31s
Census Gender 5 2850 0.0313 PASS 0.98s
Credit Age 11 22750 0.1683 Fail 6.72s
Credit Gender 5 2850 0.0274 PASS 1.01s
Bank Age 12 27200 0.0156 PASS 6.33s
Jigsaw Religion 10 35250 0.0756 PASS 29.6m
Jigsaw Race 7 30550 0.0007 PASS 27.3m

is the Bank Marketing [17] dataset consisting of 45k instances. There are 17
features, among which age is the protected feature. The labels are whether the
client will subscribe a term deposit. Third is Jigsaw Comment [1] dataset. It
consists of 313k text comments with average length of 80 words classified into
toxic and non-toxic. The protected features analysed are race and religion.

Following existing approaches [54,4,58,28], we train three 6-layer feed-forward
neural networks (FFNN) on the first three dataset (with accuracy 0.88, 1 and
0.92 respectively) and train one recurrent neural network, i.e., 8-cell Long Short
Term Memory (LSTM), for the last dataset (with accuracy 0.92) and analyze
their fairness against the corresponding protected attributes. For the LSTM
model, we adopt the state-of-the-art embedding tool GloVe [44]. We use the 50-
dimension word vectors pre-trained on Wikipedia 2014 and Gigaword 5 dataset.

Recall that we need to sample inputs to learn a DTMC. In the case of first
three datasets, inputs are sampled by generating randomly values within the
range of each feature (in IID manner assuming a uniform distribution). In the
case of the Jigsaw dataset, we cannot randomly generate and replace words
as the resultant sentence is likely invalid. Inspired by the work in [41,7,33],
our approach is to replace a randomly selected word with a randomly selected
synonym (generated by Gensim [46]).

4.2 Research Questions and Answers

RQ1: Is our approach able to verify fairness? We systematically apply our
method to the above-mentioned neural networks with respect to each protected
feature. Our experiments are configured with accuracy µǫ = 0.01, confidence
level µδ = 0.1 (i.e., ǫ = 0.005, δ = 0.05) and fairness criteria ξ = 10% (which is
a commonly adopted threshold [6]). Furthermore, in this experiment, the states
in the DTMC S are set to only include those representing the protected feature
and different predictions. Table 1 summarizes the results. We successfully ver-
ify or falsify all models. Out of eight cases, the model trained on the German
Credit dataset fails fairness with respect to the feature age (i.e., the maximum
probability difference among different age groups is 0.1683 which is greater than
ξ = 10%). Furthermore, the model trained on the Jigsaw dataset shows some
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fairness concern with respect to the feature religion (although the probablity
different is still within the threshold). This result shows that fairness violation
could be a real concern.

RQ2: How efficient is our approach? We answer the question using two mea-
surements. The first measurement is the execution time. The results are shown
in the last column in Table 1. For the six cases of FFNN, the average time taken
to verify a network is around 4.25s, with a maximum of 6.72s for the model
trained on German Credit on feature age and a minimum of 0.98 seconds for
the model trained on the Census Income dataset on feature gender. For the two
cases of LSTM networks, the average time taken is 30 minutes. Compared with
FFNN, verifying an LSTM requires much more time. This is due to three rea-
sons. Firstly, as mentioned in Section 4.1, sampling texts requires searching for
synonyms. This is non-trivial due to the large size of the dictionary. Secondly,
during sampling, we randomly select instances from the training set and apply
perturbation to them in order to generate new samples. However, most of the
instances in the Jigsaw training set does not contain the sensitive word. This
leads to an increased number of traces needed to learn a DTMC. Thirdly, the
LSTM model takes much more time to make a prediction than that by FFNN in
general. It is also observed that for all the cases, the execution time is propor-
tional to the number of traces used in DTMC model learning (as discussed in
our time complexity analysis). The other measurement is the number of traces

Dataset Max Probability
Difference

Accuracy

German 0.1683 7→ 0.1125 1.0 7→ 0.9450
Census 0.0588 7→ 0.0225 0.8818 7→ 0.8645
Jigsaw 0.0756 7→ 0.0590 0.9166 7→ 0.9100

Table 2: Fairness Improvement
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Fig. 2: Execution Times vs Number
of States

that we are required to sample using Algorithm 2. For each model and protected
feature, the number of traces generated in Algorithm 2 depends on number of
categorical values defined for this protected feature and the number of predic-
tions. That is, more categories and predictions result in more states in the learn
a DTMC model, which subsequently lead to more traces required. Furthermore,
the number of traces required also depends on the probabilistic distribution from
each state in the model. As described in Algorithm 2, the minimum number of
traces transiting from each state must be greater thanH(n). This is evidenced by
results shown in Table 1, where the number of traces vary significantly between
models or protected features, ranging from 2K to 35K. Although the number of
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traces is expected to increase for more complicated models, we believe that this
is not a limiting factor since the sampling of the traces can be easily paralleled.

We further conduct an experiment to monitor the execution time required for
the same neural network model with a different numbers of states in the learned
DTMC. We keep other parameters (i.e., µǫ, µδ and φ) the same. Note that hidden
neurons are not selected as states to reduce the impact of the state distribution.
We show one representative result (based on the mode trained on the Census
Income dataset with attribute race as the protected feature) in Figure 2. As we
can see the total execution time is bounded by n logn which tally with our time
complexity analysis in Section 3.

RQ3: Is our approach able to improve fairness and is the sensitivity analysis
useful? The question asks whether the sensitivity analysis results based on the
learned DTMC can be used to improve fairness. To answer this question, we
systematically perform sensitivity analysis (on both the input features and the
hidden neurons) and optimize the weights of the neurons which are sensitive to
fairness. We focus on three cases, i.e., the FFNN model trained on the German
Credit model w.r.t age and on the Census Income model w.r.t race and the
LSTM model trained on the Jigsaw comments w.r.t religion, as the maximum
probability difference for these three cases (as shown in Table 1) is concerning
(i.e., > 5%). For the former two, we optimize the weights of the top-10 sensitive
neurons (including the first layer neurons representing other features). For the
LSTM model, we optimize top-3 sensitive cells (due to the small number of cells).
Table 2 shows the fairness improvement as well as the drop in accuracy. It can
be observed that in all three cases we are able to improve the fairness whilst
maintaining the accuracy at a high-level. Note that the parameter α is set to 0.1
in these experiments and it can be used to achieve better fairness or accuracy
depending the user requirement.

RQ4: How does our approach compare with existing alternatives? The most rel-
evant tools that we identify are FairSquare [6] and VeriFair [9]. FairSquare and
VeriFair use numerical integration to verify fairness properties of machine learn-
ing models including neural networks. FairSquare relies on constraint solving
techniques and thus it is difficult to scale to large neural networks. VeriFair is
based on adaptive concentration inequalities. We evaluate our approach against
these two tools on all eight models. For FairSquare and VeriFair, we follow the
setting of independent feature distribution and check for demographic parity [9].
For both tools, we set c = 0.15 as suggested and keep other parameters as
default. As both FairSquare and VeriFair are designed to compare two groups
of sub-populations, for those protected features that have more than two cate-
gories, we perform binning to form two groups. For the six FFNN models, we set
timeout value to be 900s following the setting in VeriFair. As shown in Table 3,
FairSquare is not able to scale for large neural network and for all FFNN models
it fails to verify or falsify the model in time. Both VeriFair and our approach
successfully verified all six FFNN models. But our approach completes the verifi-
cation within 1s for all models while VeriFair takes 62 times more execution time
than our approach on average. For the RNN models trained on Jigsaw dataset,
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Table 3: Comparison with FairSquare and VeriFair

Dataset Prot.Feat.
FairSquare VeriFair Ours
Result Time Result Time Result Time

Census Race - T.O. Pass 2.33s Pass 0.93s
Census Age - T.O. Pass 37.14s Pass 0.81s
Census Gender - T.O. Pass 2.19s Pass 0.89s
Credit Age - T.O. Pass 39.29s Pass 0.90s
Credit Gender - T.O. Pass 8.23s Pass 0.82s
Bank Age - T.O. Pass 245.34s Pass 0.97s
Jigsaw Religion - - - - Pass 29.6m
Jigsaw Race - - - - Pass 27.3m

neither FairSquare nor VeriFair is able to analyze them. FairSquare supports only
loop-free models and, hence, it cannot handle RNN models. Although VeriFair
is able to handle RNN networks in general, it does not support text classifiers.
Hence, compared with existing solutions, our approach is more efficient than
FairSquare and VeriFair and can support RNN-based text classifiers.

5 Related Work

Neural network verification. There have been multiple approaches proposed to
verify the robustness of neural networks utilizing various techniques, i.e., ab-
straction [23,49,29], SMT sovler [35,34,32], MILP and LP [22,52], symbolic exe-
cution [57] and many others [15,31,20,38]. Besides [6] and [9] that we addressed
in RQ4, [28] and [43] studied fairness property of text classifiers. Unlike ours,
they focus on text classifiers only and their performance on RNN is unknown.

Fairness testing and improvement. There have been an impressive line of
methods proposed recently on machine learning model fairness testing and im-
provement. THEMIS [27,8], AEQUITAS [54], Symbolic Generation (SG) [4] and
ADF [58], are proposed to generate discriminatory instances for fairness test-
ing. There are also existing proposals on fairness training [14,28,16,3,12,36]. Our
work instead focuses on post-processing where a trained model is repaired based
on sensitivity analysis results to improve fairness.

Machine learning model repair. There have been multiple approaches pro-
posed to repair machine learning models based on various technologies, i.e., [50]
leverages SMT solving, [30] is based on advances in verification methods, [5] is
guided by input population and etc. Unlike these methods, our work focuses on
fairness repair and supports FFNN and RNN by design.

6 Conclusion

In this work, we proposed an approach to formally verify neural networks against
fairness properties. Our work relies on an approach for leaning DTMC from
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given neural network with PAC-correct guarantee. Our approach further per-
forms sensitivity analysis on the neural network if it fails the fairness property
and provides useful information on why the network is unfair. This result is then
used as a guideline to adjust network parameters and achieve fairness. Compar-
ing with existing methods evaluating neural network fairness, our approach has
significantly better performance in terms of efficiency and effectiveness.
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G., Sokolsky, O., Tillmann, N. (eds.) Runtime Verification. pp. 122–135. Springer
Berlin Heidelberg, Berlin, Heidelberg (2010)

41. Li, J., Ji, S., Du, T., Li, B., Wang, T.: Textbugger: Generating adversarial
text against real-world applications. In: 26th Annual Network and Distributed
System Security Symposium (NDSS 2019), San Diego, California, USA (2019),
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/

42. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Information Theory
28(2), 129–136 (1982), https://doi.org/10.1109/TIT.1982.1056489

43. Ma, P., Wang, S., Liu, J.: Metamorphic testing and certified mitigation
of fairness violations in NLP models. In: Bessiere, C. (ed.) Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJ-
CAI 2020. pp. 458–465. ijcai.org (2020). https://doi.org/10.24963/ijcai.2020/64,
https://doi.org/10.24963/ijcai.2020/64

44. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natu-

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
http://proceedings.mlr.press/v80/kearns18a.html
https://doi.org/10.1109/ICNN.1995.488968
http://proceedings.mlr.press/v97/ko19a.html
https://doi.org/10.1109/ALLERTON.2010.5707120
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.24963/ijcai.2020/64
https://doi.org/10.24963/ijcai.2020/64


20 Bing Sun, Jun Sun, Ting Dai, and Lijun Zhang

ral Language Processing (EMNLP 2014), October 25-29, 2014, Doha, Qatar. pp.
1532–1543 (2014), https://www.aclweb.org/anthology/D14-1162/

45. Pham, L.H., Li, J., Sun, J.: SOCRATES: towards a unified plat-
form for neural network verification. CoRR abs/2007.11206 (2020),
https://arxiv.org/abs/2007.11206
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A Appendix

A.1 Preliminary

Neural Networks In general, a neural network can be viewed as a function N :
R

p → R
q which maps an input x ∈ R

p (e.g., images or texts) to an output y ∈ R
q

(e.g., predictions for image classification or texts for machine translation). In
this work, we focus on deep feed-forward neural networks and recurrent neural
networks. We leave other neural network models to the future work.

Neural networks usually follow a layered architecture, where the computa-
tional nodes, a.k.a. neurons, are organized layer-wise and data flows from layer
to layer. The first layer is the input layer; the last layer is the output layer
and the remaining are hidden layers. In the case of recurrent neural networks,
the output of a hidden neuron may be connected to the input of a neuron of a
previous layer, i.e., forming a feedback loop.

Based on the transformation that a layer performs, there are two commonly
used layers: affine layers and activation layers. An affine layer applies an affine
transformation i.e., π(x) = Wx + b where x is the input from the previous
layer; W is a weight matrix and b is a bias. An activation layer applies a non-
linear activation function σ. Commonly applied activation functions include Rec-
tified Linear Unit (ReLU) σ(x) = max(0, x), Sigmoid σ(x) = ex

ex+1
and Tanh

σ(x) = ex−e−x

ex+e−x . These functions are applied neuron-wise, e.g., given an input

x = (x0, · · · , xp−1) ∈ R
p, σ(x) =

(

σ(x0), · · · , σ(xp−1)
)

. In the following, we
assume a neural network N consists of n layers, and each layer i contains di
neurons. Then layer i is a function fi : R

di → R
di+1 mapping the input of layer

i, i.e., xi, to the input of layer i+1, i.e., xi+1, and the neural network is function
N : Rd0 → R

dn , where dn is the dimension of output. Usually the input layer
does not transform the data, and thus f0 = I.

A.2 Definition of DTMC

Definition 4 (Discrete-Time Markov Chain (DTMC)). A Discrete-Time
Markov Chain is a tuple M = (S, I, A), where:

– S is a finite set of states;

– I : S → [0, 1] is the initial distribution:
∑

s∈S I(s) = 1;

– A : S × S → [0, 1] is the transition probability matrix and for every state
s ∈ S, ∑s′∈S A(s, s

′) = 1.
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A.3 Proof of Theorem 1

Proof. By Theorem 6 in [10], for all p ∈ S, np ≥ (11
10
B(Aα

W ))2H(n), we have for
any CTL property φ:

P (
∣

∣γ(A, φ)− γ(AW , φ)
∣

∣ > ǫ) ≤ δ (9)

Unlike [10] which uses Laplace smoothing to learn the model, we adopted
the above-defined estimation in this work. Hence, conditioning Condls(A) and
Laplace offset which are used to take into account the error introduced by
Laplace smoothing is not necessary in our approach. Hence, we can omit the
part (11

10
B(Aα

W ))2 and set it to 1 instead. Thus, by satisfying the stopping crite-
ria np ≥ H(n), we have for any CTL property ψ that P (

∣

∣γ(A,ψ)− γ(AW , ψ)
∣

∣ >

ǫ) ≤ δ. ⊓⊔

A.4 Proof of Theorem 2

Proof. Since P (|X −Xt| > ǫ) ≤ δ and P (|Z − Zt| > ǫ) ≤ δ, we have

P (|X −Xt| ≤ ǫ) ≥ 1− δ
P (|Z − Zt| ≤ ǫ) ≥ 1− δ

Hence

P (|(X −Xt)− (Z − Zt)| ≤ 2ǫ) ≥ P (|X −Xt| ≤ ǫ) · P (|Z − Zt| ≤ ǫ) ≥ (1− δ)2

and

P (|(X −Xt)− (Z − Zt)| > 2ǫ) ≤ 1− (1− δ)2

Finally

P (|(X − Z)− (Xt − Zt)| > 2ǫ) ≤ 2δ − δ2

⊓⊔

A.5 Proof of Theorem 3

Proof. By Theorem 1, we have PAC-correct probability P (Y = l |F = fi), ∀ fi ∈
F with accuracy ǫ = µǫ

2
and confidence δ = 1−

√
1− µδ. Next, by Theorem 2, we

have probability difference between any pair of fi is PAC-correct with accuracy
2ǫ and confidence 2δ − δ2. Hence Algorithm 1 is PAC-correct with accuracy µǫ
and confidence µδ. ⊓⊔

A.6 Example Sensitivity Analysis Result

Figure 3 shows the sensitivity analysis result on non-protected features for our
running example.
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Fig. 3: Example sensitivity analysis result

A.7 Particle Swarm Optimization

In PSO, multiple particles are placed in the search space. At each time step,
each particle updates its location −→xi and velocity −→vi according to an objective
function. That is, the velocity is updated based on the current velocity −→vi , the
previous best location found locally −→pi and the previous best location found
globally −→pg . Its location is updated based on the current location and velocity.
We write R(0, c) to denote a random number uniformly sampled from the range
of [0, c]. Formally, the PSO update equation is as follows [48].

−→vi ← ω−→vi +R(0, c1)(
−→pi −−→xi) +R(0, c2)(

−→pg −−→xi) (10)
−→xi ← −→xi +−→vi (11)

where ω, c1, c2 as inertia weight, cognitive parameter and social parameter re-
spectively.

A.8 Thread to validity

In our experiments, only 4 datasets are applied to evaluate the effectiveness of
our approach. Although they are commonly used datasets for machine learning
fairness studies, it may not be safe to generalize the conclusion to other models
and datasets. This issue can be addressed with more models and datasets as
well as protected features. Furthermore, in the experiments, we focus on FFNN
and RNN only. Our approach can be potentially adopted for other deep learning
models, such as CNN. This is because our approach only requires a way of
identifying a set of abstract states and sampling traces. Lastly, our approach
requires white-box access to the model to perform analysis and repairing. Hence
our approach is not applicable to blackbox models.
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