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Abstract nificantly take processing time. Although it is possiblettha

the agent constructs or acquires its own recipes from expe-

This paper presents iFALCON, a model of BDI (belief- rience autonomously, this approach is still under the princ
desire-intention) agents that is fully realized as a self- ple of explicit prescribed knowledge [12]. Thus, to make
organizing neural network architecture. Based on multi- the agent learns requires a careful consideration on how
channel network model called fusion ART, iFALCON is de- the agent may interact with the environment and fulfill its
veloped to bridge the gap between a self-organizing neuraltasks [9].
network that autonomously adapts its knowledge and the On the other hand, neural network architectures, as
BDI agent model that follows explicit descriptions. Novel biologically-inspired models of computation, have been
techniques called gradient encoding are introduced for rep widely applied to domains that require learning and gereral
resenting sequences and hierarchical structures to realiz ization. As opposed to symbolic processing approaches that
plans and the intention structure. This paper shows that arely on explicit descriptions, neural networks operate by
simplified plan representation can be encoded as weightedmatching inputs with distributed learnt patterns encoded i
connections in the neural network through a process of su-weight values. The performance of a neural network model
pervised learning. A case study using the blocks world do- depends on a prior learning phase. A neural network agent
main shows that an iFALCON agent can also do planning may be able to automatically learn and update its knowl-
to solve problems when the knowledge is incomplete. edge by experience, but it may also be difficult to ensure
that its behavior conforms with some explicitly prescribed
instructions.

There have been great interests in consolidating inten-
tional agent models and self-organized learning systems.
Some approaches use hybrid neural network models [13, 8].

Intelligent agents designed to perform in dynamic envi- Others still maintain symbolic framework enhanced with
ronments are required to adapt their behavior in order toparticular learning algorithms [10, 6, 12]. Most of the hy-
fulfill their objectives. The adaptation may involve deci- brid systems assuntgottom-uplearning processes. Their
sions on what and how to achieve the objectives. An inten-primary concernis in extracting procedural knowledge from
tional agent architecture such as beliefs-desires-iimlesit  reactive performances of the agent. However, there ate stil
(BDI) model [5] exploits prescribed procedural knowledge open issues in how to reuse the extracted knowledge effec-
and explicit representation of mental attitudes to make thetively. Most of the extracted procedures using the hybrid
agent achieves its goal. The agent can be designed to follownethods consists of only plain sequences of actions. More-
recipesas guidances while at a certain moment choosing anover, the influence of prior knowledge in such hybrid sys-
alternative mean to achieve the goal. tems is mostly unconsidered. The motivation behind this

The performance of a BDI agent relies on how good the paper is towards discovering plausible agent models that
agent designer specifies the domain specific knowledge andre inherently adaptive with self-organized learningdess
mental attitudes of the agent. However, the capability fo in but also accommodating explicit plans description and men-
vent new procedures or recipes is still not supported by thetal attitudes. We are exploring towards a natural way of
BDI architecture [4]. Learning or planning from the first the consolidation supporting hierarchical structuresoely
principle may reduce the responsiveness to changes in théearning plain sequences.
environment as additional reasoning processes would sig- In this paper, we propose an architecture of intentional

1 Introduction



agent using a neural network model. The architecture is de- The agent hadesiresas a set of goal conditions that the
veloped towards bridging the gap between a self-organizingagent wants to achieve. Frodesires the agent needs to
neural network that autonomously adapts its knowledge andselect some goals that are consistent withbitéiefs Af-
the BDI agent model that follows explicit descriptions. Un- ter the goals are determined, the agent then finds a mean to
like other approaches that suggest hybrid structures,roeur a achieve them as a plan. In situations where computational
chitecture is entirely built as a new kind of neural network resources are limited, only one goal and a plan is required
model called iFALCON. to be selected. In Procedural Reasoning System (PRS) [7],
iIFALCON is based on a multi-modal neural network as might be the first and the most adopted implementation
model called fusion ART [16]. Fusion ART employs mul- model of BDI agent, the agent does not plan from scratch
tiple neural fields that can process different input and éupu to find a way to achieve its goal. Instead, a library of man-
modalities. IFALCON extends the fusion ART model by ually prescribed plans is already provided. A plan is a pro-
representing sequences and hierarchical structures. Thisedural knowledge structure that specifies how to achieve
paper shows that iIFALCON has features as folloRtan certain goals. The plan typically haeal attribute as the
encoding a representation of plans &cipescan be en-  the postcondition that will hold after the plan is executed;
coded as weighted connections through a process of suprecondition attribute that specifies the condition that must
pervised learningPlan selection a plan for achieving the  be held so that the plan is applicable, abddy attribute
agent’s goal can be selected as a neural node activation téhat describes the course of actions that will be executed if
be scheduled for executio®lan execution the selected the plan is adopted.
plan can be executed by activating connected nodes exhibit- When a plan has a goal attribute that matches with the
ing sequences of actions and the intentions hierarelan current goals and its precondition is satisfied, the plan can
search planning to find a novel solution can still be per- be considered applicable A planis selected from a set of
formed even though the encoded plans are incomplete.  applicable plan for execution. Selected goals and plans are
This paper is organized as follows: Section 2 provides anretained asntentions The committed intentions provide
overview of the BDI agent architecture. Section 3 presentsconstraints on further deliberations and the process of find
the proposal of the IFALCON as a new architecture that ing ways to achieve goals. In PRi@tentionsare stored in
extends the fusion ART network to fulfill the requirement theintention structurevhich has a hierarchical stack struc-
of the BDI agent model. Section 4 describes how this ture. The stack contains selected goals that are pending
iIFALCON architecture works using a situated blocks world achievement and the current state of the execution.
planning domain. The case study shows how plans can The basic control operation of a BDI agent is a cycle
be mapped into neural network connections, and how theywhich consists of the following steps: Updates beliefs; de-
are executed to achieve goals. Moreover, it demonstrategermines options at the given circumstances; deliberatgs a
a planning mechanism for finding a new solution when in- select intentions to be executed; executes intentions.
complete information is available. Section 5 summarizes In the execution cycle, the agent may achieve subgoals

and concludes this paper. that comprise further deliberation at subordinate levEte
deepest level intention is achieved first before continuing
2 BDI: Intentional Agent Architecture with the upper-level ones.

The BDI (Beliefs, Desires, Intentions) agent model [11] 3 1FALCON: Theintentional FALCON

is a design framework commonly used in developing agents
that behave both deliberatively and reactively in a complex Based on Fusion Adaptive Resonance Theory (fusion
changing environment. The main principle is to use explicit ART) [16] network model, we are looking at a network
representations of the agents’ own mental attitudes (mger model that can process different mental attitudes and en-
of attributes such alkeliefs desires andintentiong to di- code plans. fusion ART is a neural architecture that unifies a
rect their actions and the selection of appropriate preddfin number of neural network designs, most notably ART [3, 2],
plans agecipes A BDI agent works as an interpreter that Adaptive Resonance Associative Map (ARAM) [14] and
operates on the representation of mental attitudes. Fusion Architecture for Learning, COgnition, and Navi-
Beliefsor belief basds a data structure that corresponds gation (FALCON) [15]. The ART neural network and its
to a model or knowledge about the world and/or about the derivatives use the principles based on an analysis of human
agent itself which can be updated directly by events cap-and animal cognitive information processing. The original
tured by sensors or by some changes in the agent’s internaRRT model works as a self-organizing neural network that
state. In most implemented platforms of BDI agent, liee employs unsupervised learning. It comprises the allonatio
liefs may consist of predicate logic statements or proposi- of a new category neuron which allows the network to learn
tions indicating truth values (true or false). new categories and grow.



Fusion ART extends the original ART model by employ- 3.1 Plan Encoding

ing multiple input fields. Each input field employs indepen-

dent parameters. Different input fields may also have dif-
ferent types of encoding vectors. That enables fusion ART
network to process different input modalities.

The use of multiple independent fields enables differ-

A plan can be encoded by setting up the appropriate

weight values of the neural network connections. Nodes

in plan andsequencefield represent plans and sequences
respectively. An attribute of a plan is encoded as weight

ent stages of operation so that various types of computatiorvalues in the connections between a plan node and the cor-
can be employed. The multi-fields architecture also extends'esponding input/output field. The iIFALCON architecture

the unsupervised learning model so that different learning

employs a novel technigue callgcadient encodindpr rep-

schemes like supervised and reinforcement learning can béesenting sequences and stacks. gfadient encodinga
applied as well. For example, FALCON employs reinforce- value represents an index or a position of a point in a one-

ment learning by configuring the input fields to act as input
state outputaction, andreward feedback so that it learns
actions policy when it receives a positive feedback.

iIFALCON extends the fusion ART model, by arranging
and grouping the channels or fields in a different way. As
shown in Figure 1 the iFALCON architecture consists of
four input/output fields: F¢, Ff2, Ff3, and F¢* denot-
ing thebeliefs desirescritic, andactionfields respectively.
The beliefsanddesiresfields correspond to thieeliefsand
desirescomponents of the BDI model. Theeliefsand the
desiredield contain the conditions that the agent believes to
hold and the conditions that the agent wants to achieve re
spectively. On the other hand, thetionfield represents the
action to take at moment, while tlegitic field reflects the
differences between the valuesheliefsanddesiresfield.
Instead of just being connected to one category field like in
fusion ART, these input (output) fields, are connected to two
category fields:Fy and F§ denoting plans andequencer
fields which represent the current selected plan and the cur
rent executed action in a sequence respectively.

5 5
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. q
w wi.
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Fy oz . /_], _ = .. 3
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Figure 1. iFALCON Architecture

Whereas thédeliefsand desiresfields are connected to
both category fields, theritic field is only connected to
the plans field and thactionis connected only to thee-
guencer There are extra connections betweengfz and
thesequencecategory fields and each category field is fur-
ther connected to a stack field.

dimensional value system. A value may simply indicate a

time point or a position in an ordered sequence. This kind

of encoding is supported by a model of working memory in
the brain for storing temporal sequences [1].

In iIFALCON, the gradient encoding is used for repre-
senting plans and goal-subgoal hierarchies. The use of the
two plan andsequencecategory fields allows hierarchical
groupings of actions and a sequence into a single category
node in theplanfield. Each category node in tisequencer
field encodes a pattern of action in the input/output fields.
Through the extra connections between ha&n and the
sequencera node in theplan field can also encode a col-
lection of actions represented as different activatiorthén
sequencefield. By applying the gradient encoding to the
connections’ values, different actions can be arranged in a
ordered fashion.

The corresponding nodes in bofilan and sequencer
field can be manually defined to represent a plan and the
respective weights are adjusted accordingly. Howeves, thi

manual encoding may redundantly connect different nodes
in the sequencefield to the same pattern of activation. Al-
ternatively, plans are learnt so that the neural network can
automatically recruit the appropriate nodes in fiten and

the sequencefield through a code search activation pro-
cess. This process can also be saidwgzervised learning

in which the learning requires both the inpdegiresand
belief§ and the output (actions) samples to be presented.
The respective weights are then adjusted accordingly. In
this way, the same node in teequencefield may be con-
nected by different nodes in tipdan field sharing the same
code of action.

The code search activation process comprises a search
process to achieverasonancecondition between the plan
field and the input/output fields. Aesonancés a condition
in which a top-down activation from a node in the category
field match with the current activations of the connected
fields at the bottom. A search cycle comprises a compet-
itive selection of the highest activation node in the catggo
field followed by a top-down matching. The selected node
is reset if it does not satisfy the resonance based on a vigi-
lance criteria. The cycle continues with another node until
a resonance is found. If no node can meet the resonance,



a new category node is assigned to encode the pattern of

the respective input/output fields. The detailed algorithm
presented below.

Let I°* andx°* denote the input vector and the activity
vector for Fi¢¥, respectively. Ley§ andy$ denote the ac-
tivity vectors in Fi5 and F respectively. Theith node of
Fy is associated with the activity vector 8f, by a weight
vectorwglj, for! = 1,...,3. Thenth node ofFy is associ-
ated with %, by a weight vectow$: , forn = 1,2, and
4.

Fj and F3 are stack fields connected #5 and Fy

4.2.1: Restore activation (pop)

; s
F, = Y,
Plans siack ﬁ4.1.1:Slack push
4.2.2: Restore activation (pop)
F Ya, D [T F
%.4: Terfplate 2-2: Plan Sequencer Sk
learning competitiq 4.1.2: Stack
i;t;vzltia; 2.3: Templaje 3.1: Sequential Sequencer Y§ :'}.2:Acm{'rﬂ1z push
o o matching pdreadout 2 ~ 4 readoytcs
L —7 s X7 1 T
Beliefs — Critic <  Desires Action

1:Critic evaluation

Figure 2. iFALCON execution cycle.

respectively. Letw5 denote the weight vector associated 3.2 Plan Selection and Execution

with the sth node inFs5 and nodes infy, andws for F¥
and nodes irFy. The iFALCON dynamics is determined
by choice parameters®* > 0, learning rate parameters
% € [0,1], contribution parameterg* < [0, 1] and vigi-
lance parameters™® < [0, 1].

Specifically, for eacht’y nodej, the choice functio’y
is computed as follows:

3

=2

=1

cl |Xd A W§l|
pYER——Te (1)
ocl + |wj |
where the fuzzy AND operation is defined by(p A q); =
min(p;, ¢;), and the norn.| is defined byip| = 3, p; for
vectorsp andq. A plan competition follows irfy with J as
the index of the winnet’; = max{7y : for all /5 node;}.
A category choice is made at nodey§ = 1; andys = 0
forall j # J. Resonance occurs if for each chanhel

l cl
cl __ |XC A WJ| cl
JE T 2 2)
If any of the vigilance constraints is violated, mismatch re
set occurs in which the value @f; is set to 0. Another

F» nodeJ is then selected and the process repeats until a

resonance is found or otherwise, a nemcommittechode
is recruited. When the search ends, for each charintie
weight vectow¢ is modified by the following learning rule
W‘(}l(new) — (1 _ ﬂcl)w?((’ld) + BCZ (Xcl A ijl(old)).

F¥ can employ the same node search operation &% in
Following thegradient encodingthe values o1’w§- must be
arranged so that ify, ¢4, ..., t, denote time points or a se-

The activities in the composition of neural fields and
connections in IFALCON emulates the execution cycle in
the BDI agent model. The execution cycle of iFALCON
can be described as follows:

Critic evaluation: At the beginning, the values ibeliefs
and thedesiresare compared with a match function®.
When the match function is greater than the parametiér
means that the the goals are satisfied.is also used as the
value in the critic vector{> = m¢. The deliberation cycle
continues to the next stage only wheri < p°3.

Plan selection: When the match is low, the deliberation
process is conducted by searchingeaonancecondition
between the plan fieldy and some input/output fieldd€-
siresandbeliefg. The resonance search proceeds to find
and select a category node Hf representing a plan, just
like the search process described in the last subsection.
Plan execution: After a plan node is selected, the plan is
executed byeadoutprocesses (top-down activations) from
the selected node in thaan field to the sequencefield
and further down to the respective input/output fields. Afte
activatingsequences nodes a competition is employed to
select a nodd{ with the highest activation value so that
further readout activation can be applied to the input/outp
fields. The nodd¥ in the sequencers then reset, and the
process continues by selecting another node following the
order in the sequence until the activation reaches zero. The
ordering parameter® keeps track the last readout value in
F¥§ so that allT} > v* are reset. By repeating the readout
process, sequential activations can be producédinThe
readout process ends when no activation occutssirgall

quence in an incremental order, the weight values follow the nodes are 0) or the critic passes the vigilance criterion.

conditionw® > wi' > ... > w’". The weightsw’ can be
adjusted as followsv’ ") = (vty5) v w' " where the
fuzzy OR operatiow is defined by(p Vv q); = max(p;, g;)-
The ordering parametef set the index of the action in the
sequence. Initiallyy is set to one. As a new input ac-
tion is presented in thactionfield, the previous selected
node inFy is reset and//("ew) = 14 — 4 to makew’
follows thegradient encodingv is a constant as an incre-
ment/decrement factor in gradient encoding.

Subgoal posting and backtracking: During the execution
process, a subgoal can be posted as a special type of ac-
tion. A subgoal can be posted when a predefined node in
F¢tis activated. The subgoal, which is encoded as the con-
nection values between a node in sexjuencefield and

the nodes in thelesiresfield, overrides thelesireswhich
trigger a further plan selection process. However, befere r
placing the desires, the current active nodes in the plan and
the sequencer field are stored into the stack fields.



A stack field is basically a category field but activated 4 Case Study: Blocks World
following the gradient encoding scheme. By applying the
gradient encoding to the activation level of the nodes inthe  To test our model, we have implemented iFALCON to
stack field, each level of activation represents the pasitio solve theblocks worldproblem. In blocks world, the task
or the depth level in which the encoded activation pattern of the agent is to put some blocks into a certain goal con-
in the connected category field were temporarily stored. Tofiguration. Figure 3 shows an instance of a blocks world
push the active node iRJ to the stack, a nodéin the Fy is problem in which the target is to stack the blocks from one
selected through the process of resonance search excludinglocks configuration (the start) to a different blocks config

the previous active nodes. If the activity vectorfgfis T, uration (the goal). Although the blocks world domain is
the activation values ifs are then accumulated based on simple, it requires sequential and hierarchical actiongst
the leveling parametejg("ew) = (752T%) Vv yg((’ld),. ture to solve the problem.

The gradient encoding may appeatyihas more values — =7

. o ] . [~

are pushed. the leveling parametér is incremented by ¢l = B8]
whenever a value is stored into the stack. The same process
is also applied taF; to store the position in the sequence. start goal
After storing the value tds, the subgoal can override the
values inF? and trigger another deliberation process. Figure 3. Blocks World.

To retrieve the previously stored plan, the winner node
J is determined inF and a readout is performed 65
through the weight vectows” and the plan is restored by
performing readout further down tB¢*. The winner node
J in F3 is then reset to make the latter stored plan will be

To start with, the respective fields of iIFALCON are setup
to represent the situation of the domaBeliefsanddesires
fields are expressed as vectors witlmplement codingn
complement coding, an input/output value is represented as
a pair of complementing values which corresponds to a pair

selected in the ne_xt cycle. The]eveling pgrameferis als_o of node in an input/output field. Each node pair represent
updated by the highest activation value in the stack field to the truth value of a proposition. It is also possible to espre

keeP tr"’_‘Ck the top most p03|t|9n of ”le stack. The same OP-don’t-care condition using the complement coding. If the
e{gtmn is performed tzetwe?ﬁf anng, but thg parameter pair for a proposition is expressed under complement cod-
v'is also restorgd by" = Ty, K is the node index in the ing as(v, 9)P for v refers to the truth value qf, then three
restored vectoys. different values can be expressed as folloiis:0)? = p;
(0,1)? = —p; (1,1)? = (dont-care condition). Any propo-
sition always matches th#on’t-carecondition as the pair
3.3 Plan Search (1, 1)? will always result in the same value when applied to
the template matching function.
In our blocks world domain, the following propositions:
bupA, bbtmA, bupB, bbtnmB, bupC, bbtnrCcan be used to
It is also possible to control the deliberation and execu- express the situation. Each proposition denotes a conditio
tion of IFALCON by adjusting the parameters dynamically on the top or the bottom of a block. For exampigA de-
to improve the quality of the decisions. Normally, a high notes that there is another block on top of bleckwhile
vigilance level can be applied to tdesiresthebeliefs and bbt m8 denotes some block under the bla&kThe negation
the critic fields so that the plan selection and evaluation is of a proposition (expressed with a hyphersymbol) states
strict. This strategy may be suitable by the assumption thatotherwise. For examplebupA and- bbt n8 denote there is
the knowledge (plans) available is complete and there is nono block on top ofa ands is lying on the ground respec-
chance for the agent to make mistakes. However when natively. The list of propositions can be mapped to the vector
plan can be found, the process will just halt. A strategy can representation as a list of value pair employing the com-
be applied to the iFALCON execution cycle that makes ad- plement coding. Each node in the action fiélg is also
justments to the vigilance parameters at the execution time associated with a primitive action. Nine external actions
This enables the network to select a plan even though noare defined as actions that directly change the blocks world
plan can be found using the original vigilance. The strat- environment state. Furthermore, an internal action is de-
egy can be summarized as follows: 1) If no plan (node) canfined as an action for subgoaling. The action field does not
be found, store the current plan to the stack and reduce theemploy complement coding and applies a competitive valu-
desires vigilance p°? by a certain value (e.g 0.1); 2) keep ation (only a single node is active).
reducingp°? until a plan can be found; 3) jf*? = 0 refresh In order to store a plan to iIFALCON, the sequential
the node activation status; 4) Restore the origjrial learning is conducted by activating the respective fields. A
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plan can be described as a collection of attributes corre- ] A £y
sponding to weight values that are connected to input fields. ASB A C5B CGB
For example the following plan describes attributes th#it wi e
be encoded as weight values: EEE LB
{"plan’:
L 32?L { :ESS,E; g bE?;{;’* ] bupB ] , Figure 4. Tested initial blocks configurations.
"body’: [{’action’:['downA ]}]

}

Each iFALCON plans configuration is applied to reach
Thegoal andperc refer to weight values connected to the the goal from every blocks configuration. Different con-
desiresand thebeliefsfield respectively. Theéody referto  figyrations produce different numbers of steps. A random
values of connections betweéis, £, and the action field  choice mechanism is applied to the internal mechanism of
Fi to describe the sequence of actions. By activafiifg  jFALCON so that when more than one node have the same
fields (with the critic set to one by default), afg through  maximum values, a plan node is selected at random. Con-
the bottom-up activations, the weight values betwé&n  sequently, the choices may be different even for the same

andFy can be adjusted accordingly. configuration. Figure 5 presents the results from 100 trials
The continuous line refers td, 0) weight pair, and the  for each configuration.

dashed line refers tg0,1) pair. Thedon't-care values
and non-complement zeros in weight connections are not
shown. A more complex plan can be described to comprise
a sequence of action in thedy attribute. The following
plan contains a plan body with a sequence of subgoals:

o
S

action steps
IS
5

{"plan’: 7
{"goal’: ['-bupA ,’ bbtmA ,’ bupB’, 7 o
"bbtnB', " bupC .- bbtnC ], 20 . |
‘perc’: [], 7 ?? g/f
_ e w5 A
"body’: [{ action':[’subgoal’], o AR s PR fion e ERLLROL gL g
' goa! i [ - bupc 1 ' - bbtnC ] }v Blocks configuration
{: gg;: FJn[ : Lu;éb?'oﬁlbt lﬂ’?{ . ‘@ average of steps 1 average of steps 2 [] failures ‘
{"action’:[’subgoal '],
) goal ": [ bupB', " bbtmy ]} ] Figure 5. Results of Blocks World.

}
The results show that when more plans are available

To learn this plan, a node iRy is firstly selected based on (plans configuration 1: primitive plans and a control plan),
the inputdesiresandbeliefs While the node inF¥ is acti- all blocks configuration can be solved for every trial. Few
vated, the actions are presented sequentially in the respecconfigurations require many steps (configuration 7 and 4)
tive order to activate differertty nodes. The corresponding with some degree of variability, but most of the time, the
weights betweett’y andFy are then adjusted following the  steps taken are much lesser than the maximum. This indi-
gradient encoding scheme. cates that in some cases, even with control plans, the agent

Two types of plans are applied: primitive plans which can not rely solely on its plans and must make different
consists of only a single step of action, and control plans choices. It is also indicated that the deliberation strateg
that may include sequences. The primitive plans can beand backtracking process can lead the choices to the solu-
used as basic rules that model the environment, while thetion although the steps taken can be many. Using the com-
control plan is used as a strategy to achieve the goal. Inplete set of plans, the goal can be achieved in three steps at
our implementation, we mapped twelve different primitive minimum.
plans and one control plan into the network. On the other hand, when the plans learnt are incomplete

To evaluate the model, two cases are formulated as fol-(with primitive plans only), some failures may occur (con-
lows: (1) A blocks world agent with complete learnt plans figuration 3, 5, 6, and 7). However, the figure shows that,
(both primitive and control plans); and (2) an agent with most of the time, the network eventually reaches the solu-
learnt incomplete plans (primitive plans only). Each con- tion even though it takes so many steps comparing with the
figuration is tested to achieve the goals shown in Figure 3results using the complete set of plans. From 100 trials,
from twelve different initial blocks configurations showni  maximally only five cases failed (configuration 6). In fact,
Figure 4. in a case where the solution is straightforward (configura-
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dicates that, more knowledge (plans) does not always lead pages 87-90. Cambridge, MA: MIT Press, 2003.
to better performance. [3] G.A. Carpenter and S. Grossberg, editdtattern Recogni-

tion by Self-Organizing Neural Network€ambridge, MA:
MIT Press, 1991.
[4] M. P. Georgeff, B. Pell, M. Pollack, M. Tambe, and
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