
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2021

DeepIS: Susceptibility estimation on social networks DeepIS: Susceptibility estimation on social networks

Wenwen XIA

Yuchen LI
Singapore Management University, yuchenli@smu.edu.sg

Jun WU

Shenghong LI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the OS and Networks Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6204&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

DeepIS: Susceptibility Estimation on Social Networks
Wenwen Xia

Shanghai Jiao Tong University

xiawenwen@sjtu.edu.cn

Yuchen Li

Singapore Management University

yuchenli@smu.edu.sg

Jun Wu

Shanghai Jiao Tong University

junwuhn@sjtu.edu.cn

Shenghong Li

Shanghai Jiao Tong University

shli@sjtu.edu.cn

ABSTRACT
Influence diffusion estimation is a crucial problem in social network

analysis. Most prior worksmainly focus on predicting the total influ-

ence spread, i.e., the expected number of influenced nodes given an

initial set of active nodes (aka. seeds). However, accurate estimation

of susceptibility, i.e., the probability of being influenced for each

individual, is more appealing and valuable in real-world applica-

tions. Previous methods generally adopt Monte Carlo simulation or

heuristic rules to estimate the influence, resulting in high computa-

tional cost or unsatisfactory estimation error when these methods

are used to estimate susceptibility. In this work, we propose to

leverage graph neural networks (GNNs) for predicting susceptibil-

ity. As GNNs aggregate multi-hop neighbor information and could

generate over-smoothed representations, the prediction quality for

susceptibility is undesirable. To address the shortcomings of GNNs

for susceptibility estimation, we propose a novel DeepISmodel with

a two-step approach: (1) a coarse-grained step where we estimate

each node’s susceptibility coarsely; (2) a fine-grained step where

we aggregate neighbors’ coarse-grained susceptibility estimations

to compute the fine-grained estimate for each node. The two mod-

ules are trained in an end-to-end manner. We conduct extensive

experiments and show that on average DeepIS achieves five times

smaller estimation error than state-of-the-art GNN approaches and

two magnitudes faster than Monte Carlo simulation.

KEYWORDS
Influence Estimation; Graph Neural Networks; Social Networks

ACM Reference Format:
Wenwen Xia, Yuchen Li, Jun Wu, and Shenghong Li. 2021. DeepIS: Sus-

ceptibility Estimation on Social Networks. In Proceedings of the Fourteenth
ACM International Conference on Web Search and Data Mining (WSDM ’21),
March 8–12, 2021, Virtual Event, Israel. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3437963.3441829

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’21, March 8–12, 2021, Virtual Event, Israel
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00

https://doi.org/10.1145/3437963.3441829

1 INTRODUCTION
Social network users continuously generatemassive contents, which

could reach large audiences through information propagation. The

prevalence of social networks expedites many social influence-

based applications, e.g., viral marketing [17, 36] and recommenda-

tion [35, 44]. One essential problem is to predict the social influence.

For example, a company may dispatch free products to some users

as seeds and be interested in the number of users affected by the

seeds through theword-of-mouth effect, i.e., they concern howmany
users will be influenced in total [17, 26]? However, in many real-

world scenarios, predicting the probability of being influenced for

targeted individuals (or susceptibility) is more appealing. In tar-

geted advertising, the advertisers may consider the susceptibility of

males/females, a certain age group, and other relevant information

to craft the best marketing strategy [16, 28]. In political campaigns,

influential ads for specific targets can significantly affect the elec-

tion results [12]. Furthermore, susceptibility estimation could serve

as a core component for a wide-known problem in social network

studies: Influence Maximization (IM) [17, 26], which aims to select

a seed set that could influence the most users.

Many existing studies have proposed diffusion models to char-

acterize and analyze social influence, e.g., the Independent Cascade

(IC) model [9] and the Linear Threshold (LT) model [11]. In this

work, we focus on susceptibility estimation under IC and LT due

to their popularity in the literature [5, 17, 20, 51], but our proposed

approach can be adapted for other diffusion models. It has been

proved that, computing the exact influence spread, i.e., the expected

number of influenced users, under IC/LT model is #P-hard [5, 7].

Hence, most previous efforts adopt Monte Carlo (MC) simulation

to estimate the influence spread, i.e., repeating the diffusion pro-

cess and averaging the results [17, 25, 27, 30, 33, 51]. However, MC

simulation is extremely time-consuming and cannot be scaled to

large networks. Thus, some studies propose heuristic algorithms to

approximate the influence spread, e.g., based on the node degree [6],

the shortest path [5, 15] and others [15, 51]. While most existing

methods focus on the influence spread and overlook the problem

of estimating susceptibility for specific individuals or groups. Ac-

cording to our experiments in Section 5, adopting existing methods

to estimate susceptibility can lead to high computational costs or

unsatisfactory estimation error.

In this paper, we conduct the study on susceptibility estimation.

The estimation problem can be regarded as a regression task on

nodes. Thereby, we propose to tackle this problem from the graph

learning perspective, leveraging graph neural networks (GNNs).

Poster Session I WSDM ’21, March 8–12, 2021, Virtual Event, Israel

761

https://doi.org/10.1145/3437963.3441829
https://doi.org/10.1145/3437963.3441829

However, there are two major challenges in susceptibility estima-

tion with GNNs. First, the influence diffuses through many users.

To tackle the susceptibility for a specific node𝑢, we should consider

multi-hop neighbors of 𝑢. Meanwhile, GNNs aggregate multi-hop

neighbors’ information by stacking multiple layers, and each layer

aggregates one-hop neighbors’ information [18]. However, it has

been shown that multiple stacked layers can lead to over-smoothed

node representations [24] and tend to hurt the performance of any

prediction task on individual nodes [48]. Second, GNNs aggregate

neighbors’ representations using uniform weight [18] or attention

mechanism [43]. Thus, the aggregation schemes of GNNs do not

capture specific characteristics of the underlying diffusion model.

To address the challenges, we propose a novel DeepIS model

for susceptibility estimation. We integrate the characteristics of

the diffusion model into DeepIS with a two-step approach. In the

first step, we construct features by encoding the seed nodes into a

multi-hot vector and taking the power sequence of the influence

probability matrix. The features are then fed into a multi-layer GNN

for coarse-grained susceptibility estimations. We adopt indepen-

dent estimation on every node to eliminate the aggregation step

from neighbors and thus circumvent the problem of over-smoothed

representations of GNNs. In the second step, to enable fine-grained

computation, we propose a propagation scheme to diffuses each

node’s estimation among its neighbors. We devise the propagation

equation motivated by the concept of stationary distribution of the

random walk process. Since the influence spread is intrinsically

different with the random walk, we devise an iterative propagation

scheme considering the specific characteristics of the diffusion dy-

namics. The model is trained in an end-to-end manner. We note

that DeepIS is inductive, i.e., we could train the model on one graph

and run on other graphs, which avoids expensive retraining on

large datasets and enables real-time influence analysis.

We verify the efficacy of DeepIS on several public graph datasets.
Experimental results reveal that DeepIS provides five times smaller

estimation error compared with state-of-the-art GNN models and

reduces about two orders of magnitude running time comparedwith

MC simulation. Furthermore, DeepIS performs well as a subroutine

of the IM problem. For convenient reproduction of the results, we

release the implementation of DeepIS 1
.

2 RELATEDWORKS
In this section, we review the related literature on influence spread

estimation as well as GNNs.

2.1 Influence Spread Estimation
Influence spread estimation approximates the expected number of

influenced nodes given a seed set, and it is a core component in IM

algorithms [5, 6, 17, 21]. Computing the influence spread exactly

under IC /LT model is #P-hard [5, 7].Hence, the MC simulation is

adopted to estimate the influence spread [10, 21, 33, 51]. Some recent

works adopt the sampling of reverse reachable (RR) sets to estimate

the influence spread [1, 41, 42]. RR sets-based estimation can be

regarded as a specific MC method. To alleviate the computational

overhead of the MC simulation, [6] proposes to utilize the node’s

outdegree and a discount rule to approximate themarginal influence

1
https://github.com/xiawenwen49/DeepIS.git

spread. [15] approximates the marginal influence spread of a single

node by iteratively computing a system of linear equations.

Another line of works utilizes GNNs to predict the influence

spread or the node states. [22, 35] utilize the neighbor nodes’ states

and the local subgraph to predict a node’s activation state. [3, 23, 49]

aim to predict the popularity of social contents based on the cascade

information in a time window. They conduct predictions based

on message cascade logs. Note that this line of works does not

consider the influence diffusion models. Furthermore, all existing

works focus on predicting the total number of influenced nodes

without considering the susceptibility of individual nodes, which

are not suitable for targeted influence analysis studied in this work.

2.2 Graph Neural Networks
GNNs are getting surged attention in recent years. As deep neural

networks have achieved widespread success in the Euclidean data

space, GNNs mainly focus on the non-Euclidean graph structures.

The general paradigm of GNNs alternates between node feature

transformation and neighbor nodes’ information aggregation. For

a 𝑘-layer GNN, a node aggregates information within 𝑘-hop neigh-

bors. Specifically, the 𝑘-th layer transformation is

𝑎
(𝑘)
𝑣 = AGGREGATE

𝑘
({
ℎ
(𝑘−1)
𝑢 , 𝑢 ∈ N (𝑣)

})
(1)

ℎ
(𝑘)
𝑣 = COMBINE

𝑘
({
ℎ
(𝑘−1)
𝑣 , 𝑎

(𝑘)
𝑣

})
(2)

where 𝑎
(𝑘)
𝑣 represents node 𝑣 ’s aggregated feature vector from

neighbors, andℎ
(𝑘)
𝑣 is the 𝑘-th layer feature vector. The flexibility of

AGGREGATE and COMBINE function induces different GNN mod-

els. The high-level representations of nodes or graphs are utilized

for different tasks. GNNs have been applied in various learning tasks

related to graphs, e.g., semi-supervised node classification [18, 37],

link prediction [14, 50], and social cascade prediction [44, 49].

Among existing works in GNNs, our work is closely related to

the PPNP algorithm proposed in [19] and the MONSTOR algorithm

proposed in [20]. PPNP separates the feature transformation and

information propagation into independent stages and computes an

approximate stationary distribution of the personalized page rank

(PPR) [34] to propagate each node’s prediction to other nodes on

the graph. The propagation scheme is as follows:

𝑍 (0) = 𝑓𝜃 (𝑋)

𝑍 (𝑘) = (1 − 𝛼) ˆ𝐴̃𝑍 (𝑘−1) + 𝛼𝑍 (0)

𝑍 (𝐾) = softmax

(
(1 − 𝛼) ˆ𝐴̃𝑍 (𝐾−1) + 𝛼𝑍 (0)

) (3)

where 𝑓𝜃 is a multi-layer nonlinear function, 𝑋 is the initial feature

matrix, 𝛼 is the teleport probability in PPR, and
ˆ
𝐴̃ is the symmet-

rically normalized adjacency matrix with self-loops of the graph.

PPNP motivates our work as we propose to combine the character-

istics of the diffusion models and the iterative propagation process

in a two-stage framework.

MONSTOR focuses on the incremental influence spread esti-

mation of nodes under IC model based on a stacked structure of

multiple GNNs. However, the model weights the neighbor node’s

features according to the influence strength in the aggregation stage,

ignoring the characteristics of diffusion models. Furthermore, the

Poster Session I WSDM ’21, March 8–12, 2021, Virtual Event, Israel

762

Table 1: Frequent notations used across the paper

Notation Description

G,V , E The social graph, the node set, the edge set

𝑆 The seed set on social graph

𝑃 The influence propagation probability matrix

𝐷 A diffusion instance on target graph

𝜁𝑆 (𝑛𝑖) The susceptibility of node 𝑖 under seed set 𝑆

𝜎 (𝑆) The total influence spread of seed set 𝑆

𝑋 The constructed feature matrix

˜𝜻𝑖 The approximate susceptible probability of node 𝑖

estimation error accumulates with the number of GNNs increases.

In this work, we estimate the susceptibility of each node using a

single neural network and propagate the estimations leveraging the

characteristics of the diffusion model to obtain precise estimations.

3 PROBLEM FORMULATION
In this section, we introduce the diffusion model and the problem

formulation for susceptibility estimation. For ease of presentation,

we mainly focus on IC model but our proposed framework can be

adapted to support other diffusion models, like LT model. To ease

the representation, frequently used notations are listed in Table 1.

3.1 The IC Model
For a given graph G = (V, E), whereV is the node set and E is the

edge set, with |V| = 𝑛. Each 𝑒𝑖 𝑗 ∈ E is associated with an influence

probability 𝑝𝑖 𝑗 , indicating the probability of node 𝑖 influence node

𝑗 in the next step, if 𝑖 is influenced in the current step. We denote

𝑃 as the influence strength matrix with 𝑃𝑛×𝑛 = (𝑝𝑖 𝑗)𝑛×𝑛 . Under
IC model, the influence propagates from the initial seed nodes 𝑆

at timestep 0. At each timestep 𝑡 > 0, the influenced (or activated)

node 𝑖 in timestep 𝑡 − 1 propagate influence to their out-neighbor

𝑗 with probability 𝑝𝑖 𝑗 . Note that each activated node only has one

chance to activate its neighbors and remains to be in the active

state. The propagation process terminates at timestep 𝑡 if is are no

newly activated node.

3.2 The Susceptibility Estimation Problem
Given IC model, we use 𝐷 to represent a diffusion instance and de-

note the state of node 𝑖 on instance 𝐷 by 𝐼𝑆,𝐷 (𝑛𝑖). If 𝑛𝑖 is influenced
by seed 𝑆 in instance 𝐷 , 𝐼𝑆,𝐷 (𝑛𝑖) = 1 and 0 otherwise. The sus-

ceptibility of node 𝑖 is represented by 𝜁𝑆 (𝑛𝑖) = E𝐷∼𝑝 (𝐷) [𝐼𝑆,𝐷 (𝑛𝑖)].
The Susceptibility Estimation Problem aims to estimate 𝜁𝑆 (𝑛𝑖) for
each node 𝑛𝑖 . We denote the influence spread of seeds 𝑆 as 𝜎 (𝑆).
One can see that 𝜎 (𝑆) = ∑

𝑛𝑖 ∈V 𝜁𝑆 (𝑛𝑖).

4 DEEPIS
In this section, we propose the Deep Influence Spread Estimation

(DeepIS) model . DeepIS consists of two stages, i.e., (1) construct

features to feed a GNN for coarse-grained susceptibility estimation

of each node. (2) propagate estimations, which propagates each

node’s estimated susceptibility to neighbors through an iterative

process. Finally, we compute the loss between the estimations after

these procedures with the training labels, to optimize the model in

an end-to-end manner. Note that we refer to the feature construc-

tion and coarse-grained computation as the GNN stage, while the
estimation propagation as the propagation stage. We demonstrate

the framework of the DeepIS model in Fig. 1. We describe the two

stages in the following sections.

4.1 GNN Stage
Feature construction. Given the influence strength matrix 𝑃 and

the initial seed nodes. We can represent the seed nodes 𝑆 as a

multi-hot vector 𝒙 , with 𝒙 [𝑖] = 1, if 𝑛𝑖 ∈ 𝑆 , otherwise 𝒙 [𝑖] = 0.

The matrix 𝑃 preserves both the graph topology and the in-

fluence strengths, while 𝒙 preserves the seeds information. We

denote the node’s susceptible probability vector as 𝜻𝑆 , i.e., 𝜻𝑆 =

[𝜁𝑆 (𝑛1), 𝜁𝑆 (𝑛2), ...]𝑇 . Theoretically, 𝜻𝑆 and the influence spread

𝜎 (𝑆) are completely determined by 𝑃 and x.
Since 𝑃 and 𝒙 involve sufficient information for computing the

objective 𝜻𝑆 and 𝜎 (𝑆), we consider leverage 𝑃 and 𝒙 to construct

the features. We first introduce the following definition.

Definition 4.1 (𝑑-step influence probability). A node’s 𝑑-step in-

fluence probability is the activation probability at timestep 𝑑 .

Note that (𝑃𝑇)𝑑𝒙 is an upper bound of the 𝑑-step influence

probability of all nodes under IC model [51], since (𝑃𝑇)𝑑 includes

all paths from an arbitrary seed to an arbitrary target node with

length 𝑑 . Based on this observation, we utilize the matrix power of

𝑃𝑇 and 𝒙 to construct the feature matrix 𝑋 for all nodes, i.e.,

𝑋 = [𝒙, 𝑃𝑇 𝒙, (𝑃𝑇)2𝒙 ..., (𝑃𝑇)𝑑𝒙] (4)

Node estimation. Once the feature matrix𝑋 is obtained, we adopt

a nonlinear neural function 𝑓𝜃 to predict each node’s 𝜁𝑆 (𝑛𝑖), where
𝜃 is the function parameter. In this work, we adopt a two-layer

fully connected neural network as the 𝑓𝜃 . Our studies show that the

simple 𝑓𝜃 provides reasonable results and computation effectiveness.

Specifically, we calculate the estimations of all node as follows:

𝑓𝜃 (𝑋) = Sigmoid(Relu(𝑋𝑊1 + 𝒃1)𝑊2 + 𝒃2)
𝒚𝑖 = 𝑓𝜃 (𝑋 [𝑖, :]) (5)

Note that the choice of the function 𝑓𝜃 is flexible. We may integrate

other prediction models to substitute the 𝑓𝜃 adopted above, e.g.,

GCNs [18] or attention-based graph models [43].

4.2 Propagation Stage
We propose the propagation scheme that draws the intuition from

the random walk. We first describe the stationary distribution of

random walk process and analyze the difference between random

walk and random influence diffusion. Then we propose the prop-

agation scheme for DeepIS. Finally, we conduct some theoretical

analysis on the convergence property of the propagation process.

Propagation scheme. Previous works utilize the stationary dis-

tribution of random walk to propagate information to neighbor

nodes [19]. Meanwhile, the diffusion process has differences com-

pared against the random walk. For the random walk, the probabil-

ity of a node being visited in a given timestep is the summation of

its neighbor’s probabilities multiplying the transition matrix. The

stationary distribution 𝝅 satisfies the following equation [19]:

𝝅 = 𝑃𝝅 (6)

Poster Session I WSDM ’21, March 8–12, 2021, Virtual Event, Israel

763

Figure 1: The framework of the proposed DeepISmodel for susceptibility estimation. Firstly, the model constructs each node’s
feature vector according to influence strengths and the seed nodes (the red node). Secondly, a nonlinear neural function maps
each node’s feature vector to a probability in [0, 1]. Finally, each node’s result propagates to its neighbor nodes except the seed
nodes to obtain the final estimation.

For the random walk with restart probability 𝛼 , the stationary

distribution matrix 𝚷 satisfies (7), [19].

𝚷 = (1 − 𝛼)𝑃𝚷 + 𝛼 𝑰𝑛 (7)

In the random walk, a node can be passed for multiple times, while

in influence diffusion, once a node is influenced, it cannot be influ-

enced twice. The influence spread process is intrinsically different

with random walk.

Furthermore, motivated by the stationary distribution of random

walk, we propose the following approximate stationary distribution
˜𝜻 to approximate stationary probabilities under IC diffusion model,

which satisfy the relation (8).

˜𝜻𝑖 = 1 −
∏

𝑛 𝑗 ∈N(𝑛𝑖)
(1 − 𝑃 𝑗𝑖 ˜𝜻 𝑗) (8)

N(𝑛𝑖) in (8) denotes the in-neighbors of node 𝑛𝑖 . Equation (8)

means that for node 𝑛𝑖 , the susceptible probability ˜𝜻𝑖 of node 𝑛𝑖 is
approximated by its in-neighbors’ susceptibilities. We note that, to

adapt our approach for other diffusion models, one only needs to

update Equation (8). For example, we can design the approximate

susceptible probability for LT model as:

˜𝜻𝑖 =
∑

𝑛 𝑗 ∈N(𝑛𝑖)
𝑃 𝑗𝑖 ˜𝜻 𝑗 (9)

Next we define the propagation function 𝑔(·) and describe the

propagation scheme. 𝑔(·) is defined as follows:

𝑔(𝒙) =
©­­­«
𝑔(𝑥1)
𝑔(𝑥2)
· · ·
𝑔(𝑥𝑛)

ª®®®¬ =
©­­­«
1 −∏

𝑛 𝑗 ∈N(𝑛1) (1 − 𝑃 𝑗1𝑥 𝑗)
1 −∏

𝑛 𝑗 ∈N(𝑛2) (1 − 𝑃 𝑗2𝑥 𝑗)
· · ·

1 −∏
𝑛 𝑗 ∈N(𝑛𝑛) (1 − 𝑃 𝑗𝑛𝑥 𝑗)

ª®®®®¬
(10)

The propagation scheme is formulated in (11), which originates

from the relation in (8).

𝒚̂ (0) = 𝒚̂

𝒚̂ (1) = 𝑔(𝒚̂ (0))

𝒚̂ (𝑞) = 𝑔(𝒚̂ (𝑞−1))

(11)

Note that 𝑞 denotes the iteration number.

Note that 𝑔(𝑥𝑖) is determined by in-neighbors of node 𝑛𝑖 , hence

one iteration essentially propagates each node’s information into

its one-hop neighbors. After 𝑞 iterations of propagation, we output

the 𝒚̂ (𝑞)
as the final results.

The AGGREGATE and COMBINE in (12) summarize the propa-

gation stage.

𝑎𝑖 = AGGREGATE

({
𝑥 𝑗 , 𝑗 ∈ N (𝑛𝑖)

})
= 𝑔(𝑥𝑖)

ℎ𝑖 = COMBINE ({𝑎𝑖 , 𝑥𝑖 }) =
{
𝑎𝑖 , 𝑛𝑖 ∈ 𝑆
1, 𝑛𝑖 ∉ 𝑆

(12)

Note that (12) shows that for seed nodes, we do not combine the

neighbor information since the susceptibility is always 1.

Propagation analysis In the following, we give the fixed point

existence and the convergence analysis of the iteration function

𝑔(·), to study the choice of iteration number 𝑞. Note that a fixed

point 𝒙∗ satisfies 𝒙∗ = 𝑔(𝒙∗). We first introduce the following fixed

point theorem.

Theorem 1 ([2]). Let 𝐷 = {(𝑥1, · · · , ..., 𝑥𝑛)𝑇 |𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 }, for
some collection of contents of 𝑎1, · · · , 𝑎𝑛 and 𝑏1, · · · , 𝑏𝑛 . Suppose 𝑔(·)
is a continuous function from 𝐷 ⊂ R𝑛 into R𝑛 with property that
𝑔(𝒙) ∈ 𝐷 whenever 𝒙 ∈ 𝐷 . Then 𝑔(·) has a fixed point in 𝐷 .

Suppose that all the component functions of 𝑔(·) have continuous
partial derivatives and a constant 𝐾 ≤ 1 exists with���� 𝜕𝑔𝑖 (𝒙)𝜕𝑥 𝑗

≤ 𝐾

𝑛

���� , ∀𝒙 ∈ 𝐷

for all 𝑗 = 1, · · · , 𝑛, and all component function 𝑔𝑖 (·). Then the se-
quence {𝒙 (𝑘) }∞

𝑘=0
defined by a 𝒙 (0) ∈ 𝐷 and generated by

𝒙 (𝑘) = 𝑔(𝒙𝑘−1), ∀𝑘 ≥ 1

converges to the unique fixed point 𝒑 ∈ 𝐷 .

Based on the Theorem 1, we present the following propositions.

Proposition 4.2. 𝑔(·) in (10) has a fixed point in [0, 1]𝑛 .

Poster Session I WSDM ’21, March 8–12, 2021, Virtual Event, Israel

764

Proof. Let 𝐷 = [0, 1]𝑛 and 𝑃𝑖 𝑗 ∈ [0, 1],∀𝑖, 𝑗 . One can see that

𝑔(·) is continuous. For ∀𝒙 ∈ 𝐷 , we have 𝑔(𝑥𝑖) ∈ [0, 1],∀𝑖 . Hence
we have 𝑔(𝒙) ∈ 𝐷 , i.e., 𝑔(·) has a fixed point in 𝐷 . □

Proposition 4.3. The iteration process in (11) may not converge
for an arbitrary influence probability matrix 𝑃 .

Proof. The partial derivatives of 𝑔𝑖 (𝒙) w.r.t 𝑥 𝑗 is computed as:

𝜕𝑔𝑖 (𝒙)
𝜕𝑥 𝑗

=

𝜕

(
1 −∏

𝑛𝑘 ∈N(𝑛𝑖) (1 − 𝑃𝑘𝑖𝑥𝑘)
)

𝜕𝑥 𝑗

=
𝜕 (1 −∏

𝑘=1→𝑛 (1 − 𝑃𝑘𝑖𝑥𝑘))
𝜕𝑥 𝑗

=

𝜕

(
1 − (1 − 𝑃 𝑗𝑖𝑥 𝑗)

∏
𝑘=1→𝑛,𝑘≠𝑗 (1 − 𝑃𝑘𝑖𝑥𝑘)

)
𝜕𝑥 𝑗

= 𝑃 𝑗𝑖

∏
𝑘=1→𝑛,𝑘≠𝑗

(1 − 𝑃𝑘𝑖𝑥𝑘)

Since 𝑥𝑘 ∈ [0, 1], we have 𝜕𝑔𝑖 (𝒙)
𝜕𝑥 𝑗

∈ [𝑃 𝑗𝑖
∏
𝑘=1→𝑛,𝑘≠𝑗 (1− 𝑃𝑘𝑖), 𝑃 𝑗𝑖].

For an arbitrarymatrix 𝑃 , the condition 𝑃 𝑗𝑖 ≤ 1

𝑛 may not be satisfied.

Hence the iteration process in (11) may not converge. □

Propositon 4.2 and 4.3 reveal that the propogation iteration pro-

cess has a fixed point. However, the iteration process may not con-

verge for an arbitrary graph influence probability matrix 𝑃 . Hence

we should not set the iteration number 𝑞 too large. In practice, an

iteration number 𝑞 ≤ 5 leads to satisfactory results in experiments,

and we will study the iteration effect in section 6.4.

4.3 End-to-end Training
Since the propagation function 𝑔(·) is differentiable, we could inte-

grate the propagation scheme into model training and utilize the

final output 𝒚̂ (𝑞)
to compute loss. Note that we omit the superscript

(𝑞) in the following for conciseness.

We adopt the mean square error on training cascades considering

the probability estimation error on each node, i.e.,

𝐿MSE =
1

𝑀

𝑀∑
𝑚=1

∥𝒚̂ (𝑚) −𝒚 (𝑚) ∥2 (13)

where 𝑀 is the number of training cascades, i.e., the training set

𝑇 = |{𝐶1,𝐶2, · · · ,𝐶𝑀 }|. Each cascade𝐶 = {𝒙,𝒚} includes the initial
multi-hot seed vector 𝒙 and the groundtruth target probability

vector 𝒚.
We also measure the influence spread error leveraging the mean

relative square error (MRSE). The MRSE reflects the graph-level

estimation performance, with optimization robustness and differ-

entiability.

𝐿MRSE =
1

𝑀

𝑀∑
𝑚=1

(∥𝒚̂ (𝑚) ∥1 − ∥𝒚 (𝑚) ∥1
∥𝒚 (𝑚) ∥1

)2
(14)

We describe the final objective to be optimized as follows:

Loss = 𝐿MSE︸︷︷︸
node lever error

+ 𝜆𝐿MRSE︸ ︷︷ ︸
graph lever error

+ 𝛾 ∥𝜃 ∥2︸︷︷︸
regularization term

(15)

Table 2: Dataset statistics. Avg. 𝑝 is the average probability.

Dataset Type |V| |E | Avg. 𝑝

CORA-ML Citation 2810 7981 0.1168

CITESEER Citation 2110 3668 0.1152

PUBMED Citation 19717 44321 0.1155

MS-ACADEMIC Co-author 18333 81894 0.1157

which consists of three components, with hyperparameters 𝜆 and

𝛾 . The L2 regularization term aims to mitigate the over-fitting and

facilitates the convergence process.

5 EXPERIMENTAL SETUP
In this section, we compare our method with several state-of-the-

art GNN models and the MC simulation under several evaluation

metrics to measure the prediction performance. We also report the

performance of DeepISwhen used as a subroutine in IM algorithms.

Note that we implement all algorithms with python3.7 and run on

a server with a Intel Xeon E5-2620 CPU.

5.1 Datasets
We adopt four commonly used datasets: CORA-ML [31], CITE-

SEER [38], PUBMED [32], andMS-ACADEMIC [40]. For each dataset,

we select the largest connected component for our experiments.

Since the groundtruth influence propagation probabilities between

nodes are unavailable on these datasets, previous works generate

these parameters manually [5, 46]. Similarly, we generate these

influence parameters from a discrete set [0.001, 0.01, 0.05, 0.1, 0.15,

0.2, 0.3] with uniform probabilities. We summarize the statistics of

datasets in Table 2.

For each dataset, we generate the propagation cascades according

to the following two strategies. Firstly, we generate seed sets with

the size of 50, 100, 150, 200, 250, 300. For each seed size, we generate

100 random seed vector 𝒙 . We repeat 10000 MC simulations for each

seed set to obtain the groundtruth susceptible probability vector

𝒚. Each cascade instance 𝐶 consists of the 𝒙 and the 𝒚, i.e., we
construct 𝐶 as a |V| × 2 matrix, with 𝐶 [:, 0] = 𝒙 and 𝐶 [:, 1] = 𝒚.
We randomly sample 80% of these cascades as the train set, 10% as

the validation set and 10% as the test set. Secondly, to avoid small

influence probabilities of random seeds, we further compute the

top-K nodes with the highest degrees as seed sets for each seed

size as test sets. We will compare the model’s performance on two

kinds of seed sets respectively.

5.2 Baselines
We compare the following GNN approaches with DeepIS.

• GCN [18]. GCN utilizes the normalized Laplacian matrix to

average each node’s feature with neighbor’s features, and

transform these averaged features with a shared parameter

matrix.

• GraphSAGE[13]. GraphSAGE aggregates each node’s neigh-

bor features and concatenates the aggregated features with

node’s self-features. GraphSAGE transforms node features

in an inductive manner and is applicable on an unseen graph,

differing from that of GCN.

Poster Session I WSDM ’21, March 8–12, 2021, Virtual Event, Israel

765

• GAT [43]. GAT improves the performance of GraphSAGE by

introducing the attention mechanism. The attention mecha-

nism calculates aggregation weights between nodes in the

aggregation layer, introducing flexibility and directionality

for different nodes.

• SGC [47]. SGC simplifies previous GCN-like models by prop-

agating node features in a preprocessing stage, then predict-

ing each node’s target value with a simple logistic regression.

The SGC follows a similar philosophy with our work to some

extent, i.e., separating the propagation and prediction.

• MONSTOR [20]. MONSTOR aims to estimate the total influ-

ence spread of a seed set by stacking multiple GCN models.

One GNN model predicts the incremental influence spread

of one-step influence propagation based on former GNN

model’s outputs.

Transductive vs Inductive. For the transductive methods, includ-

ing GCN and SGC, we train on four datasets. For the inductive

methods, including our DeepIS, GraphSAGE, GAT, and MONSTOR,

we train on the CORA-ML and test on the other three datasets.

Once the independent susceptible probabilities are obtained, the

total influence spread is easily calculated by summation. Since the

influence spread calculation is a key component in the IM problem,

we further compare the influence spread and running time of two

representative IM algorithms, i.e., UBLF [51], and CELF [21], when

invoking the MC simulation as the subroutine and invoking DeepIS
model as the subroutine. We denote each scenario as UBLFMC

(CELFMC) and UBLFDeepIS (CELFDeepIS), respectively.

5.3 Implementation Details
For GCN and GraphSAGE, we adopt a 2-layer structure, as reported

in their original papers [13, 18]. For GAT, we set the number of

attention heads to 4 and the dimension of each attention channel to

8 [43]. For SGC, we set the iteration number in the preprocessing

stage to 2, as reported in the original work. For MONSTOR, We set

the number of stacks to 3, and for each stack, we adopt a 2-layer

GCN network, as reported in [20]. For the proposed DeepIS model,

we leverage a 2-layer MLP as the fucntion 𝑓 (·), as stated in section

4.1. For the feature dimension 𝑑 + 1 in feature construction stage

and the iteration number 𝑞 in propagation stage, we vary 𝑑 in [2, 5]
and vary 𝑞 in [1, 4]. We will discuss the effects of these important

hyperparameters in Section 6.4. Note that the number of hidden

units for all the baseline models and the DeepIS is set to 64. We

provide the identical feature matrix constructed using Equation (4)

for all models for fair comparison.

5.4 Evaluation Metrics
We adopt several metrics to evaluate the performance of different

methods. Note that 𝑇 denotes the number of test instances.

5.4.1 Mean Error (ME). The mean error measures the mean abso-

lute susceptibility estimation error on each node.

ME =
1

𝑇

𝑀∑
𝑡=1

1

|V|

|V |∑
𝑖=1

|𝒚̂ (𝑡)
𝑖

−𝒚 (𝑡)
𝑖

| (16)

Figure 2: Themean error of differentmethods on all datasets
with random seeds(IC).

Figure 3: Themean error of differentmethods on all datasets
with random seeds(LT).

5.4.2 Total Error (TE). The total error measures the mean absolute

total influenced nodes estimation error on graph level.

TE =
1

𝑇

𝑇∑
𝑡=1

©­«
������
|V |∑
𝑖=1

𝒚̂ (𝑡)
𝑖

−
|V |∑
𝑖=1

𝒚 (𝑡)
𝑖

������ª®¬ (17)

5.4.3 Running Time (RT). We compare the average running time

between UBLFDeepIS (CELFDeepIS) and UBLFMC (CELFMC). RT es-

sentially reveals the speed comparison between DeepIS and MC.

All compared methods are executed under the single thread setting.

5.4.4 Influence Spread (IS). We compare the influence spread per-

formance betweenUBLFDeepIS (CELFDeepIS) andUBLFMC (CELFMC).

IS metric evaluates the proposed DeepIS’s performance when run-

ning as a subroutine in IM algorithms.

6 EXPERIMENTAL RESULTS
In this section, we firstly compare the ME and TE of all methods on

four datasets. Besides, we substitute MC in two IM algorithms with

DeepIS to compare the efficiency and influence spread. We analyze

the effect of several hyperparameters in the model further. Finally,

we show the effect of the propagation stage intuitively.

6.1 Estimation Error on Random Seeds
The mean error of all methods on IC and LT models are demon-

strated in Fig. 2 and Fig. 3, respectively. Fig. 2 demonstrates the

mean error of all methods on different datasets with varying seed

set sizes. We can see that other GNN methods perform unsatisfacto-

rily for this problem. GraphSAGE achieves the smallest estimation

error in most scenarios among the GNN baselines. However, the

mean error of GraphSAGE exceeds 0.1, which is a relatively large de-

viation from the groundtruth. In all scenarios, DeepIS achieves the

smallest mean error compared with the baselines. The estimation

error of DeepIS is stable and fluctuates around 0.02 for different

scenarios, which is on average five times smaller than baselines.

For the total error in the graph level, Fig. 4 and Fig. 5 show the

results of all methods with different seed sizes on IC and LT models,

Poster Session I WSDM ’21, March 8–12, 2021, Virtual Event, Israel

766

Figure 4: The total error of different methods on all datasets
with random seeds(IC).

Figure 5: The total error of different methods on all datasets
with random seeds(LT).

respectively. We can see that the results of total error generally

align with the mean error. While there exist mismatches since

the total error is not strictly equal to the summation of absolute

errors of all nodes. For example, on the CORA-ML dataset under

IC model in Fig. 4, other models achieve the best total error and

are adjacent to DeepIS with seed size 100. However, in Fig. 2, their

mean errors are much larger than that of DeepIS, revealing that

their predictions are inaccurate on most nodes, and the relatively

small total errors are obtained due to the cancellation of errors

when summing estimations across different nodes.

6.2 Estimation Error on High Degree Seeds
For high-degree seeds, Fig. 6 and Fig. 7 demonstrates the mean

error on IC and LT models, respectively. Fig. 8 and Fig. 9 show

the total error on two models, respectively. High degree seeds are

more likely to induce high susceptible probabilities than randomly

selected seeds. In our experiments, the mean susceptible probability

is larger than 0.15 for these datasets. We can see that, in Fig. 6 and

Fig. 7, DeepIS remains to produce the smallest mean error compared

with other baselines. The results are similar with those of Fig. 2 and

Fig. 3. The mean error of DeepIS fluctuates between 0.01 and 0.02,

while other baselines are larger than 0.1. Fig. 8 and Fig. 9 show that

in most settings, DeepIS obtains competitive performance for the

total error. Some baselines achieves smaller total error under some

settings. However, as stated in Sec. 6.1, the smaller total errors are

achieved by the cancellation of different node’s errors.

The results in Sections 6.1 and 6.2 reveals, DeepIS achieves on
average five times smaller mean error compared with the baselines.

We interpret the inferior performance of the baseline GNN models

as two-fold: First, most of these models are devised for the node

classification problem, while estimating the susceptible probability

for each node is more challenging and complicated than the classi-

fication problem. Second, each node’s target value is determined by

the underlying propagation model, while only the proposed DeepIS
considers the specific diffusion characteristics of the propagation

in the model construction and inference.

Figure 6: Themean error of differentmethods on all datasets
with high degree seeds(IC).

Figure 7: Themean error of differentmethods on all datasets
with high degree seeds(LT).

Figure 8: The total error of different methods on all datasets
with high degree seeds(IC).

Figure 9: The total error of different methods on all datasets
with high degree seeds(LT).

Figure 10: IS(IC). Figure 11: IS(LT).

Figure 12: RT(IC). Figure 13: RT(LT).

Poster Session I WSDM ’21, March 8–12, 2021, Virtual Event, Israel

767

Table 3: The hyperparameters

Hyperparameter Description Values

𝑑 Feature dimension 2, 3, 4, 5
𝑞 Iteration number 1, 2, 3, 4
𝜆 Weight of 𝐿MRSE 1e-4, 1e-3, 1e-2, 1e-1
𝛾 Weight of ∥𝜃 ∥2 1e-5, 1e-4, 1e-3, 1e-2

6.3 Performance in IM Algorithms
In this section, we report the model’s performance when substitut-

ing MC with DeepIS in IM algorithms on the CORA-ML dataset.

Fig. 10 and Fig. 11 illustrates the influence spread comparison on

IC and LT models, respectively. The influence spread of computed

seeds with each size is calculated using MC with 10000 repeats. For

IC model in Fig. 10, we can see that the UBLFDeepIS achieves almost

identical influence spread with that of UBLFMC for each seed size.

The results are similar for CELFDeepIS and CELFMC. For LT model

in Fig. 11, the final influence spread of UBLFDeepIS is also close

with that of UBLFMC. The influence spread comparison between

CELFDeepIS and CELFMC is similar. Generally, the results in Fig. 10

and Fig. 11 reveal that, substituting MC with DeepIS has minor

effects on the quality of seeds calculated by IM algorithms.

As mentioned above, substuiting MC with DeepIS essentially

does not affect the execution workflow of CELF and UBLF algo-

rithms. Hence the running time comparision between CELFDeepIS

(UBLFDeepIS) and CELFMC (UBLFMC) reflacts the efficiency between

DeepIS and MC. Fig. 12 and Fig. 13 illustrates the running time

comparison under IC and LT model, respectively. For IC model

in Fig. 12, UBLFDeepIS consumes about 0.75h to obtain 300 seeds,

while UBLFMC requires about 70 hours. CELFDeepIS consumes about

1.9h for 300 seeds while CELFMC requires about 180 hours. For LT

model, the results are similar, UBLFDeepIS and CELFDeepIS requires

less than 0.8h, while UBLFMC and CELFMC requires about 60 hours.

Comparing Fig. 12 and Fig. 13, we can see that algorithms invoking

DeepIS reduces about two magnitudes of running time compared

with their counterparts invoking MC. In other words, DeepIS es-
timates influence spreads about 100 times faster under IC model,

and about 80 times faster under LT model. We can further enable

real-time analysis by implementing DeepIS under GNN parallel

processing systems, e.g., [29].

6.4 Hyperparameter Analysis
In this section, we analyze the effects of several import hyperpa-

rameters of the DeepIS model. We list the information of hyper-

parameters in Table 3, and conduct experiments on the CORA-ML

dataset under IC model.

Fig. 14 shows the effects of 𝑑 . We can see that larger 𝑑 achieves

lower mean error since larger 𝑑 provides more information of the

propagation. However, larger 𝑑 results in higher computational

cost. Hence, we set the default 𝑑 to 4 to balance effectiveness and

efficiency. Fig. 15 illustrates the effect of 𝑞. The results reveal that

𝑞 = 2 and 𝑞 = 3 outperforms other settings. The results in Fig. 15

reveals that we do not need to iterate too many times (less than 5) in

the propagation stage. We set 𝑞 = 2 as the default value considering

diverse scenarios. Fig. 16 shows small 𝜆 performs well for the mean

error metric, since small 𝜆 forces the model to focus on the node-

level error. Hence, we choose 𝜆 = 1e-4 as the default value. Fig.

Figure 14: 𝑑 Figure 15: 𝑞 Figure 16: 𝜆 Figure 17: 𝛾

Figure 18: The estimation performance comparison of
DeepIS between with and without fine-grained propagation.

17 adjusts the weight of L2 regularization. We can see that it is

suitable to set 𝛾 in the range [1e-5, 1e-3], since 𝛾 =1e-2 results in

obviously larger mean error than other settings. The reason may

lie in the underfitting of the model for a large L2 penalty. Hence,

we set 𝛾 =1e-4 as the default value.

6.5 Discussion of Two-Stage Approach
In this section, we discuss the effectiveness of the propagation stage

integrated in training of DeepIS. We randomly select 300 seeds on

the CORA-ML dataset and compute susceptibilities of all nodes

using MC under IC model as groundtruth. To illustrate the com-

parison intuitively, we plot susceptibility histograms of DeepIS’s
estimations (with/without the second stage) and groundtruth in Fig.

18. In the first row, the horizontal axis represents the susceptible

probabilities and the vertical axis represents the number of nodes

with the same value. The second row shows the relation between

estimation and target values, with the horizontal axis representing

the estimated susceptible probabilities and the vertical axis repre-

senting the groundtruth. Each scatter in the second row respresnts

one node. Comparing the second column with the third column,

we can see that the propagation component reduces the estimation

error for most nodes effectively. The scatter points in the third col-

umn are highly concentrated around the ideal green line in the first

column. We argue that the model gains prediction benefits from

the propagation module, which cooperate with the first prediction

module to make the whole model complement the propagation

dynamics of the specific diffusion model during training.

7 CONCLUSION AND FUTUREWORKS
In this paper, we propose the DeepIS model to estimate the suscep-

tibility of independent network individuals effectively. We consider

this problem as a node regression task in the graph learning per-

spective. DeepIS combines GNN structures and characteristics of

influence diffusion models to perform co-training. Experimental

Poster Session I WSDM ’21, March 8–12, 2021, Virtual Event, Israel

768

results reveal that DeepIS predicts both each node’s susceptible

probability and total influenced nodes accurately. The model also

performs well as a subroutine in IM algorithms. As for future works,

an interesting direction is generalizing DeepIS to predict suscepti-

bility for topic-aware [4, 8] and dynamic social graphs [39, 45].

ACKNOWLEDGMENTS
This research work is funded by the National Nature Science Foun-

dation of China under Grant 61971283 and 2020 Industrial Internet

Innovation Development Project of Ministry of Industry and Infor-

mation Technology of P.R. China “Smart energy Internet security

situation awareness platform project”. Yuchen Li’s work is sup-

ported by the Ministry of Education, Singapore, under its Academic

Research Fund Tier 2 (Award No.: MOE2019-T2-2-065).

REFERENCES
[1] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. 2014.

Maximizing social influence in nearly optimal time. In SODA. 946–957.
[2] Richard L Burden and J Douglas Faires. [n.d.]. Numerical Analysis 7th edition,

2001. Thomson Learning ISBN 0-534-38216-9 ([n. d.]).
[3] Qi Cao, Huawei Shen, Keting Cen,Wentao Ouyang, and Xueqi Cheng. 2017. Deep-

hawkes: Bridging the gap between prediction and understanding of information

cascades. In CIKM. 1149–1158.

[4] Shuo Chen, Ju Fan, Guoliang Li, Jianhua Feng, Kian-lee Tan, and Jinhui Tang.

2015. Online topic-aware influence maximization. VLDB 8, 6 (2015), 666–677.

[5] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In SIGKDD. 1029–1038.
[6] Wei Chen, Yajun Wang, and Siyu Yang. 2009. Efficient influence maximization in

social networks. In SIGKDD. 199–207.
[7] Wei Chen, Yifei Yuan, and Li Zhang. 2010. Scalable influence maximization in

social networks under the linear threshold model. In ICDM. 88–97.

[8] Ju Fan, Jiarong Qiu, Yuchen Li, Qingfei Meng, Dongxiang Zhang, Guoliang Li,

Kian-Lee Tan, and Xiaoyong Du. 2018. Octopus: An online topic-aware influence

analysis system for social networks. In ICDE. 1569–1572.
[9] Jacob Goldenberg, Barak Libai, and Eitan Muller. 2001. Talk of the Network: A

Complex Systems Look at the Underlying Process of Word-of-Mouth. Marketing
Letters 12, 3 (2001), 211–223.

[10] Amit Goyal, Wei Lu, and Laks V.S. Lakshmanan. 2011. CELF++: Optimizing

the greedy algorithm for influence maximization in social networks. InWWW.

47–48.

[11] Mark Granovetter. 1978. Threshold models of collective behavior. American
journal of sociology 83, 6 (1978), 1420–1443.

[12] Katherine Haenschen and Jay Jennings. 2019. Mobilizing Millennial Voters with

Targeted Internet Advertisements: A Field Experiment. Political Communication
36, 3 (2019), 357–375.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NIPS. 1024–1034.
[14] Wentao Huang, Yuchen Li, Yuan Fang, Ju Fan, and Hongxia Yang. 2020. BiANE:

Bipartite Attributed Network Embedding. In SIGIR. 149–158.
[15] Kyomin Jung, Wooram Heo, and Wei Chen. 2012. Irie: Scalable and robust

influence maximization in social networks. In ICDM. 918–923.

[16] Kai Kaspar, Sarah Lucia Weber, and Anne-Kathrin Wilbers. 2019. Personally rele-

vant online advertisements: Effects of demographic targeting on visual attention

and brand evaluation. PloS one 14, 2 (2019), e0212419.
[17] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In SIGKDD. 137–146.
[18] Thomas N. Kipf and Max Welling. 2016. Semi-supervised classification with

graph convolutional networks. In ICLR. 1–14.
[19] Johannes Klicpera, Aleksandar Bojchevski, and Stephan G¨unnemann. 2019.

Predict then propagate: Graph neural networks meet personalized pagerank. In

ICLR. 1–14.
[20] Jihoon Ko, Kyuhan Lee, Kijung Shin, and Noseong Park. 2020. MONSTOR: An

Inductive Approach for Estimating and Maximizing Influence over Unseen Social

Networks. arXiv preprint arXiv:2001.08853 (2020).
[21] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-

briesen, and Natalie Glance. 2007. Cost-effective outbreak detection in networks.

In SIGKDD. 420–429.
[22] Carson K Leung, Alfredo Cuzzocrea, Jiaxing Jason Mai, Deyu Deng, and Fan

Jiang. 2019. Personalized DeepInf: enhanced social influence prediction with

deep learning and transfer learning. In ICBD. 2871–2880.

[23] Cheng Li, Jiaqi Ma, Xiaoxiao Guo, and Qiaozhu Mei. 2017. DeepCas: An end-to-

end predictor of information cascades. InWWW. 577–586.

[24] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper Insights into Graph

Convolutional Networks for Semi-Supervised Learning. In AAAI. 3538–3545.
[25] Yuchen Li, Ju Fan, George Ovchinnikov, and Panagiotis Karras. 2019. Maximizing

multifaceted network influence. In ICDE. IEEE, 446–457.
[26] Yuchen Li, Ju Fan, YanhaoWang, and Kian-Lee Tan. 2018. Influence maximization

on social graphs: A survey. IEEE Transactions on Knowledge and Data Engineering
30, 10 (2018), 1852–1872.

[27] Yuchen Li, Ju Fan, Dongxiang Zhang, and Kian-Lee Tan. 2017. Discovering

your selling points: Personalized social influential tags exploration. In SIGMOD.
619–634.

[28] Yuchen Li, Dongxiang Zhang, and Kian-Lee Tan. 2015. Real-time Targeted

Influence Maximization for Online Advertisements. In VLDB. 1070–1081.
[29] Husong Liu, Shengliang Lu, Xinyu Chen, and Bingsheng He. 2020. G3: when

graph neural networks meet parallel graph processing systems on GPUs. VLDB
13, 12 (2020), 2813–2816.

[30] Alvis Logins, Yuchen Li, and Panagiotis Karras. 2020. On the Robustness of

Cascade Diffusion under Node Attacks. InWWW. 2711–2717.

[31] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.

2000. Automating the construction of internet portals with machine learning.

Information Retrieval 3, 2 (2000), 127–163.
[32] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. 2012.

Query-driven active surveying for collective classification. In IWMLG.
[33] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi Kawarabayashi. 2014.

Fast and accurate influence maximization on large networks with pruned monte-

carlo simulations. In AAAI.
[34] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[35] Jiezhong Qiu, Jie Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Jian

Tang. 2018. DeepInf: Social influence prediction with deep learning. In SIGKDD.
2110–2119.

[36] Matthew Richardson and Pedro Domingos. 2002. Mining knowledge-sharing

sites for viral marketing. In SIGKDD. 61–70.
[37] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:

towards deep graph convolutional network on node classification. In ICLR.
[38] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93.

[39] Mo Sha, Yuchen Li, Yanhao Wang, Wentian Guo, and Kian-Lee Tan. 2018. River:

A real-time influence monitoring system on social media streams. In ICDMW.

1429–1434.

[40] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[41] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. Influence maximization in

near-linear time: A martingale approach. In SIGMOD. 1539–1554.
[42] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization:

Near-optimal time complexity meets practical efficiency. In SIGMOD. 75–86.
[43] Petar Veličković, Arantxa Casanova, Pietro Liò, Guillem Cucurull, Adriana

Romero, and Yoshua Bengio. 2018. Graph attention networks. In ICLR. 1–12.
[44] Hongyang Wang, Qingfei Meng, Ju Fan, Yuchen Li, Laizhong Cui, Xiaoman Zhao,

Chong Peng, Gong Chen, and Xiaoyong Du. 2020. Social Influence Does Matter:

User Action Prediction for In-Feed Advertising. In AAAI, Vol. 34. 246–253.
[45] Yanhao Wang, Yuchen Li, Ju Fan, and Kian-Lee Tan. 2018. Location-aware

influence maximization over dynamic social streams. ACM Transactions on
Information Systems 36, 4 (2018), 1–35.

[46] Zheng Wen, Branislav Kveton, Michal Valko, and Sharan Vaswani. 2017. Online

influence maximization under independent cascade model with semi-bandit

feedback. In NIPS. 3023–3033.
[47] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza, Christopher Fifty, Tao Yu,

and Kilian Q. Weinberger. 2019. Simplifying graph convolutional networks. In

ICML. 11884–11894.
[48] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken Ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs

with jumping knowledge networks. In ICML. 8676–8685.
[49] Qingyuan Zhao, Murat A. Erdogdu, Hera Y. He, Anand Rajaraman, and Jure

Leskovec. 2015. SEISMIC: A self-exciting point process model for predicting

tweet popularity. In SIGKDD. 1513–1522.
[50] Vincent W Zheng, Mo Sha, Yuchen Li, Hongxia Yang, Yuan Fang, Zhenjie Zhang,

Kian-Lee Tan, and Kevin Chen-Chuan Chang. 2018. Heterogeneous embedding

propagation for large-scale e-commerce user alignment. In ICDM. 1434–1439.

[51] Chuan Zhou, Peng Zhang, Jing Guo, Xingquan Zhu, and Li Guo. 2013. UBLF: An

upper bound based approach to discover influential nodes in social networks. In

ICDM. 907–916.

Poster Session I WSDM ’21, March 8–12, 2021, Virtual Event, Israel

769

	DeepIS: Susceptibility estimation on social networks
	Citation

	Abstract
	1 Introduction
	2 Related Works
	2.1 Influence Spread Estimation
	2.2 Graph Neural Networks

	3 Problem Formulation
	3.1 The IC Model
	3.2 The Susceptibility Estimation Problem

	4 DeepIS
	4.1 GNN Stage
	4.2 Propagation Stage
	4.3 End-to-end Training

	5 Experimental setup
	5.1 Datasets
	5.2 Baselines
	5.3 Implementation Details
	5.4 Evaluation Metrics

	6 Experimental results
	6.1 Estimation Error on Random Seeds
	6.2 Estimation Error on High Degree Seeds
	6.3 Performance in IM Algorithms
	6.4 Hyperparameter Analysis
	6.5 Discussion of Two-Stage Approach

	7 Conclusion and future works
	Acknowledgments
	References

