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Scaled PCA: A New Approach to Dimension Reduction

Abstract

We propose a novel modification to the popular principal component analysis (PCA) by scaling each

predictor according to its predictive power on the target to be forecasted. Unlike the PCA that maximizes the

variations of predictors, our scaled PCA, s-PCA, identifies factors that are particularly useful for forecasting

the target. Asymptotically, the s-PCA factors converge to true latent factors that are important for the target.

Empirically, we find that the s-PCA outperforms the popular PCA substantially in forecasting market return

with a variety of investor sentiment proxies and forecasting inflation with a large panel of macro variables.

JEL codes: C22, C23, C53

Keywords: Forecasting, PCA, Big Data, Machine Learning, Supervised Learning
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1 Introduction

The principal component analysis (PCA) is the oldest, dated back to Pearson (1901), and the most widely

used dimension reduction method (Trevor, Robert, and Jerome, 2009). It transforms a large number

of variables into orthogonal components so that the original data can be replaced by a few principal

components. It has wide applications in all areas of science, including in particular management, finance,

and economics. Gu, Kelly, and Xiu (2018), Giglio and Xiu (2018), Mullainathan and Spiess (2017),

and Belloni, Chernozhukov, Fernández-Val, and Hansen (2017) are examples of its recent applications.

Nowadays, in the age of big data, it is important in dealing with the “curse of dimensionality”. Without

dimension reduction, prediction by conventional multivariate regressions can be subject to over-fitting

and suffer from poor out-of-sample performance. While the PCA is useful in reducing a large number

of predictors to just a few combinations of them, one recognized weakness is that it ignores the target

information completely.

In this paper, we propose a modification to the PCA by scaling each predictor according to its predictive

power on the target to be forecasted. By design, our scaled PCA, s-PCA, puts more weights on predictors

that are more important in forecasting the target. In contrast, the PCA puts equal weights on all predictors.

While the PCA helps to summarize information from a large number of predictors into a few factors and

filter out idiosyncratic noises, it ignores the target and is an unsupervised learning technique. If a predictor

is noisier than others, it inevitably affects the weights of factors disproportionately. The s-PCA exactly

corrects this deficiency by putting less weight on the noisier predictor. In a certain sense, our s-PCA method

is designed to let the target guide dimension reduction.

The s-PCA extracts target-specific factors in two steps. First, it runs a predictive regression of the target

on lagged values of each predictor to assess its predictive power. Instead of treating all the standardized

predictors equally as in the PCA, we scale each standardized predictor by its predictive regression slope.

Second, we extract factors from these scaled predictors by using the PCA method. Intuitively, the s-

PCA tends to underweight those variables with weak predictive power, while overweight those with strong

predictive power. The resulting s-PCA factors are thus more likely to outperform the PCA factors for

forecasting, because they take into account the target in the dimension reduction procedure.
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Theoretically, we derive the asymptotic properties of the s-PCA by imposing a factor structure on the set

of predictors, where each predictor loads on both a latent factor that is important to the target and the latent

factors irrelevant to the target. To gain analytical insights, we first consider a simple case of two predictors

with different predictive powers. We solve explicitly for the s-PCA factor and show that it outperforms the

PCA factor in terms of predicting the target. We then generalize it to the case of a large number of predictors

and show the asymptotic consistency of the s-PCA factors under mild regularity conditions.

We next explore the forecasting performance of the s-PCA with two applications. First, we forecast

the US stock market return using six sentiment proxies in Baker and Wurgler (2006). It is widely believed

that investor sentiment is a driver of bubbles and crashes and hence supposed to predict the market return.

However, a sentiment index measured by the first principal component of the six sentiment proxies fails to

significantly predict the market return (see, e.g., Baker and Wurgler, 2007; Huang, Jiang, Tu, and Zhou,

2015). Second, we forecast the US inflation with 123 macro variables from FRED-MD, a widely used

database in macroeconomic forecasting (McCracken and Ng, 2016). Although Stock and Watson (2002)

find that information in a large number of macro variables can be effectively summarized by a small number

of principal components, Boivin and Ng (2005) show that using macro PCA factors to forecast inflation

remains challenging.

We apply the s-PCA method to these two applications and find that it substantially raises the predictive

power in- and out-of-sample across 1- to 12-month horizons. Specifically, the in-sample predictive

regression coefficients turn from statistically insignificant with the PCA factors to significant with the s-

PCA factors in terms of the Newey-West t-statistics. The out-of-sample forecast performances as measured

by the Campbell and Thompson (2008) out-of-sample R2
OS also turn from negative or insignificant with the

PCA factors to significantly positive with the s-PCA factors.

Our s-PCA method is related to the target PCA (t-PCA) of Bai and Ng (2008). In their pioneering

study, Bai and Ng apply the PCA to a subset of predictors that are tested to have predictive power to the

target under either soft or hard threshold rules. The presumption is that not every predictor is relevant to the

target. Hence, they assign a binary (0-1) weight to each predictor to rule out the influence of uninformative

ones. In contrast, the s-PCA approach assigns a continuous weight to each predictor, assuming that all are

target-relevant but differ quantitatively in their predictive powers. The s-PCA methods also bypasses a need

2
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to pre-specify a threshold in selecting predictors and thus is a dense modelling technique in the sense of

Chernozhukov, Hansen, and Liao (2017) and Giannone, Lenza, and Primiceri (2018). As pointed out by Bai

and Ng (2008), the threshold selection can be sensitive to small changes in the data due to discreteness of

the decision rule. In contrast, our s-PCA accommodates all predictors without selecting a cut-off level.

Our study is also related to existing approaches of dimension reduction with supervised learning, such

as the partial least squares (PLS) regression, initially proposed by Wold (1966) and further developed by

Kelly and Pruitt (2015). The PLS extracts factors from predictors with a three-pass regression filter to

reduce common noise. Kelly and Pruitt (2013), Huang, Jiang, Tu, and Zhou (2015), and Light, Maslov,

and Rytchkov (2017), among others, show that it outperforms the PCA in various applications. Our s-PCA

method shares similar insights to increase predictive efficiency in dimension reduction through supervised

learning. In their extensively empirical applications of all these methods to forecast bond returns with real-

time macro data, Huang, Jiang, Tong, and Zhou (2019) find that the s-PCA performs better than both the

t-PCA and the PLS.

The rest of the article is organized as follows. Section 2 introduces the s-PCA method and discusses its

analytical properties. Section 3 explores two empirical applications. Section 4 concludes.

2 Methodology

In this section, we introduce the s-PCA in details. We show that the s-PCA analytically outperforms the

PCA for forecasting in a simplified setting and the s-PCA factors are asymptotically consistent in a general

setting.

2.1 s-PCA

Suppose there are N predictors, denoted by Xt = (x1,t , · · · ,xN,t)
′ for i = 1, · · · ,N and t = 1, · · · ,T . We are

interested in forecasting the target yt+h, with a forecast horizon of h. Each individual predictor xi,t is a

relevant but imperfect predictor of the target. Hence, relying on a few predictors is unlikely to capture

well the dynamics of the target. However, including all the predictors in a standard multivariate regression

suffers from the curse of dimensionality, which often leads to in-sample over fitting and poor out-of-sample
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forecasting performance, especially when N is large (see, e.g., Welch and Goyal, 2008; Ng, 2013).

To address the challenge of curse of dimensionality, a commonly adopted approach is to use the PCA

to reduce the dimension. Mathematically, the PCA extracts common factors Ft as linear combinations of

(x1,t , · · · ,xN,t)
′ via the following linear factor model,

xi,t = λ
′
i Ft + ei,t , (1)

where Ft are K-dimensional linear factors to be estimated, λi are K-dimensional parameters to be estimated,

and ei,t is the idiosyncratic noise term. An intuitive way to understand Ft is that it provides a natural ranking

of N mutually orthogonal linear combinations of Xt , which span the space of Xt . If the bulk of information in

Xt can be summarized by a small number of linear factors, i.e. K�N, dimension reduction can be achieved.

With the PCA factors Ft , one can forecast the target as:

yt+h = α +βFt + εt+h. (2)

In practice before extracting Ft , the N predictors are typically standardized to have the same variance.

While the PCA via Equation (1) maximally represents the total variations of the N predictors, it ignores

the target, and therefore is an un-supervised learning technique for dimension reduction. The resulting Ft

are not necessarily the most relevant for prediction, especially when the individual predictors consist of

common noises that are irrelevant to the target.

To overcome the PCA deficiency, we propose a more efficient method, s-PCA, which is designed to use

the target information to guide dimension reduction and filter out both the idiosyncratic and common noise

terms. Specifically, we estimate the s-PCA factor in two steps. In the first step, we form a panel of scaled

predictors, (β1x1,t , · · · ,βNxN,t), where the scaled coefficient βi is the slope from the predictive regression of

the target on the i-th (standardized) predictor:

yt+h = αi +βixi,t + εt+h, i = 1, · · · ,N. (3)

In the second step, we perform the PCA on (β1x1, · · · ,βNxN) to extract target-specific factors, denoted by ft ,

βixi,t = λ
′
i ft + ei,t . (4)

4
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Intuitively, the scaled series βixi,t reflects the i-th predictor’s predictive power on the target. A predictor

with strong forecasting power receives a larger weight (i.e., higher absolute value of βi), whereas a predictor

with weak forecasting power receives a smaller weight. In short, the s-PCA performs the PCA on the scaled

predictors, rather than on the raw predictors.

Finally, we predict the target with the s-PCA factors as:

yt+h = α +β ft + εt+h. (5)

It should be noted that, in our out-of-sample predictions, all the data standardization and model estimation

are done recursively, so that the forecast at time t uses information available only up to time t.

2.2 Analytical Comparison with PCA

In this subsection, we provide some insights as to why the s-PCA is supposed to outperform the PCA for

forecasting in a simplified setting, which permits analytical solutions to both the s-PCA and PCA.

We assume that there are only two predictors, x1,t and x2,t , which have the following latent factor

structure:

x1,t = Zt +Et +u1,t , (6)

x2,t = η1Zt +η2Et +u2,t , (7)

where Zt is a latent predictor related to the target yt+h through:

yt+h = α +βZt + et+h, (8)

where Et is the common noise component unrelated to the target, η1,η2 ∈ [0,1] are the sensitivity parameters

of x2,t to Zt and Et , and ui,t (i= 1,2) are the idiosyncratic noises terms. Without loss of generality, we assume

that Zt ,Et , and ui,t (i = 1,2) are independent of each other and have means zero and variances σ2
Z ,σ

2
E , and

σ2
u , where the idiosyncratic noises u1,t and u2,t have the same variance.

For notational simplicity, we ignore below the time subscript t. The covariance matrix of x1 and x2 is

5
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then

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

=

 σ2
Z +σ2

E +σ2
u η1σ2

Z +η2σ2
E

η1σ2
Z +η2σ2

E η2
1 σ2

Z +η2
2 σ2

E +σ2
u

 . (9)

Let σ1 = sσ2, , where s≥ 1 with our assumption η1,η2 ∈ [0,1]. Σ can be rewritten as:

Σ =

 s2 ρh

ρs 1

σ
2
2 . (10)

Hence, the first PCA factor is

F = w′x = w1x1 +w2x2,

where the weights, as a 2-dimensional vector, are proportional to the eigenvector of the larger eigenvalue of

Σ as

w ∝

 1

1−s2+
√

(1−s2)2+4ρ2s2

2ρs

 , (11)

where w2 ≤ w1 = 1, with equality when s = 1, i.e. x1 and x2 have the same variance.

When regressing the target y at time t +h on x1 or x2 at time t, we have

β1 =
Cov(y,x1)

Var(x1)
=

Cov(y,Z)
Var(x1)

,

β2 =
Cov(y,x2)

Var(x2)
= η1

Cov(y,Z)
Var(x2)

,

which implies that β1 = β2/(η1s2). The covariance matrix of β1x1 and β2x2 is then given by

Σ̃ =

 β 2
1 σ2

1 β1β2ρσ1σ2

β1β2ρσ1σ2 β 2
2 σ2

2

=

 1 ρη1s

ρη1s η2
1 h2

β
2
1 σ

2
1 . (12)

Hence, the first s-PCA factor is f = w̃1x1 + w̃2x2, with weights proportional to the eigenvector of the larger

eigenvalue of Σ̃ as

w̃ ∝

 1

η2
1 s2−1+

√
(η2

1 s2−1)2+4ρ2η2
1 s2

2ρη1s

 , (13)
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which suggests that w̃2 > w̃1 = 1 if η1 is relatively large, i.e., the predictor x2 is relatively more informative.

Comparing (11) and (13), the first PCA factor always allocates less weight on x2 no matter if it is more

informative or not when η1 < 1 or η2 < 1 or both. In contrast, the x2 weight of the first s-PCA factor does

depend on its predictive power. For example, when η1 = 1 and η2 = 0 (i.e., x2 is more informative), (11)

and (13) suggest that w2 < 1 < w̃2 (i.e., the s-PCA factor allocates a larger weight on x2), and therefore, the

s-PCA factor should have more power in predicting the target. When η1 = 0 and η2 = 1 (i.e., x2 is a pure

noise), (11) and (13) suggest that w̃2 = 0 < w2, and therefore, the PCA factor assigns too much weight on

x2 and will underperform the s-PCA factor. Since the s-PCA weights the more important predictor properly,

its predictive power is generally higher than the PCA.

2.3 Asymptotic Consistency of s-PCA

In this subsection, we show that the s-PCA method is asymptotically consistent in extracting the target-

specific factors. Suppose the target and predictors follow the following structure:

yt+h = Zt + et+h, t = 1, · · · ,T, (14)

Xi,t = λ
′
i Gt + εi,t = miZt + j′iEt + εi,t , i = 1, · · · ,N. (15)

For simplicity, Zt is assumed to be a one-dimensional latent factor that is important to the target (it can be

also a combination of multiple factors), and Et is an (r− 1)-dimensional vector of latent common factors

irrelevant to target. Gt = (Zt ,E ′t )
′ is an r-dimensional vector that collects both sets of the latent factors, and

λi = (mi, j′i)
′ is the associated vector of factor loadings. et+1 and εi,t are the innovations of the target at t +h

and the idiosyncratic part of the predictor xi,t , respectively.

We make the following assumptions on the above factor model. For ease of exposition, denote Λ =

(λ1, · · · ,λN)
′, M = (m1, . . . ,mN)

′, G = (G1, . . . ,GT )
′, Z = (Z1, . . . ,ZT )

′, and E = (E1, . . . ,ET )
′.

Assumption 2.1. (i) yt+h and xi,t for each i = 1, · · · ,N are jointly normally distributed.

(ii) E(Ztet+h) = 0, E(Etet+h) = 0, E(et+hεi,t) = 0, and E(Ztεi,t) = 0.

Assumption 2.2. There exists a positive constant c, such that for all N and T ,

(i) As N→∞, 1
N Λ′Λ

p−→ Σλ > 0, Σλ =

(
σλ ,Z 01×(r−1)

0(r−1)×1 Σλ ,E

)
, and max1≤i≤N E‖λi‖2q≤ c for some q≥ 4.

7
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(ii) E‖Gt‖2q+ε ≤ c for some ε > 0, q > 4, and all t; as T → ∞, 1
T ∑

T
t=1 GtG′t

p→ ΣG > 0, where ΣG is

positive definite.

(iii) Let γN(s, t) = 1
N ∑

N
i=1E(εitεis) and ξst =

1
N ∑

N
i=1[εitεis −E(εitεis)], max1≤s,t≤T N2E|ξst |4 ≤ c and

T−1
∑

T
s=1 ∑

T
t=1 ‖γN(s, t)‖2 ≤ c.

Assumption 2.1 on normal distribution is commonly stated in the factor analysis literature, while

Assumption 2.2 specifies regularity conditions on the time-series and cross-sectional dependance of factors

and loadings akin to Bai and Ng (2002).

Proposition 2.1. Under Assumptions 2.1 and 2.2, and denote CNT = min(
√

N,
√

T ), there exists an

asymptotically non-singular H = Op(1), such that

1√
T
‖ f̂ H−1−Z‖= Op(C−1

NT ).

The proof is provided in the Appendix. The proposition says that the true factor is asymptotically

identified, establishing the consistency of the s-PCA factors.

3 Empirical Applications

In this section, we show that the s-PCA outperforms the PCA for prediction with two empirical applications.

The first application is predicting the stock market return with investor sentiment. Baker and Wurgler

(2006) propose a top-down sentiment index, which is the first PCA factor of six individual measures of

investor sentiment. The PCA captures their common component and filters out idiosyncratic noises in the

six measures, consisting of 1) closed end fund discount rate (CEFD), 2) share turnover de-trended by past 5

years’s average (TURN), 3) number of IPOs (NIPO), 4) first day return of IPO (RIPO), 5) dividend premium

measured as difference in market-to-book ratios of dividend payers and nonpayers (PDND), and 6) equity

share in new issuance (S). Baker and Wurgler (2006) and subsequent studies, such as Stambaugh, Yu, and

Yuan (2012), document a strong effect of investor sentiment on smaller, hard-to-value, and difficult-to-

arbitrage firms. However, when predicting the market return, the evidence is weak or insignificant (Huang,

Jiang, Tu, and Zhou, 2015).

The second application is predicting inflation with a large panel of macro variables. Boivin and Ng

(2005) find that the PCA factor extracting from macro variables has much weaker power in predicting

8
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inflation than in predicting industrial production. In this paper, we consider monthly US economic indictors

from the FRED-MD database, which is maintained by St. Louis Fed.1 As described in more detail in

McCracken and Ng (2016), this database represents a recent effort by the authors and Fed staffs to compile

a standard macroeconomic database to facilitate “big-data” macro research. It extends the widely used

Stock-Watson dataset (Stock and Watson, 2006) and covers broad economic categories such as output and

income, labor force and unemployment, consumption expenditure and housing indicators, money stock and

credit, and price indices. We collect a total of 123 indicators with no missing data during the span of

January 1960 to December 2017. The detailed list and transformation codes to ensure stationarity of each

macro variable is provided in the data appendix of McCracken and Ng (2016).

The market return is measured by the S&P 500 index excess return, and inflation is calculated as the log

change in the US CPI all items. The forecast horizon varies from 1 to 12 months.

Figure 1 presents the predictive power of each variable in predicting the target. Specifically, Panel A

plots the R2s of regressing 12-month ahead market return on each individual sentiment proxy separately.

We observe that the first day return of IPO (RIPO) displays the highest R2 of 7%, followed by equity share

in new issuance (S) and turnover (TURN) (about 2% and 1%). The predictive power of other sentiment

proxies are rather weak, with close to zero R2. Analogously, Panel B plots the R2s of predicting 12-month

ahead inflation with each macro variable. To highlight the incremental predictive power of macro variables,

we control for lagged values of inflation with number of lags determined by the BIC and use the residual

of inflation as the target. It is evident that among different categories, housing variables on average have

the highest predictive power, which are followed by labor market condition, prices and one of the money

variables. The other categories, such as the output and interest rates, have marginal predictive power.

3.1 In-sample Results

In this subsection, we explore the in-sample forecasting performance of the PCA and s-PCA factors. The

sample period for predicting market return is 1965:07–2016:12, and for predicting inflation is 1960:01–

2017:12. We focus on the first order factors of the two approaches because they capture the majority of

predictive power.

1The dataset is updated in a timely manner and can be downloaded for free from the website http://research.stlouisfed.
org/econ/mccracken/sel/.
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Figure 1: In-Sample R2s of Predicting Market Return and Inflation with Individual Predictors
Panel A plots the in-sample R2s (in percentage) of predicting 12-month ahead market return using each of
the six individual sentiment proxies from Baker and Wurgler (2006), consisting of closed end fund discount
rate (CEFD), share turnover (TURN), number of IPOs (NIPO), first day return of IPO (RIPO), dividend
premium (PDND), and equity share in new issuance (S). Panel B plots the in-sample R2s (in percentage) of
predicting the one year ahead inflation using each of the 123 individual macro variables from FRED-MD
data set of McCracken and Ng (2016), consisting of output and income (No. 1-16), labor market (No. 17-
47), consumption and housing (No. 48-64), money and credit (No. 65-78), interest and exchange rate (No.
79-99), and prices (No. 100-123). The sample period is 1965:07–2016:12 in Panel A, and 1960:01–2017:12
in Panel B.

CEFD TURN NIPO RIPO PDND S
0

2

4

6

8

10
Panel A: Predict annual stock market return with each sentiment variable

R
2
(%

)

Output Labor Housing Money Interest Rates Prices
0

2

4

6

8

10
Panel B: Predict annual inflation with each macro variable

R
2
(%

)

To zoom in the composition of these factors, Figure 2 plots the R2s of regressing each predictor on

the PCA and s-PCA factors, respectively. A higher R2 suggests that the factor captures more variation and

therefore loads more heavily on the predictor. Panel A shows that the PCA factor loads most heavily on

dividend premium (PDND) with R2 above 60%, which is followed by number of IPO (NIPO), first day IPO

return (RIPO), closed end fund discount (CEFD) and turnover (TURN) with R2s of around 40%, and has the
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Figure 2: R2s of Regressing Individual Predictors on PCA and s-PCA Factors
This figure plots the R2s of regressing individual sentiment proxies and macro variables on the PCA
and s-PCA factors, respectively. The sample period for sentiment proxies is 1965:07–2016:12
and for macro variables is 1960:01–2017:12. Sentiment proxies include closed end fund discount
rate (CEFD), turnover (TURN), number of IPOs (NIPO), first day return of IPO (RIPO), dividend
premium (PDND), and equity share in new issuance (S). Macro variables include output and
income (No. 1-16), labor market (No. 17-47), consumption and housing (No. 48-64), money
and credit (No. 65-78), interest and exchange rate (No. 79-99), and prices (No. 100-123).
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Panel C: Regress individual macro variables on its PCA factor

R
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Output Labor Housing Money Interest Rates Prices
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least loading on equity share of new issuance (S). In contrast, Panel B displays a distinct pattern of loadings

for the s-PCA factor. First, the R2s are on average lower than those of the PCA factor, indicating that the

s-PCA factor does not maximally explain the total variation of the sentiment proxies. A comparison with

Panel A of Figure 1 further reveals that the pattern of loadings for the s-PCA factor is tilting towards those

variables with higher predictive powers. In particular, the equity share of new issuance, due to its relatively
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high predictive power, is having the highest loading in constructing the s-PCA factor.

Panel C suggests that the PCA factor loads most heavily on output and labor market variables with

an average R2 of around 40%. Panel D reveals that the s-PCA factor loads most heavily on the housing

variables. The average R2s are again lower than that of the PCA factor, implying that the s-PCA factor does

not explain the majority of the total variation of macro variables. The R2 pattern in Panel D also echoes the

pattern in Panel B of Figure 1, as housing variables display higher predictive power.

We next conduct in-sample predictive regression tests for both the PCA and s-PCA factors. Table 1

reports the regression slopes, Newey-West t-statistics, and R2s of the PCA and s-PCA factors in predicting

market return and inflation. The factors are extracted from 6 individual sentiment proxies in Panel A and

from 123 macro variables in Panel B. For ease of interpretation, we normalize all the factors to have a zero

mean and a standard deviation of one.

Table 1: In-Sample Results of Forecasting Market Return and Inflation
This table reports the slopes, Newey-West t-statistics, and R2s of the PCA and s-PCA factors in predicting
market return and inflation, respectively. The factors are extracted from 6 sentiment proxies over 1965:07–
2016:12 in Panel A, and from 123 macro variables over 1960:01–2017:12 in Panel B. Since inflation is
persistent, we control for lagged inflation to highlight the incremental forecasting power of macro variables.
Forecast horizon ranges from 1 to 12 months. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1%
levels, respectively.

PCA s-PCA

horizon β t-stat R2 β t-stat R2

Panel A: Forecast market return
1 month −0.24 −1.23 0.00 −0.60∗∗∗ −3.54 0.02
3 months −0.64 −1.23 0.01 −1.61∗∗∗ −3.87 0.05
6 months −1.14 −1.11 0.01 −2.84∗∗∗ −3.18 0.07
12 months −1.56 −0.82 0.01 −4.27∗∗ −2.13 0.07

Panel B: Forecast inflation
1 month 0.01 1.16 0.00 0.03∗∗∗ 2.66 0.02
3 months 0.03 0.69 0.00 0.10∗∗∗ 2.40 0.03
6 months 0.07 0.77 0.00 0.20∗∗ 2.18 0.04
12 months 0.30 1.62 0.03 0.56∗∗∗ 2.74 0.09

Panel A shows that the PCA sentiment factor fails to significantly predict market return across horizons,

consistent with Huang, Jiang, Tu, and Zhou (2015). In contrast, the s-PCA factor significantly forecasts

market returns with t-statistic ranging from −3.54 to −2.13 and R2s from 2% to 7% across horizons. For
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instance, a one standard deviation increase in the s-PCA sentiment factor is associated with a 0.60% decrease

in the next month expected return. In contrast, a one standard deviation increase in the PCA sentiment factor

is associated with only a 0.24% decrease in the next month expected return.

Panel B indicates that the macro PCA factor exhibits weak predictive power for inflation at the 1- to

12-month horizons. The s-PCA factor manages to raise the predictive power with t-statistic ranging from

2.66 to 2.74 and R2 from 2% to 9% across horizons. In particular, a one standard deviation increase in the

s-PCA factor is associated with a 0.56% increase of one year ahead inflation. In contrast, a one standard

deviation increase in the PCA factor is associated with a 0.30% increase of one year ahead inflation.

3.2 Out-of-sample Results

This subsection examines the out-of-sample predictive power of the PCA and s-PCA factors in the above

two applications. Although the in-sample tests provide more efficient estimation using all available data, the

out-of-sample exercise helps to avoid in-sample over-fitting and mimics the real time forecasting situation

faced by the forecasters.

We use a recursive estimation procedure with expanding windows to obtain the out-of-sample forecasts.

In particular, we first divide the full sample into an in-sample training period consisting of the first m

observations, and an out-of-sample evaluation period consisting of the last q observations. Take the s-

PCA factor as an example. At the initial forecasting time of month m, we are restricted to use xi,t , with

i = 1, · · · ,N and t = 1, · · · ,m, to estimate the s-PCA factor, denoted by ft for t = 1, · · · ,m, through equations

(3) and (4). The initial out-of-sample forecast based on fm is then given by ŷm+h = α̂m+ β̂m fm, where α̂m and

β̂m are estimated through the factor forecasting equation (5) using target and estimated factor up to month

m, i.e. {yt}m
t=h+1 and { ft}m−h

t=1 . Proceeding in this manner through the end of the out-of-sample evaluation

period, we generate a series of q− h out-of-sample forecasts of the target, {ŷt+h}T−h
t=m . For the purpose of

comparison, we also generate a series of q−h out-of-sample forecasts by using the PCA factor.

We calculate the Campbell and Thompson (2008) R2
OS statistic to evaluate the out-of-sample perfor-

mance, which is defined as

R2
OS = 1− ∑

T−h
t=m (ym+h− ŷm+h)

2

∑
T−h
t=m (ym+h− ym+h)

2
, (16)
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where {yt+h}T−h
t=m in the numerator is the benchmark out-of-sample forecast by historical average or auto-

regressive forecasting model. Thus, the R2
OS statistic can be interpreted as the percentage reduction in mean

squared prediction error (MSPE) for the forecasts generated by latent factors relative to the benchmark. If

a factor carries out-of-sample predictive information, we should observe a positive R2
OS as an indication of

higher forecast accuracy. We use the Clark and West (2007) statistic to test whether the percentage reduction

in MSPE by the s-PCA factor against the benchmark forecast is statistically significant. This amounts to a

test on the null hypothesis of R2
OS ≤ 0 against the one-sided alternative of R2

OS > 0.

Table 2: Out-of-Sample R2
OSs of of Forecasting Market Return and Inflation

This table reports out-of-sample R2
OSs (in percentage) of the PCA and s-PCA factors in predicting market

return and inflation, respectively. The factors are extracted from 6 sentiment proxies in Panel A and from
123 macro variables in Panel B. All the factors and predictive regressions are recursively estimated with an
expanding window scheme. R2

OS is computed against the historical average as benchmark in Panel A and
against an autoregressive model with lagged inflation as benchmark in Panel B. Statistical significance for
R2

OS is based on the p-value of the Clark and West (2007) MSPE-adjusted statistic for testing H0 : R2
OS ≤ 0

against HA : R2
OS > 0. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

Forecast horizon ranges from 1 to 12 months. The out-of-sample period is 1985:01–2016:12 in Panel A and
1985:01–2017:12 in Panel B.

1 month 3 months 6 months 12 months

R2
OS (%) p-value R2

OS (%) p-value R2
OS (%) p-value R2

OS (%) p-value

Panel A: Forecast market return
PCA 0.21 0.11 0.43∗ 0.08 0.36 0.22 −1.87 0.85
s-PCA 1.21∗∗∗ 0.01 3.31∗∗∗ 0.00 5.21∗∗∗ 0.00 2.97∗ 0.07

Panel B: Forecast inflation
PCA −1.30 0.61 −4.92 0.59 −9.01 0.62 −10.30 0.48
s-PCA 4.99∗∗∗ 0.00 8.82∗∗∗ 0.00 10.42∗∗∗ 0.00 7.48∗∗∗ 0.00

Panel A of Table 2 presents the out-of-sample R2
OS of predicting market return with the PCA and s-

PCA factors. We use the data over 1965:07 to 1984:12 as the initial estimation period so that the forecast

evaluation period spans from 1985:01 to 2016:12. The R2
OSs are computed against the benchmark forecasts

based on historical average, which is a very stringent out-of-sample benchmark for stock return predictability

according to Welch and Goyal (2008). We observe that the PCA sentiment factor generates positive R2
OSs

from 0.21% to 0.36% for a horizon of 1 to 6 months, but delivers a negative R2
OS when the forecast horizon

is 1 year. The positive R2
OSs are not statistically significant based on the Clark and West (2007) tests except

for the forecast horizon of 3 months. In contrast, the R2
OSs with the s-PCA factor increase substantially to a
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range of 1.21% to 5.21%, suggesting that it delivers a lower MSPE than the the PCA factor. Moreover, this

outperformance is statistically significant.

Panel B of Table 2 presents the out-of-sample R2
OSs of predicting inflation with the macro PCA and

s-PCA factors. The initial estimation period is set to be 1960:01 to 1984:12, so that the forecast evaluation

period spans from 1985:01 to 2017:12. We compute R2
OSs generated by a factor forecasting model

augmented with lagged inflation against the benchmark inflation forecasts based only on autoregressive

models with lagged inflation. The number of lags in both the competing and benchmark models are

determined by the BIC. We observe that the PCA factor generates negative R2
OSs across the forecast horizons.

This weak out-of-sample predictive performance is consistent with our previous in-sample results in Panel

B of Table 1. Instead, the s-PCA factor manages to substantially raise the R2
OSs to a range from 4.99% to

7.48% across horizons, all of which are statistically significant.

In sum, this section empirically shows that the s-PCA is a better method for dimension reduction than

the PCA in terms of predictability.

4 Conclusion

In this paper, we propose a novel dimension reduction technique, s-PCA, to extract factors for predicting a

target with many predictors. In comparison with the PCA, the s-PCA is a supervised learning technique that

uses the target to guide the factor extraction. It is also a simple modification to the standard PCA: it extracts

principal components from predictors scaled by their predictive powers instead of from the raw values of

predictors.

We derive analytical properties of the s-PCA factors by assuming a linear latent factor structure on the

predictors. In a simple two predictors case, we show that compared with the PCA, the s-PCA factor tilts

towards the more informative predictor. In a more general case with a large number of predictors, we show

that the s-PCA factors are asymptotically consistent.

We then apply the s-PCA method to two empirical applications: forecasting market return with sentiment

proxies and forecasting inflation with a large number of macro variables. While the PCA factors generally

fail to display significant predictive power, the s-PCA factors exhibit significant predictive ability both in-
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and out-of-sample across 1- to 12-month forecast horizons.
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Appendix: Proof of Proposition 2.1

We first rewrite the scaled predictors as

x∗i,t =β̂ixit =

(
1
T ∑

T
t=1 yt+hxi,t

1
T ∑

T
t=1 x2

i,t

)
xi,t

=

(
1
T ∑

T
t=1(Zt + et+h)(miZt + j′iEt + εi,t)

1
T ∑

T
t=1 x2

i,t

)
(miZt + j′iEt + εi,t).
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Consider the numerator

1
T

T

∑
t=1

(Zt + et+h)(miZt + j′iEt + εi,t)

=mi
1
T

T

∑
t=1

Z2
t +mi

1
T

T

∑
t=1

Ztet+h︸ ︷︷ ︸
E(Zt et+h)=0

+ j′i
1
T

T

∑
t=1

EtZt︸ ︷︷ ︸
Under normal assumption, PCA components are asymptotically independent

+ j′i
1
T

T

∑
t=1

Etet+h︸ ︷︷ ︸
E(Et et+h)=0

+
1
T

T

∑
t=1

Ztεi,t︸ ︷︷ ︸
E(Zt εi,t)=0

+
1
T

T

∑
t=1

et+hεi,t︸ ︷︷ ︸
E(et+hεi,t)=0

p→mi
1
T

T

∑
t=1

Z2
t as T → ∞.

Now we have the scaled predictors as

x∗i,t =β̂ixi,t =

(
1
T ∑

T
t=1 Z2

t
1
T ∑

T
t=1 x2

i,t

)(
m2

i Zt +mi j′iEt +miεi,t
)
+op(1) = m∗i Zt + ε

∗
i,t +op(1),

where m∗i = m2
i ×
(

1
T ∑

T
t=1 Z2

t
1
T ∑

T
t=1 x2

i,t

)
and ε∗i,t =

(
1
T ∑

T
t=1 Z2

t
1
T ∑

T
t=1 x2

i,t

)
(mi j′iEt +miεi,t).

Rewriting the above equation in vector form, we have

x∗i = Zm∗i + ε
∗
i +op(1), (17)

where x∗i =
(

x∗i,1, ...,x
∗
i,T

)′
and Z, ε∗i are defined in an analogous manner.

We then estimate the s-PCA factor f̂ through the eigenvalue decomposition as,[
1

NT

N

∑
i=1

x∗i x∗′i

]
f̂ = f̂VNT , (18)

where 1
T f̂ ′ f̂ = I1 and VNT is the largest eigenvalue of the matrix inside the square brackets.

Combing the above two equations, we have

f̂VNT =
1

NT
Zm∗i ε

∗′
i f̂ +

1
NT

N

∑
i=1

ε
∗
i m∗i Z′ f̂ +

1
NT

N

∑
i=1

ε
∗
i ε
∗′
i f̂ +

1
NT

N

∑
i=1

Zm∗i m∗i Z′ f̂ +op(1)

=I1 + I2 + I3 +
1

NT

N

∑
i=1

Zm∗i m∗i Z′ f̂ +op(1).

It follows that f̂VNT −Z
( 1

N ∑
N
i=1 m∗i m∗i

) Z′ f̂
T = I1 + I2 + I3 +op(1).

Let H =
( 1

N ∑
N
i=1 m∗i m∗i

) Z′ f̂
T V−1

NT . It is easy to show that H = Op(1) and is asymptotically nonsingular.
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Then we have f̂ H−1−Z = [I1 + I2 + I3]
(

Z′ f̂
T

)−1 ( 1
N ∑

N
i=1 m∗i m∗i

)−1
+op(1) and

1√
T

∥∥ f̂ H−1−Z
∥∥≤ 1√

T
(‖I1‖+‖I2‖+‖I3‖)

∥∥∥∥∥
(

Z′ f̂
T

)−1
∥∥∥∥∥
∥∥∥∥∥∥
(

1
N

N

∑
i=1

m∗i m∗i

)−1
∥∥∥∥∥∥+op(T−1/2).

It remains to analyze the ‖Il‖ for l = 1,2,3. For I1, we have

1√
T
‖I1‖=

∥∥∥∥ 1√
T

1
NT

ZM∗′ε∗ f̂
∥∥∥∥≤ 1√

N

∥∥∥∥ f√
T

∥∥∥∥∥∥∥∥ f̂√
T

∥∥∥∥ 1√
NT

∥∥M∗′ε∗
∥∥= Op(N−1/2),

where M∗= (m1, ...,mN)
′ and ε∗= (ε∗1 , ...,ε

∗
N) and we use the fact that 1

NT ‖M
∗′ε∗‖2 =Op(1) by Assumption

2(iii). Similarly, we can show that 1√
T
‖I2‖= Op(N−1/2).

For I3, we have

1
T
‖I3‖2 =

1
T

∥∥∥∥ 1
NT

ε
∗′

ε
∗ f̂
∥∥∥∥2

≤ 2
T

∑
t=1

∥∥∥∥∥T−3/2
T

∑
s=1

γN(s, t) f̂ ′s

∥∥∥∥∥
2

+2
T

∑
t=1

∥∥∥∥∥T−3/2
T

∑
s=1

ξst f̂ ′s

∥∥∥∥∥
2

=2‖I3(a)‖+2‖I3(b)‖ ,

where γN(s, t) and ξst are defined in Assumption 2.2(iii). Note that

‖I3(a)‖= T−1

(
T−1

T

∑
s=1

∥∥ f̂s
∥∥2

)(
T−1

T

∑
s=1

T

∑
t=1
‖γN(s, t)‖2

)
= Op(T−1)

and

‖I3(b)‖= N−1

(
T−1

T

∑
s=1

∥∥ f̂s
∥∥2

)(
T−2N

T

∑
s=1

N

∑
t=1
‖ξs,t‖2

)
= Op(N−1)

by the fact that T−1
∑

T
s=1 ∑

T
t=1 ‖γN(s, t)‖2 ≤ c and E(‖ξst‖2) ≤ N−1c under Assumption 2(iii). Then

1√
T
‖I3‖= Op(T−1/2 +N−1/2). Denote CNT = min(

√
N,
√

T ), it follows that

1√
T
‖ f̂ H−1−Z‖= Op(C−1

NT ).

This completes the proof.
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