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Automated Taxi Queue Management at High-Demand Venues

Mengyu Ji1 and Shih-Fen Cheng2

Abstract— In this paper, we seek to identify an effective
management policy that could reduce supply-demand gaps at
taxi queues serving high-density locations where demand surges
frequently happen. Unlike current industry practice, which
relies on broadcasting to attract taxis to come and serve the
queue, we propose more proactive and adaptive approaches to
handle demand surges. Our design objective is to reduce the
cumulative supply-demand gaps as much as we could by send-
ing notifications to individual taxis. To address this problem,
we first propose a highly effective passenger demand prediction
system that is based on the real-time flight arrival information.
By monitoring cumulative passenger arrivals, and control for
factors such as the flight’s departure cities, we demonstrate
that a simple linear regression model can accurately predict the
number of passengers joining taxi queues. We then propose an
optimal control strategy based on a Markov Decision Process
to model the decisions of notifying individual taxis that are at
different distances away from the airport. By using a real-world
dataset, we demonstrate that an accurate passenger demand
prediction system is crucial to the effectiveness of taxi queue
management. In our numerical studies based on the real-world
data, we observe that our proposed approach of optimal control
with demand predictions outperforms the same control strategy,
yet with Poisson demand assumption, by 43%. Against the
status quo, which has no external control, we could reduce
the gap by 23%. These results demonstrate that our proposed
methodology has strong real-world potential.

I. INTRODUCTION

In many major cities around the globe, taxi-like services
(both traditional taxis and ride-hailing services such as Uber
or Lyft) have become more and more important in providing
point-to-point transportation services. This is especially true
for locations that generate large amount of demands in a
spiky manner and are relatively isolated. Best examples
of such locations are airports, rail stations, stadiums, and
conference/exhibition centers. It is common to see hundreds
of people requesting for rides all at the same time during the
demand peaks, and this usually results in significant waiting
time for passengers.

A common approach adopted by most venue operators to
address such issue is to broadcast potential needs for taxis
(or ride-hailing cars) ahead of or during the demand peaks.
However, most implementations of such approach is ad hoc
in nature (in terms of the number of cars requested and the
timing of the request), and is rarely coordinated across the
planning horizon (when demand peak lasts for prolonged
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periods of time). As a result, a balance in passenger demand
and vehicle supply for rides is rarely achieved. This recurring
problem calls for new solution approaches, and our work in
this paper is an attempt to address this issue.

In this paper, we propose an automated taxi queue (or ride-
hailing cars) management framework that combines demand-
side predictive analytics with supply-side policy optimization
to come up with recommendations on the number of drivers
to contact during different time periods, in anticipation of
current and predicted future demand levels. Although the
problem of taxi queue (or ride-hailing cars) management
at high-demand locations is general in nature, and can be
applied to many different types of venues, each venue type
brings different set of challenges, which can be driven by
passenger demand patterns, venue design, and geographical
locations.

To concretely demonstrate the value of combining both
predictive analytics and control policy optimization, we
choose to focus on the setting of an airport, more specifically,
the Changi Airport in Singapore. Before the COVID-19
pandemic, Changi Airport was consistently ranked as one
of the best and busiest airports in the world. For an airport
that handles more than 68 million passenger traffic (in 2019),
it is extremely challenging to maintain a high level passenger
experience. And the optimization of the taxi queue operations
will be important in achieving this objective.

In solving the real-world use case at the airport, we aim
to make the following contributions:
• We first propose a highly effective passenger demand

prediction system that is based on the real-time flight ar-
rival information. By monitoring cumulative passenger
arrivals, and control for factors such as flight’s departure
cities, we demonstrate that a simple linear regression
model can accurately predict the number of passengers
joining taxi queues.

• We then propose an optimal control strategy based on
a Markov Decision Process to model the decisions of
notifying individual taxis that are at different distances
away from the airport. By using a real-world dataset,
we demonstrate that an accurate passenger demand
prediction system is crucial to the effectiveness of taxi
queue management. In our numerical studies based
on the real-world data, we observe that our proposed
approach of optimal control with demand predictions
outperforms the same control strategy, yet with Poisson
demand assumption, by 43%. Against the status quo,
which has no external control, we could reduce the gap
by 23%. These results demonstrate that our proposed
methodology has strong real-world potential.
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II. RELATED WORK

There are two major streams of research that are related to
our research. The first stream of research focuses on demand
and waiting time predictions at taxi queues. The second
stream of research focuses on queue management.

A. Passenger Demand Predictions at Taxi Queues

As more and more microscopic data on taxi movement
and trips become available, there have been a surge in
research on taxi demand prediction, particularly ones that
utilize advanced machine learning techniques. For example,
Yao et al. [1] have introduced the use of deep multi-view
neural network in taxi demand prediction, while Geng et al.
[2] build upon similar deep neural network framework to
incorporate contextual information from the traffic network.
Although these techniques work well in practice, they aim to
make prediction at the city level, and not designed to handle
a few queues with high demands.

With a focus on queues, Lu et al. [3] have studied how
to utilize taxi mobility traces to detect the formation of
queues and the associated context (e.g., passengers or taxis).
Rahaman et al. [4] have studied the prediction of taxi queue
context in airports, using taxi driver’s knowledge; they have
further developed this line of research to also look at the
imbalances of taxi and passenger demands at queues. Using
modern machine learning techniques, Rahaman et al. [5] also
look into using k−NN -based regression methods to predict
taxi queue waiting time, and it allows a large number of
external factors to be considered.

Compared to these past research, our contributions in this
area are unique in the following ways:
• We focus on developing prediction models for the

airport.
• Recognizing the uniqueness of the airport context, we

incorporate the flight arrival information to significantly
improve the prediction quality of passenger demands.

B. Taxi Queue Management

An early study by Curry et al. [6] study the interaction
between taxicabs and buses at an airport, but their focus
is on passenger waiting time in order to reduce airport
ground transport congestion. In the past decade, as GPS-
based and smartphone-based technology becoming more
mature and accessible, taxi fleet operators are increasingly
utilizing these technologies to manage their fleets, resulting
in the availability of many large-scale microscopic datasets.
These datasets have enabled researchers to conduct realistic
studies of taxi queue management. For example, Cheng and
Qu [7] propose a service choice model to help individual
drivers in deciding whether to serve a specific taxi stand
or not. Kamga et al. [8] study taxicab management at busy
airports such as the JFK airport in the New York City, and
reviewed how computerized taxicab dispatch system can be
utilized to reduce passenger waiting time. More recently,
Anwar et al. [9] propose a smartphone-based App to instruct
taxi drivers to visit the most promising taxi queues at the
Changi Airport in Singapore, taking into account average

arrival time. In a broader city context, we have recently seen
the implementation and field trial of a driver guidance system
for taxi drivers [10], which is shown to help taxi drivers
following guidance reduce their vacant roaming time by an
average of 27% [11].

Compared to these past research, our contributions in this
area are unique in the following ways:
• We choose to minimize the difference between demand

and supply of taxis at a specific location, thus taking
care of the welfare of both the drivers and the passen-
gers.

• In the context of airport taxi queue management, we
illustrate the importance of utilizing high-quality real-
time demand prediction for taxi queue management.
The resulting framework we propose integrates both
taxi queue-specific prediction model and the guidance
model, and we illustrate the superiority of such design.

III. PASSENGER INFLOW PREDICTION

In most airports, the information on arriving passenger
flights is known in advance through the flight information
service, which can include (not exhaustively) the flight num-
ber, the origin, the final destination (if the current airport is a
transit location), the number passengers on board, the break-
down of passenger types (e.g., arriving vs. transit, adult vs.
children), the number of luggages, and the expected/actual
arrival times at the gate. This information allows airport
operators to acquire the exact number of passengers that will
be flowing into the airport from different gates in real-time,
and plan many important airport operations accordingly.

However, even with this passenger arrival information,
predicting the number of passengers who will be joining a
taxi queue at different time periods is still highly challenging,
for the following reasons: 1) there are a wide variety of
ground transport options available to passengers, thus it’s
uncertain how many of arriving passengers will eventually
choose to join the taxi queue, 2) each flight arrives at
different gate, resulting in different movement time, and 3)
arriving passengers would need to clear immigration, pick
up luggages (if any), and may be delayed along the way for
many personal reasons. As a result, even for the same flight
that arrives daily at roughly the same time, the number of
passengers who would eventually show up at various time
periods after this flight’s arrival still varies greatly from day
to day.

By using the actual flight arrival data and the taxi queue
inflow data (collected via highly accurate LiDAR-based
crowd sensors) at the Singapore Changi Airport. We confirm
that it is indeed impractical to try to establish the relation-
ship between individual flight’s arrivals and the number of
passengers that will end up joining the taxi queue.

However, the correlation becomes much more reliable
after we focus on the cumulative flight arrivals and taxi
queue inflows. To evaluate this alternative way of predicting
taxi queue inflows, we designate accumulation time windows
for both flight arrivals (observed) and taxi queue inflows (to
be predicted) following the timeline illustrated in Figure 1.
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In the initial analysis, we monitor the cumulative passenger
counts from all flights that land within the 40-minute time
window. This time window should end 10 minutes before
the current time. The cumulative taxi queue inflows to be
predicted should cover the next 15 minutes.

Fig. 1. Timeline for the cumulative arrival analysis.

Fig. 2. Correlations between cumulative flight arrivals and taxi queue
inflows.

The correlation between cumulative taxi queue inflows
versus cumulative flight passenger arrivals is illustrated in
Figure 2. With the R2 = 0.852, we can see that even without
any additional features, the linear correlation is strong. The
linear regression formula suggests that around 17% of all
passengers arrived during the 40-minute time window, after
a 10-minute lag, would show up at the taxi queue during the
15-minute time window.

To further enhance the predictive power of this cumulative
model, we incorporate a number of external parameters such
as origin cities of arriving flights and the distance from the
gate to the airport exit. The details on how we incorporate
these additional features and the comparison of variants of
our cumulative prediction model against other well-known
prediction baselines are summarized next.

A. Cumulative Prediction Model

To account for the impact of the origin city and the gate
of arrival for a flight, we structure the linear regression using
the following formula:

f15 ∼
∑

c∈C,g∈G

β40
c,g x

40
c,g,

where f15 denotes the taxi queue inflows to be predicted
in the next 15 minutes, x40c,g denotes the number of arriving

passengers from city c and gate category g1 within the 40-
minute time window, and β40

c,g be the regression coefficient
associated with x40c,g . As not all cities have significant enough
passenger arrivals for the purpose of regression analysis,
we aggregate them according to the countries or regions
(e.g., Western/Eastern Europe, Greater China area, South-
East Asia). For the gate category, we assign gates to 3
categories depending on the distance from the arrival gate
to the airport exit.

The training dataset comes from October and November,
2019, while the testing dataset comes from December 2019.
To see the benefits of having the city and gate features,
we first execute the regression with city/gate features (see
Table I) for all 3 terminals at the airport that we study;
this set of experiments are then followed by the regression
analysis without city/gate features (see Table II). From Tables
I and II, we can see that the complete linear regression model
with city/gate features performs better than the plain version
of the model without city/gate features, by around 2% to
5% across different error measures. All coefficients in our
complete linear regression model are statistically significant
to 1%.

TABLE I
THE PERFORMANCE OF THE COMPLETE LINEAR REGRESSION MODEL

WITH CITY/GATE FEATURES.

Terminal RMSE MAPE SMAPE

Terminal 1 15.55 32.02% 26.43%
Terminal 2 12.70 48.35% 34.29%
Terminal 3 12.91 49.56% 35.89%

TABLE II
THE PERFORMANCE OF THE LINEAR REGRESSION MODEL WITHOUT

CITY/GATE FEATURES.

Terminal RMSE MAPE SMAPE

Terminal 1 16.22 32.89% 27.86%
Terminal 2 13.20 51.07% 35.66%
Terminal 3 13.25 51.06% 36.68%

The predictions against ground truth data for the testing
dataset are plotted below in Figures 3 and 4.

B. Cumulative Prediction Model Against Baselines

To probe whether it is worthwhile to go beyond the
linear regression model, we also compare our linear regres-
sion model against two other popular prediction baselines:
ARIMA and XGBoost. The ARIMA model is identified
as ARIMA(1,1,2) using the standard Auto-ARIMA forecast
package. The XGBoost model is also based on standard
implementation. We use the same dataset as before, and the
comparison results are summarized in Table III.

From Table III, we can see that measured by SMAPE,
our complete linear regression model outperforms ARIMA

1Depending on the walking distance, we classify all arrival gates into
different categories based on the distance from the gate to the airport exit.
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and XGBoost models by 9.7% and 2.3% respectively. This
implies our linear regression model is sufficient for our
prediction purpose.

TABLE III
LINEAR REGRESSION MODEL AGAINST BASELINES.

Model RMSE MAPE SMAPE

ARIMA 17.00 41.44% 29.28%
XGBoost 15.77 33.77% 27.06%
Linear Regression 15.55 32.02% 26.43%

C. Multi-Period Prediction

Our linear regression model is designed to provide a
single-period (15-minute) prediction for the inflow that will
happen in the next 15 minutes. To extend our prediction
to the next 30 minutes, we will hypothetically roll forward
the current time by 15 minutes into the future, and update
the value of independent variables to reflect the updated 40-
minute time window for the flight arrivals.

IV. A MARKOV DECISION PROCESS FOR TAXI SUPPLY
OPTIMIZATION

In this section, we propose a Markov decision process
(MDP) to model how we can optimize the taxi supply at
the taxi queues by sending personalized messages. This is
in contrast to broadcasting to all taxis, which is simple yet
reactive and not able to respond to current and future demand
beforehand. In the below subsections, we define all important
features of the MDP in greater details.
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Fig. 3. Predicted values vs. ground truth: Dec 4, 2019
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Fig. 4. Predicted values vs. ground truth: Dec 7, 2019

Our MDP formulation has discrete time periods, with
the sequence of event occurrence specified in Figure 5. We
assume that all actions from the controller (sending notifi-
cations) occur at the beginning of the period (the epoch).
Drivers who receive notifications will decide on the spot
whether to accept the notifications (and come to serve the
taxi queue), or ignore them (and follow transition dynamics).
The actual movement of taxis and the arrivals of passengers
happen during the time period between two epochs. At the
end of current period, and right before the start of the next
epoch, all state variables (to be defined later) will be updated.

Fig. 5. Decision epochs and the event occurrence sequence in the MDP.

To make the MDP formulation more manageable, we
define a small number of zones around the airport to track the
taxi supply (instead of monitoring all taxis’ current locations,
which would be intractable in practice). In Figure 6, we pro-
vide an illustration of the zone definition and how transitions
can occur between zones. The sizes of the zones are chosen
such that a taxi can travel from any zone to adjacent zone
in one time period.
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Fig. 6. Zones around airport.

In the absence of control, we assume that taxis would
follow a Markov chain model to travel between zones. The
transition probabilities between zones can be derived from
the empirical dataset. For our case study, we have obtained
a proprietary taxi movement dataset that contains taxi’s
periodic movement information, from which we can infer
taxi’s zone- and time-dependent transition probabilities to
nearby zones. This will serve as the background movement
model without control intervention.

A. The MDP Formulation

The optimal taxi queue control problem is formulated as a
finite-horizon MDP, using the notations defined in Table IV.
We denote the MDP as a tuple of < S,A, T,R >, where S
is the state space, A is the action space, T is the transition
probability, and R is the reward function. Both T and R are
defined as functions, where T : S × A × S → [0, 1] and
R : S ×A× S → R.
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At time t, the MDP state is defined as:

< supplyit, otw
i
t, W

j
pt
, W j

vt >,∀i, j.

The action ait is defined as the number of taxis we are going
to engage for each zone i and each time period t, while
the index j is use to denote the number of periods taxis or
passengers have already spent waiting.

The action ait will lead to stochastic transition from the
current state to the next, in part because the taxis receiving
our notifications will decide whether to accept or ignore our
request, depending on the zone they are currently in. These
decisions will then lead to movement of vacant taxi (the
supply). The variable otwi

t captures the number of taxis on
the move, while W j

vt captures taxis entered and currently
waiting at the queue. Finally, part of the state transition also
brings in new passengers, which is denoted as W j

pt
.

Based on the state space definition above, and the uncer-
tainties involved, we define the transition probability as:

T (st+1, at, st) =
∏
i

Probiaccept(Accept
i
t) · Probdemandt .

As will be discussed later, we assume that the demand arrival
follows a Poisson arrival process with known and time-
dependent arrival rates.

Finally, the reward function is defined as:

R(st+1, st, at) = −
∑5

j=1(γv ·W j
vt+1

+ γp ·W j
pt+1

)

−(λv ·W 6
vt+1

+ λp ·W 6
pt+1

). (1)

TABLE IV
NOTATIONS

Notations Description

v Vehicles.
p Passengers.
t Time period.
st state at epoch t.
at Action taken at epoch t.
i zone representation.

gapiter
Demand and supply gap at
iteration = iter.

gapiterc
Cumulative Demand and supply
gap at iteration = iter.

iter Iterations for demand input.

Distit
Number of available taxis in
zone i at time t.

ait

Number of taxis we are going to
engaged into airport trips at time
t for zone i.

otwi
t

Number of taxis moving towards
airport at time t and zone i.

supplyit
Number of taxis that haven’t been
notified in zone i at time t.

Wp
j
t ,j = 0, 1, ..., 6

At passenger queue, number of
passengers waited for j periods at time t.

Wv
j
t : j = 0, 1, ..., 6

At taxi queue, number of taxis
waited for j periods at time t.

Acceptit
Number of accepted taxis in zone i
at time t.

Probiaccept Probability of acceptance in zone i.
Probdemandt Probability of demand inflow at t.

T (st+1, at, st)
Transition probability of moving from
state st to state st+1, after taking action at.

The γv and γp values are the penalty for waiting one
period, while the λv and λp values are the penalty for
excessively long waiting time (> 6 periods). We assume that
λ > γ. In our numerical study we assume that γv = γp and
λv = λp for simplicity. But it can be easily tweaked by
the planner if certain emphasis needs to be placed on either
passengers or taxi drivers.

B. Dual LP Formulation

To actually solve the MDP, we first convert the MDP
formulation into the following dual linear programming
formulation, and solve it using the commercial optimization
software such as CPLEX.

max
x

∑
t,s,a

Rt(s, a)xt(s, a)

s.t.
∑
a

x0(s′, a) = δ(s′),∀s′∑
a

xt+1(s′, a)−
∑
s,a

xt(s, a)T t(s, a, s′) = 0,

∀t ≥ 0,∀s′

xt(s, a) ≥ 0

(2)

After solving the LP dual, the policy is obtained by
normalizing xt(s, a): πt(s, a) = xt(s,a)∑

a′ xt(s,a′) ,∀t, s. Here x

represents number of times actions are executed in the states.

V. NUMERICAL EXPERIMENTS

The most important point we would like to demonstrate
in our numerical experiments is the superiority of integrating
both the demand prediction and the control optimization on
the taxi supply. To show this, we conduct the following three
sets of experiments, all of them using the same randomly
generated demand instances to ensure that their results are
directly comparable.
• Optimal control with predicted demand.
• Optimal control with Poisson demand assumption.
• No control.
By comparing the first two sets of experiments, we can

observe the effectiveness of integrating demand prediction
into the optimal control by solving MDP. With the third set
of experiments, we can observe how significant it would be
to have controls of different levels of sophistication.

In the first two experiment configurations, we use the real-
world datasets collected from October and November of 2019
for training demand models. For all three configurations, we
then use the data from December of 2019 for the testing
purpose. To quantify the solution quality, we calculate the
cumulative absolute gap between passenger demands and taxi
supplies over the whole experimental horizon.

A. Experiment Setup

The size of the state space grows rapidly in response to the
number of zones and the number of taxis under control. To
optimally solve the MDP without having to rely on heuristics,
we define our problem setup to contain two zones, with two
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time periods. Zone 1 is defined to contain all areas that are
within 15-minute driving time to the airport, while Zone
2 contain all outer regions of interest that have more than
15-minute driving time. The transition probabilities between
zones and the airport queues are derived from the real-world
dataset.

We assume that Probaccept = 0.7, 0.6, and λ = 1 and
γ = 3 for both demands and supplies in the reward function.
We set the number of taxis in Zone 2 to be 100, while varying
the number of taxis in Zone 1 to be: 10, 30, and 50.

The experiment results are summarized in Table V. In
the gap column, we summarize the sum of absolute de-
mand/supply gaps over the planning horizon. In all problem
sizes, we can clearly see that optimal control with demand
prediction outperforms both optimal control with Poisson
assumption and No control by a large margin. And a
surprising finding is that even with optimal control, if we
adopt not-so-ideal demand model (Poisson arrival in this
case), the control policy we obtain can lead to inferior results
than no control.

By looking at the largest numerical case (50,100), we
can see that our proposed approach of optimal control with
demand predictions outperforms the same control strategy,
yet with Poisson demand assumption, by 43%. Against the
status quo, which has no external control, we could reduce
the gap by 23%.

To further understand where does the gap comes from,
we also breakdown the measured absolute gap into demand
gap and supply gap, to indicate whether we have too many
unserved demands (indicated by ‘gap (demand)’) or too
many idle supplies (indicated by ‘gap (supply)’).

TABLE V
ONE ZONE AND OUTER ZONE WITH SIMULATED ACCEPTANCE (T=2)

type distribution gap gap
(demand)

gap
(supply)

Optimal control w/
predicted demand

(10,100) 13.15 92.86% 7.14%
(30,100) 12.25 82.48% 17.52%
(50,100) 11.29 73.99% 26.01%

Optimal control w/
Poisson assumption

(10,100) 22.65 94.86% 5.14%
(30,100) 20.31 91.49% 8.51%
(50,100) 19.80 86.29% 13.71%

No control

(10,100) 16.17 95.66% 4.34%
(30,100) 15.15 89.04% 10.96%
(50,100) 14.62 83.41% 16.59%

VI. CONCLUSION

In this paper, we study the problem of how to optimally
control taxi queues at demand hotspots such as airports.
By using one of the busiest airports in the world as an
example, we demonstrate the importance of integrating
both demand predictions and optimal control in balancing
passenger demands and taxi supplies at the airport taxi
queues. Our contributions in this paper are two-fold: on one
hand, we propose a simple yet effective way in predicting
passenger demands, which rely on the use of cumulative

flight arrivals, and a number of flight-related information.
The chosen features are so powerful that a simple linear
regression model is sufficient for us to have accurate demand
predictions. In the optimal control section, we demonstrate
that it is critically important to have good demand prediction
information, since the solution to the MDP-powered optimal
control policy will be severely affected if inaccurate demand
information is incorporated. In our numerical studies based
on real-world data, we observe that our proposed approach
of optimal control with demand predictions outperforms the
same control strategy, yet with Poisson demand assumption,
by 43%. Against the status quo, which has no external
control, we could reduce the gap by 23%. These results
demonstrate that our proposed methodology has strong real-
world potential.

Although major airports around the globe are unfortu-
nately being affected greatly by the COVID-19 pandemic, we
believe that our model would be particularly relevant when
the traffic gradually restores at major airports.
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