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Abstract—The hash table is a fundamental structure that
has been implemented on graphics processing units (GPUs) to
accelerate a wide range of analytics workloads. Most existing
works have focused on static scenarios and occupy large GPU
memory to maximize the insertion efficiency. In many cases,
data stored in hash tables get updated dynamically, and existing
approaches use unnecessarily large memory resources. One naı̈ve
solution is to rebuild a hash table (known as rehashing) whenever
it is either filled or mostly empty. However, this approach renders
significant overheads for rehashing. In this paper, we propose a
novel dynamic cuckoo hash table technique on GPUs, known as
DyCuckoo. We devise a resizing strategy for dynamic scenarios
without rehashing the entire table that ensures a guaranteed
filled factor. The strategy trades search performance with resizing
efficiency, and this tradeoff can be configured by users. To further
improve efficiency, we propose a 2-in-d cuckoo hashing scheme
that ensures a maximum of two lookups for find and delete
operations, while retaining similar performance for insertions as
a general cuckoo hash. Extensive experiments have validated the
proposed design’s effectiveness over several state-of-the-art hash
table implementations on GPUs. DyCuckoo achieves superior
efficiency while enables fine-grained memory control, which is
not available in existing GPU hash table approaches.

I. INTRODUCTION

Exceptional advances in general-purpose graphics process-

ing units (GPGPUs) in recent years have completely revolu-

tionized computing paradigms across multiple fields such as

cryptocurrency mining [1], [2], machine learning [3], [4], net-

work analysis [5], [6] and database technologies [7], [8]. GPUs

bring phenomenal computational power that had previously

only been available from supercomputers in the past. Hence,

there is a prevailing interest in developing efficient parallel

algorithms for GPUs to enable real-time analytics.
In this paper, we investigate a fundamental data structure,

known as the hash table, which has been implemented on

GPUs to accelerate applications, ranging from relational hash

joins [9], [10], [11], data mining [12], [13], [14], key-value

stores [15], [16], [17], and many others [18], [19], [20], [21],

[22]. Existing works [23], [15], [24], [16], [17] have focused

on static scenarios in which the size of the data is known

in advance and a sufficiently large hash table is allocated to

insert all data entries. However, data size varies in different

application scenarios such as sensor data processing, Internet

traffic analysis, and analysis of transaction logic in web server

logs and telephone calls. When data size varies, the static

allocation strategy leads to poor memory utilization [25]. The

static strategy is thus inefficient when an application requires

multiple data structures to coexist on GPUs. One must resort

to expensive PCIe data transfer between CPUs and GPUs, as

the hash table takes up unnecessarily large memory space.

Addressing this shortcoming calls for a dynamic GPU hash

table that adjusts to the size of active entries in the table. Such

a hash table should support efficient memory management by

sustaining a guaranteed filled factor of the table when the

data size changes. In addition to efficient memory usage, the

dynamic approach should retain the performance of common

hash table operations such as find, delete, and insert. Al-

though dynamically-sized hash tables have been studied across

academia [26], [27] and industry [28], [29] for CPUs, GPU-

based dynamic hash tables have largely been overlooked.

In this paper, we propose a dynamic cuckoo hash table

on GPUs, known as DyCuckoo. Cuckoo hashing [30] uses

several hash functions to give each key multiple locations

instead of one. When a location is occupied, the existing key is

relocated to make room for the new one. Existing works [23],

[31], [15], [17] provide solutions in speeding up applications

using parallel cuckoo hashes on GPUs. However, complete

relocation of the entire hash table is required when the data

cannot be inserted. To avoid complete relocation, we propose

two novel designs for implementing dynamic cuckoo hash

tables on GPUs.

First, we employ the cuckoo hashing scheme with d subta-

bles where each subtable is configured by a hash function, and

introduce a resizing policy to maintain the filled factor within a

bounded range while minimizing entries in all subtables being

relocated at the same time. If the filled factor falls out of the

specified range, insertions and deletions would cause the hash

tables to grow and shrink. Our proposed policy only locks one

subtable for resizing and ensures that no subtable can be more

than twice as large as any other to handle subsequent resizing

efficiently. Meanwhile, the hash table entries are distributed

to give each subtable a nearly equivalent filled factor. In this

manner, we drastically reduce the cost of resizing hash tables

and provide better system availability than the static strategy,

which must relocate all data for resizing. Our theoretical

analysis demonstrates the scheduling policy’s optimality in

terms of processing updates.

Second, we propose a 2-in-d cuckoo hashing scheme to

ensure efficient hash table operations. The proposed resizing
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strategy requires d hash tables, which indicates d lookup

positions for find and delete operations, and a larger d in-

dicates less workload for resizing but more lookups for find

and delete operations. To mitigate this tradeoff, the 2-in-d

approach that first hashes any key to a pair of hash tables

where the key can be further hashed and stored in one of

the two hash tables. This design ensures up to two lookups

for any find and deletion operations. Furthermore, the 2-in-d

approach retains the general cuckoo hash tables’ performance

guarantee. Empirically, the proposed hash table design can

operate efficiently and consistently at a filled factor of 90%.

Thus, we summarize our contributions as follows:

• We propose an efficient strategy for resizing hash tables

and demonstrate the near-optimality of the resizing strat-

egy through theoretical analysis.

• We devise a 2-in-d cuckoo hash scheme that ensures a

maximum of two lookups for find and deletion operations,

while still retaining similar performance for insertions as

general cuckoo hash tables.

• We conduct extensive experiments on both synthetic and

real datasets and compare the proposed approach against

several state-of-the-art GPU hash table baselines. For

dynamic workloads, the proposed approach demonstrates

superior performance and enables fine-grained memory

control, which is not available in existing approaches.

The remainder of this paper is organized as follows. Sec-

tion II introduces the preliminary information and provides

a background on GPUs. Section III documents related work.

Section IV introduces the hash table design and the resizing

strategy against dynamic updates. Section V presents the two-

layer cuckoo hash scheme along with parallel operations on

GPUs. The experimental results are reported in Section VI.

Finally, we conclude the paper in Section VII.

II. PRELIMINARIES

In this section, we first introduce some preliminary informa-

tion on general hash tables and present background material

on GPU architecture.

A. Hash Table

The hash table is a fundamental data structure that stores

key-value (KV) pairs (k, v), and the value could refer to either

actual data or a reference to the data. Hash tables offer the

following functionalities: INSERT (k, v), which stores (k, v)
in the hash table; FIND (k), in which the given k values returns

the associated values if they exist and NULL otherwise; and

DELETE (k), which removes existing KV pairs that match k
if they are present in the table.

Given a hash function with range 0 . . . h−1, collisions must

happen when we insert m > h keys into the table. There are

many schemes to resolve collisions: linear probing, quadratic

probing, chaining and etc. Unlike these schemes, cuckoo

hashing [30] guarantees a worst-case constant complexity for

FIND and DELETE, and an amortized constant complexity for

INSERT. A cuckoo hash uses multiple (i.e., d) independent

hash functions h1, h2, . . . , hd and stores a KV pair in a

position corresponding to one of the hash functions. When

inserting (k, v), we store the pair in loc = h1(k) and terminate

if there is no element at this location. Otherwise, if there exists

k′ such that h1(k′) = loc, k′ is evicted and then reinserted into

another hash table, e.g., loc′ = h2(k′). We repeat this process

until encountering an empty location.
Existing implementation practice for cuckoo hash is to

allocate a single hash table for d hash functions [32]. However,

such approach would trigger a complete rebuild when the hash

table is subject to either upsize or downsize operations for

dynamic workloads. In this work, we allocate d hash tables

where each hash table is configured by a unique hash function.

For a hash table with the hash function hi, |hi| is defined to be

the number of unique hash values for hi and ni to be the total

memory size allocated for the hash table. A location or a hash

value for hi is represented as loc = hi
j where j ∈ [0, |hi|−1].

If the occupied space of the hash table is mi, the filled factor

of hi is denoted as θi = mi/ni. The overall filled factor of the

cuckoo hash table is thus denoted as θ = (
∑

i mi)/(
∑

i ni).

B. GPU Architecture
We introduce the background of the NVIDIA GPU archi-

tecture in this paper because of its popularity and the wide

adoption of the CUDA programming language. However, our

proposed approaches are not unique to NVIDIA GPUs and

can also be implemented on other GPU architectures. An

application written in CUDA executes on GPUs by invoking

the kernel function. The kernel is organized as several thread
blocks, and one block executes all its threads on a streaming
multiprocessor (SM), which contains a large number of CUDA

cores. Within each block, threads are divided into warps of 32

threads each. A CUDA core executes the same instruction of

a warp in lockstep. Each warp runs independently, but warps

can collaborate through different memory types as discussed

in the following.

Memory Hierarchy. Compared with CPUs, GPUs are built

with large register files that enable massive parallelism. Fur-

thermore, the shared memory, which has similar performance

to L1 cache, can be programmed within a block to facilitate

efficient memory access inside an SM. The L2 cache is

shared among all SMs to accelerate memory access to the

device memory, which has the largest capacity and the lowest

bandwidth in the memory hierarchy.

Optimizing GPU Programs. There are several important

guidelines to harness the massive parallelism of GPUs.

• Minimize Warp Divergence. Threads in a warp will be

serialized if executing different instructions. To enable

maximum parallelism, one must minimize branching

statements executed within a warp.

• Coalesced Memory Access. Warps have a wide cache

line size. The threads are better off reading consecutive

memory locations to fully utilize the device memory

bandwidth, otherwise a single read instruction by a warp

will trigger multiple random accesses.

• Control Resource Usage. Registers and shared memory

are valuable resources for enabling fast memory accesses.
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Nevertheless, each SM has limited resources and over-

dosing register files or shared memory leads to reduced

parallelism on an SM.

• Atomic Operations. When facing thread conflicts, an

improper locking implementation causes serious perfor-

mance degradation. One can leverage the native support

of atomic operations [33] on GPUs to carefully resolve

the conflicts and minimize thread spinning.

III. RELATED WORKS

Alcantara et al. [23] presented a seminar work on GPU-

based cuckoo hashing to accelerate computer graphics work-

loads. This work has inspired several applications from diverse

fields. Wu et al. [20] investigated the use of GPU-based

cuckoo hashing for on-the-fly model checking. A proposal

for accelerating the nearest neighbor search is presented in

[18]. To improve on [23], stadium hash was proposed in

[34] to support out-of-core GPU parallel hashing by building

signatures for hash buckets to enable early search termination.

However, this technique uses double hashing which has to

rebuild the entire table for any deletions. Zhang et al. [15]

proposed another efficient design of GPU-based cuckoo hash-

ing, named MegaKV, to boost the performance for KV store.

Subsequently, Horton table [17] improves the efficiency of

FIND over MegaKV by trading with the cost of INSERT by

introducing a KV remapping mechanism. WarpDrive [35] em-

ploys cooperative groups and multi-GPUs to further improve

efficiency. Meanwhile, in the database domain, several SIMD

hash table implementations have been proposed to facilitate

relation join and graph processing [32], [14].

It is noted that these works have focused on the static case:

the data size for insertions is known in advance. The static

design would prepare a large enough memory size to store the

hash table. In this manner, hash table operations are fast as

collisions rarely happen. However, the static approach wastes

memory resources and, to some extent, prohibits coexistence

with other data structures for the same application in the device

memory. This motivates us to develop a general dynamic hash

table for GPUs that actively adjusts based on the data size to

preserve space efficiency.

To the best of our knowledge, there is only one existing

work on building dynamic hash tables on GPUs [25]. This

proposed approach presents a concurrent linked list structure,

known as slab lists, to construct the dynamic hash table with

chaining. However, there are three major issues for slab lists.

First, they can frequently invoke concurrent memory allocation

requests, especially when the data keeps inserting. Efficient

concurrent memory allocation is difficult to implement in a

GPU due to its massive parallelism. Although a dedicated

memory management strategy to alleviate this allocation cost

is proposed in [25], the strategy is not transparent to other data

structures. More specifically, the dedicated allocator still has

to reserve a large amount of memory in advance to prepare

for efficient dynamic allocation, and that occupied memory

space cannot be readily accessed by other GPU-resident data

structures. Second, a slab list does not guarantee a fixed filled

ratio against deletions. It symbolically marks a deleted entry

without physically freeing the memory space. Hence, memory

spaces are wasted when occupied by deleted entries. Third,

the chaining approach has a lookup time of Ω(log(log(m)))
for some KVs with high probability. Such approach not only

results in degraded performance for FIND, but also triggers

more overhead for resolving conflicts when multiple INSERT
and DELETE operations occur at the same key. In contrast,

the cuckoo hashing table adopted in this work guarantees

O(1) worst-case complexity for FIND and DELETE, and

O(1) amortized INSERT performance. Moreover, we do not

introduce extra complication in implementing a customized

memory manager, but rather rely on the default memory

allocator provided by CUDA, while at the same time, ensuring

fixed filled ratios for the hash table.

IV. DYNAMIC HASH TABLE

In this section, we propose a resizing strategy against

dynamic hash table updates on GPUs. We first present the

hash table design in Section IV-A. Subsequently, the resizing

strategy is introduced in Section IV-B. In Section IV-C, we dis-

cuss how to distribute KV pairs for better load balancing with

theoretical guarantees. Lastly, we present how to efficiently

rehash and relocate data after the tables have been resized in

Section IV-D.

A. Hash Table Structure

We build d hash tables with d unique hash functions:

h1, h2, . . . , hd. In this work, we use a set of simple universal

hash functions such as hi(k) = (ai ·k+bi mod p) mod |hi|.
Here ai, bi are random integers and p is a large prime.

The proposed approaches in this paper also apply to other

hash functions as well. There are three major advantages of

adopting cuckoo hashing on GPUs. First, it avoids chaining

by inserting the elements into alternative locations if collisions

occur. As discussed in Section III, chaining presents several

issues that are not friendly to GPU architecture. Second,

to look up a KV pair, one searches only d locations as

specified by d unique hash functions. Thus, the data could be

stored contiguously in the same location to enable preferred

coalesced memory access. Third, cuckoo hashing can maintain

a high filled factor, which is ideal for saving memory in

dynamic scenarios. For d = 3, cuckoo hashing achieves a

filled factor of more than 90% and still efficiently processes

INSERT operations [36].

Figure 1 depicts the design of a single hash table hi on

GPUs. The keys are assumed to be 4-byte integers; a bucket

of 32 keys, which are all hashed to the same value hi
j , are

stored consecutively in the memory. The design of buckets

maximizes memory bandwidth utilization in GPUs. Consider

that the L1 cache line size is 128 bytes. Only single access is

required when one warp is assigned to access a bucket. The

values associated with the keys in the same bucket are also

stored consecutively, but in a separate array. In other words,

we use two arrays, one to store the keys and one to store the

values respectively. However, the values can take up a much
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Fig. 1. The hash table structure.

larger memory space than the keys; therefore storing keys and

values separately avoids memory access overhead when it is

not necessary to access the values, such as when finding a

nonexistent KV pair or deleting a KV pair.

For keys larger than 4 bytes, a simple strategy is to store

fewer KV pairs in a bucket. If keys are 8 bytes, a bucket can

then accommodate 16 KV pairs. Furthermore, we lock the

entire bucket exclusively for a warp to perform insertions and

deletions using intra warp synchronization primitives. Thus,

we do not limit ourselves to supporting KV pairs with only

64 bits. In the worst case, a key taking 128 bytes would occupy

one bucket, which is unnecessarily large in practice.

B. Structure Resizing

To efficiently utilize GPU memory, we resize the hash

tables when the filled factor falls out of the desired range

[α, β]. One possible strategy to address this is to double or

half all hash tables and rehash all KV pairs. However, this

simple strategy renders poor memory utilization and excessive

rehashing overhead. First, doubling hash table size results

in the filled factor being immediately cut in half, whereas

downsizing hash tables to half the original size followed by

rehashing is only efficient when the filled factor is significantly

low (e.g., 40%). Both scenarios are not resource friendly.

Second, rehashing all KV pairs is expensive and it harms the

performance stability for most streaming applications as the

entire table is subject to locking.

Thus, we propose an alternative strategy. Given d hash

tables, we always double the smallest subtable or chop the

largest subtable in half for upsizing or downsizing, respec-

tively, when the filled factor falls out of [α, β]. As a result,

no subtable will be more than twice the size of others. This

strategy implies that we do not need to lock all hash tables

to resize only one, thus achieving better performance stability

than the aforementioned simple strategy.

Example 1. In Figure 2, we show a simplify example of the
cuckoo hash with 4 hash tables. We only present the keys and
omit the values for ease of presentation. Each bucket can hold
at most two KV pairs. The current filled factor is 22

32 = 0.69.
An upsize doubles one of the hash table, which increases the
filled factor to 22

40 = 0.55, whereas a downsize halves one hash
table only, which decreases the filled factor to 22

28 = 0.79.

Fig. 2. An example of four hash tables.

Filled factor analysis: Assuming there are d′ hash tables

with size 2n, (d− d′) tables with size n, and a current filled

factor of θ, one upsizing process lowers the filled factor to
θ·(d+d′)
d+d′+1 ≥ β·d

d+1 as θ > β triggers the upsize. Because the

filled factor is always lower bounded by α, we can deduce that

α < d
d+1 . Apparently, a higher lower bound can be achieved

by adding more hash tables, although it leads to less efficient

FIND and DELETE operations. We allow the user to configure

the number of hash tables to trade off memory and query

processing efficiency.

C. KV distribution

Given a set of KV pairs to insert in parallel, it is critical

to distribute those KV pairs among the hash tables in a way

that minimizes hash collisions to reduce the corresponding

thread conflicts. We have the following theorem to guide us

in distributing KV pairs.

Theorem 1. The amortized conflicts for inserting m unique
KV pairs to d hash tables are minimized when

(
m1

2

)
/n1 =

. . . =
(
md

2

)
/nd. mi and ni denote the elements inserted to

table i and the size of table i, respectively.

Proof. The amortized insertion complexity of a cuckoo hash

is O(1). Thus, like a balls and bins analysis, the expected

number of conflicts occurring when inserting mi elements

in table i can be estimated as
(
mi

2

)
/ni. Minimizing the

amortized conflicts among all hash tables can be modeled as

the following optimization problem:

minm1,...,md≥0

∑
i=1,...,d

(
mi

2

)
/ni

s.t.
∑

i=1,...,d mi = m
(1)

To solve the optimization problem, we establish an equivalent

objective function:

min
∑

i=1,...,d

(
mi

2

)

ni
⇔ min log(

1

d

∑

i=1,...,d

(
mi

2

)

ni
)

According to the Jensen’s inequality, the following inequality

holds:

log(
1

d

∑

i=1,...,d

(
mi

2

)

ni
) ≥ 1

d

∑

i=1,...,d

log(

(
mi

2

)

ni
)

where equality holds when
(
mi

2

)
/ni =

(
mj

2

)
/nj ∀i, j =

1, . . . , d and we obtain the minimum.

Based on our resizing strategy, one hash table can only be

twice as large as the other tables. This implies that the filled

factors of two tables are equal if they have the same size, i.e.,
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Fig. 3. Illustration for upsize.

Fig. 4. Illustration for downsize.

θi = θj if ni = nj , while θi �
√
2 · θj if ni = 2nj . Thus,

larger tables should have a higher filled factor. To ensure the

KVs are evenly distributed, we use randomized strategy for

table assignment.

D. Rehashing

Whenever the filled factor falls out of the desired range,

rehashing relocates KV pairs after one of the hash tables is

resized. An efficient relocation process maximizes GPU device

memory bandwidth and minimizes thread conflicts. We discuss

two scenarios for rehashing: upsizing and downsizing, both of

which are processed in a single kernel.

Upsizing. Here, we introduce a conflict-free rehashing strategy

for the upsizing scenario. As we always double the size for

hi, a KV pair that originally resides in bucket loc could be

rehashed to bucket loc+|hi| or stay in the original bucket. With

this observation, we assign a warp for rehashing all KV pairs

in the bucket to fully utilize the cache line size. Each thread

in the warp takes a KV pair in the bucket and, if necessary,

relocates that KV pair. Moreover, rehashing does not trigger

any conflicts as KV pairs from two distinct buckets before

upsizing cannot be rehashed to the same bucket. Thus, locking

of the bucket is not required, meaning we can make use of

the device’s full memory bandwidth for the upsizing process.

After upsizing hash table hi, its filled factor θi is cut in

half, which could break the balancing condition emphasized

in Theorem 1. Nevertheless, we use a sampling strategy for

subsequent KV insertions, in which each insertion is allocated

to table i with a probability proportional to ni/
(
mi

2

)
, to recover

the balancing condition. In particular, mi remains the same but

ni doubles after upsizing, and the scenario leads to doubling

the probability of inserting subsequent KV pairs to hi.

Example 2. In Figure 3, we continue from Example 1 to show
a case of upsize. Suppose inserting KV pairs with keys 23 and
24 triggers an upsize, we first double h0 and rehash all KV
pairs in h0, followed by inserting 23 and 24 into h0. The
rehash does not generate conflicts as there is always room to
reallocate the KV pairs in h0.

Downsizing. Downsizing hi is the reverse process of upsizing

hi. There is always room to relocate KV pairs in the same table

for upsizing. However, downsizing may rehash some KV pairs

to other hash tables, especially when θi > 50%. Because the

KV pairs located in loc and loc + |hi| are hashed to loc in

the new table, there could be cases in which the KV pairs

exceed the size of a single bucket. Hence, we first assign a

warp to accommodate KV pairs that can fit the size of a single

bucket. Like upsizing, it does not require locking as there

will be no thread conflict on any bucket. For the remaining

KV pairs that cannot fit in the downsized table, known as

residuals, we insert them into other subtables. To ensure no

conflict occurs between inserting residuals and processing the

downsizing subtable, we employ two GPU kernels to handle

them separately.

Example 3. We continue from Example 2 to show a case of
downsize. Suppose deleting KV pairs in Figure 4 triggers a
downsize, we half h0 and rehash all KV pairs in h0. Note that
when 24 is rehashed to bucket 3, it will evict 10, which is then
reallocated to h1.

Complexity Analysis. Given a total of m elements in the hash

tables, upsizing or downsizing rehashes at most m/d KV pairs.

To insert or delete these m elements, the number of rehashes is

bounded by 2m. Thus, the amortized complexity for inserting

m elements remains O(1).

V. 2-IN-D CUCKOO HASH

In this section, we present a 2-in-d approach that ensures

a maximum of two lookups for FIND and DELETE (Sec-

tion V-A). Subsequently, in Section V-B, we give details on

optimizing GPUs for paralleling hash table operations such as

FIND, INSERT, and DELETE.

A. The 2-in-d Approach

Given the proposed dynamic hash table design, a larger d
implies a smaller workload for each resizing operation, as each

single table will be smaller with fixed filled factor. In addition

to efficient resizing, a higher filled factor can be maintained

for a larger d as discussed in Section IV-B. Nevertheless, the

benefit of employing more tables does not come for free.

For each FIND and DELETE operations, one must perform

d lookups, which are translated to d random accesses to the

device memory. Random accesses are particularly expensive as

GPUs contain limited cache size and simplified control units

compared to CPUs.
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Hence, we propose a 2-in-d approach for efficient lookup

processing where at most two random accesses are needed.

Given d hash tables where each is configured by one hash

function, we insert a KV pair (k, v) by first selecting only

two out of d hash tables. The selection is achieved by hashing

the key k to the range {0, 1, . . . , (d2
)} where each hash value

indicates a unique pair of hash tables. Subsequently, (k, v)
will be inserted into one table among the selected hash table

pair with the standard cuckoo hash scheme. In this way, we

perform at most two lookups when searching for (k, v). Note

that there is little overhead for the selection process as we

only compute a hash value of k and map to the corresponding

pair of hash tables with a small lookup table of size O(
(
d
2

)
).

The following example demonstrates how to insert a KV pair

with the 2-in-d approach.

Example 4. A KV pair (k, v) first selects a hash table pair
(hi, hj). We then hash k and try to insert (k, v) into hi.
Assuming the corresponding bucket in hi is full, we evict
another KV pair (k′, v′). We then discover that (k′, v′) is
mapped to the hash table pair (hi, ht). Then, we insert (k′, v′)
to ht and the process repeats until no further evictions occur.

The above example shows that the eviction could reinsert a

KV pair into any hash table ht. As each filled bucket contains

32 KV pairs (assuming 4 byte keys), one can pick a KV pair

for reinsertion into a desired hash table based on the balancing

strategy discussed in Theorem 1. Furthermore, the 2-in-d

cuckoo hash has the same asymptotic insertion performance

as a plain cuckoo hash table with two hash functions.

Theorem 2. The 2-in-d cuckoo hash approach has the same
expected, amortized complexity of insertions as a plain cuckoo
hash approach with two hash tables.

Proof. Assuming d hash tables for the 2-in-d approach, with-

out loss of generality we set the range for each hash function

to be [0, n). Given a KV pair (k, v), we denote hash function

hp as the one that hashes (k, v) to a pair of hash tables. Now,

we transform the 2-in-d approach to the plain cuckoo hash by

constructing two new hash functions H1(k) = i ·n ·hi(k) and

H2(k) = j · n · hj(k) where hp(k) = (hi, hj). The apparent

range of H1 and H2 is [0, nd). Thus, we can build a random

bipartite graph G(U, V,E), where U represents the buckets for

H1, V represents the buckets for H2, and E represents the KV

pairs connecting the two buckets from H1 and H2. Each KV

pair is independently hashed to a random edge e ∈ E with

the same probability, i.e., 1/(n2d2). Hence, we can follow a

similar proof procedure that utilizes random bipartite graph

analysis to show the amortized complexity of a cuckoo hash

with two tables [37], to prove Theorem 2.

B. Parallel Hash Table Operations

In the remainder of this section, we discuss how to uti-

lize GPUs for the 2-in-d cuckoo hash. Following existing

works [23], [15], [17], we assume that the FIND, INSERT
and DELETE operations are batched and that each batch

contains only one type of operations. For INSERT, we focus
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Fig. 5. The performance of atomic operations for increasing conflicts.

on presenting how to insert a KV pair into one hash table.

When an eviction occurs, we follow the 2-in-d approach to find

another hash table for inserting the evicted pair as discussed

in Section V-A.

Find. It is relatively straightforward to parallelize FIND oper-

ations as only read access is required. Given a batch of size

m, we launch w warps (meaning we launch 32w threads),

with each warp being responsible for �mw 	 FIND operations.

To locate a KV pair (k, v), we first select the hash table pair

(hi, hj) that corresponds to k and perform a maximum of two

lookups in the corresponding buckets of hi and hj respectively.

Insert. Contention occurs when multiple INSERT operations

target at the same bucket. There are two contrasting objectives

for resolving contention. On one hand, we want to utilize

a warp-centric approach to access a bucket. On the other

hand, when updating a bucket, a warp requires a mutex to

avoid corruption, and on GPUs locking is expensive. In the

literature, it is a common practice to use atomic operations

for implementing a mutex under a warp-centric approach [15].

We can still invoke a warp to insert a KV pair; however, the

warp must acquire a lock before updating the corresponding

bucket. The warp will keep trying to acquire the lock before

successfully obtain control. There are two drawbacks to this

direct warp-centric approach. First, the conflicting warps spin

while locking, thus wasting computing resources. Second,

although atomic operations are natively supported by recent

GPU architectures, they become costly when the number of

atomic operations issued at the same location increases. In

Figure 5, we show the profiling statistics for two atomic

operations that are often used to lock and unlock a mutex:

atomicCAS and atomicExch, respectively. We compare the

throughputs of the atomic operations against an equivalent

amount of sequential device memory IOs (coalesced) and

present the trend for varying the number of conflicting atomic

operations. It is apparent that the atomic performance seriously

degrades when a larger number of conflicts occur. Thus, it will

be expensive for the direct warp-centric approach in contention

critical cases. Suppose that one wants to track the number of

retweets posted to active Twitter accounts in the current month

by storing the Twitter ID and the obtained retweet counts as

KV pairs. In this scenario, certain Twitter celebrities could

receive thousands of retweets in a very short period. This

causes the same Twitter ID to get updated frequently, and thus

a large number of conflicts would happen.
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Algorithm 1 Insert(lane l, warp wid)

1: active← 1
2: while true do
3: l′ ← ballot(active == 1)
4: if l′ is invalid then
5: break

6: [(k′, v′), i′]← broadcast(l′)
7: loc = hi′(k′)
8: if l′ == l then
9: success← lock(loc)

10: if broadcast(success, l′) == failure then
11: continue

12: l∗ ← ballot(loc[l].key == k′||loc[l].key == ∅)
13: if l∗ is valid and l′ == l then
14: loc[l∗].(key, val)← (k′, v′)
15: unlock(loc)
16: active← 0
17: continue

18: l∗ ← ballot(loc[l].key �= ∅)
19: if l∗ is valid and l′ == l then
20: swap(loc[l∗].(key, val), (k′, v′))
21: unlock(loc)

To alleviate the cost of spinning, we devise a voter coordi-

nation scheme. We assign an INSERT to a thread rather than

directly assigning the operation to a warp. Before submitting

a locking request and updating the corresponding bucket, the

thread will participate in a vote among threads within the same

warp. The winning thread l becomes the leader of the warp

and takes control. Subsequently, the warp inspects the bucket

and inserts the KV pair in l if there are spaces left once l has

successfully obtained the lock. If l fails to get the lock, the

warp votes for another leader to avoid locking on the same

bucket. Compared with locking in atomic operations, the cost

of warp voting is almost negligible as it is heavily optimized

in GPU architecture.

The pseudocode in Algorithm 1 demonstrates how a thread

(with lane l) from warp wid inserts a KV pair. The warp

first conducts a vote among active threads using the ballot

function and the process terminates if all threads finish their

tasks (lines 1-5). This achieves better resource utilization as

no thread will be idle when another thread in the same warp

is active. The leader l′ then broadcasts its KV pair (k′, v′) and

the hash table hi′ to the warp and attempts to lock the inserting

bucket (lines 6-9). The ballot and broadcast functions are

implemented using the CUDA warp-level primitives ballot
and shfl 1. The broadcast function ensures that all threads

in the warp receive the locking result, and if l′ fails to obtain

a lock, the warp revotes. Otherwise, the warp follows l′ and

proceeds to update the bucket for (k′, v′) with a warp-centric

approach like FIND. Once a thread finds k′ or an empty space

in the bucket, l′ adds or updates it with (k′, v′) (lines 12-17).

If no empty slot is found, l′ swaps (k′, v′) with another KV

1https://devblogs.nvidia.com/using-cuda-warp-level-primitives/

Fig. 6. Example for parallel insertions.

pair (k∗, v∗) in the bucket and inserts the evicted KV pair to

hash table hj∗ of k∗ in the next round. The warp finishes the

process when all KV pairs have been inserted.

Implementation Details. We use atomicCAS and atomicExch

functions to lock and unlock buckets, respectively. The func-

tion atomicCAS(address, compare, val) reads the value old
located at the address address in global or shared memory and

computes old == compare ? val : old, and stores the result

back to memory at the same address. The function returns

the value old. The function atomicExch(address, val) reads

the value old located at the address address in the global or

shared memory and stores val back to memory at the same

address. To implement the lock, we initialize a lock variable

known as lock for each bucket with a value of 0. We lock the

bucket using the function atomicCAS(&lock, 0, 1), which is

successful if the function returns 0. Similarly, we unlock the

bucket using the function atomicExch(&lock, 0).

The following example demonstrates parallel insertion:

Example 5. In Figure 6, we visualize a scenario for three
threads: lx, ly , lz from warp a and warp b, which insert
KV pairs (k1, v1), (k33, v33), and (k65, v65) independently.
Suppose that ly and lz become the leaders of warp a and
b, respectively. Both threads will compete for bucket y and lz
wins the battle. lz then leads warp b to inspect the bucket and
evict KV pair (k64, v64) by replacing it with (k65, v65). In the
meantime, ly does not lock bucket y and the new leader lx is
voted in warp a. Thread lx locks bucket x and inserts KV pair
(k1, v1) in place. Subsequently, ly may regain the control of
warp a and update k33 with (k33, v33) at bucket y. In parallel,
lz locks bucket z and inserts the evicted KV (k64, v64) into the
empty space.

Delete. In contrast with INSERT, the DELETE operation does

not require locking with a warp-centric approach. As with

FIND, we assign a warp to process a key k on deletion. The

warp iterates through the buckets of all d hash tables that could

possibly contain k. Each thread lane in the warp is responsible

for inspecting one position in a bucket independently, and

erasing the key only if k is found, thus causing no conflict.

Complexity. Because FIND, INSERT and DELETE operations
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TABLE I
THE DATASETS USED IN THE EXPERIMENTS.

Datasets KV pairs Unique keys
TW 50,876,784 25,297,548
RE 96,209,750 82,933,364

LINE 100,000,000 90,319,761
COM 10,000,000 4,583,941
RAND 100,000,000 100,000,000

are independently executed by threads, the analysis of a single

thread’s complexity is the same as in the sequential version

of cuckoo hashing [30]: O(1) worst case complexity for FIND
and DELETE, O(1) expected time for INSERT for the case

of two hash tables. It has been pointed out that analyzing

the theoretical upper bound complexity of insertion in d ≥
3 hash tables is difficult [23]. Nevertheless, empirical results

have shown that increasing the number of tables leads to better

insertion performance. Please refer to the experimental results

presented in Section VI.

We then analyze the number of possible thread conflicts.

Assuming we launch m threads in parallel, each thread is

assigned to a unique key, and the total number of unique

buckets is H =
∑d

i=1 |hi|. For FIND and DELETE, there is no

conflict at all. For INSERT, computing the expected number of

conflicting buckets resembles the balls and bins problem [38],

the complexity of which is O(
(
m
2

)
/H). Given that GPUs have

many threads, there could be a significant amount of conflicts.

Therefore, we propose the voter coordination scheme to reduce

the cost of spinning in locks.

VI. EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments by com-

paring the proposed hash table design DyCuckoo, with sev-

eral state-of-the-art GPU-based hash table approaches. Sec-

tion VI-A introduces the experimental setup. Section VI-B

presents a discussion on the hash table setting of DyCuckoo.

In Sections VI-C and VI-D, we compare all approaches under

the static and the dynamic experiments, respectively.

A. Experimental Setup

Baselines. We compare DyCuckoo with both static and

dynamic hash table approaches on GPUs as follows:

• Libcuckoo is a well-established CPU-based concurrent

hash table that parallelizes a cuckoo hash [39].

• CUDPP is a popular CUDA primitive library containing

the cuckoo hash table implementation published in [23].

In our experiments, we use the default setup of CUDPP,

which automatically chooses the number of hash func-

tions based on the data to be inserted.

• Warp is a warp-centric approach for GPU-based hash

tables [35]. Warp employs a linear probe approach to

handle hash collisions. We set the group size of Warp to

4 as it is the best overall setting [35].

• MegaKV is a warp-centric approach for GPU-based key

value store published in [15]. MegaKV employs a cuckoo

hash with two hash functions and it allocates a bucket for

each hash value.

TABLE II
THE PARAMETERS IN THE EXPERIMENTS.

Parameter Settings Default
Filled Factor θ 70%, 75%, 80%, 85%, 90% 85%

Lower Bound α 30%, 35%, 40%, 45%, 50% 50%
Upper Bound β 70%, 75%, 80%, 85%, 90% 85%

Ratio r 0.1, 0.2, 0.3, 0.4, 0.5 0.2
Batch Size 2e5, 4e5, 6e5, 8e5, 10e5 10e5

• Slab is the state-of-the-art GPU-based dynamic hash

table [25], which employs chaining and a dedicated

memory allocator for resizing.

• DyCuckoo is the approach proposed in this paper.

We adopt the implementations of the compared baselines from

their corresponding inventors. The code for DyCuckoo is

released 2. Performance numbers for GPU-based solutions are

calculated based purely on GPU run-time. The overhead of

data transfer between CPUs and GPUs can be hidden by

overlapping data transfer and GPU computation, as proposed

in MegaKV [15]. Since this technique is orthogonal to our

proposed approaches, we focus solely on GPU computation.

Datasets. We evaluate all compared approaches using several

real-world datasets. The summary of the datasets can be found

in Table I. We use the unique KV pairs from the datasets.

• TW: Twitter is an online social network where users

perform the actions tweet, retweet, quote, and reply. We

crawl these actions for one week through the Twitter

stream API3 for the following trending topics: US pres-

idential election, 2016 NBA finals and Euro 2016. The

dataset contains 50,876,784 KV pairs.

• RE: Reddit is an online forum where users perform the

actions post and comment. We collect all Reddit comment
actions in May 2015 from kaggle 4 and query the Reddit

API for post actions during the same period. The dataset

contains 96,209,750 KV pairs.

• LINE: Lineitem is a synthetic table generated by the

TPC-H benchmark5. We generate 100,000,000 rows of

the lineitem table and combine the orderkey, linenumber
and partkey column as keys.

• COM: Databank is a PB-scale data warehouse that stores

Alibaba customer behavior data for 2017. Because of con-

fidentiality concerns, we sample 10,000,000 transactions

and the dataset contains 4,583,941 encrypted customer

IDs as KV pairs.

• RAND: Random is a synthetic dataset generated from a

normal distribution. We have deduplicated the data and

generated 100,000,000 KV pairs.

Static Hashing Comparison (Section VI-C). We evaluate IN-
SERT and FIND performance among all compared approaches

under a static setting. We insert all KV pairs from the datasets

and then issue queries to search for all KV pairs.

2https://github.com/zhuqiweigit/DyCuckoo
3https://dev.twitter.com/streaming/overview
4https://www.kaggle.com.reddit/reddit-comments-may-2015
5https://github.com/electrum/tpch-dbgen
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INSERT FIND
Fig. 7. Throughput of DyCuckoo for varying the number of hash tables.

Dynamic Hashing Comparison (Section VI-D). We gener-

ate workloads under the dynamic setting by batching hash

table operations. We partition the datasets into batches of

1 million insertions. For each batch, we augment 1 million

FIND operations and r million DELETE operations, where

r is a parameter for controlling the ratio between insertions

and deletions. After exhausting all the batches, we rerun the

batches by swapping the INSERT and DELETE operations

in each batch. In other words, we issue 1 million DELETE
operations of the keys inserted, 1 million FIND operations and

r million INSERT operations. The above process is repeated

for five runs. We only evaluate the performance of Slab and

DyCuckoo because they are the methods that can support

dynamic insertions, deletions, and resizing. For DyCuckoo,

if an insertion failed, the upsize strategy will be triggered.

Parameters. α represents the lower bound for the filled factor

θ, β is the upper bound, and r is the ratio of deletions over

insertions in a processing batch as introduced in the dynamic

setting. We also vary the batch size from 2e5 to 10e5. The

parameter settings and their defaults are listed in Table II.

All parameters are set to their defaults in Table II unless

stated otherwise. We use million operations/seconds (Mops)

as a metric to measure the performance.

Experiment Environment. We conduct all experiments on an

Intel Xeon(R) Gold 6140 CPU @ 2.30GHz server equipped

with an NVIDIA Titan V GPU. Evaluations are performed

using CUDA 11 on Ubuntu 18.04 LTS. The optimization level

(-O3) is applied for compiling all programs.

B. Varying the Number of Tables

A key parameter in DyCuckoo is the number of hash tables

chosen. For the static scenario, we present the throughput

performances of INSERT and FIND for a varying number of

hash tables, as shown in Figure 7, while fixing the entire

structure’s memory space ensures the default filled factor of θ
at 85%. We note that a larger number of hash tables imply a

more precise control on the filled factor. Given d hash tables,

the percentage change of memory usage for upsize/downsize

is at most 1/d. According to our results reported in Figure 7,

the performance numbers of both INSERT and FIND are not

affected significantly by the number of hash tables. This is

because, despite the increasing number of hash tables, the

INSERT FIND
Fig. 8. Throughput of all compared approaches under the static setting.

INSERT FIND
Fig. 9. Throughput of all compared approaches for varying the filled factor
against the RAND dataset.

number of possible locations for any KV pair remains to be

two. The results validate the superiority of our 2-in-d cuckoo

hashing approach as it guarantees a stable performance while

enables a fine-grained memory control for hash tables on

GPUs. In the remaining part of this section, we fix the number

of hash tables at four. Another interesting observation is that

we achieve the best performance with the COM dataset. This

is because COM has the smallest data size, which can partly

fit into the L2 cache of GPUs (4.5MB for Titan V) and thus

incurs fewer cache misses. Hence, ensuring economic memory

usage on GPUs is also critical for efficiency optimization.

C. Static Hashing Comparison

Throughput Analysis. Figure 8 shows the throughput of

all compared approaches over all datasets under default set-

tings. On average, Libcuckoo has throughput of 25 Mops

for INSERT and 46 Mops for FIND. The GPU-based ap-

proaches show at least one order of magnitude speedup over

Libcuckoo (the bars for Libcuckoo are almost invisible).

We will omit Libcuckoo for the remaining experiments as

it is significantly inferior than other baselines. For INSERT,

Warp, MegaKV and DyCuckoo show similar performance,

while Warp has a slight advantage. This is because Warp
employs a linear probing strategy that achieves slightly better

cache locality than the cuckoo hash strategy. The performance

of Slab and CUDPP is significantly slower than other com-

pared methods. Slab employs a chaining approach and the

performance can be severely affected when there is a long

chain to insert. CUDPP is the slowest among all methods,
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despite it also employs a cuckoo hash approach as MegaKV
and DyCuckoo. This is because CUDPP does not follow

the warp-centric approach and under-utilizes the computing

resources of GPUs. For FIND, MegaKV and DyCuckoo have

clear advantages. This is because both methods only check at

most two locations for FIND. In contrast, Warp and Slab
may search for multiple locations to retrieve a KV pair. To

support such an argument, we show the average number of

probed locations for all compared methods in Table III. For

MegaKV and DyCuckoo, the number of probed locations is

close to 1, whereas the other methods have notably higher

probes. Note that each search query can always find a KV in

the hash table according to our setup. In the case of queries

where the key is missing in the hash table, Warp and Slab
will incur worse performance as there is a large number of

probes required before they can detect that the key is missing.

Lastly, the performance of CUDPP is again inferior to other

cuckoo hash approaches due to its non-warp-centric approach.
TABLE III

THE AVERAGE NUMBER OF PROBED LOCATIONS FOR FIND.
TW RE LINE COM RAND

CUDPP 2.07 1.99 1.79 2.08 2.05
Warp 1.30 1.30 1.30 1.30 1.30

MegaKV 1.14 1.14 1.14 1.14 1.14
Slab 3.04 3.04 3.45 3.05 3.05

DyCuckoo 1.14 1.14 1.14 1.14 1.14

Varying filled factor θ. We vary the filled factor θ and

show the performance of all GPU-based approaches against

the RAND dataset in Figure 9. The other datasets show similar

trends, thus we omit those results in this paper. For Slab,

the filled factor dramatically affects the performance of both

INSERT and FIND. This is because Slab employs a chaining

approach, in which a high filled factor leads to long chains

and poor performance. Overall, MegaKV and DyCuckoo
demonstrate the best performance. Warp has a competitive

performance of INSERT but falls short for FIND. As illustrated

in Table III, Warp needs to probe more locations as it employs

the linear probe approach to ensure cache efficiency. The

experiments have confirmed that DyCuckoo is competitive

against the state-of-the-art methods even for the static setting.

MegaKV shares similar performance with DyCuckoo but it

does not support dynamic resizing. In the remaining part of

this section, we will demonstrate the superiority of DyCuckoo
in the dynamic environment.

D. Dynamic Hashing Comparison
Varying insert vs. delete ratio r. In Figure 10, we report

the results for varying the ratio r, which is the number of

deletions over the number of insertions in a batch. We found

that for a larger value of r, the performance numbers of both

DyCuckoo and Slab improve. This is because, a larger

deletion rate results in more empty locations in the hash

tables, which are vacant for insertions. In terms of throughput,

DyCuckoo can achieve between 2x-6x speedup compared

with Slab. Furthermore, Slab employs a symbolic deletion

approach and does not actually free the memory. This results

in less memory efficiency as we discuss in the following.

Memory efficiency. We evaluate the memory efficiency of

Slab and DyCuckoo in Figure 11. In particular, we track

the filled factor after processing each batch. The trend shows

a periodical pattern for both methods as we execute 5 runs of

the same process described in the setup. We note that there

are certain points where the filled factor becomes zero for all

methods. This is because, at the end of each run, all KV pairs

are deleted from the hash table. Slab shows efficient memory

usage only at the starting phrases of each run. Unfortunately,

due to the symbolic deletion approach employed, the memory

efficiency of Slab degrades and fluctuates drastically as more

deletions are processed, especially at the second half of each

run. The reason behind such observation is that Slab does

not physically free the memory occupied to favor insertions.

Hence, it is unable to control the memory usage in a fine-

grained manner. In contrast, DyCuckoo can keep the filled

factor within the default range of [0.5, 0.85] while achieving

better throughput than Slab. The results have validated the

superiority of DyCuckoo for precise memory utilization.

Varying the batch size. We also varied the size of each

processing batch. The results are reported in Figure 12. A

larger batch size can improve the GPU resource utilization

and thus leads to a better throughput for both methods. Slab
continues to show inferior performance to DyCuckoo. This

is because Slab accommodates new inserted KV pairs with

the chaining approach and does not increase the range of

the unique hash values. Hence, a stream of insertions will

eventually lead to long chains, which hurts the performance

of hash table operations. There is an outlier point for LINE
where the throughput of DyCuckoo drops at batch size 6e5.

We have examined the case and found that the outlier is

caused by insertion failures. In the event of such failures, we

will trigger additional upsize operations to accommodate the

failed insertions. The overhead of such upsizes results in the

outlier. We will develop a better failure handling mechanism as

future work. Note that one limitation of existing GPU-based

approaches is that they apply updates at the granularity of

batches. It is an interesting direction for exploring efficient

GPU hashing when a required update order is enforced.

Varying the filled factor lower bound α. We vary the lower

bound of the filled factor and report the results in Figure 13.

We only show the run time of DyCuckoo since Slab is

unable to control the filled factor because of Slab’s symbolic

deletion approach. We profile the run-time by examining three

components: upsize, downsize, and the rest of the computation.

One can observe that downsize is more expensive than upsize.

When performing downsize, the vacant locations are reduced

and it becomes harder to insert the remaining KV pairs back

into the reduced space. Another interesting observation is that

the run-time for downsize increases slightly for a larger α. A

better memory efficiency is guaranteed by a larger α but a

smaller memory size will result in a slight degradation for in-

sertions. Nevertheless, The overall performance of DyCuckoo
is not affected significantly due to the incremental resizing

approach by updating only one subtable at a time.
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TW RE LINE COM RAND
Fig. 10. Throughput for varying the ratio r.
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Fig. 12. Throughput for varying batch Size.
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Fig. 13. Throughput for varying α.

TW RE LINE COM RAND
Fig. 14. Throughput for varying β.
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Varying the filled factor upper bound β. The results for

varying β is reported in Figure 14. When a higher filled factor

is allowed, there are fewer vacant locations for insertions,

which causes an increasing run-time. The time for both upsize

and downsize is again small comparing with the rest of the

computation. Furthermore, the resizing components show a

stable performance with increasing upper bound values.

Scalability. We generate various samples of the RAND dataset

by varying the data size for scalability test. The results are

reported in Table IV. DyCuckoo shows sable and superior

performance over Slab.
TABLE IV

THROUGHPUT (MOPS) WHEN VARYING THE DATASIZE OF RAND.

KV pairs 2e7 4e7 6e7 8e7 10e7
Slab 265 255 250 230 218

DyCuckoo 1085 1086 1074 1076 1082

VII. CONCLUSION

In this paper, we contribute a number of novel designs

for the dynamic hash table on GPUs. First, we introduced

an efficient strategy to resize only one of the subtables at a

time. Our theoretical analysis demonstrated the near-optimality

of the resizing strategy. Second, we devised a 2-in-d cuckoo

hash that ensures a maximum of two lookups for find and

deletion operations, while still retaining similar performance

for insertions as general cuckoo hash tables. Empirically, our

proposed design achieves competitive performance against

other state-of-the-art static GPU hash table techniques. Our

hash table design achieves superior efficiency while enables

fine-grained memory control, which is not available in existing

GPU hash table approaches.
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