
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2021

A Lagrangian column generation approach for the probabilistic A Lagrangian column generation approach for the probabilistic

crowdsourced logistics planning crowdsourced logistics planning

Chung-kyun HAN
Singapore Management University, ckhan.2015@phdis.smu.edu.sg

Shih-Fen CHENG
Singapore Management University, sfcheng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Computer Engineering Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A Lagrangian Column Generation Approach for the Probabilistic
Crowdsourced Logistics Planning

Chung-Kyun Han1 and Shih-Fen Cheng2

Abstract— In recent years we have increasingly seen the
movement for the retail industry to move their operations
online. Along the process, it has created brand new patterns
for the fulfillment service, and the logistics service providers
serving these retailers have no choice but to adapt. The most
challenging issues faced by all logistics service providers are
the highly fluctuating demands and the shortening response
times. All these challenges imply that maintaining a fixed fleet
will either be too costly or insufficient. One potential solution
is to tap into the crowdsourced workforce. However, existing
industry practices of relying on human planners or worker’s
self-planning have been shown to be inefficient and laborious.
In this paper, we introduce a centralized planning model
for the crowdsourced logistics delivery paradigm, considering
individual worker’s spatio-temporal preferences. Considering
worker’s spatio-temporal preferences is important for the
planner as it could significantly improve crowdsourced worker’s
productivity. Our major contributions are in the formulation
of the problem as a mixed-integer program and the proposal of
an efficient algorithm that is based on the column generation
and the Lagrangian relaxation frameworks. Such a hybrid
approach allows us to overcome the difficulty encountered
separately by the classical column generation and Lagrangian
relaxation approaches. By using a series of real-world-inspired
numerical instances, we have demonstrated the effectiveness
of our approach against classical column generation and La-
grangian relaxation approaches, and a decentralized, agent-
centric greedy approach. Our proposed hybrid approach is
scalable to large problem instances, with reasonable solution
quality, and achieves better allocation fairness.

I. INTRODUCTION

For the past two decades, the retail industry has been
slowly moving online. During the COVID-19 pandemic,
this trend has accelerated tremendously globally, and this
shift has put a great strain on the fulfillment infrastructure,
particularly the last-mile delivery service. The creation of
year-around shopping events by various giant online retail-
ers and the pursuit for ever-shorter delivery time further
exacerbate the situation, as the delivery demands are now
increasingly spiky and with short turnaround time. This
makes it challenging to maintain a traditional logistics team
that comprises solely of full-time workers.

To tackle these challenges, many logistics service
providers have been adopting the paradigm of crowdsourced
(CS) logistics. The CS logistics service could be organized in
many shapes and forms, but the general idea is to incorporate
part-time workers during the peak period, to make up for the

1Chung-Kyun Han is currently an Engineering Manager with the LG
Display ckhan.2015@phdcs.smu.edu.sg

2Shih-Fen Cheng is currently an Associate Professor of Computer Sci-
ence with the School of Computing and Information Systems, Singapore
Management University sfcheng@smu.edu.sg

insufficient capacity. Utilizing CS workers has the benefits
of not having to commit to the capacities that are only
required during demand peaks. However, as more companies
are now incorporating this concept, logistics companies are
also competing against each other for the pool of CS workers.
The new challenge for CS logistics is thus to more efficiently
utilize CS workers.

There are two major ways in which firms engage CS
workers: 1) the push-based approach, where the firm “as-
sign” jobs to CS workers, and 2) the pull-based approach,
where the CS workers are in charge of selecting jobs. As the
push-based approach does not take into account workers’
preference, it oftentimes leads to high rejection rate (if the
CS platform allows job rejection), low worker satisfaction,
or low productivity (the assigned jobs might be inconvenient
for CS workers). For the pull-based approach, the issue is
the cognitive load for CS workers to schedule the jobs they
are interested in taking constantly. Additionally, it is also
empirically shown that pull-based scheme often leads to
the “super-agent” phenomenon [1], i.e., a small number of
dedicated workers tend to dominate the task pool by selecting
the most desirable/profitable tasks consistently.

As extensively discussed in [2], due to the uncoordinated
and myopic decision making process, CS workers in the
pull-based mode perform significantly worse than their peers
working in the push-based mode, in terms of both the
productivity and the equality of task distribution. However, to
effectively implement push-based mode, the central planner
would need to take into account individual worker’s desired
work schedule and their spatiotemporal preference. This is
particularly important when a CS worker is truly part-time,
and has to be at certain locations (e.g., residence or office) at
designated time windows, and only has limited time duration
in which he could work on the assigned jobs.

In this research, we extend [2] by defining a task to have
both pickup and delivery locations. We also allow planners to
specify time windows for all tasks and locations along work-
ers’ desired routes. We achieve these additional requirements
while considering CS workers’ probabilistic desired routes.
In summary, we make the following contributions:
• First, we formulate the CS logistics planning problem

as a mixed integer linear program (MILP). Our major
innovation is the extension of the probabilistic CS
planning method to the domain of last-mile logistics,
where all tasks now contain both pickup and delivery
locations. We also allow the planner to specify the time
window requirements for all nodes included in the plan.
This is on top of the probabilistic incorporation of CS

2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)
August 23-27, 2021. Lyon, France

978-0-7381-2502-2/21/$31.00 ©2021 IEEE 107

workers’ pre-existing routine routes.
• Second, as the MILP formulation is intractable in

practice, we develop a novel solution approach that is
based on both the column generation (CG) framework
and the Lagrangian relaxation (LR) framework. This
hybrid approach allows us to address the challenges we
encounter when we attempt to implement the classical
CG and LR approaches.

• Finally, the performances of all competing approaches
are evaluated in the real-world-inspired scenarios based
on inputs from our industry partner that relies heavily on
the CS workers for their last-mile delivery operations.
In our numerical experiments, we quantify both the
computational efficiency and the solution quality of
our proposed approaches against classical CG and LR
approaches as baselines. We also discuss the practical
implication of having a central planner versus an agent-
centric task selection scheme (the pull-based scheme).

II. RELATED LITERATURE

Crowdsourcing and Last-Mile Logistics: Before the
2010s, CS tasks are mostly online only (e.g., via Amazon’s
Mechanical Turk platform), but some authors already suggest
the idea of location-specific CS (e.g., see [3]). In recent years,
with sensor-rich smartphones becoming increasingly accessi-
ble, location-specific CS tasks are becoming more prevalent,
and applications such as Uber have demonstrated how CS
workers can be effectively incorporated using smartphone
Apps. Following this trend, logistics service providers are
also seeing CS as a viable operational paradigm (e.g., [4]).

There are many attempts in dealing with a single-point CS
task such as environment monitoring and location-specific
data collection (e.g., [5], [6]), however, these approaches
cannot directly handle last-mile delivery tasks, which have
pickup and delivery locations. Some researchers [7] have
studied the utilization of CS workers in last-mile logistics,
however, they do not consider the pre-existing routine routes
of CS workers.

Lagrangian Relaxation and Column Generation: In
combinatorial optimization problems, a small group of con-
straints tends to make the problems complicated. Lagrangian
relaxation (LR) [8] and column generation (CG) [9] are well-
known optimization techniques for dealing with those com-
plicating constraints. In logistics planning, both approaches
are shown to be highly effective (e.g., see [2] and [10])

More recently, researchers also look at different ways
of combining CG and LR (e.g., see [11]), which can be
classified into two categories: a) using LR on the extended
formulation (e.g., [12]), b) using LR on the compact for-
mulation (e.g., [13]). While the The first idea uses LR to
approximate dual variables that are inputs for calculating the
reduced cost of a new column (decision variable), the second
idea generates columns with Lagrangian costs deduced from
a compact formulation. Whereas those approaches are more
CG-centric, our approach is more LR-centric, which makes
ours deal with larger and more realistic problem instances
efficiently.

III. PROBLEM DESCRIPTION AND MODEL

As a central planner, we assume that the set of all CS
workers (agents) is known to us. All agents are assumed to be
part-time and have their own daily routine routes, where each
routine route is defined as a sequence of locations that an
agent has to visit at designated time windows. These routine
routes could be self-reported or inferred from past mobility
traces, thus the actual routine route taken is inherently
probabilistic. All agents are required to report their capacity
limits on volume and weight, and the time budgets they are
willing to spend on delivery tasks (their time budgets could
be routine-route-dependent). Our objective is to maximize
the expected reward from all agents’ task fulfillment, subject
to agents’ capacity limits and their uncertain routine routes.
The critical decision for the planner is the set of tasks to
assign to each agent, and the suggested delivery sequence
depending on an agent’s routine route.

Our model is similar to what was proposed by [2], where
the task assignment and routing in a CS planning scenario
is elegantly captured by a variant of the team orienteering
problem. To satisfy the requirements of our problem, we
introduce the following new enhancements to the model:
• In the previous model, all tasks occur at single locations,

while tasks in our model must have both a pickup
location and a delivery location, and the pickup location
must be visited before the delivery location.

• All locations associated with delivery tasks and agents’
routine routes could have time window requirements
attached to them.

• Since agents have to physically carry the parcels as they
fulfill the delivery tasks, the set of tasks assigned to each
agent has to be constrained by the capacity limits. This
is in contrast to the previous model, where tasks are
performed at the designated location, and no carrying
capacity needs to be considered.

A. The Mixed Integer Linear Programming Model

Let A be the set of CS agents and let (va, wa, Ea) be
agent a’s volume and weight limits, and the set of routine
routes respectively. As the routine route choice is assumed
to be probabilistic and agent’s time budget might depend on
which routine route s/he takes, we use tuple (a, e) to denote
the instance when agent a follows routine route e, and let
pa,e and ua,e be the associated probability and time budget.
Let Ra,e be the set of nodes belonging to a routine route
(a, e), and it should contain at least a pair of origin and
destination, denoted as oa,e and da,e. The ordering of nodes
in Ra,e is determined by ca,ei,j , i, j ∈ Ra,e, where ca,ei,j = 1
implies that node j immediately follows node i.

Let K be the set of all tasks. Let (hk, nk, vk, wk, rk) be
task k’s pickup location, delivery location, volume, weight,
and reward respectively. Note that we allow multiple tasks
to share the same pickup location, to reflect the possibility
that a warehouse might exist for all agents to pickup tasks.
Let Ka,e ⊆ K be the set of tasks that can be feasibly
completed for route (a, e), and let P a,e = {hk | k ∈ Ka,e}

108

and Da,e = {nk | k ∈ Ka,e} be the set of all pickup
and delivery locations belonging to Ka,e. For simplicity, we
denote all nodes reachable by (a, e) as Na,e, and Na,e =
P a,e ∪Da,e ∪Ra,e.

Our problem is defined on a complete directed graph,
which is the union of all (a, e) tuples. Formally speaking,
this complete graph is defined as G = (N ,A), where
N =

⋃
a∈A,e∈Ea Na,e and A = N × N . For each node

i, we specify its time window as [αi, βi], and we use ti,j to
be the sum of the travel time from i to j and the service
time at node i (e.g., when an agent carries out the task at i).

There are four sets of decision variables in our mixed
integer linear programming (MILP) model:
• yak ∈ {0, 1}: set to 1 if task k is assigned to agent a.
• za,ek ∈ {0, 1}: set to 1 if task k is assigned to agent a,

yet cannot be completed under the routine route e.
• xa,ei,j ∈ {0, 1}: set to 1 when agent a moves from i to j

under the routine route e.
• µa,e

i ∈ R≥0: the time when agent a visits node i under
routine route e.

The objective of the MILP model is to maximize the sum
of the expected rewards from all agents. Since the probability
that an assigned task k to agent a cannot be finished is
(
∑

e∈Ea pa,ez
a,e
k), the objective function is defined as:

max
ya
k
,z

a,e
k

,x
a,e
i,j ,µ

a,e
i

∑
k∈K

rk
∑
a∈A

(
yak −

∑
e∈Ea

pa,eza,ek

)
. (1)

The first group of constraints handles the task assignment.
In (2), we require that each task is assigned to at most one
agent. In (3), we state that an agent is only assigned tasks
they can feasibly complete. An agent’s volume and weight
capacity limits are enforced in (4) and (5). In (6), we ensure
the logic that za,ek cannot be 1 unless yak is set to 1.∑

a∈A

yak ≤ 1, ∀k ∈ K, (2)

yak = 0, ∀a ∈ A, k ∈ K \Ka,e, (3)∑
k∈K

vky
a
k ≤ va, ∀a ∈ A, (4)∑

k∈K

wky
a
k ≤ wa, ∀a ∈ A, (5)

za,ek ≤ yak , ∀a ∈ A, ∀e ∈ E(a), ∀k ∈ K. (6)

The second group of constraints deals with routing plans
for each (a, e): we specify in (7) and (8) that agent a must
depart from oa,e, end in da,e, and pass through all nodes in
the routine route e. In (9), we enforce that a task can only
be delivered if it is picked up. Finally, (10) enforces flow
conservation at all pickup and delivery nodes.∑

j∈Na,e

xa,eoa,e,j =
∑

j∈Na,e

xa,ej,da,e = 1, (7)∑
i∈Na,e,i 6=j

xa,ei,j =
∑

i∈Na,e,i 6=j

xa,ej,i = 1, ∀j ∈ Ra,e \ {oa,e, da,e},

(8)∑
j∈Na,e

xa,enk,j
≤

∑
j∈Na,e

xa,ej,hk
, ∀k ∈ Ka,e, (9)∑

j∈Na,e

xa,ei,j =
∑

j∈Na,e

xa,ej,i ≤ 1, ∀i ∈ P a,e ∪Da,e. (10)

The third group of constraints deals with the time window
requirements for each tuple (a, e). The arrival time at the
origin node is specified in (11). In (12), we relate the arrival
times for any pair of nodes i and j based on the routing
variable xa,ei,j . Note that M represent a large enough constant
such that when xa,ei,j = 0, this constraint could become non-
binding. Time window requirements at all nodes are enforced
by (13). In (14), we translate the precedence relationships
(captured by ca,ei,j) into arrival times (µa,e

i and µa,e
j). Finally,

(15) ensures that agent a would visit the pickup node hk
before the delivery node nk.

µa,eoa,e = αoa,e , (11)
µa,ei + ti,j ≤ µa,ej +M · (1− xa,ei,j),

∀i, j ∈ Na,e; i 6= da,e, j 6= oa,e, (12)
αi ≤ µa,ei ≤ βi, ∀i ∈ Na,e, (13)
ca,ei,j µ

a,e
i ≤ µa,ej , ∀i, j ∈ Ra,e, (14)

µa,ehk
≤ µa,enk

+M(1−
∑

j∈Na,e

xa,enk,j
), ∀k ∈ Ka,e. (15)

The time budget for each (a, e) is constrained by (16).∑
i,j∈Na,e;i6=da,e,j 6=oa,e

ti,jx
a,e
i,j ≤ u

a,e. (16)

Finally, we must ensure that the task assignment and the
route planning are consistent:

yak −
∑

j∈Na,e

xa,ej,nk
≤ za,ek , ∀a ∈ A, e ∈ E(a), k ∈ Ka,e. (17)

IV. A LAGRANGIAN COLUMN GENERATION APPROACH

Our mathematical formulation can potentially be solved
by using the LR approach [2] or the CR approach [14],
however, due to the additional constraints we introduce, nei-
ther approach works well in its current form. Summarizing
the experience of past implementation of these heuristic
approaches, we note that for the LR approach, we cannot
execute the primal extraction efficiently; while for the CG
approach, we cannot efficiently compute reduced costs and
generate columns. On the other hand, when focusing on
the strengths of these two methods, we see that the master
problem of the CG approach, which decides what columns
to choose, can be solved in a straightforward and efficient
manner; for the LR approach, its strength lies in the handling
of subproblems, which is intuitive and efficient.

To take advantage of the strengths of the two approaches,
we define paths as columns and follow the CG framework to
maintain the primal solution. The primal solution obtained in
the CG framework is sent to the LR framework, which would
determine the update of the Lagrangian multipliers, and thus
affecting the solving of subproblems. As the columns are
now generated based on Lagrangian costs instead of reduced
costs, we formally call our approach the Column Generation
with Lagrangian Costs (CG-LC). For the remainder of the
section, we would formally introduce the CG and the LR
components in our approach. The effectiveness of our CG-
LC approach against classical CG and LC approaches is
assessed in the numerical study section.

109

A. The Column Generation Component
In our CG design, we define feasible paths (those paths

that could be feasibly traversed by an (a, e) pair) as columns,
and we use set Ω to represent all such feasible paths.
We denote Ω′ ⊂ Ω as the current column set, and it is
initialized to include paths covering only routine routes for
all (a, e) tuples (i.e., no task would be performed initially).
The objective function based on current Ω′ is defined as:

max
∑

a∈A,e∈Ea

pa,e
∑

ω∈Ω′(a,e)

θω
∑

k∈K(ω)

rk, (18)

where Ω′(a, e) refers to paths that belong to the tuple (a, e)
in Ω′. We define θω as the binary decision variable, indicating
whether a path ω should be included in the solution. By
pre-computing fω = pa,e

∑
k∈K(ω) rk, we could avoid

duplicative computation and simplify (18) as:

max
∑
ω∈Ω

fωθω. (19)

The selection of paths is constrained by:∑
ω∈Ω′(a,e)

θω = 1, ∀a ∈ A, ∀e ∈ Ea, (20)

eωk θω ≤ yak , ∀a ∈ A, ∀ω ∈ Ω′(a), ∀k ∈ K, (21)

where (20) enforces that exactly one path should be selected
for each (a, e) pair, and (21) extracts the binary task as-
signment decision variable yak from path selection θω . The
value yak is set to 1 if the selected path ω includes task k for
agent a. For each path ω, we use the binary parameter eωk to
indicate whether task k is included in ω.

The assignment of tasks (yak) is further subjected to the
following constraints:∑

a∈A

yak ≤ 1, ∀k ∈ K, (22)

yak = 0, ∀a ∈ A, ∀e ∈ Ea, ∀k ∈ K \Ka,e, (23)

where (22) ensures that each task k is assigned to at most one
agent, and (23) ensures that agents would only be assigned
feasible tasks (reachable from at least one routine route).

The above formulation is commonly called the restricted
master problem in the CG literature. From this formulation,
we guarantee that we would assign exactly one feasible
path to each (a, e) tuple, and as the content of the set Ω′

is increasing monotonically, we also ensure that the primal
objective value would increase monotonically. This feature is
helpful for the LR component as a steadily improving primal
value would help to stabilize the LR process.

B. The Lagrangian Relaxation Component
In our MILP formulation, (17) is the set of coupling

constraints that connects task assignment to agents to the
actual routing given different (a, e) tuple. By dualizing
(17), we can effectively decompose the grand MILP model
into one assignment subproblem and

∑
a∈A |Ea| routing

subproblems. The dualized objective function is:

L(λ) = − min
ya
k
,z

a,e
k

,x
a,e
i,j ,µ

a,e
i

(∑
k∈K

rk
∑
a∈A

(∑
e∈Ea

pa,eza,ek − yak
)

+
∑
a∈A

∑
e∈Ea

∑
k∈Ka,e

λa,ek

(
yak − za,ek −

∑
j∈Na,e

xa,ej,nk

))
. (24)

Following the LR literature, our dual problem is defined to
minimize the negative primal objective function (correspond-
ing to the maximization in the primal); to make the primal
and the dual values comparable, we insert another minus sign
in front. For each constraint (a, e, k) from (17), we associate
it with a positive Lagrangian multiplier λa,ek , and this could
be viewed as a penalty when the constraint is violated.

1) Subproblems: Define the assignment subproblem by
collecting terms and constraints associated with yak and za,ek :

L1(λ) = − min
ya
k
,z

a,e
k

(∑
k∈K

rk
∑
a∈A

(∑
e∈Ea

pa,eza,ek − yak
)

+
∑
a∈A

∑
e∈Ea

∑
k∈Ka,e

λa,ek

(
yak − za,ek

))
, (25)

together with constraints (2) – (6). This subproblem can
be solved exactly using a standard solver. Similarly, define
the routing subproblems by collecting terms and constraints
associated with xa,ei,j and µa,e

i for each (a, e):

L2(a, e,λ) = − min
x
a,e
i,j ,µ

a,e
i

−
∑

k∈Ka,e

λa,ek,t
∑

j∈N(a,e)

xa,ej,nk

= max
x
a,e
i,j ,µ

a,e
i

∑
k∈Ka,e

λa,ek
∑

j∈Na,e

xa,ej,nk
, (26)

together with constraints (7) – (15). For each (a, e), the
above formulation is essentially an orienteering problem
with a pre-existing routine route, and is known to be NP-
hard. Although exact solutions can be obtained for smaller
instances, for larger instances we can only approximate the
solutions. In our implementation, we use both a branch-and-
cut approach (if time allows) and a greedy-based heuristic,
which iteratively inserts a feasible task with highest reward
into the current route. The routing subproblem solver is
modularized, and we could easily replace it if a better solver
is identified.

2) Updating Lagrangian Multipliers: The intuition behind
the LR approach is to penalize the violation of dualized
constraints in the objective function using the Lagrangian
multipliers (λ). The more severe the violation is (in terms
of the magnitude of the constraint violation), the higher the
multiplier value should be.

The values of the Lagrangian multipliers are updated after
all the subproblems are solved using the current Lagrangian
multipliers (λt, where t in the current iteration). We follow
the standard update procedure as suggested by [8]:

λa,ek,t+1 ← max
{

0, λa,ek,t + at
(
yak − za,ek −

∑
j∈Na,e

xa,ej,nk

)}
,

where at is the step size, and is defined as:

at =
ut(L(λt)− P ∗)∑

a∈A
∑
e∈Ea

∑
k∈K

(
yak − z

a,e
k −

∑
j∈Na,e x

a,e
j,nk

)2 .

In the above formula, P ∗ refers to the latest primal value
from the CG component, and ut is a parameter initially set
to 2 and we would decrease its value by half if there has been
no improvement on L(λt) for three consecutive iterations.
The parameter ut helps to stabilize Lagrangian dynamics.

As noted earlier, there is no need to extract the primal
solution, since the CG component has taken care of it.

110

3) Generating Columns: At the end of the current LR
step, we could extract new columns and their associated
parameters from the routing subproblem solutions. For each
(a, e) tuple, a corresponding path ω′ is constructed using
xa,ei,j , and we append it to Ω′. We should also identify K(ω′)
and f(ω′), which are the collection of visited tasks and
collected rewards by the path ω′. We also set eω

′

k = 1, if
k ∈ K(ω′), and 0 otherwise.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance and efficiency
of our proposed CG-LC approach against classical CG and
LR approaches and a greedy heuristic that mimics a pull-
based task selection scheme where individual agents greedily
select tasks asynchronously. The numerical instances we
use are generated using real-world data from various open
sources in Singapore. All approaches are implemented in
C++ and tested in an identical hardware/software environ-
ment (a server with 72 CPU cores and 512GB RAM, running
Red Hat Linux v6.9). The LP and MILP models are solved
by IBM CPLEX 12.8.

A. Problem Instance Generation

Our problem instances are composed of the following
four categories of data: 1) the pickup locations of tasks
(warehouses or depots), 2) the delivery locations of tasks,
3) the routine routes of CS agents, and 4) the travel time
between any pair of locations.

To make our instances real-world-like, we use a num-
ber of data from Singapore. We generate pickup locations
from a small set of actual warehouse locations. The de-
livery locations are from based on the parcel locker lo-
cations provided by two major providers Singapore Postal
Service (https://www.speedpost.com.sg/locate-us) and Ninja
Van (https://www.ninjavan.co/en-sg/ninja-points). The CS
worker’s routine routes are derived from a public transit
dataset, which captures the origins and destinations of mil-
lions of trips. Finally, the travel times between locations
are estimated using a map service offered by the Singapore
government (https://www.onemap.sg/)

The sizes of the problem instances are based on the
number of agents and tasks, denoted as (na, nt). Given
(na, nt), agents and tasks are sampled from the datasets. The
agent’s volume and weight capacity limits are fixed at 5. The
volume and weight of a task are generated uniformly between
(0, 1], while the reward equals max(volume, weight). We
assume that an agent is willing to spend 5% of his usual
commute time doing deliveries. The number of routine routes
for each agent is either 2 or 3. For each (na, nt) scenario,
we generate 20 random instances.

B. Baselines and Solution Approaches

All evaluated approaches are listed in Table I. For each
approach, the “router” column indicates how the routing
subproblem is solved, while the “coordinator” column in-
dicates how conflicts from multiple agents are coordinated.
The PureGH is an asynchronous greedy heuristic that mimics

human agent’s decision making approach, i.e., picking the
best available tasks around when s/he is free. The CGRC
is the classical CG that uses reduced costs to generate new
columns, where task bundles are columns.

TABLE I: All solution approaches to be compared.

Name Coordinator Router
PureGH - -

CGRC CG w/ Reduced Costs -
LRH-ILP LR Heuristic Exact
LRH-GH LR Heuristic Greedy Heuristic

CGLC-ILP CG w/ Lagrangian Costs Exact
CGLC-GH CG w/ Lagrangian Costs Greedy Heuristic

C. Impact of the Decomposition Schemes

We first look at an instance with moderate size of (na,
nt) = (10, 40), where the results are summarized as two box
plots in Fig. 1. In Fig. 1(a), we compute the relative solution
quality of all approaches against the PureGH approach in
percentage. The boxes visualize the variability of the results,
where the box covers the first (Q1) to the third (Q3) quartiles.
The line in the box shows the median and the whisker
extends to 1.5(Q3-Q1) above and below; any points that are
outside this range are plotted as outliers.

The execution speeds are summarized in Fig. 1(b). The
PureGH approach is not included as it finishes almost in-
stantly. For the rest of the approaches, their execution times
are plots along a log-scale y-axis using boxes. From this
comparison, we can see that CGLC-GH and LRH-GH are
equally fast, while CGLC-ILP and LRH-ILP are the second
band (around 100 times slower), and CGRC is the slowest
(more than 1000 times slower). From this comparison, we
can see that the choice of the routing algorithm seems to
be most critical in the overall execution speed. It is worth
noting that although CGLC-GH and LRH-GH are equal in
execution speed, CGLC-GH is significantly better than LRH-
GH in solution quality.

(a) Relative solution quality. (b) CPU time.

Fig. 1: Instances (na, nt) = (10, 40).

D. Scalability and Fairness

This last subsection evaluates the scalability and per-
formance of LRH-GH and CGLC-GH against PureGH for
larger instances. We only include GH-based approaches since
all other approaches (CGRC, LRH-ILP, CGLC-ILP) cannot
scale to this size.

We summarize our findings in Fig. 2 for the instance of
(na, nt) = (40, 960). Consistent with our experience with

111

smaller instances, although the execution speeds of LRH-GH
and CGLC-GH are roughly the same, the solution quality of
CGLC-GH is far better than that of LRH-GH: while LRH-
GH is worse than PureGH by around 30%, CGLC-GH is
better than PureGH by almost 20%.

(a) Relative solution quality. (b) CPU time.

Fig. 2: Instances (na, nt) = (40, 960).

Lastly, as the solver is to be used in the CS setting,
we would want to examine the task assignment fairness
among workers. In Fig. 3 we plot the standard deviation
of obtained rewards among all agents for all (40, 960)
problem instances. The boxplot shows the distribution of
the standard deviation for each solution approach. Here,
whereas PureGH is a decentralized approach, the other two
approaches centrally coordinate agents by LRH or CGLC,
which result in lower standard deviations among agent’s
expected rewards (however, we do notice that the distribution
of measured standard deviations is highly variable). In other
words, central coordination is by design more effective in
enabling a fairer task assignment (although fairness is not
directly incorporated in the objective of the model).

To conclude, as a heuristic for planning CS logistics oper-
ations, our CGLC-GH approach provides an ideal balance
among solution quality, computation time, and allocation
fairness.

Fig. 3: The reward fairness between agents for each solution
approach in (na, nt) = (40, 960) instances.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we formally define the crowdsourced logistic
planning problem as a mixed-integer program. To solve this
problem, we introduce a novel hybrid heuristic approach
that combines the strengths of both the column generation
and the Lagrangian relaxation approaches. While the primal
solutions are obtained by running the column generation
framework, the actual generation of columns is achieved
by the Lagrangian relaxation approach. We use a series of
real-world-inspired numerical instances to demonstrate the

effectiveness of our approach. By comparing our approach
against classical column generation and Lagrangian relax-
ation approaches, and a decentralized, agent-centric greedy
approach, we demonstrate that our proposed hybrid approach
is scalable to large problem instance, with reasonable solu-
tion quality, and achieves better allocation fairness.

Based on our observations on the computational results,
we see that the routing subproblem dominates the computa-
tional time and directly impact the solution quality. As such,
improving how we solve routing subproblems will be most
promising in further enhancing the real-world performance
of our approach.

Finally, we think that the idea of combining column
generation and Lagrangian relaxation is promising not just
for our problem, but potentially to a wider classes of planning
problems. We are particularly interested in understanding
more about the theoretical properties of such design and the
computational performance under different setups.

REFERENCES

[1] M. Musthag and D. Ganesan, “The role of super agents in mobile
crowdsourcing,” in 4th Human Computation Workshop, 2012.

[2] S.-F. Cheng, C. Chen, T. Kandappu, H. C. Lau, A. Misra, N. Jaiman,
R. Tandriansyah, and D. Koh, “Scalable urban mobile crowdsourcing:
Handling uncertainty in worker movement,” ACM Transactions on
Intelligent Systems and Technology, vol. 9, no. 3, pp. 26:1–26:24,
2018.

[3] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,
and M. B. Srivastava, “Participatory sensing,” in World Sensor Web
Workshop, 2006.

[4] X. Guo, Y. J. L. Jaramillo, J. Bloemhof-Ruwaard, and G. Claassen,
“On integrating crowdsourced delivery in last-mile logistics: A simu-
lation study to quantify its feasibility,” Journal of Cleaner Production,
vol. 241, p. 118365, 2019.

[5] C. Chen, S.-F. Cheng, H. C. Lau, and A. Misra, “Towards City-
scale Mobile Crowdsourcing: Task Recommendations under Trajectory
Uncertainties,” Proceedings of the 24th International Conference on
Artificial Intelligence, pp. 1113–1119, 2015.

[6] L. Tran, H. To, L. Fan, and C. Shahabi, “A Real-Time Framework
for Task Assignment in Hyperlocal Spatial Crowdsourcing,” ACM
Transactions on Intelligent Systems and Technology, vol. 9, no. 3,
pp. 37:1–37:26, 2018.

[7] A. M. Arslan, N. Agatz, L. Kroon, and R. Zuidwijk, “Crowdsourced
Delivery—A Dynamic Pickup and Delivery Problem with Ad Hoc
Drivers,” Transportation Science, vol. 53, no. 1, pp. 222–235, 2019.

[8] M. L. Fisher, “The Lagrangian relaxation method for solving integer
programming problems,” Management Science, vol. 50, no. 12, pp.
1861–1871, 2004.

[9] G. Desaulniers, J. Desrosiers, and M. M. Solomon, Eds. Boston,
MA: Springer US, 2005.

[10] J.-Q. Li, P. B. Mirchandani, and D. Borenstein, “Real-time vehicle
rerouting problems with time windows,” European Journal of Opera-
tional Research, vol. 194, pp. 711–727, 2009.

[11] D. Huisman, R. Jans, M. Peeters, and A. P. Wagelmans, Combining
Column Generation and Lagrangian Relaxation. Boston, MA:
Springer US, 2005, pp. 247–270.

[12] A. Löbel, “Vehicle Scheduling in Public Transit and Lagrangean
Pricing,” Management Science, vol. 44, no. 12-part-1, pp. 1637–1649,
1998.

[13] D. Huisman, R. Freling, and A. P. M. Wagelmans, “Multiple-Depot
Integrated Vehicle and Crew Scheduling,” Transportation Science,
vol. 39, no. 4, pp. 491–502, 2005.

[14] R. El-Hajj, A. Moukrim, B. Chebaro, and M. Kobeissi, “A column
generation algorithm for the team orienteering problem with time
windows.” Proceedings of the 45th International Conference on Com-
puters & Industrial Engineering, 2015.

112

	A Lagrangian column generation approach for the probabilistic crowdsourced logistics planning
	Citation

	A Lagrangian Column Generation Approach for the Probabilistic Crowdsourced Logistics Planning

