
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2021

Minimum coresets for maxima representation of Minimum coresets for maxima representation of

multidimensional data multidimensional data

Yanhao WANG

Michael MATHIOUDAKIS

Yuchen LI
Singapore Management University, yuchenli@smu.edu.sg

Kian-Lee TAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Data Storage Systems Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Minimum Coresets for Maxima Representation of
Multidimensional Data

Yanhao Wang

University of Helsinki

Helsinki, Finland

yanhao.wang@helsinki.fi

Michael Mathioudakis

University of Helsinki

Helsinki, Finland

michael.mathioudakis@helsinki.fi

Yuchen Li

Singapore Management University

Singapore

yuchenli@smu.edu.sg

Kian-Lee Tan

National University of Singapore

Singapore

tankl@comp.nus.edu.sg

ABSTRACT

Coresets are succinct summaries of large datasets such that, for a

given problem, the solution obtained from a coreset is provably

competitive with the solution obtained from the full dataset. As

such, coreset-based data summarization techniques have been suc-

cessfully applied to various problems, e.g., geometric optimization,

clustering, and approximate query processing, for scaling them up

to massive data. In this paper, we study coresets for the maxima

representation of multidimensional data: Given a set 𝑃 of points in

R𝑑 , where 𝑑 is a small constant, and an error parameter 𝜀 ∈ (0, 1),
a subset 𝑄 ⊆ 𝑃 is an 𝜀-coreset for the maxima representation of 𝑃

iff the maximum of 𝑄 is an 𝜀-approximation of the maximum of

𝑃 for any vector 𝑢 ∈ R𝑑 , where the maximum is taken over the

inner products between the set of points (𝑃 or 𝑄) and 𝑢. We define

a novel minimum 𝜀-coreset problem that asks for an 𝜀-coreset of

the smallest size for the maxima representation of a point set. For

the two-dimensional case, we develop an optimal polynomial-time

algorithm for the minimum 𝜀-coreset problem by transforming it

into the shortest-cycle problem in a directed graph. Then, we prove

that this problem is NP-hard in three or higher dimensions and

present polynomial-time approximation algorithms in an arbitrary

fixed dimension. Finally, we provide extensive experimental results

on both real and synthetic datasets to demonstrate the superior

performance of our proposed algorithms.

CCS CONCEPTS

• Theory of computation→ Data structures and algorithms

for data management; Computational geometry.

KEYWORDS

Coreset; maxima representation; 𝜀-kernel; convex hull; regret mini-

mizing set

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODS ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8381-3/21/06. . . $15.00

https://doi.org/10.1145/3452021.3458322

ACM Reference Format:

Yanhao Wang, Michael Mathioudakis, Yuchen Li, and Kian-Lee Tan. 2021.

Minimum Coresets for Maxima Representation of Multidimensional Data.

In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems (PODS ’21), June 20–25, 2021, Virtual Event, China.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3452021.3458322

1 INTRODUCTION

Scaling data analysis tasks to large-scale datasets is a key chal-

lenge in big data processing. A standard approach to addressing the

scalability issue is data summarization, which aims to reduce mas-

sive datasets to concise summaries of much smaller sizes. As such,

computationally expensive algorithms can be scaled to massive

datasets by restricting the computation to summaries only. One

established paradigm for data summarization that has attracted

much attention recently is coresets. Specifically, a coreset is a small

subset of a dataset such that the solution of a given problem com-

puted from the coreset can approximate the solution of the same

problem computed from the whole dataset with a provable guar-

antee. Coreset-based data summarization techniques have been

considered in many real-world problems, ranging from shape fit-

ting [1, 41, 45], to clustering [11, 27], to regression [16], and even

to neural networks [33].

Motivated by numerous applications in computational geometry,

machine learning, databases, and data mining, e.g., [1, 3, 14, 35, 43–

45], there has been considerable work on computing coresets for

extent measures of a set 𝑃 of 𝑛 points in R𝑑 . Here the term “extent

measure” typically refers to certain statistics (e.g., diameter and

width) that capture the range covered by either the point set 𝑃 itself

or some geometric shape (e.g., sphere, convex hull, bounding box,

cylinder, etc.) enclosing 𝑃 . In this paper, we consider the problem

of computing coresets for a specific extent measure of a point set

𝑃 , namely maxima representation. Given a vector 𝑢 ∈ R𝑑 , we
define the extreme point 𝜑 (𝑃,𝑢) of 𝑃 w.r.t.𝑢 as the point having the

largest inner product with 𝑢 among all points in 𝑃 – i.e., 𝜑 (𝑃,𝑢) =
argmax𝑝∈𝑃 ⟨𝑝,𝑢⟩. The maximum 𝜔 (𝑃,𝑢) of 𝑃 w.r.t. 𝑢 is defined by

the inner product of the extreme point and 𝑢 accordingly – i.e.,

𝜔 (𝑃,𝑢) = max𝑝∈𝑃 ⟨𝑝,𝑢⟩. Then, we formally define the notion of

coreset for the maxima representation of 𝑃 as follows: a subset

𝑄 ⊆ 𝑃 is an 𝜀-coreset of 𝑃 iff the maximum of 𝑄 is within an 𝜀-

approximation of the maximum of 𝑃 for every vector 𝑢 ∈ R𝑑 – i.e.,

𝜔 (𝑄,𝑢) ≥ (1 − 𝜀) · 𝜔 (𝑃,𝑢) for all 𝑢 ∈ R𝑑 .

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

138

https://orcid.org/0000-0002-7661-3917
https://orcid.org/0000-0003-0074-3966
https://orcid.org/0000-0001-9646-291X
https://doi.org/10.1145/3452021.3458322
https://doi.org/10.1145/3452021.3458322

We establish the theoretical connections between 𝜀-coresets for

maxima representation and several well-known notions, e.g., 𝜀-

kernels [1], convex hulls [13, 38], and regret minimizing sets [35, 42]

(see Sections 2 and 3 for more details). In light of these connec-

tions, the 𝜀-coresets for maxima representation can find applica-

tions in various real-world problems in which previous methods

based on similar notions are used. For example, geometric optimiza-

tion problems that can be approximated by 𝜀-kernels, including

diameter, minimum enclosing cylinder, minimum bounding box,

convex hull volume, to just name a few, can also be approximated

by 𝜀-coresets for maxima representation. As another example, 𝜀-

coresets for maxima representation can find applications in several

database problems, including approximate top-𝑘 queries with linear

ranking functions [32, 44] and representative skyline queries [9, 35].

In all the above applications, smaller coresets are preferred to

larger ones, as smaller coresets lead to higher efficiency in opti-

mization, lower overhead in query processing, or more compact

representation in data reduction. Therefore, how to find coresets

of smaller sizes is a problem of great interest. Although there have

been many methods [1, 7, 8, 18, 21, 45] to compute 𝜀-coresets of

size 𝑂
(

1

𝜀 (𝑑−1)/2
)
, which is optimal in the worst case, much smaller

coresets may exist for a specific point set. However, the problem

of finding the smallest possible coreset of a given point set has not

been explored yet. To address this problem, we formulate a novel

Minimum 𝜀-Coreset (MC) problem in this paper: Given a point set

𝑃 ⊂ R𝑑 and an error parameter 𝜀 ∈ (0, 1), find the smallest 𝜀-coreset

𝑄∗𝜀 for the maxima representation of 𝑃 .

1.1 Prior Work

There has been a line of work on 𝜀-kernel computation [1, 4, 7, 8, 18–
21, 30, 45, 46]. The notion of 𝜀-kernels was first introduced by

Agarwal et al. [1]. They proved the existence of 𝜀-kernels of size

𝑂
(

1

𝜀 (𝑑−1)/2
)
for an arbitrary point set in R𝑑 , which is optimal in the

worst case. Then, they proposed an algorithm to compute such an

𝜀-kernel in𝑂
(
𝑛 + 1

𝜀3(𝑑−1)/2
)
time. Chan [18] proposed two improved

algorithms for 𝜀-kernel construction running in 𝑂
(
𝑛 + 1

𝜀𝑑−3/2
)
and

𝑂
(
(𝑛+ 1

𝜀𝑑−2
) ·log 1

𝜀

)
time, respectively. Arya and Chan [7] developed

an algorithm for computing 𝜀-kernels in𝑂
(
𝑛 +
√
𝑛 · 1

𝜀𝑑/2
)
time using

discrete Voronoi diagrams. Arya et al. [8] improved the time com-

plexity of 𝜀-kernel construction to𝑂
(
𝑛 · log 1

𝜀 +
1

𝜀 (𝑑−1)/2+𝑐
)
for some

𝑐 = 𝑂 (1). Chan [21] proposed an 𝑂
(
(𝑛

𝜀1/2
+ 1

𝜀𝑑/2+1
) · log𝑐 1

𝜀

)
-time

algorithm for 𝜀-kernel computation using Chebyshev polynomials.

The problem of computing 𝜀-kernels was also considered in differ-

ent settings. Streaming algorithms for 𝜀-kernel construction that

processed all points in only one pass and used sublinear update time

and space were studied in [1, 5, 7, 18, 46]. Maintaining 𝜀-kernels

in dynamic settings where points could be inserted, deleted, and

updated was considered in [1, 4, 19, 20]. Huang et al. [30] investi-

gated the problem of computing 𝜀-kernels on noisy and uncertain

data. Nevertheless, the aforementioned works were limited to the-

oretical analysis and did not consider how to compute 𝜀-kernels

efficiently in practice. Yu et al. [45] implemented an approximate

nearest neighbor (ANN) based algorithm for 𝜀-kernel computation

based on the algorithms in [1, 18]. This ANN-based implementation

was regarded as the standard approach to computing 𝜀-kernels and

widely used in many applications [43, 44] (and also compared to as

a baseline in our experiments). Note that the above methods for 𝜀-
kernel computation provide 𝜀-kernels of size𝑂

(
1

𝜀 (𝑑−1)/2
)
and, as will

be shown in Section 2, they can also be used to provide 𝜀-coresets

of the same size. However, they do not provide any guarantee on

the minimality of 𝜀-coresets.

Another notion related to our MC problem is 𝜀-hulls [13–15].

Given a point set 𝑃 ⊂ R𝑑 , a subset 𝑄 ⊆ 𝑃 is called an 𝜀-hull of

𝑃 iff any point in 𝑃 is either in the convex hull CH(𝑄) of 𝑄 or

within distance 𝜀 from CH(𝑄). The difference between 𝜀-hulls

and 𝜀-coresets in terms of convex hull approximation is that the

former is defined by additive errors but the latter is defined by mul-

tiplicative errors. In a seminal work, Bentley et al. [13] proposed

an algorithm for computing 𝜀-hulls of size𝑂
(

1

𝜀𝑑−1
)
. Blum et al. [15]

first studied the “minimization” of 𝜀-hulls and proposed an approx-

imation algorithm to compute an 𝜀-hull of size 𝑂 (𝑑 · OPT · log OPT)
for any point set 𝑃 , where OPT is the size of the smallest 𝜀-hull of 𝑃 .

Blum et al. [14] further investigated the minimum 𝜀-hull problem

in data streams. However, due to the differences in definitions, al-

gorithms for the minimum 𝜀-hull problem cannot be used for our

MC problem and vice versa. In fact, the reduction between both

minimization problems is still open [14].

Finally, our MC problem is relevant to the regret minimizing set

(RMS) problem [35], which is a restricted version of MC where all

points and vectors are nonnegative. The RMS problem was first

introduced by Nanongkai et al. [35] for finding the 𝑘-representative

skyline. Since the seminal work by Nanongkai et al., different

approximation and heuristic algorithms were proposed for RMS,

e.g., [3, 9, 17, 31, 35, 37, 39, 43]. Interested readers can refer to [42]

for a survey of algorithmic techniques for RMS. However, most

existing algorithms for RMS cannot be used for MC because they

rely on the non-negativity of points and vectors for solution com-

putation. To the best of our knowledge, the algorithms in [3, 9, 31]

that reduce RMS to the set cover problem are the only ones that

can be adapted to MC. Our SCMC algorithm in this paper is an

adaptation of the algorithms in [3, 9] that takes into account all

points and vectors other than the nonnegative ones only.

1.2 Our Contributions

The main contributions of this paper are summarized as follows:

• In Section 2, we introduce the notion of 𝜀-coreset for max-

ima representation of multidimensional data and indicate its

connections with the 𝜀-kernel and the convex hull. Then, we

define the minimum 𝜀-coreset (MC) problem.

• In Section 3, we prove that finding the minimum 𝜀-coreset of

a point set 𝑃 ⊂ R𝑑 is NP-hard for any constant 𝑑 ≥ 3 by the

reduction from the regret minimizing set (RMS) problem [17],

a known NP-hard problem. Then, in Section 4, we introduce

the background on inner-product Voronoi diagrams [10] and
provide a geometric interpretation of the MC problem based

on Voronoi diagrams, on which our proposed algorithms

will be further built.

• In Section 5, we propose an 𝑂 (𝑛3)-time optimal algorithm

OptMC for MC on a point set 𝑃 ⊂ R2, where 𝑛 = |𝑃 |. OptMC

utilizes the Voronoi diagram-based geometric interpretation

of MC to transform the problem of computing the optimal

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

139

solution of MC into finding the shortest cycle of a directed

graph. We also note that OptMC runs much faster than the

worst-case time of 𝑂 (𝑛3) for small values of 𝜀.

• In Section 6, we develop two polynomial-time approximation

algorithms for MC in an arbitrary fixed dimension. The high-

level ideas of both algorithms are transforming MC into

simpler covering problems, followed by computing solutions

of MC using the greedy algorithm. We first propose the

DSMC algorithm, which simplifies MC as a dominating set

problem on a weighted and directed graph that encapsulates

the information about the loss of representing one point with

another in terms of maxima representation. We prove that

DSMC provides valid 𝜀-coresets in polynomial time while

achieving an approximation ratio of at most𝑂 (𝜉
𝑑
), where 𝜉 is

the number of extreme points in 𝑃 . Furthermore, we find that

the transformation from RMS to the set cover problem based

on the notion of 𝛿-nets [28] proposed in [3, 9] can also work

for MC. Thus, we propose the SCMC algorithm by slightly

adapting the results in [3, 9]. Theoretically, SCMC runs in

𝑂 (𝑛
𝜀𝑑−1
) time and provides an 𝜀-coreset of size𝑂 (𝑑 · OPT𝜀/2 ·

log
1

𝜀), where OPT𝜀/2 is the size of the smallest
𝜀
2
-coreset.

• In Section 7, we conduct extensive experiments on real and

synthetic datasets to evaluate the performance of our pro-

posed algorithms. The results show that OptMC provides

optimal solutions for MC on two-dimensional data in reason-

able time. In terms of effectiveness, both DSMC and SCMC

provide solutions of significantly higher quality (i.e., smaller

coresets) than the ANN-based algorithm on all datasets with

dimensions ranging from 2 to 10. In terms of efficiency,

SCMC is close to or slightly worse than ANN but DSMC

runs much faster than both ANN and SCMC, particularly so

for smaller values of 𝜀.

2 PRELIMINARIES

Let 𝑃 be a set of 𝑛 points in R𝑑 and 𝑝 = (𝑝1, . . . , 𝑝𝑑) be a point in 𝑃 .

We assume that the dimension 𝑑 is a small constant throughout this

paper. In addition, we consider that 𝑃 is in general linear position.

For any vector
1 𝑢 ∈ S𝑑−1, 𝜑 (𝑃,𝑢) = argmax𝑝∈𝑃 ⟨𝑝,𝑢⟩ is the ex-

treme point of 𝑃 for 𝑢 and 𝜔 (𝑃,𝑢) = max𝑝∈𝑃 ⟨𝑝,𝑢⟩ is the maximum

of 𝑃 for𝑢, where ⟨·, ·⟩ denotes the inner product function. Moreover,

we define the 𝛼-fatness of a point set as follows:

Definition 2.1 (𝛼-fatness). A point set 𝑃 is 𝛼-fat iff 𝜔 (𝑃,𝑢) > 0

for any 𝑢 ∈ S𝑑−1 and

min

𝑢,𝑣∈S𝑑−1
𝜔 (𝑃,𝑢)
𝜔 (𝑃, 𝑣) ≥ 𝛼

According to the analysis in [1], there always exists an affine

transformation 𝑇 from an arbitrary point set 𝑃 in R𝑑 , which is in

general linear position, to an 𝛼𝑑 -fat point set 𝑃 = 𝑇 (𝑃) in [−1, 1]𝑑 ,
where 𝛼𝑑 is a constant depending only on 𝑑 . In what follows, we

will assume that the point set 𝑃 has been transformed to be 𝛼-fat

in [−1, 1]𝑑 for some constant 𝛼 ∈ (0, 1) .
1
We normalize all (nonzero) vectors in R𝑑 to the set of unit vectors on the (𝑑 − 1)-
dimensional unit sphere S𝑑−1 since the relative inner products of points in 𝑃 with

each vector are norm-invariant. In addition, the case of the zero vector is trivial as

⟨𝑝, 0⟩ = 0 for any 𝑝 ∈ R𝑑 and thus ignored in our problem.

Given a point set 𝑃 and an error parameter 𝜀 ∈ (0, 1), an 𝜀-coreset
for the maxima representation of 𝑃 is defined as a subset 𝑄 ⊆ 𝑃

that approximates the maximum of 𝑃 within a relative error 𝜀 for

every vector 𝑢 ∈ S𝑑−1. Formally,

Definition 2.2 (𝜀-coreset). For a point set 𝑃 ⊂ R𝑑 and an error

parameter 𝜀 ∈ (0, 1), a subset 𝑄 ⊆ 𝑃 is an 𝜀-coreset for the maxima

representation of 𝑃 iff 𝜔 (𝑄,𝑢) ≥ (1 − 𝜀) · 𝜔 (𝑃,𝑢) for any 𝑢 ∈ S𝑑−1.

For ease of analysis, we denote the largest loss in the maxima of

𝑄 w.r.t. 𝑃 by 𝑙 (𝑄, 𝑃) = max𝑢∈S𝑑−1 1 −
𝜔 (𝑄,𝑢)
𝜔 (𝑃,𝑢) . Obviously, the con-

dition in the definition of 𝜀-coreset can be equivalently expressed

by 𝑙 (𝑄, 𝑃) ≤ 𝜀. Note that 𝑃 will be dropped from the loss function 𝑙

when the context is clear.

One important notion closely related to the 𝜀-coreset for maxima

representation is the 𝜀-coreset for directional width, commonly

known as 𝜀-kernel [1]. Here the directional width of a point set 𝑃

for a vector 𝑢 ∈ S𝑑−1 is defined by

𝜔 (𝑃,𝑢) = max

𝑝∈𝑃
⟨𝑝,𝑢⟩ −min

𝑞∈𝑃
⟨𝑞,𝑢⟩ = 𝜔 (𝑃,𝑢) + 𝜔 (𝑃,−𝑢)

A subset of points is an 𝜀-kernel of 𝑃 iff its directional width is

within an 𝜀-approximation of the directional width of 𝑃 for every

vector 𝑢 ∈ S𝑑−1. The 𝜀-coreset for maxima representation can be

seen as a stronger version of the 𝜀-kernel, since the maxima of two

opposing directions 𝑢 and −𝑢, instead of their sum only, are both

constrained. The connection between both notions is made formal

and explicit in the following theorem.

Theorem 2.3. Let 𝑃 be an 𝛼-fat point set in [−1, 1]𝑑 . If 𝑄 is an
𝜀-coreset for the maxima representation of 𝑃 , then 𝑄 is an 𝜀-kernel of
𝑃 . Conversely, if 𝑄 is an 𝛼𝜀

1+𝛼 -kernel of 𝑃 , then 𝑄 is an 𝜀-coreset for
the maxima representation of 𝑃 .

Proof. If𝑄 is an 𝜀-coreset of 𝑃 , then 𝜔 (𝑄,𝑢) ≥ (1− 𝜀) ·𝜔 (𝑃,𝑢)
and 𝜔 (𝑄,−𝑢) ≥ (1 − 𝜀) · 𝜔 (𝑃,−𝑢) for each 𝑢 ∈ S𝑑−1. So we have:

𝜔 (𝑄,𝑢) = 𝜔 (𝑄,𝑢) + 𝜔 (𝑄,−𝑢)
≥ (1 − 𝜀) ·

(
𝜔 (𝑃,𝑢) + 𝜔 (𝑃,−𝑢)

)
= (1 − 𝜀) · 𝜔 (𝑃,𝑢)

and thus 𝑄 is an 𝜀-kernel of 𝑃 .

Conversely, if𝑄 is an
𝛼𝜀
1+𝛼 -kernel of 𝑃 , then𝜔 (𝑄,𝑢) ≥ (1−

𝛼𝜀
1+𝛼) ·

𝜔 (𝑃,𝑢) for each 𝑢 ∈ S𝑑−1. So we have:(
𝜔 (𝑃,𝑢) +𝜔 (𝑃,−𝑢)

)
−
(
𝜔 (𝑄,𝑢) +𝜔 (𝑄,−𝑢)

)
≤ 𝛼𝜀

1 + 𝛼 ·𝜔 (𝑃,𝑢) (1)

Furthermore, because 𝜔 (𝑃,−𝑢) − 𝜔 (𝑄,−𝑢) ≥ 0 for 𝑄 ⊆ 𝑃 and

𝜔 (𝑃,𝑢)
𝜔 (𝑃,−𝑢) ≥ 𝛼 ⇔ 𝜔 (𝑃,𝑢) ≤ 1+𝛼

𝛼 · 𝜔 (𝑃,𝑢) from the 𝛼-fatness of 𝑃 ,

Eq. 1 is reduced to:

𝜔 (𝑃,𝑢) − 𝜔 (𝑄,𝑢) ≤ 𝛼𝜀

1 + 𝛼 ·
1 + 𝛼
𝛼
· 𝜔 (𝑃,𝑢) = 𝜀 · 𝜔 (𝑃,𝑢)

and we conclude the proof accordingly. □

Another notion related to the 𝜀-coreset for maxima represen-

tation is the convex hull [38]. The convex hull CH(𝑃) of a point
set 𝑃 is the smallest convex set that contains all points in 𝑃 . The

𝜀-coreset for maxima representation can be regarded as an approxi-

mate convex hull since it approximately contains 𝑃 with bounded

multiplicative errors, as shown in the following theorem.

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

140

Theorem 2.4. Let𝑄 be an 𝜀-coreset for the maxima representation
of 𝑃 . For any point 𝑝 ∈ 𝑃 , it holds that 𝑝 is either contained in the
convex hull CH(𝑄) of 𝑄 or within distance 𝜀 · ∥𝑝 ∥2 from CH(𝑄),
where ∥𝑝 ∥ is the Euclidean norm of 𝑝 .

Theorem 2.4 is a slight variant of the results for approximating

convex hulls with 𝜀-kernels in [2] and 𝜀-hulls in [14].

As discussed in Section 1.1, existing algorithms provide 𝜀-kernels

of size𝑂
(

1

𝜀 (𝑑−1)/2
)
. Since 𝛼 = 𝑂 (1), Theorem 2.3 implies that any of

these algorithms can also provide an 𝜀-coreset of size 𝑂
(

1

𝜀 (𝑑−1)/2
)
.

Note however that, for a specific point set, theremay exist 𝜀-coresets

of much smaller sizes, but none of the existing algorithms for 𝜀-

kernel computation can provide any guarantee on the minimality of

𝜀-kernels (as well as 𝜀-coresets). In this paper, we study a novel min-

imization version of coreset computation, which aims to find the

smallest possible 𝜀-coreset among all valid 𝜀-coresets for the com-

pactness of data representation. We formally define this problem

as Minimum 𝜀-Coreset (MC) in the following:

Definition 2.5 (Minimum 𝜀-Coreset). Given a point set 𝑃 ⊂ R𝑑
and an error parameter 𝜀 ∈ (0, 1), find the smallest 𝜀-coreset 𝑄∗𝜀 for

the maxima representation of 𝑃 . Formally,

𝑄∗𝜀 = argmin

𝑄⊆𝑃 : 𝑙 (𝑄) ≤𝜀
|𝑄 |

Note that there is a dual formulation of MC– i.e., given a size

constraint 𝑟 ∈ Z+, find a subset𝑄 of size at most 𝑟 with the smallest

𝑙 (𝑄). One can trivially adapt an algorithm A for MC to solve the

dual problem: By performing a binary search on 𝜀 and computing

a solution of MC using A for each value of 𝜀, one can find the

minimum value of 𝜀 such that the size of the 𝜀-coreset is at most 𝑟 .

If A is optimal for MC, the adapted algorithm is also optimal for

the dual problem at the expense of an additional logarithmic factor

(for binary search) in running time. Considering the equivalence of

both formulations, we will focus on MC in Definition 2.5.

3 HARDNESS

In this section, we show that the minimum 𝜀-coreset (MC) problem

is NP-hard in R𝑑 for any constant 𝑑 ≥ 3. Obviously, MC in R1 is
trivial since the two extreme points with the minimum and maxi-

mum values are always an optimal solution, which can be computed

in 𝑂 (𝑛) time. In case of 𝑑 = 2, we will show that MC in R2 is in P

by presenting an optimal polynomial-time algorithm in Section 5.

Next, we prove that MC in R3 is NP-hard by reducing from the

regret-minimizing set (RMS) problem in R3, which is known to be

NP-hard [17], to MC in R3.

Theorem 3.1. The minimum 𝜀-coreset problem is NP-hard in R3.

Proof. The decision version of MC is formulated as follows:

given a set 𝑃 of points in R3, an error parameter 𝜀 ∈ (0, 1), and a

positive integer 𝑟 ∈ Z+, determine whether there exists a subset

𝑄 ⊆ 𝑃 of size 𝑟 such that 𝑙 (𝑄) ≤ 𝜀. For a set 𝑃+ of points in the

positive orthant R3+, an error parameter 𝜀 ∈ (0, 1), and a positive

integer 𝑟 ∈ Z+, the regret-minimizing set (RMS) problem asks

whether there exists a subset𝑄+ ⊆ 𝑃+ of size 𝑟 such that𝜔 (𝑄+, 𝑢) ≥
(1 − 𝜀) · 𝜔 (𝑃+, 𝑢) for any positive vector 𝑢 ∈ S2+. Intuitively, RMS

is a restricted version of MC where both points and vectors are

positive. We restrict 𝑃+ ⊂ [0, 1]3 because of the scale-invariance

of RMS [35]. Similar to the definition of 𝑙 (𝑄), we use 𝑙 ′(𝑄+) =
max𝑢∈S2+ 1 −

𝜔 (𝑄+,𝑢)
𝜔 (𝑃+,𝑢) to denote the loss of 𝑄+ w.r.t. 𝑃+ in RMS.

To prove the theorem, we construct a three-dimensional MC in-

stance MC(𝑃1, 𝑟1) from any three-dimensional RMS instance RMS
(𝑃0, 𝑟0) satisfying that there is a subset 𝑄0 ⊆ 𝑃0 of size 𝑟0 such

that 𝑙 ′(𝑄0) ≤ 𝜀 if and only if there is a subset 𝑄1 ⊆ 𝑃1 of size 𝑟1
such that 𝑙 (𝑄1) ≤ 𝜀 for an arbitrary parameter 𝜀 ∈ (0, 1). Given
an RMS instance RMS(𝑃0, 𝑟0) and 𝜀 ∈ (0, 1), we add three new

points 𝐵 = {𝑏𝑥 , 𝑏𝑦, 𝑏𝑧 } to 𝑃0. Let 𝑏𝑥 = (1−𝜂, 1, 1), 𝑏𝑦 = (1, 1−𝜂, 1),
and 𝑏𝑧 = (1, 1, 1 − 𝜂), where the value of 𝜂 is greater than 3 and

determined by 𝑃0 and 𝜀 as discussed later. We will show that there

is a subset 𝑄0 ⊆ 𝑃0 of size 𝑟0 with 𝑙 ′(𝑄0) ≤ 𝜀 if and only if there

is a subset 𝑄1 = 𝑄0 ∪ 𝐵 of size 𝑟1 = 𝑟0 + 3 for 𝑃1 = 𝑃0 ∪ 𝐵 with

𝑙 (𝑄1) ≤ 𝜀. To prove this, we need to show (i) if 𝑙 ′(𝑄0) ≤ 𝜀 and

𝑄1 = 𝑄0 ∪ 𝐵, then 𝑙 (𝑄1) ≤ 𝜀 and (ii) if 𝑙 (𝑄1) ≤ 𝜀, then 𝐵 ⊂ 𝑄1 and

𝑙 ′(𝑄0) ≤ 𝜀 for 𝑄0 = 𝑄1 \ 𝐵 and 𝑃0 = 𝑃1 \ 𝐵.
To prove (i), we first consider the case of 𝑢 ∈ S2+. Let 𝑝∗ =

argmax𝑝∈𝑃1 ⟨𝑝,𝑢⟩ for some 𝑢 ∈ S2+. If 𝑝∗ ∈ 𝐵, then 𝜔 (𝑄1, 𝑢) =
𝜔 (𝑃1, 𝑢) because 𝐵 ⊂ 𝑄1. Otherwise, since 𝑝

∗ ∈ 𝑃0 and 𝑙 ′(𝑄0) ≤ 𝜀,

there must exist some 𝑝 ∈ 𝑄0 ⊂ 𝑄1 such that ⟨𝑝∗, 𝑢⟩ ≤ (1−𝜀) ·⟨𝑝,𝑢⟩.
Next, we consider the case of𝑢 ∈ S2 \S2+. We show that the extreme

point for any 𝑢 ∈ S2 \ S2+ is always from 𝐵 and thus 𝜔 (𝑄1, 𝑢) =
𝜔 (𝑃1, 𝑢) in this case. There are three different cases based on the

orthant of 𝑢 = (𝑢1, 𝑢2, 𝑢3) as follows:
• Case 1 (𝑢1 ≥ 0, 𝑢2 ≥ 0, 𝑢3 ≤ 0): For any 𝑝 ∈ 𝑃0, ⟨𝑝,𝑢⟩ ≤
𝑝1𝑢1 + 𝑝2𝑢2 < 𝑢1 + 𝑢2 ≤

√
2. Meanwhile, ⟨𝑏𝑧 , 𝑢⟩ = 𝑢1 + 𝑢2 +

(1 − 𝜂) · 𝑢3 ≥
√
2 for 𝜂 ≥ 3. Thus, ⟨𝑏𝑧 , 𝑢⟩ ≥ ⟨𝑝,𝑢⟩ for any

𝑝 ∈ 𝑃0. This result also holds for 𝑏𝑥 or 𝑏𝑦 when 𝑢1 ≤ 0 or

𝑢2 ≤ 0 and the remaining dimensions are nonnegative.

• Case 2 (𝑢1 ≥ 0, 𝑢2 ≤ 0, 𝑢3 ≤ 0): For any 𝑝 ∈ 𝑃0, ⟨𝑝,𝑢⟩ <
𝑢1 ≤ 1. Moreover, ⟨𝑏𝑦, 𝑢⟩ = 𝑢1 + 𝑢2 + 𝑢3 − 𝜂𝑢2 and ⟨𝑏𝑧 , 𝑢⟩ =
𝑢1 +𝑢2 +𝑢3 −𝜂𝑢3. If 𝑢2 ≤ 𝑢3, then ⟨𝑏𝑦, 𝑢⟩ ≥ ⟨𝑏𝑧 , 𝑢⟩, and vice
versa. So the minimum of the maximum between ⟨𝑏𝑦, 𝑢⟩
and ⟨𝑏𝑧 , 𝑢⟩ is always reached when 𝑢2 = 𝑢3. In this case,

⟨𝑏𝑦, 𝑢⟩ = ⟨𝑏𝑧 , 𝑢⟩ = 𝑢1 + (2−𝜂)𝑢2. By setting 𝑢2 = 𝑢3 = 𝛽 and

𝑢1 =
√︁
1 − 2𝛽2 accordingly, we define the following function

of 𝛽 where 𝛽 ∈ [−1, 0]:

𝑓 (𝛽) = ⟨𝑏𝑦, 𝑢⟩ =
√︃
1 − 2𝛽2 + (2 − 𝜂)𝛽

As 𝑓 (𝛽) first increases and then decreases in [−1, 0], its
minimum is reached when 𝛽 = −1 or 0. Thus, we have

⟨𝑏𝑦, 𝑢⟩ ≥ 𝑓 (0) = 1 and ⟨𝑏𝑦, 𝑢⟩ ≥ 𝑓 (−1) = 𝜂 − 2 > 1 for

𝜂 ≥ 3. So the larger one between ⟨𝑏𝑦, 𝑢⟩ and ⟨𝑏𝑧 , 𝑢⟩ is al-
ways greater than ⟨𝑝,𝑢⟩ for any 𝑝 ∈ 𝑃0 in this case. A similar

result can also be implied when 𝑢2 ≥ 0 or 𝑢3 ≥ 0 and the

remaining dimensions are not positive.

• Case 3 (𝑢1 ≤ 0, 𝑢2 ≤ 0, 𝑢3 ≤ 0): For any 𝑝 ∈ 𝑃0, ⟨𝑝,𝑢⟩ ≤
0. And for the minimum 𝑢𝑚𝑖𝑛 among {𝑢1, 𝑢2, 𝑢3}, we have
𝑢𝑚𝑖𝑛 ≤ −

√
3

3
. Taking 𝑢𝑚𝑖𝑛 = 𝑢1 ≤ −

√
3

3
as an example, we

have ⟨𝑏𝑥 , 𝑢⟩ ≥
√
3

3
𝜂 −
√
3 > 0 due to 𝜂 > 3. A similar result

can also be acquired for 𝑢2 or 𝑢3.

We prove (i) for any 𝑢 ∈ S2 \ S2+ from the above three cases.

To verify (ii), we need to show (a) if 𝐵 ⊄ 𝑄1, then 𝑙 (𝑄1) > 𝜀

and (b) if 𝑙 ′(𝑄0) > 𝜀, then 𝑙 (𝑄0 ∪ 𝐵) > 𝜀 w.r.t. 𝑃1 = 𝑃0 ∪ 𝐵. The

correctness of (a) is obvious: Taking 𝑢 = (−1, 0, 0) ∈ S2, ⟨𝑏𝑥 , 𝑢⟩ > 0

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

141

and ⟨𝑝,𝑢⟩ < 0 for any 𝑝 ∈ 𝑃1 \ {𝑏𝑥 }. So if 𝐵 ⊄ 𝑄1, then 𝑙 (𝑄1) > 1.

The proof of (b) involves determining the value of 𝜂. If 𝑙 ′(𝑄0) > 𝜀,

then there is some point 𝑝 ′ ∈ 𝑃0 \ 𝑄0 and a vector 𝑢 ′ ∈ S2+ such
that (1 − 𝜀) · ⟨𝑝 ′, 𝑢 ′⟩ > 𝜔 (𝑃0, 𝑢 ′). Since the maximum loss 𝑙 ′(𝑄0)
and the vector where 𝑙 ′(𝑄0) is reached can be computed from a

linear program [35], such a point 𝑝 ′ and a vector 𝑢 ′ can be found

in polynomial time. When 𝜂 >
3−(1−𝜀) · ⟨𝑝′,𝑢′⟩

𝑢𝑖
, we have ⟨𝑏𝑖 , 𝑢 ′⟩

< 𝑢1 + 𝑢2 + 𝑢3 − 3 + (1 − 𝜀) · ⟨𝑝 ′, 𝑢 ′⟩ < (1 − 𝜀) · ⟨𝑝 ′, 𝑢 ′⟩ for all
𝑖 = 1, 2, 3. Therefore, if 𝑙 ′(𝑄0) > 𝜀, then 𝑙 (𝑄0 ∪ 𝐵) > 𝜀, once 𝜂 is a

large enough constant. We prove (ii) from (a) and (b).
We have thus completed the reduction from an RMS instance

in R3+ to an MC instance in R3 in polynomial time and proved the

NP-hardness of MC in R3. □

Since the reduction procedure can be generalized to any constant

𝑑 > 3, the minimum 𝜀-coreset (MC) problem is still NP-hard in R𝑑

for any constant 𝑑 > 3.

4 INNER-PRODUCT VORONOI DIAGRAM

In this section, we introduce the Voronoi diagrams [10], from which

we can draw geometric insights for the MC problem and build the

theoretical foundation of our proposed algorithms. A Voronoi dia-

gram for a point set 𝑃 is defined in terms of a similarity measure,

which is the inner product function ⟨·, ·⟩ here. Prior work has investi-
gated the relationships between the inner-product Voronoi diagram

and graph-based maximum inner product search [34, 40, 47]. We

will first consider using the inner-product Voronoi diagram for

coreset construction in this work.

Formally, for a point set 𝑃 , its Voronoi diagram is a collection

of Voronoi cells, one defined for each point 𝑝 ∈ 𝑃 . The Voronoi cell
𝑅(𝑝) of point 𝑝 ∈ 𝑃 is defined as the set of vectors

𝑅(𝑝) B {𝑢 ∈ S𝑑−1 : ⟨𝑝,𝑢⟩ ≥ 𝜔 (𝑃,𝑢)}
i.e., the set of unit vectors for which 𝑝 is themaximum. By definition,

a point 𝑝 ∈ 𝑃 is an extreme point if and only if its Voronoi cell

𝑅(𝑝) is non-empty. It is also not difficult to see that the set 𝑋 of

extreme points consists exactly of the set of vertices of the convex

hull CH(𝑃) of 𝑃 .
To illustrate MC geometrically, we extend the notion of Voronoi

cells to 𝜀-approximate Voronoi cells. Specifically, the 𝜀-approximate

Voronoi cell 𝑅𝜀 (𝑝) of point 𝑝 ∈ 𝑃 is defined as the vector set

𝑅𝜀 (𝑝) B {𝑢 ∈ S𝑑−1 : ⟨𝑝,𝑢⟩ ≥ (1 − 𝜀) · 𝜔 (𝑃,𝑢)}
i.e., the set of unit vectors for which the inner product of 𝑝 is within

an 𝜀-approximation to the maximum of 𝑃 . Equivalently, the loss

in the maxima of 𝑄 w.r.t. 𝑃 is at most 𝜀 for any vector in 𝑅𝜀 (𝑝) if
𝑝 ∈ 𝑄 . So, from a geometric perspective, MC can be regarded as

the set cover problem of finding the minimum subset of points from
𝑃 such that the union of their 𝜀-approximate Voronoi cells is S𝑑−1.

A notion closely related to the inner-product Voronoi diagram

is the Inner-Product Delaunay Graph (IPDG), which will be used

for our DSMC algorithm in Section 6.1. The IPDG of point set 𝑃

is a graph that records the adjacency information of the Voronoi

cells of extreme points in 𝑃 . Formally, it is an undirected graph

G(𝑃) = (𝑉 , 𝐸) where 𝑉 = 𝑋 , and there exists an edge {𝑝, 𝑞} ∈ 𝐸

if and only if 𝑅(𝑝) ∩ 𝑅(𝑞) ≠ ∅. The number of edges in G(𝑃)
grows exponentially with 𝑑 and building an exact IPDG is often

Figure 1: An example of Voronoi diagram on a point set in

R2. The extreme points are indexed as {𝑡1, . . . , 𝑡8} with their

corresponding Voronoi cells in different colors. We also draw

the IPDG of the point set, where each pair of extreme points

with adjacent Voronoi cells is connected.

not computationally feasible when 𝑑 > 3 [40]. Nevertheless, the

IPDG G(𝑃) of point set 𝑃 can be built from the convex hull CH(𝑃)
efficiently inR2 orR3 since the edges in CH(𝑃) exactly correspond
to the edges in G(𝑃).

5 ALGORITHM IN 2D

In this section, we present OptMC, our optimal polynomial-time

algorithm for MC in R2. Before delving into the details, we discuss

geometric properties of MC in R2 that are useful for the design of

the OptMC algorithm. As we have seen in Section 4, inR2, exact and
𝜀-approximate Voronoi cells of any point can be represented as arcs

of the one-dimensional unit sphere S1. Therefore, MC inR2 is equiv-
alent to finding the minimum number of arcs (resp. 𝜀-approximate
Voronoi cells of points) that fully cover S1. One straightforward solu-
tion for this problem is to compute the 𝜀-approximate Voronoi cells

of all points for an input parameter 𝜀 and solve the aforementioned

arc-covering problem. Furthermore, the (exact) Voronoi cell of each

extreme point can be computed via simple comparisons with its

two neighbors in the IPDG (note that the degree of each vertex

of G(𝑃) is 2 for 𝑃 ⊂ R2). Computing the 𝜀-approximate Voronoi

cell of each point also requires comparisons with extreme points

only. Once all Voronoi cells are obtained, the optimal solution of the

arc-covering problem can be found in polynomial time because it

is one-dimensional. In the OptMC algorithm we propose below, we

further manage to avoid explicit representations of 𝜀-approximate

Voronoi cells via a graph-based transformation for reducing the

computational cost.

5.1 Algorithmic Description

The main idea behind the OptMC algorithm is to build a directed

graph 𝐺 where each (directed) cycle corresponds to a feasible so-

lution for MC. Then, the shortest cycle in 𝐺 provides an optimal

solution for MC. In general, the OptMC algorithm proceeds in three

main steps, namely candidate selection, graph construction, and so-
lution computation. The point set 𝑃 , the parameter 𝜀, and the set

𝑋 of extreme points are provided as inputs to OptMC. We can ob-

tain 𝑋 from 𝑃 in 𝑂 (𝑛 log 𝜉) time, where 𝜉 = |𝑋 |, by running any

convex hull algorithm such as Qhull [12]. For ease of illustration,

we arrange all extreme points in a counterclockwise direction as

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

142

Algorithm 1: OptMC

Input :A point set 𝑃 ; the set 𝑋 of extreme points in 𝑃 ; the error

parameter 𝜀 ∈ (0, 1)
Output :The optimal solution𝑄∗𝜀 of MC on 𝑃

1 Let 𝑢∗
𝑖
be the vector 𝑢 ∈ S1 where ⟨𝑡𝑖 ,𝑢 ⟩ = ⟨𝑡𝑖+1,𝑢 ⟩ and

⟨𝑡𝑖 ,𝑢 ⟩ > 0, and𝑈 ∗ = {𝑢∗
𝑖
: 𝑖 ∈ [𝜉] } where 𝜉 = |𝑋 |;

2 Initialize a candidate set 𝑆 ← 𝑋 ;

3 foreach point 𝑝 ∈ 𝑃 \𝑋 do

4 if ∃𝑢 ∈ 𝑈 ∗ : ⟨𝑝,𝑢 ⟩ ≥ (1 − 𝜀) · ⟨𝑡𝑖 ,𝑢 ⟩ then
5 𝑆 ← 𝑆 ∪ {𝑝 };

6 Arrange the points of 𝑆 in a counterclockwise direction and index

them as [𝑠1, . . . , 𝑠𝜍] where 𝜍 = |𝑆 |;
7 Let𝐺 = (𝑉 , 𝐸) be a directed graph with𝑉 = 𝑆 and 𝐸 = ∅;
8 foreach 𝑖, 𝑗 ∈ [𝜍] and 𝑖 ≠ 𝑗 do

9 if ∠𝑠𝑖𝑂𝑠 𝑗 ≥ 𝜋 then skip Lines 10–12 directly;

10 Let 𝑢∗ be 𝑢 ∈ S1 where ⟨𝑠𝑖 ,𝑢 ⟩ = ⟨𝑠 𝑗 ,𝑢 ⟩ and ⟨𝑠𝑖 ,𝑢 ⟩ ≥ 0;

11 if ∃𝑢 ∈ 𝑈 ∗ ∪ {𝑢∗ } : max𝑡∈𝑋 1 −min

(⟨𝑠𝑖 ,𝑢⟩
⟨𝑡,𝑢⟩ ,

⟨𝑠 𝑗 ,𝑢⟩
⟨𝑡,𝑢⟩

)
≤ 𝜀 then

12 Add a directed edge (𝑠𝑖 → 𝑠 𝑗) to 𝐸;

13 𝐶∗ ← ShortestCycle(𝐺) ;
14 return𝑄∗𝜀 ← {𝑞 : 𝑞 ∈ 𝐶∗ };

𝑋 = {𝑡1, . . . , 𝑡𝜉 } based on their corresponding angles from 0 to 2𝜋

in the polar coordinate system. For any point 𝑝 or vector 𝑢 in R2,
we use 𝜃 (𝑝) or 𝜃 (𝑢) ∈ [0, 2𝜋) to denote the angle of 𝑝 or 𝑢. Next,

we will present the three steps of OptMC in detail.

Candidate Selection: The purpose of this step is to identify

a subset 𝑆 ⊆ 𝑃 of points that may be included in the solution,

while pruning from consideration points that are certainly not. To

find the candidate points, OptMC essentially ignores all points that

are never within an 𝜀-approximation from the maxima. In other

words, 𝑝 ∈ 𝑆 if and only if the 𝜀-approximate Voronoi cell of 𝑝 is

non-empty – i.e., 𝑅𝜀 (𝑝) ≠ ∅. This obviously holds for the extreme

points in 𝑋 . To determine whether it holds for a non-extreme point

𝑝 ∈ 𝑃 \ 𝑋 , OptMC compares 𝑝 with each extreme point 𝑡 ∈ 𝑋 and

computes the minimum loss of 𝑝 w.r.t. 𝑡 across all vectors in 𝑅(𝑡). If
the minimum loss is at most 𝜀 for any extreme point 𝑡 , then 𝑅𝜀 (𝑝) is
not empty; otherwise, it is. Moreover, the minimum loss is always

reached at a boundary vector where the inner product of 𝑡 is equal

to the inner product of either the previous or next extreme point.

Putting everything together, OptMC first computes the boundary

vector 𝑢∗
𝑖
of 𝑅(𝑡𝑖) and 𝑅(𝑡𝑖+1) for each pair of neighboring extreme

points 𝑡𝑖 , 𝑡𝑖+1 ∈ 𝑋 (for 𝑖 = 𝜉 , 𝑢∗
𝜉
is computed from 𝑡𝜉 and 𝑡1). Then,

it computes the relative loss of 𝑝 for each 𝑢∗
𝑖
and adds 𝑝 to 𝑆 if its

loss is at most 𝜀 for some 𝑢∗
𝑖
. Finally, all points in 𝑆 are arranged in

a counterclockwise direction from 0 to 2𝜋 and indexed by [1, . . . , 𝜍]
accordingly, where 𝜍 = |𝑆 |.

Graph Construction: The purpose of this step is to build a

directed graph𝐺 = (𝑉 , 𝐸) where𝑉 = 𝑆 with the following property:

there is an edge between a pair of vertices 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆 if and only if

their 𝜀-approximate Voronoi cells are overlapping. Specifically, if

the losses of 𝑠𝑖 and 𝑠 𝑗 are both at most 𝜀 for either the vector 𝑢∗

where 𝑠𝑖 and 𝑠 𝑗 have the same inner product or any of the boundary

vectors between extreme points, then there will exist a directed

edge (𝑠𝑖 → 𝑠 𝑗). OptMC will decide whether an edge should be

s1
s3 s2

s4
s5

s10

s9
s8

s7
s6

(a) Candidates and Voronoi cells

s1
s2

s3

s5

s9

s7

s8

s10

s6

s4

(b) Graph for solution computation

Figure 2: An illustration of OptMC. In Figure 2(a), we in-

dex the candidates picked from the point set in Figure 1 for

𝜀 = 0.1 as {𝑠1, . . . , 𝑠10} and draw the boundaries of their 0.1-

approximateVoronoi cells in different colors. The graph𝐺 for

𝜀 = 0.1 is shown in Figure 2(b), where each pair of candidates

with overlapping Voronoi cells is connected by a directed

edge. The shortest cycle 𝐶∗ of𝐺 is highlighted in orange and

the points in 𝐶∗ are the optimal solution of MC with 𝜀 = 0.1.

added between each pair of distinct candidates. If the vector angle

between 𝑠𝑖 and 𝑠 𝑗 is greater than 𝜋 , the check for (𝑠𝑖 → 𝑠 𝑗) will be
skipped directly to avoid duplicated computation.

Solution Computation: Given a directed graph 𝐺 = (𝑉 , 𝐸)
constructed according to the above procedure, the final step is to

find the shortest cycle 𝐶∗ of 𝐺 and return the vertices of 𝐶∗ as
the optimal solution 𝑄∗𝜀 of MC on 𝑃 . Here, any shortest-path or

shortest-cycle algorithm, e.g., the algorithms in [23, 26, 36], can be

used for finding the shortest cycle 𝐶∗ from 𝐺 .

We summarize the detailed procedure of OptMC in Algorithm 1,

where the candidate selection step is presented in Lines 1–6, the

graph construction step is described in Lines 7–12, and the solution
computation step is shown in Lines 13–14.

5.2 Theoretical Analysis

Next, we analyze the optimality and time complexity of the OptMC

algorithm theoretically. Firstly, Lemma 5.1 shows the validity of

candidate selection. Secondly, Lemma 5.2 proves the correctness

of graph construction. Thirdly, Lemma 5.3 verifies the equivalence

between computing the optimal solution of MC on 𝑃 and finding

the shortest cycle from 𝐺 . Finally, considering the results of Lem-

mas 5.1–5.3 collectively, we prove the optimality of OptMC and

analyze its time complexity in Theorem 5.4.

Lemma 5.1. For the candidate set 𝑆 computed in Algorithm 1, it
holds that a point 𝑝 ∈ 𝑆 if and only if 𝑅𝜀 (𝑝) ≠ ∅.

Proof. On the one hand, it is obvious that if 𝑝 ∈ 𝑆 then 𝑅𝜀 (𝑝) ≠
∅, since 𝑢∗

𝑖
∈ 𝑅𝜀 (𝑝). On the other hand, we will prove that if 𝑝 ∉ 𝑆

then𝑅𝜀 (𝑝) = ∅, by showing that the minimum of 𝑙𝑢 (𝑝) = 1− ⟨𝑝,𝑢 ⟩
𝜔 (𝑃,𝑢)

of 𝑝 for any 𝑢 ∈ S1 is greater than 𝜀. By considering each extreme

point 𝑡𝑖 ∈ 𝑋 for 𝑙𝑢 (𝑝) separately, we need to show that 1− ⟨𝑝,𝑢 ⟩⟨𝑡𝑖 ,𝑢 ⟩ > 𝜀

for each 𝑢 ∈ 𝑅(𝑡𝑖). We define a function 𝑓 to denote the loss of 𝑝

Session: Compressed Data and Probabilistic Data

PODS ’21, June 20–25, 2021, Virtual Event, China

143

w.r.t. 𝑡𝑖 as follows:

𝑓 (𝑢) = 1 − ⟨𝑝,𝑢⟩⟨𝑡𝑖 , 𝑢⟩
= 1 − ∥𝑝 ∥∥𝑡𝑖 ∥

· cos(𝜃 (𝑝) − 𝜃 (𝑢))
cos(𝜃 (𝑡𝑖) − 𝜃 (𝑢))

where 𝜃 (𝑝) is the angle of the point-vector 𝑝 and 𝑢 ∈ 𝑅(𝑡𝑖) =

[𝑢∗
𝑖−1, 𝑢

∗
𝑖
]. According to Line 4 of Algorithm 1, we have 1− ⟨𝑝,𝑢

∗
𝑖 ⟩

⟨𝑡𝑖 ,𝑢∗𝑖 ⟩
>

𝜀 for all 𝑖 ∈ [𝜉] if 𝑝 ∉ 𝑆 . Furthermore, if 𝜃 (𝑝) < 𝜃 (𝑡𝑖), then 𝑓 (𝑢)
monotonically increases with 𝜃 (𝑢); if 𝜃 (𝑝) > 𝜃 (𝑡𝑖), then 𝑓 (𝑢)mono-

tonically decreases with 𝜃 (𝑢); and if 𝜃 (𝑝) = 𝜃 (𝑡𝑖), then 𝑓 (𝑢) is a
constant 1− ∥𝑝 ∥∥𝑡𝑖 ∥ . Therefore, the minimum of 𝑓 (𝑢) is reached when

either 𝑢 = 𝑢∗
𝑖−1 or 𝑢

∗
𝑖
. In addition, 𝑓 (𝑢∗

𝑖−1) = 1 − ⟨𝑝,𝑢∗𝑖−1 ⟩
⟨𝑡𝑖−1,𝑢∗𝑖−1 ⟩

> 𝜀 and

𝑓 (𝑢∗
𝑖
) = 1 − ⟨𝑝,𝑢

∗
𝑖 ⟩

⟨𝑡𝑖 ,𝑢∗𝑖 ⟩
> 𝜀. Combining all above results, we prove

that 𝑙𝑢 (𝑝) > 𝜀 for any 𝑢 ∈ S1 if ⟨𝑝,𝑢 ⟩⟨𝑡𝑖 ,𝑢 ⟩ < 1 − 𝜀 for any 𝑡𝑖 ∈ 𝑋 and

conclude the proof. □

Lemma 5.2. Let 𝑠𝑖 , 𝑠 𝑗 (𝑖 < 𝑗) be two points in 𝑆 . For the graph 𝐺
constructed by Algorithm 1, there exists an edge (𝑠𝑖 → 𝑠 𝑗) if and only
if 𝑅𝜀 (𝑠𝑖) ∩ 𝑅𝜀 (𝑠 𝑗) ≠ ∅.

Proof. First of all, it is easy to see that if there is an edge (𝑠𝑖 →
𝑠 𝑗) in𝐺 then𝑅𝜀 (𝑠𝑖)∩𝑅𝜀 (𝑠 𝑗) ≠ ∅—because the vector𝑢 in𝑈 ∗∪{𝑢∗}
satisfying the condition in Line 11 must be in 𝑅𝜀 (𝑠𝑖) ∩ 𝑅𝜀 (𝑠 𝑗). Next,
we need to show that 𝑅𝜀 (𝑠𝑖) ∩ 𝑅𝜀 (𝑠 𝑗) = ∅ if (𝑠𝑖 → 𝑠 𝑗) does not
exist in 𝐺 . For 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆 (𝑖 < 𝑗) and 𝑡 ∈ 𝑋 , we define function 𝑓𝑖 𝑗 to

denote the maximum loss of either point 𝑠𝑖 and 𝑠 𝑗 w.r.t. 𝑡 as follows:

𝑓𝑖 𝑗 (𝑢) = 1 −min

(⟨𝑠𝑖 , 𝑢⟩
⟨𝑡,𝑢⟩ ,

⟨𝑠 𝑗 , 𝑢⟩
⟨𝑡,𝑢⟩

)
where 𝑢 ∈ 𝑅(𝑡). There is a vector 𝑢 ∈ 𝑅(𝑡) such that 𝑢 ∈ 𝑅𝜀 (𝑠𝑖) ∩
𝑅𝜀 (𝑠 𝑗) if and only if theminimum of 𝑓𝑖 𝑗 (𝑢) is at most 𝜀. By extending

the result in the proof of Lemma 5.1, we can find three different cases

for theminimum of 𝑓𝑖 𝑗 (𝑢) in𝑅(𝑡): (1) if 𝜃 (𝑡) ≥ 𝜃 (𝑠 𝑗) or 𝜃 (𝑡) ≤ 𝜃 (𝑠𝑖),
then the minimum of 𝑓𝑖 𝑗 (𝑢) is reached at the boundary of 𝑅(𝑡) – i.e.,

some vector in 𝑈 ∗; (2) if 𝜃 (𝑠𝑖) < 𝜃 (𝑡) < 𝜃 (𝑠 𝑗) and 𝑢∗ ∈ 𝑅(𝑡), then
the minimum of 𝑓𝑖 𝑗 (𝑢) is reached when ⟨𝑠𝑖 , 𝑢⟩ = ⟨𝑠 𝑗 , 𝑢⟩ – i.e., just

at 𝑢∗; (3) if 𝜃 (𝑠𝑖) < 𝜃 (𝑡) < 𝜃 (𝑠 𝑗) and 𝑢∗ ∉ 𝑅(𝑡), then the minimum

of 𝑓𝑖 𝑗 (𝑢) is also reached at the boundary of 𝑅(𝑡). Thus, to find the

minimum of 𝑓𝑖 𝑗 , it is enough to check all vectors in 𝑈 ∗ ∪ {𝑢∗} for
each extreme point. If the condition in Line 11 is not satisfied for

any of them, it is safe to say that 𝑓𝑖 𝑗 (𝑢) > 𝜀 for any 𝑢 ∈ S1 and
𝑅𝜀 (𝑠𝑖) ∩ 𝑅𝜀 (𝑠 𝑗) = ∅. □

In Lemma 5.2, we only consider the case of 𝑖 < 𝑗 . It is easy to

verify that Lemma 5.2 also holds when 𝑖 > 𝑗 .

Before presenting Lemma 5.3, we define the notion of the “locally

minimal solution” as follows: A solution 𝑄 of MC on 𝑃 is locally

minimal if𝑄 is a feasible solution and𝑄\{𝑞} is not feasible anymore

for each point 𝑞 ∈ 𝑄 .

Lemma 5.3. The graph 𝐺 constructed by Algorithm 1 must satisfy
that: (i) if𝐶 is a cycle in𝐺 , then𝑄 = {𝑞 : 𝑞 ∈ 𝐶} is a feasible solution
of MC on 𝑃 ; and (ii) if 𝑄 is a locally minimal solution of MC on 𝑃 ,
then there exists a cycle 𝐶 in 𝐺 corresponding to 𝑄 .

Proof. Let {𝑞1, . . . , 𝑞 |𝑄 |} be the points in𝑄 arranged in a coun-

terclockwise direction. Because 𝐶 is a cycle of 𝐺 , there is an edge

(𝑞𝑖 → 𝑞𝑖+1) for each 𝑖 ∈ [|𝑄 |]. According to Lemma 5.2, 𝑅𝜀 (𝑞𝑖) ∩

𝑅𝜀 (𝑞𝑖+1) ≠ ∅ for each 𝑖 ∈ [|𝑄 |]. Therefore, ⋃𝑞∈𝑄 𝑅𝜀 (𝑞) = S1 and
𝑄 is a feasible solution of MC.

Then, we show any locally minimal solution must correspond

to a cycle of 𝐺 . First, if 𝑄 is a locally minimal solution for MC,

then 𝑄 ⊆ 𝑆 , where 𝑆 is the set of all candidates with nonempty

𝜀-approximate Voronoi cells. For any 𝑝 ∉ 𝑆 , if a subset 𝑄 ′ where
𝑝 ∈ 𝑄 ′ is feasible, it will hold that 𝑄 ′ \ {𝑝} is still feasible since
𝑅𝜀 (𝑝) = ∅, which implies that 𝑄 ′ is not locally minimal. Next, we

prove by contradiction that if 𝑄 is locally minimal then there is

an edge (𝑞𝑖 → 𝑞𝑖+1) in 𝐺 for every 𝑖 ∈ [|𝑄 |]. If (𝑞𝑖 → 𝑞𝑖+1) ∉ 𝐸,

then either (1) 𝜃 (𝑞𝑖+1) − 𝜃 (𝑞𝑖) > 𝜋 or (2) 𝑅𝜀 (𝑞𝑖) ∩ 𝑅𝜀 (𝑞𝑖+1) = ∅.
In the former case, we have 𝑙 (𝑄) > 1 and 𝑄 is not feasible. In the

latter case, if there does not exist any 𝑖 ′ < 𝑖 or 𝑖 ′′ > 𝑖 + 1 such that

𝑅𝜀 (𝑞𝑖′) ∩ 𝑅𝜀 (𝑞𝑖+1) ≠ ∅ or 𝑅𝜀 (𝑞𝑖) ∩ 𝑅𝜀 (𝑞𝑖′′) ≠ ∅, there will exist
some vector 𝑢 between 𝑅𝜀 (𝑞𝑖) and 𝑅𝜀 (𝑞𝑖+1) where the loss of 𝑄 is

greater than 𝜀 and thus 𝑄 is not feasible; otherwise, if there exists

such 𝑖 ′ < 𝑖 or 𝑖 ′′ > 𝑖 + 1, there will be an edge (𝑞𝑖′ → 𝑞𝑖+1) or
(𝑞𝑖 → 𝑞𝑖′′) in 𝐺 , which implies that either 𝑞𝑖 or 𝑞𝑖+1 is redundant
in 𝑄 and 𝑄 is not locally minimal. Based on all above results, we

conclude that there exists a cycle𝐶 of𝐺 corresponding to𝑄 as long

as 𝑄 is a locally minimal solution for MC on 𝑃 . □

Theorem 5.4. OptMC returns the optimal solution for MC with a
parameter 𝜀 ∈ (0, 1) on a point set 𝑃 ⊂ R2 in 𝑂 (𝑛3) time.

Proof. Based on Lemma 5.1, OptMC excludes all redundant

points from computation. According to Lemmas 5.2 and 5.3, it is

guaranteed that any locally minimal solution for MC on 𝑃 forms a

cycle in𝐺 . Therefore, the optimal solution𝑄∗𝜀 of MC on 𝑃 – i.e., the

smallest among all feasible solutions for MC on 𝑃 , must correspond

to the shortest cycle of 𝐺 , as the globally minimal solution must

also be locally minimal. Hence, OptMC is optimal for MC in R2.
The time complexity of candidate selection is 𝑂 (𝜉 + 𝑛 · log 𝜉).

Here, a binary search is used to find the index 𝑖 and thus it takes

𝑂 (log 𝜉) time to decide whether to include 𝑝 into 𝑆 or not. The time

complexity of graph construction is 𝑂 (𝜍2 · 𝜉). The time complexity

of finding the shortest cycle in a directed graph is𝑂 (|𝑉 | · |𝐸 | + |𝑉 |2 ·
log |𝐸 |) when the Dijkstra’s algorithm in [26] is used for computing

the shortest path from each vertex. Recently, an 𝑂 (|𝑉 | · |𝐸 |) time

algorithm [36] was also proposed for finding the shortest directed

cycle. In the worst case (i.e., 𝜀 is close to 1), since 𝜍 = |𝑉 | = 𝑂 (𝑛)
and |𝐸 | = 𝑂 (𝜍2), the time complexity of OptMC is𝑂 (𝑛3). When 𝜀 is

much smaller than 1, it is reasonable to assume that 𝜍 = |𝑉 | ≪ 𝑂 (𝑛)
and |𝐸 | = 𝑂 (|𝑉 |) and the time complexity of OptMC is reduced to

𝑂 (𝑛 · log 𝜉 + 𝜍2 · 𝜉). □

6 ALGORITHMS IN MD

In the case of𝑑 ≥ 3, MC becomes muchmore challenging due to NP-

hardness. As discussed in Section 4, MC can be viewed as a set cover

problem defined on Voronoi cells. Solving it directly as such would

require the invocation of set operations between Voronoi cells to

compute whether the coverage condition is satisfied. However, the

geometric shapes of Voronoi cells in R𝑑 when 𝑑 ≥ 3 are convex

polyhedra that are defined by intersections of half-spaces embedded

on S𝑑−1, which makes set operations [6, 22] very inefficient. Even

if the Voronoi cells of all points are given as inputs and the set

operations are assumed to be performed by an oracle, finding the

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

144

optimal solution of MC is still infeasible unless P=NP due to the

combinatorial complexity of geometric set cover [25].

In this section, we propose two different algorithms for MC.

The high-level idea of both algorithms is to approximate the set

operations on Voronoi cells so as to transformMC into simpler cover

problems. First, in Section 6.1, we propose the DSMC algorithm

that transforms MC into a dominating-set problem on a directed

graph denoting the inclusion relationships among the Voronoi cells

of points. Furthermore, we find that MC can also be transformed

into a set cover problem via the discretization of Voronoi cells by

adapting the results in [3, 9] for the transformation from the regret

minimizing set (RMS) problem to a set cover problem based on

the notion of 𝛿-nets [28]. We propose the SCMC algorithm for MC

accordingly. Since the analyses for SCMC are similar to those for

the hitting-set based algorithm in [3], we here omit the details of

SCMC and leave them to Appendix A.

6.1 Dominating Set Based Algorithm

In this subsection, we present the DSMC algorithm for the MC

problem. DSMC is based on two simplifications in relations to MC.

Firstly, we only use the set 𝑋 of extreme points, instead of the

whole point set, to compute the solutions for MC. Secondly, when

considering an extreme point 𝑡 ∈ 𝑋 for the solution set, we restrict

ourselves to merely two possibilities: either 𝑡 is in the solution;

or there exists another extreme point 𝑡 ′ in the solution whose 𝜀-

approximate Voronoi cell fully incorporates the exact Voronoi cell

of 𝑡 , in which case we say that 𝑡 ′ dominates 𝑡 . In other words, we

do not consider the case that 𝑅(𝑡) is covered by a union of the 𝜀-

approximate Voronoi cells of two or more points for the inefficiency

of set operations. The above simplifications allow us to develop

an approach that is expressed in terms of a graph structure, to

which we refer as the dominance graph, because it encapsulates
information about the dominance relationships among vertices. The

resulting approach can be seen as targeting a simplified formulation

of the original MC problem – i.e., finding a dominating set of the

dominance graph as the solution for MC.

Dominance Graph: We first consider how to construct the

dominance graph for a point set 𝑃 . Let the extreme points in 𝑋 ⊆ 𝑃

be indexed by [𝜉] as {𝑡1, 𝑡2, . . . , 𝑡𝜉 }, where 𝜉 = |𝑋 |. The dominance

graph H = (𝑉 , 𝐸) is a weighted and directed graph where 𝑉 is

equal to 𝑋 . A directed edge (𝑡𝑖 → 𝑡 𝑗) with an associated weight

𝜀𝑖 𝑗 ∈ (0, 1) exists if and only if the 𝜀𝑖 𝑗 -approximate Voronoi cell of

𝑡𝑖 fully incorporates the Voronoi cell of 𝑡 𝑗 . Therefore, the presence

of edge (𝑡𝑖 → 𝑡 𝑗) signifies that, in any solution of MC with 𝜀 ≥ 𝜀𝑖 𝑗 ,

𝑡𝑖 can replace 𝑡 𝑗 without a violation of the solution validity.

The edge weight 𝜀𝑖 𝑗 for each pair of points 𝑡𝑖 , 𝑡 𝑗 can be computed

from the linear program (LP) in Eq. 2.

max 1 − 𝑡𝑖 · 𝑢
s.t. (𝑡 𝑗 − 𝑡) · 𝑢 ≥ 0,∀𝑡 ∈ 𝑁 (𝑡 𝑗)

𝑡 𝑗 · 𝑢 = 1

(2)

In Eq. 2, 𝑁 (𝑡) is the set of neighbors of point 𝑡 in the IPDG G(𝑃) of
𝑃 , i.e., the set of extreme points whose Voronoi cells are adjacent to

𝑅(𝑡). The first set of inequality constraints represents the feasible

region of the linear program as the Voronoi cell 𝑅(𝑡 𝑗) of 𝑡 𝑗 , which
is defined by the intersections of |𝑁 (𝑡 𝑗) | closed half-spaces. Each

Algorithm 2: DominanceGraph

Input :The set 𝑋 of extreme points in 𝑃 ; the IPDG G(𝑃)
Output :The dominance graph H

1 Initialize H = (𝑉 , 𝐸) where𝑉 = 𝑋 and 𝐸 = ∅;
2 foreach 𝑖, 𝑗 ∈ [𝜉] and 𝑖 ≠ 𝑗 do

3 Solve the LP in Eq. 2 for 𝑡𝑖 , 𝑡 𝑗 to compute 𝜀𝑖 𝑗 ;

4 if 𝜀𝑖 𝑗 ∈ (0, 1) then
5 Add a directed edge (𝑡𝑖 → 𝑡 𝑗) to 𝐸;

6 return H;

Algorithm 3: DSMC

Input :The dominance graph H; a parameter 𝜀 ∈ (0, 1)
Output :The solution𝑄𝜀 of MC

1 Let H𝜀 = (𝑉 , 𝐸𝜀) be the subgraph of H with

𝐸𝜀 = {(𝑡𝑖 → 𝑡 𝑗) ∈ 𝐸 : 𝜀𝑖 𝑗 ≤ 𝜀 };
2 Initialize𝑄𝜀 ← ∅ and𝑈 ′ ← 𝑋 ;

3 for 𝑖 ← 1, . . . , 𝜉 do

4 𝐷𝑜𝑚 (𝑡𝑖) ← {𝑡𝑖 } ∪ {𝑡 𝑗 ∈ 𝑋 : (𝑡𝑖 → 𝑡 𝑗) ∈ 𝐸𝜀 };
5 while𝑈 ′ ≠ ∅ do

6 𝑡∗ ← argmax𝑡𝑖 ∈𝑋 \𝑄𝜀
|𝐷𝑜𝑚 (𝑡𝑖) ∩𝑈 ′ |;

7 𝑄𝜀 ← 𝑄𝜀 ∪ {𝑡∗ } and𝑈 ′ ← 𝑈 ′ \𝐷𝑜𝑚 (𝑡∗) ;
8 return𝑄𝜀 ;

half-space corresponds to the region where the inner product of

𝑡 𝑗 is greater than or equal to that of 𝑡 ∈ 𝑁 (𝑡 𝑗). Hence, ⟨𝑡 𝑗 , 𝑢⟩ ≥
⟨𝑡,𝑢⟩ ⇔ (𝑡 𝑗 − 𝑡) · 𝑢 ≥ 0. The second inequality constraint scales

the vector𝑢 so that the inner product of 𝑡 𝑗 is 1. With this constraint,

for a given vector 𝑢, the loss of 𝑡𝑖 w.r.t. 𝑡 𝑗 is equal to 1 − 𝑡𝑖 · 𝑢. The
LP in Eq. 2 finds the largest loss 𝜀𝑖 𝑗 of 𝑡𝑖 w.r.t. 𝑡 𝑗 over the feasible

region 𝑅(𝑡 𝑗).
The procedure of building the dominance graphH is shown in

Algorithm 2. For a point set 𝑃 , the set 𝑋 of extreme points and the

IPDG G(𝑃) are provided as inputs. Since computing G(𝑃) exactly is
costly when 𝑑 > 3, we first assume the exact IPDG G(𝑃) is available
here and will discuss how to replace it with an approximate IPDG

later in this subsection.

Solution Computation: Given the dominance graphH , one

can use it to compute a solution for MC. In particular, for a parame-

ter 𝜀 ∈ (0, 1), a solution for MC can be obtained as any subset 𝑆 ⊆ 𝑋

of points satisfying the following condition: for each 𝑡 𝑗 ∈ 𝑋 , either

𝑡 𝑗 ∈ 𝑆 or there exists an edge (𝑡𝑖 → 𝑡 𝑗) with 𝜀𝑖 𝑗 ≤ 𝜀 for some 𝑡𝑖 ∈ 𝑆 .
LetH𝜀 = (𝑉 , 𝐸𝜀) be the subgraph ofH where 𝑉 = 𝑋 and 𝐸𝜀 ⊆ 𝐸

is the subset of edges with weights at most 𝜀. Then, a solution of

MC can be obtained by finding the minimum dominating set of

H𝜀 . In practice, DSMC runs the greedy algorithm for the minimum

dominating set problem onH𝜀 . The detailed procedure of DSMC is

summarized in Algorithm 3.

Theoretical Analysis: We first show that the solution 𝑄𝜀 re-

turned by DSMC is a valid 𝜀-coreset for MC in Theorem 6.1.

Theorem 6.1. The solution 𝑄𝜀 returned by DSMC must satisfy
that 𝑙 (𝑄𝜀) ≤ 𝜀.

Proof. For any vector 𝑢 ∈ S𝑑−1, there exists a point 𝑡 𝑗 such

that 𝑢 ∈ 𝑅(𝑡 𝑗). Since 𝑄𝜀 is a dominating set ofH𝜀 , we have either

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

145

t1t2

t3

t4

t7

t8

t5

t6

0.5

0.74

0.53

0.22

0.13

0.590.16 0.58 0.19

0.360.59

0.17

0.16

(a) Dominance graph H

t1t2

t3

t4

t7

t8

t5

t6

(b) Dominating set on H0.2

Figure 3: Illustrations of the dominance graph and DSMC.

In Figure 3(a), we show the dominance graphH built on the

dataset in Figure 1, where all edge weights are computed

by Eq. 2. Then, in Figure 3(b), we show how H is used to

compute the solution of MC for 𝜀 = 0.2. Specifically,H0.2 is

a subgraph ofH only containing the edges with weights at

most 0.2. DSMC runs the greedy algorithm on H0.2 to find

the dominating set (in orange) as a solution of MC.

𝑡 𝑗 ∈ 𝑄𝜀 or there exists an edge (𝑡𝑖 → 𝑡 𝑗) ∈ 𝐸𝜀 for some 𝑡𝑖 ∈ 𝑄𝜀 . In

the previous case, we have𝜔 (𝑄𝜀 , 𝑢) = 𝜔 (𝑃,𝑢); In the latter case, we

have 𝜔 (𝑄𝜀 , 𝑢) ≥ (1 − 𝜀𝑖 𝑗) ·𝜔 (𝑃,𝑢) ≥ (1 − 𝜀) ·𝜔 (𝑃,𝑢). Considering
both cases collectively, we have 𝑙 (𝑄𝜀) ≤ 𝜀. □

How large is the size of the solution of DSMC compared to the

optimal one for MC? While the approximation factor of DSMC on

the solution size is still open, we do have an upper bound for it, as

given in Theorem 6.2.

Theorem 6.2. If OPT𝜀 is the size of the smallest 𝜀-coreset of 𝑃 and
𝑄𝜀 is the solution of MC returned by DSMC, it holds that |𝑄𝜀 | =
𝑂 (𝜉

𝑑
) · OPT𝜀 , where 𝜉 = |𝑋 |.

Proof. First, the size of 𝑄𝜀 is at most 𝜉 since 𝑄𝜀 ⊆ 𝑋 . Second,

the smallest 𝜀-coreset 𝑄∗𝜀 of 𝑃 must contain at least 𝑑 + 1 points

to guarantee 𝑙 (𝑄∗𝜀) < 1. This is because, for any size-𝑑 point set

𝑄 in R𝑑 , one can find a vector 𝑢 perpendicular to a hyperplane

containing all points in 𝑄 such that ⟨𝑝,𝑢⟩ = 0 for each 𝑝 ∈ 𝑄 and

𝑙𝑥 (𝑄) = 1. Thus, |𝑄𝜀 | ≤ 𝜉

𝑑+1 · |𝑄
∗
𝜀 | = 𝑂 (𝜉

𝑑
) · OPT𝜀 . □

Finally, we prove that both procedures of DSMC in Algorithms 2

and 3 run in polynomial time in Theorem 6.3.

Theorem 6.3. The time complexities of Algorithm 2 and Algo-
rithm 3 are𝑂 (𝜉2 ·Δ ·𝑑3.5) and𝑂 (𝜉2 ·𝐷), respectively, where 𝜉 = |𝑋 |,
Δ = max𝑡 ∈𝑋 |𝑁 (𝑡) |, and 𝐷 = max𝑡 ∈𝑋 𝐷𝑜𝑚(𝑡).

Proof. First of all, the number of LPs solved for dominance

graph construction is 𝑂 (𝜉2), as it computes the weight for each

pair of extreme points. Each LP in Eq. 2 has |𝑁 (𝑡 𝑗) | + 1 constraints
and 𝑑 variables. When the interior point method is used as the

LP solver, the worst-case time complexity of 𝑂 (Δ · 𝑑3.5) is always
guaranteed. Therefore, the time complexity of Algorithm 2 is𝑂 (𝜉2 ·
Δ · 𝑑3.5). Then, the time to extract the subgraph and build a set

system for the subgraph is𝑂 (𝜉 ·𝐷). The greedy algorithm evaluates

the intersection of 𝐷𝑜𝑚(𝑡) and 𝑈 ′ for each 𝑡 ∈ 𝑋 at each iteration

in𝑂 (𝜉 · 𝐷) time. The greedy algorithm runs |𝑄𝜀 | = 𝑂 (𝜉) iterations.
Hence, the time complexity of Algorithm 3 is 𝑂 (𝜉2 · 𝐷). □

Remark: Since constructing the exact IPDG of a point set is

computationally intensive when 𝑑 > 3, we consider using an ap-

proximate IPDG instead for dominance graph construction. A prac-

tical approach to building an approximate IPDG proposed in [40]

is used in our implementation. We show that using an approximate

IPDG Ĝ(𝑃) instead of the exact IPDG G(𝑃) does not affect the
correctness of DSMC– i.e., the solution of DSMC computed from

a dominance graph built based on Ĝ(𝑃) is still a valid 𝜀-coreset.

Compared with G(𝑃), Ĝ(𝑃) may both contain additional edges and

miss existing edges. On the one hand, an additional edge has no

effect on the solution of the LP in Eq. 2. This is because its feasible

region is exactly the Voronoi cell 𝑅(𝑡 𝑗) of 𝑡 𝑗 . Hence, an additional

edge leads to a redundant constraint that does not reduce the feasi-

ble region at all. On the other hand, a missing edge may cause the

solution value of the LP in Eq. 2 to be greater than the maximum

loss, because the feasible region becomes larger than 𝑅(𝑡 𝑗). As a
result, if we use Ĝ(𝑃) instead of G(𝑃), H𝜀 for any 𝜀 ∈ (0, 1) will
contain strictly equal or fewer edges, and thus the solution 𝑄𝜀 may

include more points. Intuitively, if Ĝ(𝑃) is closer to G(𝑃), the size
of the solution 𝑄𝜀 of DSMC will tend to be smaller. Nevertheless,

𝑄𝜀 is still guaranteed to be valid for MC when Ĝ(𝑃) is used.
In addition, since DSMC may not provide 𝜀-coresets of the small-

est sizes, we can invoke Algorithm 3 with some 𝜀 ′ > 𝜀 for obtaining

smaller valid 𝜀-coresets. In practice, we try different values of 𝜀 ′

picked from [𝜀, 3𝜀] and invoke Algorithm 3 for each value of 𝜀 ′ to
find the largest value of 𝜀 ′ such that 𝑙 (𝑄𝜀′) ≤ 𝜀 and return 𝑄𝜀′ as

the solution of DSMC.

7 EXPERIMENTAL EVALUATION

In this section, we do extensive experiments on real and synthetic

datasets to evaluate the performance of our proposed algorithms.

We implemented our proposed algorithms – i.e., OptMC, SCMC,

and DSMC, in C++11. The ANN library
2
was used for maximum

inner product search in SCMC to speed up the set system con-

struction. The GLPK library
3
was used as the LP solver for con-

structing the dominance graph in DSMC. The dominance graph

of each dataset is precomputed and provided for solution com-

putation in DSMC. Our implementation is publicly available on

https://github.com/yhwang1990/minimum-coresets. In addition,

we used the implementation of the standard ANN-based algorithm

(ANN for short) for 𝜀-kernel computation in [3, 45], which is pub-

lished on https://users.cs.duke.edu/~ssintos/kRMS_SEA, as a base-

line. We followed the parameter settings for ANN as described

in [3]. All experiments were conducted on a server running Ubuntu

18.04.1 with a 2.3 GHz processor and 256 GB memory.

Datasets:We use the following public real-world datasets in our

experiments. The statistics of these datasets are reported in Table 1.

• FourSqare
4
: This dataset contains check-ins in NYC and

Tokyo collected on FourSquare from 12 April 2012 to 16 Feb-

ruary 2013. We extracted the coordinates of 37,000 distinct

locations in NYC and 59,955 distinct locations in Tokyo for

the experiments on two-dimensional data.

2
http://www.cs.umd.edu/~mount/ANN

3
https://www.gnu.org/software/glpk

4
https://www.kaggle.com/chetanism/foursquare-nyc-and-tokyo-checkin-dataset

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

146

https://github.com/yhwang1990/minimum-coresets
https://users.cs.duke.edu/~ssintos/kRMS_SEA
http://www.cs.umd.edu/~mount/ANN
https://www.gnu.org/software/glpk
https://www.kaggle.com/chetanism/foursquare-nyc-and-tokyo-checkin-dataset

 ANN OptMC SCMC DSMC

0.001 0.01 0.1 (0.25)
epsilon

0

15

30

45

60

S
iz

e

0.001 0.01 0.1 (0.25)
epsilon

100

101

102

Ti
m

e
(m

s)
(a) FourSquare-NYC

0.001 0.01 0.1 (0.25)
epsilon

0

20

40

60

80

S
iz

e

0.001 0.01 0.1 (0.25)
epsilon

100

101

102

Ti
m

e
(m

s)

(b) FourSquare-TKY

Figure 4: Performance on two-dimensional datasets with varying 𝜀.

Table 1: Statistics of real-world datasets, where𝑛 is the dataset

size, 𝑑 is the dimensionality, 𝜉 is the number of extreme

points, and DG Time (s) is the CPU time in seconds for domi-

nance graph construction.

Dataset 𝑛 𝑑 𝜉 DG Time (s)

FourSqare-NYC 37,000 2 50 0.021

FourSqare-TKY 59,955 2 60 0.028

RoadNetwork 434,874 3 182 0.333

Climate 566,262 4 888 12.81

AirQuality 383,980 6 532 7.39

Colors 68,040 9 1,961 343.6

• RoadNetwork
5
: This dataset is a collection of 434,874 spa-

tial objects in North Jutland, Denmark. Each object has three

attributes: longitude, latitude, and elevation.
• Climate [29]: This dataset contains the average tempera-

tures aggregated by seasons in 566,262 weather stations.

• AirQuality
6
: This dataset includes 383,980 records for the

concentrations of six air pollutants collected from 12 air-

quality monitoring sites in Beijing, China.

• Colors
7
: This is a collection of color moments collected

from 68,040 images.

We normalized all dimensions of each dataset to the range [−1, 1]
in a preprocessing step.

Furthermore, to evaluate the performance of algorithms in con-

trolled settings, we use two synthetic datasets, namely Normal and

Uniform, in our experiments. In Normal, each attribute is indepen-

dently drawn from the standard normal distribution and rescaled

to [−1, 1]. In Uniform, each attribute is independently drawn from

a uniform distribution in the range [−1, 1]. For both datasets, we

vary the dataset size 𝑛 from 10
3
to 10

7
and the dimensionality 𝑑

from 2 to 10 to test the effect of 𝑛 and 𝑑 . By default, we use the

datasets with 𝑛 = 10
5
and 𝑑 = 6.

7.1 Results on Two-Dimensional Data

In this subsection, we describe the experimental results on two-

dimensional datasets – i.e., two real-world datasets FourSqare-

NYC and FourSqare-TKY and one synthetic dataset Normal with

5
https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+%28North+Jutland%2C+

Denmark%29

6
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data

7
https://archive.ics.uci.edu/ml/datasets/corel+image+features

 ANN OptMC SCMC DSMC

103 104 105 106 107

n

5

10

15

20

S
iz

e

103 104 105 106 107

n

10−1

100

101

102

103

104

Ti
m

e
(m

s)

Figure 5: Performance on Normal (2D) with varying 𝑛.

𝑑 = 2. The results on Uniform with 𝑑 = 2 are similar to those on

Normal and thus omitted due to space limitations.

We present the performance of each algorithm in terms of solu-

tion quality (i.e., sizes of coresets found) and efficiency (i.e., running

time) with varying the value of 𝜀 from 0.001 to 0.25 in Figure 4. First

of all, all algorithms return smaller coresets when 𝜀 is larger. Such

results are intuitive since larger 𝜀 means larger losses in maxima

representation and thus smaller coresets. Among all algorithms,

OptMC always provides the smallest (optimal) coresets in all cases

as expected. Moreover, DSMC and SCMC provide near-optimal (or

even optimal) solutions for MC in case of 𝑑 = 2, both of which

achieve significantly better solution quality than ANN. These re-

sults show that the schemes of approximating Voronoi diagrams in

DSMC and SCMC are effective on two-dimensional data. In terms of

efficiency, OptMC and DSMC run slower while ANN and SCMC run

faster when 𝜀 increases, as the graphs used by OptMC and DSMC

for solution computation have more edges for larger 𝜀 but the sam-

ple sizes of DSMC and SCMC are smaller for larger 𝜀. Although

OptMC has the slowest efficiency among four algorithms, its run-

ning time is still within one second when 𝜀 = 0.25. The running

time of ANN and SCMC is determined by sample sizes and mostly

close to each other on different datasets. The running time for the

solution computation of DSMC is significantly shorter than all the

other algorithms, especially when 𝜀 is small. In addition, as shown

in Table 1, the running time for the dominance graph construction

of DSMC is only 20-30 ms when 𝑑 = 2 since the numbers of extreme

points and edges in IPDG are very small.

Next, we fix 𝜀 = 0.1 and vary the size 𝑛 of Normal with 𝑑 = 2

from 10
3
to 10

7
to evaluate the scalability of each algorithmw.r.t. the

size of dataset. The results are shown in Figure 5. The ranking

for solution quality is the same as that of varying 𝜀: (1) OptMC

(optimal), (2) DSMC, (3) SCMC, and (4) ANN. In terms of efficiency,

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

147

https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+%28North+Jutland%2C+Denmark%29
https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+%28North+Jutland%2C+Denmark%29
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/corel+image+features

 ANN SCMC DSMC

0.01 0.05 0.1 0.15 0.2 0.25
epsilon

0

30

60

90

120

150

180

S
iz

e

0.01 0.05 0.1 0.15 0.2 0.25
epsilon

101

102

103

Ti
m

e
(m

s)
(a) RoadNetwork

0.01 0.05 0.1 0.15 0.2 0.25
epsilon

101

102

103

S
iz

e

0.01 0.05 0.1 0.15 0.2 0.25
epsilon

102

103

104

105

Ti
m

e
(m

s)

(b) Climate

0.01 0.05 0.1 0.15 0.2 0.25
epsilon

102

103

S
iz

e

0.01 0.05 0.1 0.15 0.2 0.25
epsilon

101

102

103

104

105

106

Ti
m

e
(m

s)

(c) AirQuality

0.01 0.05 0.1 0.15 0.2 0.25
epsilon

102

103

104

S
iz

e

0.01 0.05 0.1 0.15 0.2 0.25
epsilon

101
102
103
104
105
106
107
108

Ti
m

e
(m

s)

(d) Colors

Figure 6: Performance on multidimensional datasets with varying 𝜀.

the running time of OptMC, ANN, and SCMC is linear with 𝑛, as

indicated by their time complexities (note that the time complexity

of OptMC is near linear when 𝜀 is small). The running time of DSMC

grows very slowly with 𝑛 since it computes the solution directly

from the dominance graph that only contains extreme points.

For two-dimensional data, OptMC always provides an optimal

solution of MC in reasonable time. In addition, both DSMC and

SCMC exhibit better solution quality than ANN at all times as well

as higher efficiency than ANN in most cases.

7.2 Results on Multidimensional Data

In this subsection, we describe the experimental results on datasets

with 𝑑 > 2, including four real datasets RoadNetwork, Climate,

AirQuality, and Colors, and two synthetic datasets Normal and

Uniform where 𝑑 is ranged from 3 to 10.

We first vary 𝜀 from 0.01 to 0.25 for evaluating the performance

of each algorithm. The results are presented in Figure 6. Here we

do not present the results when 𝜀 < 0.01 because ANN and SCMC

run too slow for extremely large sample sizes. Similar to the two-

dimensional case, the sizes of coresets decrease with increasing 𝜀.

Both DSMC and SCMC provide solutions of significantly higher

quality than ANN, particularly so for smaller values of 𝜀. The core-

sets of DSMC and SCMC are up to 5 times smaller than that of

ANN when 𝜀 = 0.01. Furthermore, DSMC shows higher solution

quality than SCMC when 𝑑 ≤ 5 but performs worse than SCMC

when 𝑑 > 5. This is because DSMC uses approximate IPDGs for

dominance graph construction, as building exact IPDGs is compu-

tationally expensive when 𝑑 > 3. Therefore, in higher dimensions,

a large number of edges in exact IPDGs are missing from approxi-

mate IPDGs, which leads to inaccurate edge weights in dominance

graphs – and thus DSMC becomes less effective. The overall trend

of running time is also similar to that of the case when 𝑑 = 2: ANN

and SCMC run faster for larger 𝜀 while DSMC runs slower. We

observe that SCMC shows lower efficiency than ANN on several

datasets. Although the sample sizes of both algorithms are close,

ANN only finds one approximate nearest neighbor of each sam-

pled vector for solution computation but SCMC performs one exact

maximum inner product search followed by a range search to find

all points that are within 𝜀-approximation to the maximum of each

sampled vector for set system construction. This causes the higher

computational overhead for SCMC compared with ANN. Neverthe-

less, DSMC runs significantly faster than ANN and SCMC in almost

all cases. In particular, when 𝜀 = 0.01, DSMC achieves speedups of

two to four orders of magnitude than ANN and SCMC.

We also report the dominance graph construction time of DSMC

on multidimensional datasets in Table 1. Since the time is deter-

mined by the number of extreme points and the dimensionality as

shown in Theorem 6.3, it takes longer time for dominance graph

construction on multidimensional datasets but this is still within

reasonable time (from 300 ms when 𝑑 = 3 to 6 min when 𝑑 = 9).

We further evaluate the scalability of each algorithm w.r.t. di-

mensionality 𝑑 and dataset size 𝑛 on two synthetic datasets. In these

experiments, we fix 𝜀 to 0.1. The results for varying 𝑑 and 𝑛 are

presented in Figures 7 and 8, respectively. Moreover, the dominance

graph construction time of DSMC w.r.t. 𝑑 and 𝑛 is shown in Fig-

ure 9. First of all, the coreset sizes of all algorithms grow rapidly

with 𝑑 due to “the curse of dimensionality”. But DSMC and SCMC

still provide smaller coresets than ANN in different dimensions.

Meanwhile, the running time of ANN and SCMC as well as the

dominance graph construction time of DSMC increase rapidly with

𝑑 because of the increases in sample sizes and numbers of extreme

points. But the solution computation time of DSMC grows much

slower since it only depends on the dominance graphs. Then, we

observe that the scalabilities of DSMC and SCMC are obviously

better than that of ANN. In terms of solution quality, the gaps in

coreset sizes become greater when 𝑛 is larger. In particular, the

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

148

 ANN SCMC DSMC

3 4 5 6 7 8 9 10
d

101

102

103

104

S
iz

e

3 4 5 6 7 8 9 10
d

101

102

103

104

105

106

107

Ti
m

e
(m

s)
(a) Normal (𝑛 = 10

5
)

3 4 5 6 7 8 9 10
d

101

102

103

104

S
iz

e

3 4 5 6 7 8 9 10
d

101

102

103

104

105

106

107

Ti
m

e
(m

s)

(b) Uniform (𝑛 = 10
5
)

Figure 7: Performance on synthetic datasets with varying 𝑑 .

 ANN SCMC DSMC

103 104 105 106 107

n

0

400

800

1200

1600

S
iz

e

103 104 105 106 107

n

101

102

103

104

105

106

Ti
m

e
(m

s)

(a) Normal (6D)

103 104 105 106 107

n

0

1000

2000

3000

4000

5000

S
iz

e
103 104 105 106 107

n

101

102

103

104

105

Ti
m

e
(m

s)

(b) Uniform (6D)

Figure 8: Performance on synthetic datasets with varying 𝑛.

3 4 5 6 7 8 9 10
d

101

102

103

104

105

106

107

Ti
m

e
(m

s)

Normal
Uniform

(a) Varying 𝑑 (𝑛 = 10
5
)

103 104 105 106 107

n

103

104

105

106

Ti
m

e
(m

s)

Normal
Uniform

(b) Varying 𝑛 (𝑑 = 6)

Figure 9: CPU time for the dominance graph construction

on synthetic datasets with varying 𝑑 and 𝑛.

coreset sizes of DSMC and SCMC are 23.4x and 8.8x smaller than

the coreset size of ANN on Uniform when 𝑛 = 10
7
. In terms of

time efficiency, the relative performance of DSMC and SCMC also

becomes better than ANN for larger 𝑛. DSMC and SCMC achieve

one to four orders of magnitude speedups over ANN when 𝑛 = 10
7
.

For multidimensional data, DSMC and SCMC achieves signif-

icantly higher solution quality than ANN. Although SCMC runs

slower than ANN sometimes, DSMC has much higher efficiency

than ANN and SCMC, especially when the values of 𝜀 is smaller.

8 CONCLUSION

In this paper, we proposed the minimum 𝜀-coreset (MC) problem to

find the smallest 𝜀-coreset for the maxima representation of a multi-

dimensional point set. We proved the NP-hardness of MC in any

constant dimension 𝑑 ≥ 3. Following a geometric interpretation of

MC based on Voronoi diagrams, we designed an optimal𝑂 (𝑛3)-time

algorithm for MC in two dimension and two polynomial-time ap-

proximation algorithms for MC in an arbitrary constant dimension.

Finally, we conducted extensive experiments on real and synthetic

datasets to evaluate the performance of our proposed algorithms.

The results confirmed the effectiveness, efficiency, and scalability of

our proposed algorithms for MC compared with existing algorithms

in a variety of settings.

There are still many interesting open questions to answer in

future work. First, although the worst-case complexities of the

sizes of 𝜀-coresets for maxima representation, 𝜀-kernels, and 𝜀-hulls

are the same, it is still not known whether their corresponding

minimization problems can be reduced to each other. Second, does

DSMC have a better approximation ratio than 𝑂 (𝜉
𝑑
)? Third, is it

possible to remove the exponential dependency of SCMC on 𝑑?

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments. We

thank Dr. Sintos for his valuable comments on this paper. Yanhao

Wang andMichael Mathioudakis have been supported by theMLDB

project of the Academy of Finland (decision number: 322046).

REFERENCES

[1] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. 2004. Approxi-

mating extent measures of points. J. ACM 51, 4 (2004), 606–635.

[2] Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. 2005. Geomet-

ric approximation via coresets. In Combinatorial and computational geometry.
Cambridge University Press, 1–30.

[3] Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. 2017. Effi-

cient Algorithms for k-Regret Minimizing Sets. In SEA. 7:1–7:23.
[4] Pankaj K. Agarwal, Jeff M. Phillips, and Hai Yu. 2010. Stability of epsilon-Kernels.

In ESA (1). 487–499.
[5] Pankaj K. Agarwal and Hai Yu. 2007. A space-optimal data-stream algorithm for

coresets in the plane. In SoCG. 1–10.

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

149

[6] Boris Aronov, Micha Sharir, and Boaz Tagansky. 1997. The Union of Convex

Polyhedra in Three Dimensions. SIAM J. Comput. 26, 6 (1997), 1670–1688.
[7] Sunil Arya and Timothy M. Chan. 2014. Better 𝜖-Dependencies for Offline

Approximate Nearest Neighbor Search, Euclidean Minimum Spanning Trees, and

𝜖-Kernels. In SoCG. 416–425.
[8] Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. 2017. Near-Optimal

epsilon-Kernel Construction and Related Problems. In SoCG. 10:1–10:15.
[9] Abolfazl Asudeh, Azade Nazi, Nan Zhang, and Gautam Das. 2017. Efficient

Computation of Regret-ratio Minimizing Set: A Compact Maxima Representative.

In SIGMOD. 821–834.
[10] Franz Aurenhammer. 1991. Voronoi Diagrams - A Survey of a Fundamental

Geometric Data Structure. ACM Comput. Surv. 23, 3 (1991), 345–405.
[11] Olivier Bachem, Mario Lucic, and Andreas Krause. 2018. Scalable k-Means

Clustering via Lightweight Coresets. In KDD. 1119–1127.
[12] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. 1996. The Quickhull

Algorithm for Convex Hulls. ACM Trans. Math. Softw. 22, 4 (1996), 469–483.
[13] Jon Louis Bentley, Mark G. Faust, and Franco P. Preparata. 1982. Approximation

Algorithms for Convex Hulls. Commun. ACM 25, 1 (1982), 64–68.

[14] Avrim Blum, Vladimir Braverman, Ananya Kumar, Harry Lang, and Lin F. Yang.

2018. Approximate Convex Hull of Data Streams. In ICALP. 21:1–21:13.
[15] Avrim Blum, Sariel Har-Peled, and Benjamin Raichel. 2016. Sparse Approximation

via Generating Point Sets. In SODA. 548–557.
[16] Christos Boutsidis, Petros Drineas, andMalik Magdon-Ismail. 2013. Near-Optimal

Coresets for Least-Squares Regression. IEEE Trans. Inf. Theory 59, 10 (2013), 6880–

6892.

[17] Wei Cao, Jian Li, Haitao Wang, Kangning Wang, Ruosong Wang, Raymond Chi-

Wing Wong, and Wei Zhan. 2017. k-Regret Minimizing Set: Efficient Algorithms

and Hardness. In ICDT. 11:1–11:19.
[18] TimothyM. Chan. 2006. Faster core-set constructions and data-stream algorithms

in fixed dimensions. Comput. Geom. 35, 1-2 (2006), 20–35.
[19] Timothy M. Chan. 2009. Dynamic Coresets. Discret. Comput. Geom. 42, 3 (2009),

469–488.

[20] Timothy M. Chan. 2016. Dynamic Streaming Algorithms for Epsilon-Kernels. In

SoCG. 27:1–27:11.
[21] Timothy M. Chan. 2017. Applications of Chebyshev Polynomials to Low-

Dimensional Computational Geometry. In SoCG. 26:1–26:15.
[22] Gautam Das and Michael T. Goodrich. 1997. On the Complexity of Optimization

Problems for 3-dimensional Convex Polyhedra and Decision Trees. Comput.
Geom. 8 (1997), 123–137.

[23] Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs.

Numer. Math. 1 (1959), 269–271.
[24] Uriel Feige. 1998. A Threshold of ln n for Approximating Set Cover. J. ACM 45, 4

(1998), 634–652.

[25] Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. 1981. Optimal Packing

and Covering in the Plane are NP-Complete. Inf. Process. Lett. 12, 3 (1981),

133–137.

[26] Michael L. Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their

uses in improved network optimization algorithms. J. ACM 34, 3 (1987), 596–615.

[27] Sariel Har-Peled and Soham Mazumdar. 2004. On coresets for k-means and

k-median clustering. In STOC. 291–300.
[28] Sariel Har-Peled and Manor Mendel. 2006. Fast Construction of Nets in Low-

Dimensional Metrics and Their Applications. SIAM J. Comput. 35, 5 (2006),

1148–1184.

[29] Ian Harris, Timothy J Osborn, Phil Jones, and David Lister. 2020. Version 4 of the

CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data
7, 1 (2020), 1–18.

[30] Lingxiao Huang, Jian Li, Jeff M. Phillips, and Haitao Wang. 2016. epsilon-Kernel

Coresets for Stochastic Points. In ESA. 50:1–50:18.
[31] Nirman Kumar and Stavros Sintos. 2018. Faster Approximation Algorithm for

the k-Regret Minimizing Set and Related Problems. In ALENEX. 62–74.
[32] Gang Luo, Kun-Lung Wu, and Philip S. Yu. 2009. Answering linear optimization

queries with an approximate stream index. Knowl. Inf. Syst. 20, 1 (2009), 95–121.
[33] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. 2020. Coresets for Data-

efficient Training of Machine Learning Models. In ICML. 6950–6960.
[34] Stanislav Morozov and Artem Babenko. 2018. Non-metric Similarity Graphs for

Maximum Inner Product Search. In NeurIPS. 4726–4735.
[35] Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J. Lipton, and

Jun (Jim) Xu. 2010. Regret-Minimizing Representative Databases. PVLDB 3, 1

(2010), 1114–1124.

[36] James B. Orlin and Antonio Sedeño-Noda. 2017. An O(nm) time algorithm for

finding the min length directed cycle in a graph. In SODA. 1866–1879.
[37] Peng Peng and Raymond Chi-Wing Wong. 2014. Geometry approach for k-regret

query. In ICDE. 772–783.
[38] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -

An Introduction. Springer.
[39] Suraj Shetiya, Abolfazl Asudeh, Sadia Ahmed, and Gautam Das. 2019. A Uni-

fied Optimization Algorithm For Solving "Regret-Minimizing Representative"

Problems. Proc. VLDB Endow. 13, 3 (2019), 239–251.

[40] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. 2019. On Efficient Retrieval

of Top Similarity Vectors. In EMNLP/IJCNLP (1). 5235–5245.
[41] Yanhao Wang, Yuchen Li, and Kian-Lee Tan. 2019. Coresets for Minimum En-

closing Balls over Sliding Windows. In KDD. 314–323.
[42] Min Xie, Raymond Chi-Wing Wong, and Ashwin Lall. 2020. An experimental

survey of regret minimization query and variants: bridging the best worlds

between top-k query and skyline query. VLDB J. 29, 1 (2020), 147–175.
[43] Min Xie, Raymond Chi-Wing Wong, Jian Li, Cheng Long, and Ashwin Lall.

2018. Efficient k-Regret Query Algorithm with Restriction-free Bound for any

Dimensionality. In SIGMOD. 959–974.
[44] Albert Yu, Pankaj K. Agarwal, and Jun Yang. 2012. Processing a large number of

continuous preference top-k queries. In SIGMOD. 397–408.
[45] Hai Yu, Pankaj K. Agarwal, Raghunath Poreddy, and Kasturi R. Varadarajan. 2008.

Practical Methods for Shape Fitting and Kinetic Data Structures using Coresets.

Algorithmica 52, 3 (2008), 378–402.
[46] Hamid Zarrabi-Zadeh. 2011. An Almost Space-Optimal Streaming Algorithm for

Coresets in Fixed Dimensions. Algorithmica 60, 1 (2011), 46–59.
[47] Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, and Ping Li. 2019. Möbius Transfor-

mation for Fast Inner Product Search on Graph. In NeurIPS. 8216–8227.

A SET COVER BASED ALGORITHM

In this section, we describe the SCMC algorithm for MC by formu-

lating it as an instance of the set cover problem. Our transformation

scheme is adapted from the ones in [3, 9] for transforming RMS to

set cover based on the notion of 𝛿-net [28]. We show that such a

transformation still works for MC under an assumption that 𝑃 is

𝛼-fat in [−1, 1]𝑑 and propose the SCMC algorithm accordingly.

Let us first introduce the background on the set cover problem.

Given a set system Σ = (U,S) whereU is the set of elements in

the universe and S is a collection of subsets ofU, a subset C ⊆ S
is called a set-cover solution of Σ if

⋃
𝑆 ∈C 𝑆 = U. The set cover

problem asks to compute a set-cover solution of the minimum size

on Σ. It is a classical NP-complete problem [24], and an 𝑂 (log𝑚)-
approximation greedy algorithm, where𝑚 = |U|, is a well-known
method for this problem.

The key idea of SCMC is to construct a set system on which a

set-cover solution is a feasible solution for MC. The construction of

such a set system is based on the following observation: Although

representing the 𝜀-approximate Voronoi cells and performing set

operations on Voronoi cells are hard inR𝑑 when𝑑 ≥ 3, determining

the membership of a vector 𝑢 in 𝑅𝜀 (𝑝) for a point 𝑝 is much easier.

Specifically, given a point set 𝑃 ⊂ R𝑑 , a vector 𝑢 ∈ S𝑑−1, a point
𝑝 ∈ 𝑃 , and a parameter 𝜀 ∈ (0, 1), we have 𝑢 ∈ 𝑅𝜀 (𝑝) if and only

if ⟨𝑝,𝑢⟩ ≥ (1 − 𝜀) · 𝜔 (𝑃,𝑢). So it is possible to discretize Voronoi

cells by sampling a set of vectors on S𝑑−1 and performing the

membership tests for all vectors w.r.t. each point. In this way, we

can approximately represent 𝑅𝜀 (𝑝) by the subset of vectors in it.

Intuitively, the more vectors we sample, the smaller the resulting

error. This intuition is formalized by the notion of 𝛿-net: For a given

parameter 𝛿 ∈ (0, 1), a set N of vectors is called a 𝛿-net if, for any

vector 𝑣 in S𝑑−1, there is a vector 𝑢 ∈ N with angular distance at

most 𝛿 to 𝑣 . A 𝛿-net of size 𝑂 (1

𝛿𝑑−1
) can be computed by drawing

vectors from a uniform grid on S𝑑−1. Let N be a
𝛼𝜀
4𝑑
-net of S𝑑−1.

If we construct a set system ΣN = (N ,SN) where 𝑆𝑝 ⊆ N is the

subset of vectors in 𝑅𝜀/2 (𝑃) andSN = {𝑆𝑝 : 𝑝 ∈ 𝑃}, it is guaranteed
that a set-cover solution of ΣN will correspond to a feasible solution

of MC on 𝑃 for a given 𝜀, as will be proven in Theorem A.2.

Putting everything together, we summarize the procedure of the

SCMC algorithm in Algorithm 4, where the construction of the set

system Σ is presented in Lines 1–6 and the greedy algorithm for

solution computation on Σ is described in Lines 7–11.

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

150

Algorithm 4: SCMC

Input :A point set 𝑃 ; the error parameter 𝜀 ∈ (0, 1)
Output :The solution𝑄𝜀 of MC on 𝑃

1 Let N be an
𝛼𝜀
4𝑑

-net of S𝑑−1;

2 Set 𝑆𝑝 = ∅ for each 𝑝 ∈ 𝑃 ;
3 foreach 𝑢 ∈ N do

4 foreach 𝑝 ∈ 𝑃 do

5 𝑆𝑝 ← 𝑆𝑝 ∪ {𝑢 } if ⟨𝑝,𝑢 ⟩ ≥ (1 − 𝜀
2
) · 𝜔 (𝑃,𝑢) ;

6 Construct ΣN = (N, SN) where SN = {𝑆𝑝 : 𝑝 ∈ 𝑃 };
7 Initialize𝑄𝜀 = ∅ and𝑈 ′ = N;
8 while𝑈 ′ ≠ ∅ do

9 𝑝∗ ← argmax𝑝∈𝑃\𝑄𝜀
|𝑆𝑝∗ ∩𝑈 ′ |;

10 𝑄𝜀 ← 𝑄𝜀 ∪ {𝑝∗ } and𝑈 ′ ← 𝑈 ′ \ 𝑆𝑝∗ ;
11 return𝑄𝜀 ;

s1

s3 s2
s4s5

s10
s9

s8
s7
s6

u8

u7u6
u5

u4

u3
u2

u1

s1 s2 s3 s5 s9s7 s8 s10s6s4

u1 u4u2 u7u3 u5 u6 u8

Figure 10: An illustration of SCMC. We first draw 8 vectors

{𝑢1, . . . , 𝑢8} uniformly from S1 for computation. Then, for

each vector, we show the points whose inner products are

within a 0.1-approximation to the maximum. Next, we con-

struct the set system and represent it as a bipartite graph.

Finally, we run the greedy algorithm to compute the solution

of MC (highlighted in orange).

Theoretical Analysis: We first prove the correctness of the

transformation from MC to the set cover problem in Lemma A.1.

Note that Lemma A.1 is a slight variant of Lemma 8 for the RMS_HS

algorithm in [3]. There are two differences between them: (1) some

parameter values are different since SCMC is based on the 𝛼-fatness

of 𝑃 but RMS_HS is based on the fact that 𝑃 is at least
1√
𝑑
-fat when

scaled to [0, 1]𝑑 ; (2) the analyses of “basis points” in RMS_HS is not

necessary anymore for SCMC and thus removed.

Lemma A.1. Let N be a 𝛼𝛿
𝑑
-net of S𝑑−1 and SN be a collection

of subsets of N that represent the 𝛾-approximate Voronoi cells of all
points in 𝑃 for some 𝛾 ∈ (0, 1). If C is a set-cover solution on ΣN =

(N ,SN), then 𝑄 = {𝑝 ∈ 𝑃 : 𝑆𝑝 ∈ C} satisfies that 𝑙 (𝑄) ≤ 2𝛿 + 𝛾 .

Proof. As discussed in Section 2, we assume that 𝑃 is an 𝛼-

fat point set in [−1, 1]𝑑 . Without loss of generality, we further

consider that there exists at least one point in 𝑃 with value −1 or
1 on each dimension. Then, we have max𝑢∈S𝑑−1 𝜔 (𝑃,𝑢) ≥ 1 and

min𝑢∈S𝑑−1 𝜔 (𝑃,𝑢) ≥ 𝛼 for the 𝛼-fatness of 𝑃 , i.e., 𝜔 (𝑃,𝑢) ≥ 𝛼 for

every 𝑢 ∈ S𝑑−1. For any 𝑢 ∈ S𝑑−1, there exists a vector 𝑢 ′ ∈ N
such that ∠𝑢𝑂𝑢 ′ ≤ 𝛼𝛿

𝑑
. According to the cosine rule, we have:

∥𝑢 − 𝑢 ′∥ =
√
2 − 2 cos ∠𝑢𝑂𝑢 ′ = 2 sin

∠𝑢𝑂𝑢 ′

2

≤ 𝛼𝛿

𝑑
(3)

 ANN OptMC SCMC DSMC

10 20 30 40 50 60 70 80 90 100
Percentile (%)

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

(a) FourSquare-NYC

10 20 30 40 50 60 70 80 90 100
Percentile (%)

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

(b) FourSquare-TKY

Figure 11: Loss distributions (𝑟 = 5).

Therefore, for any point 𝑝 ∈ 𝑃 , we have:

|⟨𝑝,𝑢⟩ − ⟨𝑝,𝑢 ′⟩| = |⟨𝑝,𝑢 − 𝑢 ′⟩| ≤ ∥𝑝 ∥ · ∥𝑢 − 𝑢 ′∥ ≤
√
𝑑 · 𝛼𝛿

𝑑
< 𝛼𝛿

where the first inequality is based on the Cauchy-Schwarz inequal-

ity, the second inequality is acquired from Eq. 3 and ∥𝑝 ∥ ≤
√
𝑑

because 𝑝 ∈ [−1, 1]𝑑 , and the third inequality naturally holds

for any 𝑑 > 1. Let 𝑝∗ be the extreme point in direction 𝑢 – i.e.,

𝑝∗ = argmax𝑝∈𝑃 ⟨𝑝,𝑢⟩. Then, we have:

⟨𝑝∗, 𝑢 ′⟩ ≥ ⟨𝑝∗, 𝑢⟩ − 𝛼𝛿 ≥ (1 − 𝛿) · ⟨𝑝∗, 𝑢⟩ = (1 − 𝛿) · 𝜔 (𝑃,𝑢) (4)

Let 𝑞∗ be the point in 𝑄 such that 𝑢 ′ ∈ 𝑆𝑞∗ . Such a point 𝑞∗ must

exist because C is a set-cover solution. We have:

⟨𝑞∗, 𝑢⟩ ≥ ⟨𝑞∗, 𝑢 ′⟩ − 𝛼𝛿
≥ (1 − 𝛾) · 𝜔 (𝑃,𝑢 ′) − 𝛼𝛿
≥ (1 − 𝛾) · ⟨𝑝∗, 𝑢 ′⟩ − 𝛼𝛿
≥ (1 − 𝛾) (1 − 𝛿) · 𝜔 (𝑃,𝑢) − 𝛿 · 𝜔 (𝑃,𝑢)
> (1 − 2𝛿 − 𝛾) · 𝜔 (𝑃,𝑢)

where the first inequality is the same as Eq. 4, the second inequality

holds from 𝑢 ′ ∈ 𝑆𝑞∗ , the third inequality is based on 𝜔 (𝑃,𝑢 ′) =
max𝑝∈𝑃 ⟨𝑝,𝑢 ′⟩, the fourth inequality is the result of Eq. 4 as well

as 𝜔 (𝑃,𝑢) ≥ 𝛼 , and the fifth inequality is due to 𝛿,𝛾 ∈ (0, 1).
According to the above results, we conclude that there is a point

𝑞 ∈ 𝑄 such that ⟨𝑞,𝑢⟩ ≥ (1− 2𝛿 −𝛾) ·𝜔 (𝑃,𝑢) for any 𝑢 ∈ S𝑑−1 and
thus 𝑙 (𝑄) ≤ 2𝛿 + 𝛾 . □

The SCMC algorithm is a special case of Lemma A.1 when 𝛿 = 𝜀
4

and 𝛾 = 𝜀
2
. We provide the approximation factor and time complex-

ity of SCMC in Theorem A.2. Note that Theorem A.2 is a variation

of Theorem 9 in [3], which considers all points and vectors in R𝑑

for MC instead of only nonnegative ones for RMS.

Theorem A.2. For a point set 𝑃 ⊂ R𝑑 and a parameter 𝜀 ∈ (0, 1),
SCMC returns a solution 𝑄𝜀 such that (1) 𝑙 (𝑄𝜀) ≤ 𝜀 and (2) |𝑄𝜀 | =
𝑂 (𝑑 · OPT𝜀/2 · log 1

𝜀) in 𝑂 (
𝑛

𝜀𝑑−1
) time, where OPT𝜀/2 is the size of the

smallest 𝜀
2
-coreset of 𝑃 .

Proof. First of all, since we use 𝛿 = 𝜀
4
and 𝛾 = 𝜀

2
in the SCMC

algorithm, it is obvious that 𝑙 (𝑄𝜀) ≤ 𝜀 according to Lemma A.1. In

addition, since 𝛾 = 𝜀
2
, any

𝜀
2
-coreset 𝑄𝜀/2 of 𝑃 must correspond to

a set-cover solution C on ΣN . Otherwise, once C is not a set-cover

solution, we will find an uncovered vector 𝑢 such that ⟨𝑞,𝑢⟩ <

(1 − 𝜀
2
) · 𝜔 (𝑃,𝑢) for all 𝑞 ∈ 𝑄𝜀/2 and thus 𝑄𝜀/2 is not an

𝜀
2
-coreset.

Session: Compressed Data and Probabilistic Data

PODS ’21, June 20–25, 2021, Virtual Event, China

151

 ANN SCMC DSMC

70 75 80 85 90 95 100
Percentile (%)

0.0

0.1

0.2

0.3

Lo
ss

(a) RoadNetwork (𝑟 = 20)

80 85 90 95 100
Percentile (%)

0.0

0.1

0.2

0.3

Lo
ss

(b) Climate (𝑟 = 50)

80 85 90 95 100
Percentile (%)

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ss

(c) AirQuality (𝑟 = 100)

70 75 80 85 90 95 100
Percentile (%)

0.0

0.1

0.2

0.3

Lo
ss

(d) Colors (𝑟 = 500)

Figure 12: Loss distributions on multidimensional datasets with fixed coreset sizes.

Therefore, the optimal set-cover solution on ΣN has at most the

same size of the smallest
𝜀
2
-coreset of 𝑃 . Since we use an 𝑂 (log𝑚)-

approximation greedy algorithm to compute the set-cover solution,

where𝑚 = 𝑂 (1

𝜀𝑑−1
), the solution 𝑄𝜀 of SCMC satisfies that |𝑄𝜀 | =

𝑂 (𝑑 ·OPT𝜀/2·log 1

𝜀), where OPT𝜀/2 is the size of the smallest
𝜀
2
-coreset

of 𝑃 . Finally, the construction of ΣN runs in 𝑂 (𝑛
𝜀𝑑−1
) time while

the greedy algorithm takes 𝑂 (|𝑄𝜀 |
𝜀𝑑−1
) time. So the time complexity

of SCMC is 𝑂 (𝑛
𝜀𝑑−1
) in total. □

Remark: The values of 𝛿 and 𝛾 in SCMC are not limited to

𝜀
4
and

𝜀
2
. In fact, they can take any positive real numbers such

that 2𝛿 + 𝛾 ≤ 𝜀. When 𝛿 is larger, SCMC will run faster because

of smaller sample sizes. Conversely, when 𝛾 is larger, SCMC will

provide better solutions since 𝑄∗𝛾 will be closer to 𝑄∗𝜀 . Additionally,
since the sampling complexity of SCMC increases exponentially

with 𝑑 and thus becomes impractical when 𝑑 is large, an alternative

sampling strategy is often adopted in the implementation. Rather

than sampling all the 𝑂 (1

𝜀𝑑−1
) vectors at once, we perform the

sampling iteratively in multiple stages. In the first stage, we sample

𝑚 vectors from S𝑑−1 and compute a solution 𝑄 on the sampled

vectors using Algorithm 4. Then, if 𝑙 (𝑄) ≤ 𝜀, we return 𝑄 as the

solution for MC. Otherwise, we double the sample size𝑚, sample

new vectors from S𝑑−1, and compute a new solution 𝑄 in the next

stage until 𝑙 (𝑄) ≤ 𝜀.

Finally, after the acceptance of this paper, we notice that Al-

gorithm 1 in [31] can also be adapted for MC. According to the

analyses in [31], the adapted algorithm would have an improved

time complexity of 𝑂
(
𝑛 + 1

𝜀𝑑−1
+ log

2 1

𝜀

𝜀3(𝑑−1)/2
)
over SCMC.

B ADDITIONAL EXPERIMENTS ON LOSS

DISTRIBUTIONS

According to the definition of 𝜀-coreset, each algorithm only re-

stricts the largest loss among all vectors. To provide more detailed

information about the losses of coresets, we draw one million vec-

tors and compute the entire distributions of losses of the coresets

returned by different algorithms for all vectors. For fair comparison,

we limit the coresets returned by different algorithms to the same

size 𝑟 . We run each algorithm with different values of 𝜀 to find the

smallest one such that the coreset size is at most 𝑟 .

The results for loss distributions for 𝑟 = 5 on two-dimensional

datasets are illustrated in Figure 11, where solid lines denote the

losses of different algorithms by percentiles and dash horizontal

lines present the largest losses among all vectors. We observe that

OptMC has the smallest losses in almost all percentiles due to its

optimality. In addition, SCMC exhibits smaller losses than ANN

and DSMC in most percentiles because it tends to select the points

that are among the maximum in more directions into the solution

and naturally leads to smaller average losses.

We illustrate the loss distributions of the fixed-size coresets

returned by different algorithms on multidimensional datasets in

Figure 12. We also use solid lines to denote the losses of different

algorithms by percentiles and dash horizontal lines to present the

largest losses among all vectors. The coresets of SCMC exhibit

smaller losses than ANN in different quantiles. The coresets of

DSMC exhibit the smallest losses on RoadNetwork and Climate

but the largest (average) losses on AirQuality and Colors. The

results indicate that the dominance graph built on an approximate

IPDGwith a large number of missing edges becomes less effective in

higher dimensions. In addition, the results on loss distributions also

imply possible improvements for ANN and SCMC. Both methods

sample vectors uniformly from spheres for solution computation.

But in practice, we observe that the losses of most vectors have

been dropped to 0 while the losses for a few vectors (resp. very

small “corner” regions) are still larger than the given 𝜀. Therefore, if

we could identify these “corner” regions and do the sampling from

them first, ANN and SCMC would provide valid solutions more

efficiently. Although the sampling complexities of ANN and SCMC

are known to be optimal in the worst case without considering

the data distribution, lower running time might be achieved by

adopting an alternative data-dependent sampling strategy.

Session: Compressed Data

PODS ’21, June 20–25, 2021, Virtual Event, China

152

	Minimum coresets for maxima representation of multidimensional data
	Citation

	Abstract
	1 Introduction
	1.1 Prior Work
	1.2 Our Contributions

	2 Preliminaries
	3 Hardness
	4 Inner-Product Voronoi Diagram
	5 Algorithm in 2D
	5.1 Algorithmic Description
	5.2 Theoretical Analysis

	6 Algorithms in MD
	6.1 Dominating Set Based Algorithm

	7 Experimental Evaluation
	7.1 Results on Two-Dimensional Data
	7.2 Results on Multidimensional Data

	8 Conclusion
	Acknowledgments
	References
	A Set Cover Based Algorithm
	B Additional Experiments on Loss Distributions

