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ABSTRACT
As a new programming paradigm, deep learning has expanded its
application to many real-world problems. At the same time, deep
learning based software are found to be vulnerable to adversarial
attacks. Though various defense mechanisms have been proposed
to improve robustness of deep learning software, many of them
are ineffective against adaptive attacks. In this work, we propose
a novel characterization to distinguish adversarial examples from
benign ones based on the observation that adversarial examples are
significantly less robust than benign ones. As existing robustness
measurement does not scale to large networks, we propose a novel
defense framework, named attack as defense (A2D), to detect adver-
sarial examples by effectively evaluating an example’s robustness.
A2D uses the cost of attacking an input for robustness evaluation
and identifies those less robust examples as adversarial since less
robust examples are easier to attack. Extensive experiment results
on MNIST, CIFAR10 and ImageNet show that A2D is more effective
than recent promising approaches. We also evaluate our defense
against potential adaptive attacks and show that A2D is effective
in defending carefully designed adaptive attacks, e.g., the attack
success rate drops to 0% on CIFAR10.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Software
and its engineering→ Software testing and debugging.

KEYWORDS
Deep learning, neural networks, defense, adversarial examples
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1 INTRODUCTION
Deep learning (DL) has arguably become a new programming par-
adigm which takes over traditional software programs in many
areas. For instance, it has achieved state-of-the-art performance
in real-world tasks such as autonomous driving [1], medical di-
agnostics [61] and cyber-security [65]. Despite the success, DL
software are still far from dependable (especially for safety- and
security-critical systems) and, like traditional software, they must
be properly tested, and defended in the presence of malicious inputs.
In particular, DL software are known to be brittle to adversarial
examples [10, 11, 22, 37, 69], i.e., by adding a slight perturbation on
an input, a well-trained DL model could be easily fooled.

There is a huge body of work proposing various attack and
defense mechanisms with regard to adversarial examples, from
both the security [6, 22, 32, 52] and software engineering commu-
nity [41, 68, 71, 75, 76]. Since the adversarial attack L-BFGS was
introduced [69], many sophisticated adversarial attacks have been
proposed, such as Fast Gradient Sign Method (FGSM) [22], Iter-
ative Gradient Sign Method (BIM) [32], Jacobian-based Saliency
Map Attack (JSMA) [52], Local Search Attack (LSA) [49], Decision-
Based Attack (DBA) [6], DeepFool [47], and Carlini and Wagner’s
attack (C&W) [10]. As countermeasures, defense mechanisms are
proposed to improve robustness in the presence of adversarial at-
tacks. Examples include adversarial training [22, 45, 59], defensive
distillation [53] and feature squeezing [84]. These works consti-
tute important steps in exploring the defense mechanisms, yet have
various limitations and are shown to be insufficient [2, 9, 10, 25, 73].

Some efforts also have been made to distinguish adversarial
examples from benign ones and reject those potentially adversarial
ones [75, 76]. A usual underlying assumption is that adversarial and
benign examples differ in a certain subspace distribution, e.g., kernel
density [20], local intrinsic dimensionality [44], manifold [46], logits
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values [57], etc. Although these characterizations provide some
insights on the adversarial subspace, they are far from reliably
discriminating adversarial examples alone. Worse yet, attackers can
easily break existing defense mechanisms by specifically designed
adaptive attacks [8, 9, 73].

In this work, we propose a novel characterization, i.e., robustness,
to distinguish adversarial examples from benign ones. Our main
observation is that adversarial examples (crafted by most existing
attack methods) are significantly less robust than benign ones. Dif-
ferent from previous statistical characterizations [20, 44, 46, 57], the
difference in robustness comes from two inherent characteristics
of model training and adversarial example generation. First, the
model training progressively minimizes the loss of each example
with respect to the model. Thus, a benign example is often trained
to be robust against a model with good generalization. As a result,
benign examples are in general relatively far away from the deci-
sion boundary. Second, most adversarial attacks aim to generate
human-imperceptible perturbations which often result in much less
robust just-cross-boundary adversarial examples. The contrasting
robustness characteristics make it suitable to distinguish adversarial
examples from benign ones.

However, it is still an open research problem on how to effectively
measure an input’s robustness with respect to a DL model. Exist-
ing robustness measurement methods (e.g., CLEVER [81] which
calculates a minimum perturbation required to change an input’s
label) are often too computationally expensive. In this work, we
propose to utilize the robustness difference from a reversed angle.
Our intuition is that it is easier to employ a successful adversarial
attack on an input that is less robust. Thus, we propose a novel
defense, named attack as defense (A2D), to effectively detect ad-
versarial examples from benign ones. Given an input example, we
apply different kinds of attacks to attack the input and measure
how ‘easy’ it is to employ a successful attack. An input example
is considered less robust and thus more likely to be adversarial, if
the attacks are easier to succeed. Note that the effectiveness of our
defense (A2D) relies on a set of attacks whose attack cost (easiness)
can be quantitatively measured, which will guide the selection of
attacks from a large number of adversarial attacks in the literature.

Compared to existing adversarial example detection approaches
(which are mostly proven to be ineffective [2, 8–10, 25, 73]), our
A2D framework has the following advantages. First, A2D utilizes
the inherent robustness difference caused by the contrasting charac-
teristics of model training and adversarial example generation. To
circumvent the defense, an attack needs to generate robust adver-
sarial examples which in general might induce human-perceptible
large distortion. Second, A2D is essentially an ensemble approach
using the robustness information obtained from different kinds
of attacks which is hard to bypass at once. We evaluated A2D
with a carefully selected set of attacks on three popular datasets
MNIST [35], CIFAR10 [31] and ImageNet [73]. Experimental results
show that A2D can be more effective than recently proposed de-
tection algorithms [20, 44, 75, 76] and remain effective even in the
white-box adversarial setting. We further show that A2D is effective
against adaptive attacks. That is, we show that A2D (combined with
a complementary detection approach for detecting large-distortion
adversarial examples [46] or adversarial training) is very effective

against specifically designed adaptive attacks, e.g., the attack suc-
cess rate (ASR) drops from 72% to 0% on CIFAR10 using our defense
with adversarial training, and the ASR drops from 100% to 0% on
MNIST using our defense with autoencoder [46]. We remark that
many existing defenses combined with adversarial training result
in lower robustness than adversarial training on its own [73].

In a nutshell, we make the following contributions:
• We propose a novel characterization to distinguish adversar-
ial examples from benign ones via robustness.

• We present detection approaches based on our novel char-
acterization, which can utilize existing attacks and do not
need to modify or retrain the protected model.

• We conduct extensive experiments to test our observations
and our defense, which outperforms recent promising detec-
tion algorithms.

• We thoroughly discuss possible adaptive attacks to our de-
fense and evaluate them to our defense integrated with a
complementary detection approach and adversarial training.
The integrated defense is very promising.

The remainder of this paper is organized as follows. Section 2
presents preliminaries. Section 3 introduces our characterization ac-
companied with experiments for validating. Section 4 demonstrates
various detection approaches using our characterization. Experi-
mental results are reported in Section 5. Section 6 discusses and
evaluates adaptive attacks against our defense. Section 7 discusses
related works. Finally, we conclude this work in Section 8.

2 BACKGROUND
2.1 Adversarial Attacks
In this work, we target deep neural network (DNN) for classification
tasks. We denote a DNN by 𝑓 : 𝑋 → 𝐶 , which maps each input
𝑥 ∈ 𝑋 to a certain label 𝑐 ∈ 𝐶 . We denote the ground-truth label
of an input 𝑥 by 𝑐𝑥 . Given a DNN 𝑓 and a benign input 𝑥 (which
means 𝑓 (𝑥) = 𝑐𝑥 ), the attacker’s goal is to craft a perturbation Δ𝑥
(measured in different 𝐿𝑛 norms [10]) for the input 𝑥 such that the
DNN 𝑓 classifies the example 𝑥 = 𝑥 + Δ𝑥 as a different label 𝑓 (𝑥),
i.e., 𝑓 (𝑥) ≠ 𝑓 (𝑥). Such 𝑥 is called an adversarial example.

In the literature, an extensive number of adversarial attacks have
been proposed [6, 10–12, 15, 19, 22, 27, 32, 37, 47, 48, 50, 52, 69]. We
briefly introduce some representative attacks that will be used for
robustness evaluation in our work.
FGSM. Fast Gradient Sign Method (FGSM) [22] uses a loss func-
tion 𝐽 (𝑥, 𝑐𝑥 ) (e.g. the cross-entropy loss) to describe the cost of
classifying 𝑥 as label 𝑐𝑥 , and maximizes the loss to implement an
untargeted attack by performing one step gradient ascend from
the input 𝑥 with a 𝐿∞ distance threshold 𝜖 . Formally, a potential
adversarial example 𝑥 is crafted as follows:

𝑥 = 𝑥 + 𝜖 × sign(∇𝑥 𝐽 (𝑥, 𝑐𝑥 ))
where ∇𝑥 is the partial derivative of 𝑥 , and sign(·) is a sign function
such that sign(𝑐) is +1 if 𝑐 > 0, −1 if 𝑐 < 0 and 0 if 𝑐 = 0.
BIM. Basic Iterative gradient Method (BIM) [32] is an iterative
version of FGSM. For each iteration, BIM performs FGSM with
a small step size 𝛼 and clips the result so that it stays in the 𝜖-
neighbourhood of the input sample. The 𝑖th iteration is updated by
as follows:

43



Attack as Defense: Characterizing Adversarial Examples using Robustness ISSTA ’21, July 11–17, 2021, Virtual, Denmark

𝑥𝑖+1 = clip𝜖,𝑥 (𝑥𝑖 + 𝛼 × sign(∇𝑥 𝐽 (𝑥𝑖 , 𝑐𝑥 )))
where 𝑥0 = 𝑥 , and the iterative process can repeat several times.

The perturbation of FGSM and BIM is restricted by the 𝐿∞ norm,
measuring the largest change between 𝑥 and 𝑥 (i.e. ∥𝑥 − 𝑥 ∥∞ ≤ 𝜖).
We could derive 𝐿2 norm (i.e. ∥𝑥 − 𝑥 ∥2 ≤ 𝜖) attacks by,

𝑥 = 𝑥 + 𝜖 × ∇𝑥 𝐽 (𝑥,𝑐𝑥 )
∇𝑥 ∥ 𝐽 (𝑥,𝑐𝑥 ) ∥2

Similarly, FGSM and BIM can be adapted from untargeted attacks to
target ones which specify the target label of an adversarial example.

Compared to fixed step size, there are some optimization-based
attack methods that seek to find adversarial examples with the min-
imal perturbation, such as L-BFGS [69] and C&W [10]. In addition,
JSMA [52] seeks to modify the smallest number of pixels, which is
an attack method with the 𝐿0 norm.

2.2 Robustness
A DNN 𝑓 is (locally) robust with respect to an input 𝑥 and an
𝐿𝑝 norm distance threshold 𝜖 if for every example 𝑥 such that
∥𝑥 − 𝑥 ∥𝑝 ≤ 𝜖 , 𝑓 (𝑥) = 𝑓 (𝑥) holds. Several approaches have been
proposed to certify robustness, based on SAT/SMT/MILP solv-
ing [17, 29], abstraction refinement [18, 77, 78], and abstract inter-
pretation [21, 63, 64]. Though these approaches feature theoretical
guarantees, they are limited in scalability and efficiency, hence
fail to work for large models in practice. To improve scalability, a
few approaches were proposed to achieve statistical guarantees,
by claiming robustness with certain probability [4, 58, 81]. Among
them, CLEVER [81] score is an effective attack-independent metric
to estimate robustness by sampling the norm of gradients and fit-
ting a limit distribution using extreme value theory. In this work,
we use the CLEVER score to compare the robustness of adversarial
and benign examples.

2.3 Problem Formulation
We focus on the detection of adversarial examples as motivated by
many relevant works [20, 44, 75, 76]. The problem is: given an input
example 𝑥 to a DNN model 𝑓 , how to effectively decide whether 𝑥 is
benign or adversarial? The fundamental problem is how to better
characterize adversarial examples. Our solution is to use robustness.
Threat Model. We consider a challenging defense scenario which
assumes that the adversary knows all the information of the model
under attack, namely, white-box attacks. Besides, we assume the
detector has access to a set of benign examples, but knows nothing
about how the adversary generates adversarial examples. We also
assume the detector can use various attacks (for robustness evalu-
ation). These assumptions are reasonable in practice, as there are
many publicly available datasets and source of attacks.

3 CHARACTERIZATION
3.1 Robustness: Adversarial vs. Benign
Our detection approach is based on the observation that adversarial
examples are much less robust than benign ones. To understand
the underlying reason, we briefly recap the processes of DL model
training and adversarial example generation. Training a DL model
typically takes multiple epochs. For each epoch, the training dataset
is partitioned into multiple batches and each batch of input exam-
ples is trained once. After each batch, the parameters are updated,

Benign examples Adversarial examples

Figure 1: An illustration of robustness of adversarial and
benign examples. The left-part depicts 𝜖-neighbourhood
of a benign example 𝑥 and the right-part depicts 𝜖-
neighbourhood of the adversarial example 𝑥 , where each
triangle denotes an example that can be correctly classified
into the label 𝑐𝑥 and each cross denotes an example that can-
not be correctly classified into the label 𝑐𝑥 .

Table 1: Parameters of attacks, the accuracy of the target
MNIST model on training/testing dataset is 99.6%/99.1% for
MNIST and 87.3%/80.3% for CIFAR10

Dataset Attack Method Parameters

MNIST

FGSM 𝜖 = 0.3
BIM 𝜖 = 0.3, 𝛼 = 0.01
JSMA 𝜃 = 1, 𝛾 = 0.1
C&W 𝜅 = 0, 𝑐 = 0.02

CIFAR10

FGSM 𝜖 = 0.05
BIM 𝜖 = 0.05, 𝛼 = 0.005
JSMA 𝜃 = 1, 𝛾 = 0.1
C&W 𝜅 = 0, 𝑐 = 0.02

e.g., via stochastic gradient descent. Once all the epochs finish, the
DL model is ready for testing. During training, each example in the
dataset goes through a number of epochs. Consequently, it is often
the case that the trained DL model achieves good generalization
results. Therefore, as illustrated in Figure 1 (left-part), under a rea-
sonable distance threshold 𝜖 , most examples in the 𝜖-neighborhood
of a benign example 𝑥 are also benign while adversarial examples
are relatively far away from the benign example 𝑥 .

In the process of adversarial example generation, the attacker
crafts a perturbation Δ𝑥 for a benign example 𝑥 such that the
resulting example 𝑥 = 𝑥+Δ𝑥 is adversarial. During the generation of
adversarial examples, attackers often neglect robustness due to the
pursuit of other attributes, such asminimal perturbation, invisibility,
target label classification and query efficiency. These attributes and
robustness are often incompatible, and thus difficult to achieve
simultaneously. Consequently, adversarial examples with small
distortion are very close to the decision boundary [76] and most
examples in the 𝜖 ′-neighbourhood of the adversarial example 𝑥 are
benign (with respect to the original example 𝑥 ). This is illustrated in
Figure 1 (right-part), which is the zoom in of the 𝜖 ′-neighbourhood
of the adversarial example 𝑥 in Figure 1 (left-part).

The above observation can be quantified using robustness. We
conduct a quantitative robustness comparison of benign and adver-
sarial examples using the CLEVER score on MNIST and CIFAR10
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Table 2: CLEVER scores with confidence interval of 90% significance level. Column Label for Evaluate shows the different
results under untargeted and targeted attacks, where LLC denotes the least likely class. Column Benign examples shows the
results of the benign examples, and other columns show the results under the corresponding attackmethods. Columns 𝜆 show
the ratio of the CLEVER scores of benign examples to that of the adversarial ones for each attack.

Dataset Label for Benign examples Adversarial examples Avg.
Evaluate FGSM 𝜆 BIM 𝜆 JSMA 𝜆 C&W 𝜆 𝜆

MNIST

Untarget 3.5572 ± 0.3342 0.1093 ± 0.0506 32.55 0.0256 ± 0.0031 138.95 0.0550 ± 0.0060 64.68 0.0004 ± 0.0001 8893 74.77
Target-2 3.6711 ± 0.3296 0.1148 ± 0.0427 31.98 0.0258 ± 0.0031 142.29 0.0558 ± 0.0063 65.79 0.0004 ± 0.0001 9178 74.62
Target-5 3.8303 ± 0.3113 0.2047 ± 0.0431 18.71 0.1582 ± 0.0084 24.21 0.1898 ± 0.0096 20.18 0.1384 ± 0.0043 27.68 22.17
LLC 3.8372 ± 0.3097 0.2390 ± 0.0421 16.06 0.1647 ± 0.0071 23.30 0.2120 ± 0.0076 18.10 0.1406 ± 0.0045 27.29 20.29

CIFAR10

Untarget 0.3851 ± 0.1850 0.2743 ± 0.1627 1.40 0.0329 ± 0.0033 11.71 0.0128 ± 0.0021 30.09 0.0005 ± 0.0002 770 4.81
Target-2 0.4141 ± 0.1806 0.2971 ± 0.1675 1.39 0.0380 ± 0.0044 10.90 0.0129 ± 0.0021 32.10 0.0005 ± 0.0002 828 4.75
Target-5 0.4657 ± 0.1913 0.3389 ± 0.1675 1.37 0.0971 ± 0.0117 4.80 0.0610 ± 0.0061 7.63 0.0925 ± 0.0168 5.03 3.16
LLC 0.4829 ± 0.1913 0.3572 ± 0.1713 1.35 0.1091 ± 0.0132 4.43 0.0918 ± 0.0095 5.26 0.1035 ± 0.0180 4.67 2.92

datasets. For each dataset, we choose the first 100 images from
the test dataset as subjects. Adversarial examples are generated
by applying four representative attacks: FGSM, BIM, JSMA, and
C&W. The models and attack tools are taken from [20], where the
parameters are presented in Table 1. The CLEVER scores, in the
form of a confidence interval of 90% significance level [13], are
shown in Table 2.

We can observe that the CLEVER scores of benign examples
are much larger than that of adversarial ones for both MNIST and
CIFAR10 datasets, though the difference varies from attacks and
datasets. This indicates that the difference of robustness between
adversarial and benign examples is significant, thus confirming our
observation. We also observe that the ratios 𝜆 using untarget/target-
2 label for computing the CLEVER scores are larger than the ones
using other labels. This is because that the label of untarget or
target-2 for each adversarial example is often the label of its be-
nign counterpart, which also confirms our observation that most
examples in 𝜖-neighbourhood of each adversarial example have the
same label of the benign counterpart.

3.2 Attack Cost: Adversarial vs. Benign
Based on the above observation, one could design adversarial ex-
ample detection approaches similar to other characterizations like
label change rate [76]. However, existing techniques for robustness
certification (with statistical guarantees) still have limited scalabil-
ity, and hence are not able to handle large models efficiently. For
instance, on a single GTX 1080 GPU, the cost of computing the
CLEVER score is near: 450 seconds for each MNIST example and
1150 seconds for each CIFAR10 example using untarget, 50 sec-
onds for each MNIST example and 128 seconds for each CIFAR10
example using target-2/5.

To effectively and efficiently detect adversarial examples, we
propose a novel detection approach, named attack as defense (A2D
for short), which uses the cost of attacking an example to test its
robustness. The underlying assumption is that the more robust the
example is, the more difficult (a larger attack cost) it is to attack.
The implication is that we can decide whether an input example is
likely to be adversarial by utilizing off-the-shelf attacks.

To leverage attack cost to detect adversarial examples, the first
problem needs to be tackled is how to select attacks for defense. In
general, the attack cost should be able to be quantified and reflect

(a) Score vs. time on MNIST

.

(b) Score vs. time on CIFAR10

Figure 2: CLEVER score vs. attack time using JSMA

inputs’ robustness. As a result, FGSM is not suitable since it simply
performs one-step perturbation. In contrast, iterative attacks (such
as BIM, JSMA, and C&W) that iteratively search for adversarial
examples with least distortion could be leveraged, as the costs of
such attacks can be quantified and are relevant to inputs’ robustness.

We illustrate this observation using JSMA. JSMA calculates a
saliency map based on the Jacobian matrix to model the impact
that each pixel imposes on the classification result. During each
iteration, JSMA uses a greedy algorithm that modifies certain pixels
to increase the probability of the target label. The process is repeated
until finding an adversarial example or reaching the termination
criteria. The attack cost (time and iteration) of JSMA depends on
the robustness of each example. For an example 𝑥 that is less robust
than another one 𝑥 ′, an adversarial example of 𝑥 can be quickly
constructed using less time/iteration than the one of 𝑥 ′. To further
test this observation, we compare the attack time of JSMA on 100
MNIST and 100 CIFAR10 examples whose CLEVER scores range
from 0 to 0.3. The results are reported as scatter plots in Figure 2(a)
and Figure 2(b), which confirm our observation.

The next problem is then how to characterize attack costs for
different kinds of attacks. The most direct indicator of attack costs
is the attack time as demonstrated in Figure 2. The attack time of
different examples can reflect their robustness. However, the attack
time is easily affected by the real-time performance of computing
devices in a physical environment, which makes the variance of
attack time intolerable. For an iterative attack, the number of it-
erations is positively correlated with attack time. This is justified
by the scatter plots shown in Figure 3(a) and Figure 3(b) using the
same experiments as above. Therefore, in this work, we propose to
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(a) Time vs. ♯iter on MNIST (b) Time vs. ♯iter on CIFAR10

Figure 3: Attack time vs. iterations (♯iter) using JSMA

use the number of iterations of the attacks as the indicator of the
attack costs.

To demonstrate the effectiveness of the attack costs for charac-
terizing adversarial examples, we choose 5 types of images (Benign,
FGSM, BIM, DeepFool and C&W), each of which randomly select
1,000 samples, and divided each type of images into two indepen-
dent sets. Then we use JSMA to attack these images and record
the number of iterations required. To show the difference in attack
costs, we calculate the average Euclidean distance of the number
of iterations between each pair of sets of examples, the results are
presented in Figure 4. We can see that for different types of exam-
ples (adversarial vs. benign), the distance is enormous. While for
the same types of examples (adversarial vs. adversarial or benign
vs. benign), the distance is close to zero. It is worth mentioning
that for the examples generated by different attacks, the distance
is also very similar, meaning that even if the adversarial examples
are generated by different attacks, they are also “cognate" examples
and have similar attack costs.

Utilizing the diversity of attack methods, an ensemble detection
method can be constructed jointly. As we mentioned before, iter-
ative attacks have the potential to be used as defense, so we can
integrate multiple iterative attacks to derive a more robust defense.
Different attacks have the ability to capture different characteriza-
tions. For example, JSMA crafts adversarial examples based on the
𝐿0 norm, while BIM is based on the 𝐿∞ norm, thus they measure
the robustness of inputs under different distance metrics. Thanks
to various types of attacks, ensemble multiple attacks will make
the defense more reliable and difficult to bypass.

4 DETECTION APPROACH
In this section, we consider how to detect adversarial examples
by leveraging attack costs. In this work, we propose two effective
detection approaches that are based on 𝑘-nearest neighbors (K-NN)
and standard score (Z-score), respectively. The former requires
both benign and adversarial examples, while the latter requires
only benign examples.

Hereafter, we sometimes denote by attack𝑑 the attack that is
used as defense, i.e., to generate attack costs.

4.1 K-NN Based Detection Approach
Assume that we have two disjoint sets: 𝐵 the set of benign examples
and 𝐴 the set of adversarial examples.
Single detector. Let us consider the attack𝑑 𝑜 . The attack cost 𝛼𝑦
of attacking an example 𝑦 using the attack𝑑 𝑜 is regarded as the

Figure 4: Euclidean distances of the average number of iter-
ations between each pair of sets of examples

fingerprint of 𝑦. We can generate a set of fingerprints {𝛼𝑦 | 𝑦 ∈
𝐴 ∪ 𝐵} from the examples 𝑦 ∈ 𝐴 ∪ 𝐵 by utilizing the attack𝑑 𝑜 .
For each unknown input 𝑥 and parameter 𝐾 , we first compute the
attack cost 𝛼𝑥 of the input 𝑥 using the attack𝑑 𝑜 and then identify
the 𝐾-nearest neighbors 𝑁𝐾 = {𝛼𝑦𝑖 | 1 ≤ 𝑖 ≤ 𝐾} of 𝛼𝑥 from the
set {𝛼𝑦 | 𝑦 ∈ 𝐴 ∪ 𝐵}. The set 𝑁𝑘 is partitioned into two subsets:
𝐴𝑥 = {𝑦 ∈ 𝐴 | 𝛼𝑦 ∈ 𝑁𝐾 } and 𝐵𝑥 = {𝑦 ∈ 𝐵 | 𝛼𝑦 ∈ 𝑁𝐾 }. The input
𝑥 is classified as adversarial if |𝐴𝑥 | > |𝐵𝑥 |, namely, the number
of adversarial examples is larger than that of benign ones in K-
neighbourhood of the input 𝑥 .

Ensemble detector. The K-NN based detection approach can be
easily generalized from one attack𝑑 to multiply attacks𝑑 𝑜1, · · · , 𝑜𝑛 ,
leading to a more robust detector. Under this setting, the fingerprint
of an example 𝑦 is a vector of attack costs, ®𝛼𝑦 = (𝛼1𝑦, · · · , 𝛼𝑛𝑦),
where for every 1 ≤ 𝑗 ≤ 𝑛, 𝛼 𝑗𝑦 is the attack cost of the example
𝑦 by utilizing the attack𝑑 𝑜 𝑗 . Consequently, we can generate a set
of fingerprints { ®𝛼𝑦 | 𝑦 ∈ 𝐴 ∪ 𝐵} from the examples 𝑦 ∈ 𝐴 ∪ 𝐵 by
utilizing the attacks𝑑 𝑜1, · · · , 𝑜𝑛 . Similar to the single attack setting,
for each unknown input 𝑥 and parameter 𝐾 , we identify the 𝐾-
nearest neighbors 𝑁𝐾 = { ®𝛼𝑦𝑖 | 1 ≤ 𝑖 ≤ 𝐾} of the fingerprint ®𝛼𝑥
of the input 𝑥 and partition 𝑁𝑘 into two subsets: 𝐴𝑥 = {𝑦 ∈ 𝐴 |
®𝛼𝑦 ∈ 𝑁𝐾 } and 𝐵𝑥 = {𝑦 ∈ 𝐵 | ®𝛼𝑦 ∈ 𝑁𝐾 }. The input 𝑥 is classified
as adversarial if |𝐴𝑥 | > |𝐵𝑥 |.

4.2 Z-Score Based Detection Approach
Z-score is a well-known concept in statistics for measuring a sample
in terms of its relationship to the mean and standard deviation of
a dataset [34]. The Z-score of a sample 𝑖 is defined by: 𝑧 =

𝑖−𝜇
𝜎 ,

where 𝜇 is the sample mean and 𝜎 is the sample standard deviation.
Intuitively, the score 𝑧 indicates how many standard deviations
that the sample 𝑖 is far away from the sample mean. Our Z-Score
based detection approach leverages the distribution of attack costs
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Figure 5: Attack time of benign and adversarial examples, where 𝑦-axis means seconds
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Figure 6: Attack iterations comparison

of benign examples to check whether an example 𝑦 is adversarial
or not. Thus, it is likely more robust with respect to unseen attacks.

Single detector. Let us consider a set 𝐵 of benign examples and
an attack𝑑 𝑜 as defense. We can compute the distribution of at-
tack costs of the examples in 𝐵. Assume that the distribution is
an approximately normal distribution 𝑁 (𝜇, 𝜎2). Otherwise, we can
transform it by applying the Box-Cox power transformation [5].
Thus, the Z-score 𝑧𝑦 of an example 𝑦 is defined as: 𝑧𝑦 =

𝛼𝑦−𝜇
𝜎 ,

where 𝛼𝑦 denotes the cost of attacking 𝑦 using the attack𝑑 𝑜 . For
a given ratio ℎ of the sample standard deviation as the threshold,
based on our observation that adversarial examples are less robust
than benign ones, an input 𝑥 is classified to adversarial if 𝑧𝑥 < ℎ,
i.e., 𝑥 is ℎ standard deviations away from the sample mean.

Ensemble detector. We can also generalize this approach from
one attack𝑑 to multiply attacks𝑑 𝑜1, · · · , 𝑜𝑛 . For each attack𝑑 𝑜 𝑗 , we
can construct a Z-Score based detector 𝑑 𝑗 , resulting in detectors
𝑑1, · · · , 𝑑𝑛 . The ensemble detector determines whether an input is
adversarial or not by taking into account the results of all the detec-
tors 𝑑1, · · · , 𝑑𝑛 . Consider 𝑘 ≤ 𝑛, the ensemble detector classifies an
input to adversarial if 𝑘 detectors classify the input to adversarial,
otherwise benign. The ensemble detector would have high true
positive rates when 𝑘 = 1, high true negative rates when 𝑘 = 𝑛.

5 EVALUATION
In this section, we evaluate our approach on three widely used
datasets MNIST, CIFAR10 and ImageNet. The experiments are de-
signed to answer the following research questions:

RQ1. How to select effective attacks for defense?
RQ2. How effective are the selected attacks for defense?
RQ3. How effective and efficient is A2D (i.e., detection)?

Experiment setups. For reproductivity of this work, all the in-
formation of the target models and attack parameters used in our
experiments are given below. In total, we compared with 4 baselines,
involving 3 different environments (Env1 on the Keras platform,
Env2 and Env3 on the PyTorch platform). Since the performance
of these four defenses may vary due to platforms, CNN models
and attack settings. For a fair comparison, we conduct compari-
son directly using the same target models and attacks provided by
each of them, and implement our approach in all environments. It
is worth mentioning that the full source code of some baselines
is not available. Thus, for the missing attacks, we use alternative
implementations in Foolbox [56], recommended by [73].

The first baseline [20], denoted by BL1, uses a Gaussian Mixture
Model to represent outputs from the final hidden layer of a CNN,
which was considered to be the most effective defense on MNIST
among ten detections in [9]. The second baseline [44], denoted
by BL2, uses local intrinsic dimension to represent and distinguish
adversarial subspace and claims to be better than BL1. BL3 [76] uses
label change rate through model mutation testing to distinguish
adversarial examples. BL4 [75] dissects the outputs of intermediate
layers to construct a fault tolerance approach. We emphasize that
BL3 and BL4, published respectively in ICSE’19 and ICSE’20, are
arguably two state-of-the-art defense approaches.

Env1 contains models and attack methods provided by BL1 [20].
The DL model for MNIST is LeNet, the DL model for CIFAR10
is a deep 12-layer convnet. The accuracy of the target model on
training/testing dataset is 99.6%/99.1% for MNIST and 87.3%/80.3%
for CIFAR10. BL2 [44] uses the models and attack code segments
provided by BL1, so Env1 is the environment used by these two
baselines. It should be noted that there are two slightly different
BIM implementations in Env1, and we use the ‘bim-a’.

Env2 is provided by BL3 [76], which includes LeNet5 model for
MNIST and GooglLeNet model for CIFAR10. The accuracy of the
target model on training/testing dataset is 98.5%/98.3% for MNIST
and 99.7%/90.5% for CIFAR10. BL3 stated that the BB is ineffective
on CIFAR10 as the authors could not train a good substitute model,
so we omit BB on CIFAR10.

Env3 is provided by BL4 [75], which includes LeNet4 for MNIST,
WRN for CIFAR10 and ResNet101 for ImageNet. The accuracy of the
target model on training/testing dataset is 90.0%/98.4% for MNIST
and 100.0%/96.2% for CIFAR10. In addition, ResNet101 has a top-1
accuracy rate 77.36% on the validation set.

Tables 1 and 3 respectively show the attack parameters of Env1
and Env2. Env3 only provides one attack that is 𝐿2 norm adoption

47



Attack as Defense: Characterizing Adversarial Examples using Robustness ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 3: Parameters of attacks for Env2

Dataset Attack Method Parameters

MNIST

FGSM 𝜖 = 0.35
JSMA 𝜃 = 1, 𝛾 = 0.12

DeepFool overshoot=0.02
C&W 𝜅 = 0, 𝑐 = 0.6
BB Sub model+FGSM, 𝜖 = 0.35

CIFAR10

FGSM 𝜖 = 0.05
JSMA 𝜃 = 1, 𝛾 = 0.12

DeepFool overshoot=0.02
C&W 𝜅 = 0, 𝑐 = 0.6

of FGSM with 0.016 as the attack step. In order to make the results
more comprehensive, we used the three attacks JSMA,DeepFool and
C&W, implemented in Foolbox, to generate adversarial examples
with default parameters.

5.1 RQ1: Attack Selection
We answer RQ1 by comparing attack costs of adversarial and be-
nign examples. Adversarial examples are crafted in the same setting
as in Section 3.1, using the first 1,000 images from MNIST.

For defense, we choose eight attacks: FGSM, BIM, BIM2 (BIM un-
der 𝐿2 norm), JSMA, C&W, L-BFGS, LSA, DBA from Foolbox [56].
For ease of reading, an attack used as a defense is marked by a
subscript 𝑑 , e.g., FGSM𝑑 . According to the results of Table 2, we
use untargeted attack as defense, unless the attack only supports
targeted attack for which we use target-2 attack. We use the default
parameters of Foolbox except that BIM𝑑 and BIM2𝑑 immediately
terminate when an adversarial example is found, and DBA𝑑 ter-
minates when the MSE between the adversarial example and its
original version is less than 0.02, otherwise the number of iterations
is fixed, namely, the attack costs of all the examples will be similar.

The results in terms of attack time are reported as boxplots in
Figures 5. It is not surprising that the attack time of adversarial and
benign examples using FGMS𝑑 are similar, as it is a one-step attack.
Though the results show the variation between different attacks
and defenses, the differences are often significant when an iterative
attack is used as defense, e.g., BIM𝑑 , BIM2𝑑 , JSMA𝑑 , L-BFGS𝑑 and
DBA𝑑 , while L-BFGS𝑑 is less efficient than the others. We find that
the differences are not stable when C&W𝑑 and LSA𝑑 are used. This
is because that C&W𝑑 implements a binary search to minimize
distortion and may stop searching when there is a bottleneck, while
LSA𝑑 suffers from a low attack success rate, which causes it to have
many outlier attack times.

Based on the above results, considering the efficiency and dis-
crepancy in attack time between benign and adversarial examples,
BIM𝑑 , BIM2𝑑 , JSMA𝑑 , and DBA𝑑 will be used as defense in the
follow-up experiments. These four methods cover both white-box
and black-box attacks, as well as different distance metrics 𝐿0, 𝐿2
and 𝐿∞. It should be noted that with an amount of adversarial
attacks being proposed (more than 2,000 papers in 2020), it is im-
possible to evaluate all of them. In this work, we only analyze the
pros and cons of the above methods and choose suitable attacks.

The above experiments demonstrate how to quickly select a suit-
able attack as defense. In order to ensure the reliability of BIM𝑑 ,

Table 4: AUROC comparison of our approach over baselines

Env1 Attack JSMA𝑑 BIM𝑑 BIM2𝑑 DBA𝑑 BL1 BL2

MNIST

FGSM 0.9653 0.9922 0.9883 0.9504 0.8267 0.9161
BIM 0.9986 0.9996 0.9995 0.9625 0.9786 0.9695
JSMA 0.9923 0.9922 0.9914 0.9497 0.9855 0.9656
C&W 1.0 1.0 1.0 0.9672 0.9794 0.9502

CIFAR10

FGSM 0.6537 0.712 0.6474 0.6977 0.7015 0.7891
BIM 0.8558 0.8636 0.861 0.8276 0.8255 0.8496
JSMA 0.9459 0.955 0.9526 0.9452 0.8421 0.9475
C&W 0.9905 0.9984 0.9988 0.9833 0.9217 0.9799

Env2 Attack JSMA𝑑 BIM𝑑 BIM2𝑑 DBA𝑑 BL3

MNIST

FGSM 0.9665 0.9883 0.9846 0.9595 0.9617
JSMA 0.9971 0.9984 0.9974 0.984 0.9941

DeepFool 0.9918 0.9971 0.9951 0.9587 0.9817
C&W 0.9456 0.9870 0.9769 0.8672 0.9576
BB 0.9746 0.9895 0.9852 0.9535 0.9677

CIFAR10

FGSM 0.8808 0.8994 0.8998 0.8746 0.8617
JSMA 0.9774 0.9890 0.9873 0.9566 0.9682

DeepFool 0.9832 0.9898 0.9902 0.9769 0.9614
C&W 0.8842 0.9176 0.9175 0.9004 0.9063

Env3 Attack JSMA𝑑 BIM𝑑 BIM2𝑑 DBA𝑑 BL4

MNIST

FGSM 0.9985 0.9999 1.0 0.9674 0.9993
JSMA 0.9972 0.9998 0.9999 0.9113 0.9993

DeepFool 0.9702 0.9877 0.9874 0.9255 0.9892
C&W 0.9985 1.0 1.0 0.9623 0.9996

CIFAR10

FGSM 0.9945 0.9979 0.9983 0.9629 0.9981
JSMA 0.9934 0.9962 0.9961 0.976 0.9966

DeepFool 0.9713 0.9703 0.9692 0.9604 0.9618
C&W 0.9951 0.9981 0.9985 0.9928 0.9968

ImageNet

FGSM 0.973 0.9763 0.9782 0.9625 0.9617
JSMA 0.9962 0.9805 0.99 0.9937 0.9695

DeepFool 0.9958 0.9793 0.9892 0.9891 0.9924
C&W 0.9873 0.9731 0.9801 0.9924 0.9636

BIM2𝑑 , JSMA𝑑 , and DBA𝑑 , we also analyze the numbers of iter-
ations. The results are reported as box plots in Figure 6, where
the maximal number of iterations of BIM𝑑 and BIM2𝑑 is increased
from the default value 10 to 500 in order to obtain a more signif-
icant difference. Remark that we did not tune parameters, these
widely used parameters are sufficient to achieve expected results.
Fine-tuning parameters may yield better results. We can observe
that the differences in the numbers of iterations are consistent with
that of attack time. Since the number of iterations does not depend
on computing devices, we will use the number of iterations as the
indicator of attack costs in the follow-up experiments.

Answer to RQ1: Both attack time and the number of iterations
can be used to select effective attacks for defense, while non-
iterative attacks are not effective.

5.2 RQ2: Effectiveness of Attacks as Defense
We answer RQ2 by comparing our approach with four promising
approaches as baselines. The evaluation metric used here is AUROC
(area under the receiver operating characteristic curve), which is
one of the most important evaluation metrics for measuring the
performance of classification indicators. The large the AUROC, the
better the approach for detecting adversarial examples.

Table 4 shows the results in AUROC, where the best one is
highlighted in bold font. Note that BL1, BL2 and BL3 only support
the MNIST and CIFAR10 datasets, thus there are no results on
the ImageNet dataset. Overall, we can observe that our approach
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outperforms the baselines in most cases. It is worth mentioning
that our defense parameters are the same in both environments,
which shows its universality, namely, users do not need to adjust
parameters for a specific DL model or platform.

Among the four defenses JSMA𝑑 , BIM𝑑 , BIM2𝑑 and DBA𝑑 on
MNIST and CIFAR10, BIM𝑑 performs better than the others in
almost all the cases, while DBA𝑑 performs worse than the others
in most cases. This is due to that DBA𝑑 is a black-box attack which
is less powerful than the other white-box attacks. An interesting
phenomenon is that the AUROC results on ImageNet of JSMA𝑑 and
DBA𝑑 are close to or surpass BIM𝑑 . This is because that for images
with large dimension, each perturbation generated by JSMA𝑑 and
DBA𝑑 is smaller than that of BIM𝑑 , resulting in a fine-grained
attack as well as a fine-grained indicator of examples’ robustness.
One may find that BL2 performs better than the others on CIFAR10
adversarial examples crafted by FGSM. This may be because that the
performance of the model is too poor as its accuracy is only 80.3%
on the testing dataset (cf. Table 1). Due to the poor performance
of the CIFAR10 model, most attacks of benign examples can be
achieved easily, hence the attack costs of adversarial examples
generated by FGSM are close to benign examples. This problem
could be alleviated by using state-of-the-art models (such as the
model in Env2) or improving the robustness of the model (such as
adversarial training, cf. Section 6.2.2).

Answer to RQ2: Against most attacks on 2 popular platforms
and 3widely-used datasets, the selectedwhite-box attacks JSMA𝑑 ,
BIM𝑑 and BIM2𝑑 are more effective than the baselines.

5.3 RQ3: Effectiveness and Efficiency of A2D
We answerRQ3 by applying our K-NN and Z-score based detectors
to detect benign examples and adversarial examples generated by
the attacks from Env2. To demonstrate that our approach still works
on high-resolution images, we also use the ImageNet model from
Env3 for our experiments.We do not consider other baselines except
BL3, as other baselines only considered the results of AUROC or do
not provide cost analysis. In order to avoid overfitting, we selected
different data as the training set and the test set.

5.3.1 Effectiveness. K-NNbased detectors. For each dataset, each
attack𝑑 of BIM𝑑 , BIM2𝑑 , JSMA𝑑 and DBA𝑑 as defense and each
attack 𝑎 in Env2 or Env3, we construct a K-NN based detector
through the attack costs of 1,000 benign examples and 1,000 attack
𝑎 crafted adversarial examples using the defense attack𝑑 . We also
construct a K-NN based ensemble detector END, which consists
of 1,000 benign examples and 1,000 adversarial examples, where
each attack contributes 1000 / N adversarial examples (N is the
number of attacks). We set 𝐾 = 100. Results on tuning 𝐾 and ratio
between benign, adversarial examples and classification algorithms
are given in Section 5.3.3.

The results are shown in Figures 7(a), 7(c) and 7(e). In general, on
average, the accuracies of detectors JSMA𝑑 , BIM𝑑 , BIM2𝑑 , DBA𝑑
and END are: 90.84%, 98.09%, 96.17%, 87.42% and 99.35% for MNIST,
86.31%, 87.90%, 87.55%, 85.23% and 92.66% for CIFAR10, 93.44%,
94.08%, 95.08%, 91.64% and 94.48% for ImageNet. Specifically for
the ensemble detector (END), the TPRs of adversarial examples
crafted by FGSM, JSMA, Deepfool, C&W, and BB are 99.2%, 100%,

FGSM JSMA Deepfool C&W BB Benign
0.0

0.2

0.4

0.6

0.8

1.0

JSMAd

BIMd

BIM2d
DBAd

END

(a) K-NN, MNIST

FGSM JSMA Deepfool C&W BB Benign
0.0

0.2

0.4

0.6

0.8

1.0

JSMAd

BIMd

BIM2d
DBAd

END

(b) Z-score, MNIST

FGSM JSMA Deepfool C&W Benign
0.0

0.2

0.4

0.6

0.8

1.0

JSMAd

BIMd

BIM2d
DBAd

END

(c) K-NN, CIFAR10

FGSM JSMA Deepfool C&W Benign
0.0

0.2

0.4

0.6

0.8

1.0

JSMAd

BIMd

BIM2d
DBAd

END

(d) Z-score, CIFAR10

FGSM JSMA Deepfool C&W Benign
0.0

0.2

0.4

0.6

0.8

1.0

JSMAd

BIMd

BIM2d
DBAd

END

(e) K-NN, ImageNet

FGSM JSMA Deepfool C&W Benign
0.0

0.2

0.4

0.6

0.8

1.0

JSMAd

BIMd

BIM2d
DBAd

END

(f) Z-score, ImageNet

Figure 7: Accuracy of detectors on different inputs, where
𝑥-axis denotes the generator of adversarial examples while
benign denotes benign examples and 𝑦-axis denotes the de-
tection accuracy

100%, 99.4%, and 99.4%, respectively, the FPR is 1.9% on the MNIST
dataset. Similarly, the TPRs are 82.9%, 98.7%, 99.4%, 89.9% and FPR
is 7.6% on the CIFAR10 dataset, the TPRs are 90.0%, 99.6%, 99.2%,
94.4% and FPR is 10.8% on the ImageNet dataset.

We find that DBA𝑑 performs worse than others on most cases,
which is consistent with AUROC (cf. Table 4). It is worth noting
that though the ensemble detector END does not always achieve
the best performance, it has the highest average accuracy. Thus,
it balances the performances of individual detectors and is more
robust.
Z-score based detectors. For each dataset, and each attack𝑑 of
BIM𝑑 , BIM2𝑑 , JSMA𝑑 and DBA𝑑 as defense, we construct a Z-score
based detector using the normal distribution of attack costs of 1,000
benign examples via attack𝑑 , resulting in detectors BIM𝑑 , BIM2𝑑 ,
JSMA𝑑 and DBA𝑑 . The threshold ℎ is -1.281552, which yields 10%
false positive rate on the 1,000 benign examples. The ensemble
detector named by END consists of these four detectors. It classifies
an input as adversarial if no less than 2 detectors classify the input
as adversarial, otherwise benign, namely, 𝑘 = 2. Results on tuning
𝑘 and ℎ are given in Section 5.3.3.

The results are shown in Figures 7(b), 7(d) and 7(f). In general, on
average, the accuracies of detectors JSMA𝑑 , BIM𝑑 , BIM2𝑑 , DBA𝑑
and END are: 92.94%, 98.56%, 97.58%, 82.18% and 98.02% for MNIST,
83.44%, 87.23%, 86.62%, 75.98% and 87.32% for CIFAR10, 94.04%,
94.08%, 95.08%, 92.68% and 96.24% for ImageNet. Specifically for the
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ensemble detector (END), the TPRs of adversarial examples crafted
by FGSM, JSMA, Deepfool, C&W, and BB are 99.1%, 99.8%, 100%,
95.7%, and 98.7%, respectively, the FPR is 5.2% on the MNIST dataset.
Similarly, the TPRs are 70.8%, 98.2%, 98.5%, 78.9% and FPR is 9.8%
on the CIFAR10 dataset, the TPRs are 97.2%, 100%, 99.4%, 96.4%
and FPR is 11.8% on the ImageNet dataset. We can observe that
they are able to achieve comparable or even better accuracy than
K-NN based detectors, although Z-score based detectors only use
benign examples, whereas K-NN based detectors use both benign
and adversarial examples.

5.3.2 Efficiency. For a fair comparison with BL3, we report the
detection costs of the Z-score based detectors here, although the
detection accuracy may be slightly worse than the K-NN based
detectors. The reason is that the threshold of Z-score detectors
can be easily adjusted to ensure that detection accuracy on benign
examples is close to the baseline. As both our method and the
baseline BL3 are query-intensive, we compare the number of queries
and the average time of each iteration for efficiency comparison.

The results are reported in Table 5. Columns #adv and #benign
give the number of queries to the model for adversarial and benign
examples on average, 𝑡𝑖 (ms) represents the average time required
for each iteration. Columns Accadv and Accbenign respectively give
the accuracy for adversarial and benign examples on average.

By limiting the accuracy on benign examples to the one of BL3,
we observe that all the white-box defenses (i.e., JSMA𝑑 , BIM𝑑 and
BIM2𝑑 ) outperform BL3 in terms of the number of queries on both
MNIST and CIFAR10. Furthermore, they also achieve better accu-
racy than BL3 on CIFAR10, while both BIM𝑑 and BIM2𝑑 achieve bet-
ter accuracy than BL3 on MNIST. We also provide the results on Im-
ageNet in Table 5. The results show that on ImageNet, A2D can still
detect adversarial examples effectively and efficiently. BIM𝑑 /BIM2𝑑
are able to detect adversarial examples using one query. This demon-
strates that our method is also efficient on high-resolution images.
For the average time required for each iteration, we can find the
white-box defenses outperform BL3 again. BL3 is based on model
mutation, so each iteration needs to load a newmodel and perform a
forward propagation. Using MNIST dataset and the correspongding
model as an example, BL3 needs 3 milliseconds to load the model
and 0.6 milliseconds to get the prediction result for each query. For
white-box attacks, each iteration requires one forward propagation
and one backward propagation, so these white-box attacks have
similar time. Since A2D does not require constant reloading of the
model, it has some efficiency advantage. We finally remark that BL3
does not support ImageNet and the other baselines either provide
only AUROC without constructing a detector or do not provide
cost analysis. It is not surprising that the cost of DBA𝑑 is the largest
one, as it is a label-only black-box attack. It is important to mention
that black-box attacks used as defense do not need any information
of the models, hence using black-box attacks as defense preserve
the privacy of the models while its effectiveness is still acceptable.

We emphasize that there is still space for optimization. One latent
optimization is to add an upper bound on the number of iterations,
as adversarial examples often need fewer iterations than benign. If
the number of iterations reaches the bound and the attack fails, the
input can be considered as benign. This optimization can reduce

Table 5: Cost analysis of our detector with accuracy

Dataset Detector #adv Accadv #benign Threshold 𝑡𝑖 (ms) Accbenign

MNIST

BL3 66 96.4% 463 - 3.6 89.7%
JSMA𝑑 20 95.4% 240 53 1.8

≥ 89.7%BIM𝑑 16 99.8% 148 122 2.1
BIM2𝑑 38 99.6% 352 189 2.1
DBA𝑑 92 88.2% 319 195 11

CIFAR10

BL3 67 90.6% 376 - 79 74.0%
JSMA𝑑 6 92.6% 33 13 23

≥ 74.0%BIM𝑑 14 93.0% 65 35 16
BIM2𝑑 29 92.7% 129 71 17
DBA𝑑 252 87.7% 744 409 43

ImageNet

BL3 - - - - - -
JSMA𝑑 6 95.4% 67 11 24 88.6%
BIM𝑑 1 95.2% 4 2 18 89.6%
BIM2𝑑 1 96.7% 7 2 18 88.5%
DBA𝑑 143 93.9% 451 219 97 88.0%

the number of iterations (hence queries) for benign examples and
both true and false positive rates will not be affected.
Discussion. Here we briefly discuss how our approach can be used
in practice as different detectors have different accuracies. Consid-
ering the tradeoff between the efficiency and accuracy, one can use
JSMA𝑑 , BIM𝑑 or BIM2𝑑 as defense according to the dimension of
images. If one expects a more reliable and higher accurate detector,
an ensemble detector such as the END detector can be used. If the
privacy of the model matters, a black-box attack based detector
such as DBA𝑑 is better.

5.3.3 Results of Parameter Tuning. To better understand the per-
formance of A2D, we report results of turning parameters on the
target model from Env2 using the MNIST images. The results are
shown in Table 6, where the bold one denotes the value used in
the previous experiments (cf. Figure 7(a) and Figure 7(b)). Column
Accbenign and Column Accadv respectively denotes the detection
accuracy for benign examples and adversarial examples on average.

For K-NN based detector, we vary the value of 𝐾 from 50 to 200,
We observe that both true and false negative rates slightly increase
with the increase of 𝐾 . We also vary the ratio between benign and
adversarial examples, with the proportion of adversarial examples
increase, both true and false positive rates slightly increase.

For the Z-score based ensemble detector, we vary the value of
the threshold ℎ from -1, -1.281552, -1.644854, -1.959964 and -2. We
observe that the smaller threshold ℎ, the lower the false positive
rate. We also vary the parameter 𝑘 in the Z-score based ensemble
detector. Recall that the ensemble detector classifies an input to
adversarial if 𝑘 detectors classify the input to adversarial, otherwise
benign. We observe from Table 6 that both true and false negative
rates increase with the increase of 𝑘 .

In summary, the above parameters can be used to balance the
true and false positive rates, namely, the true positive rate could be
improved at the cost of false positive rate.

Finally, instead of K-NN,we also tried the support vectormachine
(SVM), decision tree (DTC) and random forest (RFC) classification
algorithms. We use the implementations of scikit-learn with the
default parameters. The results show that similar accuracy can
be obtained using different classification algorithms. This implies
that our detection approach is generic in terms of classification
algorithms.
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Table 6: Comparison for the impact of classifier parameters

Parameter Value Accbenign Accadv

K-value

50 0.976 0.9966
100 0.981 0.9961
150 0.984 0.9942
200 0.984 0.9934

Ratio between
benign and
adversarial
examples

1:0.5 0.988 0.9777
1:0.8 0.985 0.9939
1:1 0.981 0.9961
1:1.2 0.979 0.9966
1:2 0.976 0.9973

Z-Score

-1 0.899 0.9972
-1.281552 0.948 0.9866
-1.644854 0.976 0.9492
-1.959964 0.987 0.8739

-2 0.988 0.86

Statistic
Ensemble

1 0.748 0.999
2 0.948 0.9866
3 0.993 0.9348
4 1.0 0.7294

Classifier

K-NN 0.981 0.9961
SVM 0.642 0.7785
DTC 0.919 0.8117
RFC 0.946 0.9022

Answer to RQ3: A2D is able to efficiently and effectively detect
adversarial examples with lower false positive rate. It is consid-
erably more effective and efficient than the baseline BL3.

5.4 Threats to Validity
The threats to validity of our study include external and internal
threats. The selection of the subject datasets and target models
could be one of the external threats. We tried to counter this issue
by using 3 widely-used datasets and 5 pre-trained models from
well-established works.

The second external threat is the works we chose for compar-
ison. To mitigate this threat, we compare with the works from
both the artificial intelligence community (e.g., BL1 and BL2) and
the software engineering community (e.g., BL3 and BL4). BL1 is
the most effective defense on MNIST among ten detections in [9],
while BL2 is claimed better than BL1 [44]. Both BL1 and BL2 are
widely-used for comparison in the literature [25, 36, 43, 60]. BL3 and
BL4 are state-of-the-art methods from the perspective of software
engineering. It is worth noting that the comparison of baselines
was conducted on the repositories and parameters provided by the
original authors, to reproduce their best performance, although it
may be unfair to our method.

A further external threat is the knowledge of the adversary. The
same to baselines, we evaluated our approach against the original
models and assume that the adversary is unaware of the existence
of the detection. In practice, the adversary may learn that A2D
has been used via social engineering or other methods, and use a
more threatening, specified attack method, called adaptive attacks
in [73].We discuss and evaluate adaptive attacks against our defense
method in Section 6. We do not perform the same adaptive attack

on the baselines, as adaptive attacks are usually designed for each
specific defense method.

The internal threat mainly comes from the selection of attacks
as defense. We approximate model robustness of examples by the
cost of attacking them while attacks may differ in their capabil-
ity. To mitigate this threat, we studied various attacks, covering
white-box and black-box attacks, and 𝐿0, 𝐿2 and 𝐿∞ norm based
attacks. Experimental results indicate that our defense performs
well regardless of the selected attacks, although a minor difference
can be observed. Based on this, we conclude that our answers to
research questions should generally hold.

6 ON ADAPTIVE ATTACKS
Lots of effective defenses have been shown to be ineffective in the
presence of adaptive attacks [8–10, 25, 73]. Thus, adaptive attacks
are the main threat to defense approaches. In this section, we study
possible adaptive attacks to our defense.

6.1 Potential Bypass Approaches
6.1.1 Increasing Attack Costs. A straightforward approach that
may be used to bypass our defense is to increase the attack costs
so that the attack costs of adversarial and benign examples are
similar. To increase attack costs of adversarial examples, one can
incorporate attack costs into the loss function used to identify
adversarial examples. For instance, the adversary could change the
loss function to

𝐽 ′(𝑥) = 𝐽 (𝑥) + 𝛽 ·max(cost − attack_cost(𝑥), 0)
where 𝐽 (𝑥) is the original loss function, 𝛽 is a parameter for bal-
ancing two terms of 𝐽 ′(𝑥), cost is the expected attack cost such
as the mean of attack costs of benign examples or even the thresh-
old of our Z-score based detection approach, and attack_cost(𝑥)
denotes the attack cost of 𝑥 via some attacks. Minimizing the new
loss increases the attack cost until exceeding cost.
Discussion. This adaptive attack to our defense is infeasible if not
impossible. First, the function attack_cost(𝑥) non-differentiable,
consequently, the loss function 𝐽 ′(𝑥) cannot be solved via gradient-
based algorithms. Second, non-gradient-based iterative attacks have
to run some attacks internally during each iteration in order to
check if the attack succeeds or not. This definitely results in high
computational complexity, thus becoming infeasible .

6.1.2 Increasing Robustness. An alternative approach that may be
used to bypass our defense is to increase the robustness of adver-
sarial examples, aiming to indirectly increase the attack costs. How-
ever, it is non-trivial to directly control the robustness of adversarial
examples. We propose to increase the confidence/strength of adver-
sarial examples, initially considered by Carlini and Wagner [10] for
increasing transferability of adversarial examples between different
models. Confidence is controlled by introducing a parameter 𝜅 into
the loss function 𝐽 (𝑥), thus, the loss function becomes

𝐽𝜅 (𝑥) = max(𝐽 (𝑥),−𝜅)
where the larger the parameter 𝜅, the higher the confidence of the
adversarial example.

The relation between robustness and confidence of adversarial
examples is confirmed by the following experiment. We mount the
C&W attack on the previous 100 MNIST and 100 CIFAR10 images
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Table 7: Robustness vs. confidence of adversarial examples

𝜅 0 2 4 6 8

MNIST
CLEVER Score ≈ 0 0.11 0.14 0.14 0.17
No. of Iterations 1.01 10.36 20.28 31.29 42.59
𝐿2 distance 1.71 1.91 2.11 2.32 2.53

CIFAR10
CLEVER Score ≈ 0 0.07 0.08 0.09 0.13
No. of Iterations 1.37 8.53 17.29 24.47 34.4
𝐿2 distance 0.41 0.52 0.67 0.82 0.99
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Figure 8: Adaptive attack results, where line and dot denote
attack success rate and 𝐿2 distortion respectively

under the same setting as [8], by varying the value of 𝜅 and mea-
suring the robustness using the CLEVER scores. The results are
reported in Table 7. The experiment results show that the adver-
sary is able to increase the robustness of adversarial examples by
increasing the confidence. Therefore, high-confidence adversarial
examples have the potential to bypass our defense.
Discussion. This adaptive attack is feasible, but will introduce large
distortion into adversarial examples when 𝜅 increases, observed
from Table 7. As our defense changes neither inputs nor models, it
can be seamlessly combined with other defenses to defend against
this adaptive attack.
• The first method is to combine with other defenses that are
aimed at detecting adversarial examples with large distortion
(e.g., [39, 46, 57]). This would be able to detect a wide spectrum
of adversarial examples.

• The second method is to combine with adversarial training [22,
45, 69] which enhances the DL model. Indeed, a successful attack
to an adversarially trained model often introduces large distor-
tion while the adaptive attack also introduces large distortion
to bypass our defense, consequently, the distortion becomes too
large to be human-perceptible.

6.2 Evaluation of Adaptive Attacks
Since the first adaptive attack is infeasible, we only evaluate the
second one which is implemented based on C&W [8]. We evaluate
this adaptive attack by varying the parameter 𝜅 from 0 to 20.

To evaluate the effectiveness of our defense combined with
other defenses, we consider the autoencoder based detector (AE
for short) [46] and PGD adversarial training (AT for short) [45].
The AE trains a classifier 𝑓𝑎𝑒 based on benign examples in order to
detect any adversarial examples with large distortion by checking
if 𝑑 (𝑥, 𝑓𝑎𝑒 (𝑥)) is greater than a different threshold 𝜏 , where 𝑑 is a
distance function, e.g., the mean squared error ∥𝑥 − 𝑓𝑎𝑠 (𝑥)∥2.

Benign
κ=0

L2=1.99
κ=5

L2=2.63
κ=10
L2=3.19

κ=15
L2=3.61

κ=20
L2=3.87

Figure 9: Adversarial examples for different 𝜅

6.2.1 A2D with AE. For ease of evaluation, we conduct experi-
ments using the MNIST dataset under the same settings as [46]
which provides a trained AE. In our experiments, the maximal 𝐿2
norm distortion is 8.4 which is approximated from the maximal
𝐿∞ norm distortion 0.3 in Madry’s challenges [33]. Note that our
maximal 𝐿2 distortion allows perturbations to be greater than the
maximal 𝐿∞ distortion for some pixels. Such large perturbations
are often challenging for defense. We use BIM𝑑 as defense and the
corresponding Z-score based detector which only requires benign
examples. Thus, it is a relatively weaker defense. We denote by A2D
our detector and A2D + AE the combined detector.
Results. The results are reported in Figure 8(a). From Figure 8(a) ,
we can observe that without any defense, the attack success rate
(ASR) is always 100%. With the increase of 𝜅, the detection rate
of our defense A2D decreases slightly. Specifically, A2D is able to
detect all of the adversarial examples when 𝜅 ≤ 15, while only
about 3% of adversarial examples can bypass A2D when 𝜅 = 20. We
also observe that both the 𝐿2 distortion and detection rate of AE
increase with the increase of 𝜅 . About 21% of adversarial examples
can bypass AE when 𝜅 = 0, while all adversarial examples can be
detected by AE when 𝜅 = 20. Therefore, the ASR is always 0% when
the combined defense A2D + AE is applied.
Summary. The above results demonstrate the benefit of combining
two complementary defenses. Although an adaptive attack can
slightly reduce the effectiveness of A2D by increasing robustness
of adversarial examples, the combination of A2D and AE is able to
completely defend against such adaptive attack.
Case study. Figure 9 shows adversarial examples of a targeted
attack from 4 to 0 with different 𝜅. The perturbation for 𝜅 = 20 is
about twice larger than that for 𝜅 = 0 and can be easily detected by
AE.

6.2.2 A2Dwith AT. For ease of evaluation, we conduct experiments
using the CIFAR10 dataset under the same settings as [45] which
provides an adversarially trained DL model. In our experiments,
the maximal 𝐿2 norm distortion is 1.6 which is approximated from
the maximal 𝐿∞ norm distortion 0.03 in Madry’s challenges [33].
We use the same Z-score based detector as in Section 6.2.1.
Results. The results are shown in Figure 8(b). We can observe
that AT is not very promising when 𝜅 is smaller, e.g., 72% ASR
for 𝜅 = 0. With the increase of 𝜅 (i.e., increasing robustness of
adversarial examples), the ASR drops to 21% when 𝜅 = 10 and 0%
ASR when 𝜅 ≥ 15. This is because that finding adversarial examples
with distortion limited to the maximal 𝐿2 threshold 1.6 becomes
more difficult for the adversarially trained model. Recall that our
defense A2D is good at detecting adversarial examples with small
distortion (i.e., low-confidence). Therefore, the combined defense
is very effective. For instance, all adversarial examples with 𝜅 = 0
can be detected by A2D, hence the ASR drops from 72% to 0%. The
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Figure 10: Adversarial examples on the models without AT
(b), with AT (c) and with A2D + AT (d)

adaptive attack achieves no more than 3% ASR on the adversarially
trained model.
Summary. To bypass our defense on adversarially trained models,
the adversary has to introduce much large distortion. When per-
turbations are limited to human-imperceptible, it becomes difficult
to bypass our defense on adversarially trained models.
Case study. Figure 10 shows adversarial examples of a targeted
attack from ‘airplane’ to ‘cat’. Without any defense, an adversarial
example with less distortion can be crafted, cf. Figure 10(b). With
AT, it requires more distortion to craft an adversarial example, cf.
Figure 10(c). If both A2D and AT are enabled, it requires much
more distortion to craft adversarial examples, cf. Figure 10(d). Now
the distortion is too large to be human-imperceptible, and we can
clearly see the silhouettes of ‘cats’ on the adversarial example.

7 RELATEDWORK
As a new type of software system, neural networks have received ex-
tensive attention over the last five years. We classify existing works
along three dimensions: adversarial attack, adversarial defense, and
neural network testing & verification.
Adversarial attack.Adversarial attacks aim tomisjudge the neural
network by adding perturbations that are imperceptible to humans.
We have introduced common attacks in Section 2. We selected mul-
tiple types of methods to generate adversarial examples, FGSM [22],
BIM [32], JSMA [52], DeepFool [47], C&W [10] and substitutemodel
attack [51]. We also selected multiple attacks as defense. Meanwhile,
several adversarial examples have the ability to carry out attacks
in the real environment [19, 28, 32], and pose threats to neural
networks, which is a new programming paradigm.
Adversarial defense. A typical defense method is adversarial
training [22, 32, 45, 69], which produces adversarial examples and
injects them into training data. Another type of defenses protects
models by pre-processing the input data [7, 24, 83] or projects po-
tential adversarial examples onto the benign data manifold before
classifying them [46, 66]. Detection is another defense approach to
adversarial examples. If an input is detected as adversarial, it will
be rejected without being fed to the model [20, 36, 44, 84]. However,
it has been shown that most defense methods except adversarial
training can be easily bypassed by adaptive attack with backward
pass differentiable approximation and expectation over transfor-
mation [2, 3, 9, 73]. Until today this problem is still of considerable
interest. However, most detection methods are not effective on
high-resolution images (e.g., ImageNet dataset) [20, 44, 46, 76] or
do not consider adaptive attacks [20, 44, 46, 76, 76]. Our defense
method is effective on 3 widely-used datasets covering both low-

and high-resolution images. We also evaluated our defense against
potential adaptive attacks and demonstrate its effectiveness.
Neural network testing & verification. Some works look for
vulnerabilities in neural networks from the perspective of soft-
ware testing. For example, DeepXplore [54] proposed a testing
technique to find adversarial examples guided neuron coverage.
After that, a series of coverage criteria have been proposed for neu-
ral network testing [30, 41, 67]. Other testing methods also have
been adapted to test neural networks such as concolic testing [68],
mutation testing [42, 62], and so on [40, 82]. Some testing meth-
ods focus on different application scenarios of neural networks,
including DeepTest [71], DeepRoad [86], Deepbillboard [89] and
object-relevance metamorphic testing [70]. Some other works fo-
cus on testing the neural network at the architecture level [87] or
the deep learning library itself [79]. We do not use testing criteria
to model the robustness of examples, as testing criteria are not
necessarily correlated with robustness [14, 85].

Various formal verification techniques have been proposed to
verify robustness property against neural networks [4, 16–18, 21, 23,
26, 29, 38, 55, 63, 64, 72, 74, 77, 80, 88]. Formal verification provides
provable or theoretic guarantees, and robustness is also the source
of our defense approach. However, formal verification suffers from
the scalability problem, due to the high computational complexity.
Therefore, we used attack cost instead.

[76] and [75] are very close to our defense approach. They also
considered the problem of identifying adversarial examples from
the perspective of software engineering, by leveraging mutation
testing and model anatomy respectively. However, both of them
have to modify the original model, while our defense approach
does not, hence is easy to deploy. When using white-box attacks as
defense, the model only needs to provide an interface for logits and
gradients, rather than model parameters. When using black-box
attacks as defense, themodel only needs to provide the classification
results, thus protecting the privacy of the model. Inspired by [8, 25,
43, 73], we discussed and evaluated adaptive attacks to our defense.
However, [76] and [75] do not consider adaptive attacks, hence it
is unclear whether they are still effective under adaptive attacks.

8 CONCLUSION
We have proposed a novel characterization of adversarial examples
via robustness. Based on the characterization, we proposed a novel
detection approach, named attack as defense (A2D), which utilizes
existing attacks to measure examples’ robustness. We conducted
extensive experiments to evaluate our observations and detection
approach A2D, showing that it outperforms four recent promising
approaches. We also thoroughly discussed the main threat (i.e.,
adaptive attacks) to our defense and evaluated them to our defense.
By combing our defense with an existing defense and adversarial
training, the results are very promising, e.g., the ASR drops from
72% to 0% on CIFAR10, and drops from 100% to 0% on MNIST.
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