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Abstract

This paper presents iFALCON, a model of BDI (belief-
desire-intention) agents that is fully realized as a self-
organizing neural network architecture. Based on multi-
channel network model called fusion ART, iFALCON is de-
veloped to bridge the gap between a self-organizing neural
network that autonomously adapts its knowledge and the
BDI agent model that follows explicit descriptions. Novel
techniques called gradient encoding are introduced for rep-
resenting sequences and hierarchical structures to realize
plans and the intention structure. This paper shows that a
simplified plan representation can be encoded as weighted
connections in the neural network through a process of su-
pervised learning. A case study using the blocks world do-
main shows that an iFALCON agent can also do planning
to solve problems when the knowledge is incomplete.

1 Introduction

Intelligent agents designed to perform in dynamic envi-
ronments are required to adapt their behavior in order to
fulfill their objectives. The adaptation may involve deci-
sions on what and how to achieve the objectives. An inten-
tional agent architecture such as beliefs-desires-intentions
(BDI) model [5] exploits prescribed procedural knowledge
and explicit representation of mental attitudes to make the
agent achieves its goal. The agent can be designed to follow
recipesas guidances while at a certain moment choosing an
alternative mean to achieve the goal.

The performance of a BDI agent relies on how good the
agent designer specifies the domain specific knowledge and
mental attitudes of the agent. However, the capability to in-
vent new procedures or recipes is still not supported by the
BDI architecture [4]. Learning or planning from the first
principle may reduce the responsiveness to changes in the
environment as additional reasoning processes would sig-

nificantly take processing time. Although it is possible that
the agent constructs or acquires its own recipes from expe-
rience autonomously, this approach is still under the princi-
ple of explicit prescribed knowledge [12]. Thus, to make
the agent learns requires a careful consideration on how
the agent may interact with the environment and fulfill its
tasks [9].

On the other hand, neural network architectures, as
biologically-inspired models of computation, have been
widely applied to domains that require learning and general-
ization. As opposed to symbolic processing approaches that
rely on explicit descriptions, neural networks operate by
matching inputs with distributed learnt patterns encoded in
weight values. The performance of a neural network model
depends on a prior learning phase. A neural network agent
may be able to automatically learn and update its knowl-
edge by experience, but it may also be difficult to ensure
that its behavior conforms with some explicitly prescribed
instructions.

There have been great interests in consolidating inten-
tional agent models and self-organized learning systems.
Some approaches use hybrid neural network models [13, 8].
Others still maintain symbolic framework enhanced with
particular learning algorithms [10, 6, 12]. Most of the hy-
brid systems assumebottom-uplearning processes. Their
primary concern is in extracting procedural knowledge from
reactive performances of the agent. However, there are still
open issues in how to reuse the extracted knowledge effec-
tively. Most of the extracted procedures using the hybrid
methods consists of only plain sequences of actions. More-
over, the influence of prior knowledge in such hybrid sys-
tems is mostly unconsidered. The motivation behind this
paper is towards discovering plausible agent models that
are inherently adaptive with self-organized learning features
but also accommodating explicit plans description and men-
tal attitudes. We are exploring towards a natural way of
the consolidation supporting hierarchical structures beyond
learning plain sequences.

In this paper, we propose an architecture of intentional



agent using a neural network model. The architecture is de-
veloped towards bridging the gap between a self-organizing
neural network that autonomously adapts its knowledge and
the BDI agent model that follows explicit descriptions. Un-
like other approaches that suggest hybrid structures, our ar-
chitecture is entirely built as a new kind of neural network
model called iFALCON.

iFALCON is based on a multi-modal neural network
model called fusion ART [16]. Fusion ART employs mul-
tiple neural fields that can process different input and ouput
modalities. iFALCON extends the fusion ART model by
representing sequences and hierarchical structures. This
paper shows that iFALCON has features as follows:Plan
encoding: a representation of plans asrecipescan be en-
coded as weighted connections through a process of su-
pervised learning;Plan selection: a plan for achieving the
agent’s goal can be selected as a neural node activation to
be scheduled for execution;Plan execution: the selected
plan can be executed by activating connected nodes exhibit-
ing sequences of actions and the intentions hierarchy;Plan
search: planning to find a novel solution can still be per-
formed even though the encoded plans are incomplete.

This paper is organized as follows: Section 2 provides an
overview of the BDI agent architecture. Section 3 presents
the proposal of the iFALCON as a new architecture that
extends the fusion ART network to fulfill the requirement
of the BDI agent model. Section 4 describes how this
iFALCON architecture works using a situated blocks world
planning domain. The case study shows how plans can
be mapped into neural network connections, and how they
are executed to achieve goals. Moreover, it demonstrates
a planning mechanism for finding a new solution when in-
complete information is available. Section 5 summarizes
and concludes this paper.

2 BDI: Intentional Agent Architecture

The BDI (Beliefs, Desires, Intentions) agent model [11]
is a design framework commonly used in developing agents
that behave both deliberatively and reactively in a complex
changing environment. The main principle is to use explicit
representations of the agents’ own mental attitudes (in terms
of attributes such asbeliefs, desires, and intentions) to di-
rect their actions and the selection of appropriate predefined
plans asrecipes. A BDI agent works as an interpreter that
operates on the representation of mental attitudes.

Beliefsor belief baseis a data structure that corresponds
to a model or knowledge about the world and/or about the
agent itself which can be updated directly by events cap-
tured by sensors or by some changes in the agent’s internal
state. In most implemented platforms of BDI agent, thebe-
liefs may consist of predicate logic statements or proposi-
tions indicating truth values (true or false).

The agent hasdesiresas a set of goal conditions that the
agent wants to achieve. Fromdesires, the agent needs to
select some goals that are consistent with itsbeliefs. Af-
ter the goals are determined, the agent then finds a mean to
achieve them as a plan. In situations where computational
resources are limited, only one goal and a plan is required
to be selected. In Procedural Reasoning System (PRS) [7],
as might be the first and the most adopted implementation
model of BDI agent, the agent does not plan from scratch
to find a way to achieve its goal. Instead, a library of man-
ually prescribed plans is already provided. A plan is a pro-
cedural knowledge structure that specifies how to achieve
certain goals. The plan typically hasgoal attribute as the
the postcondition that will hold after the plan is executed;
precondition attribute that specifies the condition that must
be held so that the plan is applicable, and;body attribute
that describes the course of actions that will be executed if
the plan is adopted.

When a plan has a goal attribute that matches with the
current goals and its precondition is satisfied, the plan can
be considered asapplicable. A plan is selected from a set of
applicable plan for execution. Selected goals and plans are
retained asintentions. The committed intentions provide
constraints on further deliberations and the process of find-
ing ways to achieve goals. In PRS,intentionsare stored in
the intention structurewhich has a hierarchical stack struc-
ture. The stack contains selected goals that are pending
achievement and the current state of the execution.

The basic control operation of a BDI agent is a cycle
which consists of the following steps: Updates beliefs; de-
termines options at the given circumstances; deliberates and
select intentions to be executed; executes intentions.

In the execution cycle, the agent may achieve subgoals
that comprise further deliberation at subordinate levels.The
deepest level intention is achieved first before continuing
with the upper-level ones.

3 iFALCON: The intentional FALCON

Based on Fusion Adaptive Resonance Theory (fusion
ART) [16] network model, we are looking at a network
model that can process different mental attitudes and en-
code plans. fusion ART is a neural architecture that unifies a
number of neural network designs, most notably ART [3, 2],
Adaptive Resonance Associative Map (ARAM) [14] and
Fusion Architecture for Learning, COgnition, and Navi-
gation (FALCON) [15]. The ART neural network and its
derivatives use the principles based on an analysis of human
and animal cognitive information processing. The original
ART model works as a self-organizing neural network that
employs unsupervised learning. It comprises the allocation
of a new category neuron which allows the network to learn
new categories and grow.



Fusion ART extends the original ART model by employ-
ing multiple input fields. Each input field employs indepen-
dent parameters. Different input fields may also have dif-
ferent types of encoding vectors. That enables fusion ART
network to process different input modalities.

The use of multiple independent fields enables differ-
ent stages of operation so that various types of computation
can be employed. The multi-fields architecture also extends
the unsupervised learning model so that different learning
schemes like supervised and reinforcement learning can be
applied as well. For example, FALCON employs reinforce-
ment learning by configuring the input fields to act as input
state, outputaction, andreward feedback so that it learns
actions policy when it receives a positive feedback.

iFALCON extends the fusion ART model, by arranging
and grouping the channels or fields in a different way. As
shown in Figure 1 the iFALCON architecture consists of
four input/output fields:F c1

1 , F c2
1 , F c3

1 , andF c4
1 denot-

ing thebeliefs, desires, critic, andactionfields respectively.
Thebeliefsanddesiresfields correspond to thebeliefsand
desirescomponents of the BDI model. Thebeliefsand the
desiresfield contain the conditions that the agent believes to
hold and the conditions that the agent wants to achieve re-
spectively. On the other hand, theactionfield represents the
action to take at moment, while thecritic field reflects the
differences between the values inbeliefsanddesiresfield.
Instead of just being connected to one category field like in
fusion ART, these input (output) fields, are connected to two
category fields:F c

2 andF c
3 denoting plans andsequencer

fields which represent the current selected plan and the cur-
rent executed action in a sequence respectively.

Figure 1. iFALCON Architecture

Whereas thebeliefsanddesiresfields are connected to
both category fields, thecritic field is only connected to
the plans field and theaction is connected only to these-
quencer. There are extra connections between theplanand
thesequencercategory fields and each category field is fur-
ther connected to a stack field.

3.1 Plan Encoding

A plan can be encoded by setting up the appropriate
weight values of the neural network connections. Nodes
in plan andsequencerfield represent plans and sequences
respectively. An attribute of a plan is encoded as weight
values in the connections between a plan node and the cor-
responding input/output field. The iFALCON architecture
employs a novel technique calledgradient encodingfor rep-
resenting sequences and stacks. Ingradient encoding, a
value represents an index or a position of a point in a one-
dimensional value system. A value may simply indicate a
time point or a position in an ordered sequence. This kind
of encoding is supported by a model of working memory in
the brain for storing temporal sequences [1].

In iFALCON, the gradient encoding is used for repre-
senting plans and goal-subgoal hierarchies. The use of the
two plan andsequencercategory fields allows hierarchical
groupings of actions and a sequence into a single category
node in theplanfield. Each category node in thesequencer
field encodes a pattern of action in the input/output fields.
Through the extra connections between theplan and the
sequencer, a node in theplan field can also encode a col-
lection of actions represented as different activations inthe
sequencerfield. By applying the gradient encoding to the
connections’ values, different actions can be arranged in an
ordered fashion.

The corresponding nodes in bothplan and sequencer
field can be manually defined to represent a plan and the
respective weights are adjusted accordingly. However, this
manual encoding may redundantly connect different nodes
in thesequencerfield to the same pattern of activation. Al-
ternatively, plans are learnt so that the neural network can
automatically recruit the appropriate nodes in theplan and
the sequencerfield through a code search activation pro-
cess. This process can also be said assupervised learning,
in which the learning requires both the input (desiresand
beliefs) and the output (actions) samples to be presented.
The respective weights are then adjusted accordingly. In
this way, the same node in thesequencerfield may be con-
nected by different nodes in theplanfield sharing the same
code of action.

The code search activation process comprises a search
process to achieve aresonancecondition between the plan
field and the input/output fields. Aresonanceis a condition
in which a top-down activation from a node in the category
field match with the current activations of the connected
fields at the bottom. A search cycle comprises a compet-
itive selection of the highest activation node in the category
field followed by a top-down matching. The selected node
is reset if it does not satisfy the resonance based on a vigi-
lance criteria. The cycle continues with another node until
a resonance is found. If no node can meet the resonance,



a new category node is assigned to encode the pattern of
the respective input/output fields. The detailed algorithmis
presented below.

Let Ick andxck denote the input vector and the activity
vector forF ck

1 , respectively. Letyc
2 andyc

3 denote the ac-
tivity vectors inF c

2 andF c
3 respectively. Thejth node of

F c
2 is associated with the activity vector ofF cl

1 , by a weight
vectorwcl

2j , for l = 1, ..., 3. Thenth node ofF c
3 is associ-

ated withF ci
1 , by a weight vectorwci

3n, for n = 1, 2, and
4.

F s
2 and F s

3 are stack fields connected toF c
2 and F c

3

respectively. Letws
2 denote the weight vector associated

with the sth node inF s
2 and nodes inF c

2 , andws
3 for F s

3

and nodes inF c
3 . The iFALCON dynamics is determined

by choice parametersαck ≥ 0, learning rate parameters
βck ∈ [0, 1], contribution parametersγck ∈ [0, 1] and vigi-
lance parametersρck ∈ [0, 1].

Specifically, for eachF c
2 nodej, the choice functionT c

j

is computed as follows:

T c
j =

3∑

l=1

γcl
|xcl ∧ wcl

j |

αcl + |wcl
j |

, (1)

where the fuzzy AND operation∧ is defined by(p∧q)i ≡
min(pi, qi), and the norm|.| is defined by|p| ≡

∑
i pi for

vectorsp andq. A plan competition follows inF c
2 with J as

the index of the winnerT c
J = max{T c

j : for all F c
2 nodej}.

A category choice is made at nodeJ , yc
J = 1; andyc

j = 0
for all j 6= J . Resonance occurs if for each channell:

mcl
J =

|xcl ∧ wcl
J |

|xcl|
≥ ρcl. (2)

If any of the vigilance constraints is violated, mismatch re-
set occurs in which the value ofTJ is set to 0. Another
F2 nodeJ is then selected and the process repeats until a
resonance is found or otherwise, a newuncommittednode
is recruited. When the search ends, for each channelcl, the
weight vectorwcl

J is modified by the following learning rule

w
cl(new)
J = (1 − βcl)w

cl(old)
J + βcl(xcl ∧ w

cl(old)
J ).

F c
3 can employ the same node search operation as inF c

2 .
Following thegradient encoding, the values ofwt

j must be
arranged so that ift0, t1, ..., tn denote time points or a se-
quence in an incremental order, the weight values follow the
conditionwt0

j > wt1
j > ... > wtn

j . The weightswt
j can be

adjusted as followswt(new)
j = (νtyc

3) ∨ w
t(old)
j where the

fuzzy OR operation∨ is defined by(p∨q)i ≡ max(pi, qi).
The ordering parameterνt set the index of the action in the
sequence. Initially,νt is set to one. As a new input ac-
tion is presented in theaction field, the previous selected
node inF c

3 is reset andνt(new) = νt(old) − υ to makewt
j

follows thegradient encoding. υ is a constant as an incre-
ment/decrement factor in gradient encoding.

Figure 2. iFALCON execution cycle.

3.2 Plan Selection and Execution

The activities in the composition of neural fields and
connections in iFALCON emulates the execution cycle in
the BDI agent model. The execution cycle of iFALCON
can be described as follows:
Critic evaluation: At the beginning, the values inbeliefs
and thedesiresare compared with a match functionmc.
When the match function is greater than the parameterρ, it
means that the the goals are satisfied.mc is also used as the
value in the critic vectorxc3

1 = mc. The deliberation cycle
continues to the next stage only whenmc < ρc3.
Plan selection: When the match is low, the deliberation
process is conducted by searching aresonancecondition
between the plan fieldF c

2 and some input/output fields (de-
sires andbeliefs). The resonance search proceeds to find
and select a category node inF c

2 representing a plan, just
like the search process described in the last subsection.
Plan execution: After a plan node is selected, the plan is
executed byreadoutprocesses (top-down activations) from
the selected node in theplan field to thesequencerfield
and further down to the respective input/output fields. After
activatingsequencer’s nodes a competition is employed to
select a nodeK with the highest activation value so that
further readout activation can be applied to the input/output
fields. The nodeK in thesequenceris then reset, and the
process continues by selecting another node following the
order in the sequence until the activation reaches zero. The
ordering parameterνt keeps track the last readout value in
F c

3 so that allT t
k > νt are reset. By repeating the readout

process, sequential activations can be produced inF c
3 . The

readout process ends when no activation occurs inF c
3 (all

nodes are 0) or the critic passes the vigilance criterion.
Subgoal posting and backtracking: During the execution
process, a subgoal can be posted as a special type of ac-
tion. A subgoal can be posted when a predefined node in
F c4

1 is activated. The subgoal, which is encoded as the con-
nection values between a node in thesequencerfield and
the nodes in thedesiresfield, overrides thedesireswhich
trigger a further plan selection process. However, before re-
placing the desires, the current active nodes in the plan and
the sequencer field are stored into the stack fields.



A stack field is basically a category field but activated
following the gradient encoding scheme. By applying the
gradient encoding to the activation level of the nodes in the
stack field, each level of activation represents the position
or the depth level in which the encoded activation pattern
in the connected category field were temporarily stored. To
push the active node inF c

2 to the stack, a nodeJ in theF s
2 is

selected through the process of resonance search excluding
the previous active nodes. If the activity vector ofF s

2 is Ts,
the activation values inF s

2 are then accumulated based on
the leveling parameterys(new)

2 = (τs2Ts) ∨ y
s(old)
2 ,.

The gradient encoding may appear inys
2 as more values

are pushed. the leveling parameterτs2 is incremented byυ
whenever a value is stored into the stack. The same process
is also applied toF s

3 to store the position in the sequence.
After storing the value toF s

2 , the subgoal can override the
values inF 2

1 and trigger another deliberation process.

To retrieve the previously stored plan, the winner node
J is determined inF s

2 and a readout is performed toF c
2

through the weight vectorwsJ
2 and the plan is restored by

performing readout further down toF ck
1 . The winner node

J in F s
2 is then reset to make the latter stored plan will be

selected in the next cycle. The leveling parameterτs2 is also
updated by the highest activation value in the stack field to
keep track the top most position of the stack. The same op-
eration is performed betweenF s

3 andF c
3 , but the parameter

νt is also restored byνt = T t
K , K is the node index in the

restored vectoryc
3.

3.3 Plan Search

It is also possible to control the deliberation and execu-
tion of iFALCON by adjusting the parameters dynamically
to improve the quality of the decisions. Normally, a high
vigilance level can be applied to thedesires, thebeliefs, and
thecritic fields so that the plan selection and evaluation is
strict. This strategy may be suitable by the assumption that
the knowledge (plans) available is complete and there is no
chance for the agent to make mistakes. However when no
plan can be found, the process will just halt. A strategy can
be applied to the iFALCON execution cycle that makes ad-
justments to the vigilance parameters at the execution time.
This enables the network to select a plan even though no
plan can be found using the original vigilance. The strat-
egy can be summarized as follows: 1) If no plan (node) can
be found, store the current plan to the stack and reduce the
desires’ vigilance ρc2 by a certain value (e.g 0.1); 2) keep
reducingρc2 until a plan can be found; 3) ifρc2 = 0 refresh
the node activation status; 4) Restore the originalρc2.

4 Case Study: Blocks World

To test our model, we have implemented iFALCON to
solve theblocks worldproblem. In blocks world, the task
of the agent is to put some blocks into a certain goal con-
figuration. Figure 3 shows an instance of a blocks world
problem in which the target is to stack the blocks from one
blocks configuration (the start) to a different blocks config-
uration (the goal). Although the blocks world domain is
simple, it requires sequential and hierarchical actions struc-
ture to solve the problem.

Figure 3. Blocks World.

To start with, the respective fields of iFALCON are setup
to represent the situation of the domain.Beliefsanddesires
fields are expressed as vectors withcomplement coding. In
complement coding, an input/output value is represented as
a pair of complementing values which corresponds to a pair
of node in an input/output field. Each node pair represent
the truth value of a proposition. It is also possible to express
don’t-carecondition using the complement coding. If the
pair for a propositionp is expressed under complement cod-
ing as(v, v̄)p for v refers to the truth value ofp, then three
different values can be expressed as follows:(1, 0)p ≡ p;
(0, 1)p ≡ ¬p; (1, 1)p ≡ (dont-care condition). Any propo-
sition always matches thedon’t-carecondition as the pair
(1, 1)p will always result in the same value when applied to
the template matching function.

In our blocks world domain, the following propositions:
bupA, bbtmA, bupB, bbtmB, bupC, bbtmC can be used to
express the situation. Each proposition denotes a condition
on the top or the bottom of a block. For examplebupA de-
notes that there is another block on top of blockA, while
bbtmB denotes some block under the blockB. The negation
of a proposition (expressed with a hyphen− symbol) states
otherwise. For example-bupA and-bbtmB denote there is
no block on top ofA andB is lying on the ground respec-
tively. The list of propositions can be mapped to the vector
representation as a list of value pair employing the com-
plement coding. Each node in the action fieldF c4

1 is also
associated with a primitive action. Nine external actions
are defined as actions that directly change the blocks world
environment state. Furthermore, an internal action is de-
fined as an action for subgoaling. The action field does not
employ complement coding and applies a competitive valu-
ation (only a single node is active).

In order to store a plan to iFALCON, the sequential
learning is conducted by activating the respective fields. A



plan can be described as a collection of attributes corre-
sponding to weight values that are connected to input fields.
For example the following plan describes attributes that will
be encoded as weight values:

{’plan’:
{’goal’: [’-bupB’,’-bbtmA’],
’perc’: [’-bupA’,’bbtmA’,’bupB’],
’body’: [{’action’:[’downA’]}]
}

}

Thegoal andperc refer to weight values connected to the
desiresand thebeliefsfield respectively. Thebody refer to
values of connections betweenF c

2 , F c
3 , and the action field

F 4
1 to describe the sequence of actions. By activatingF c

2

fields (with the critic set to one by default), andF c
3 through

the bottom-up activations, the weight values betweenF c
2

andF c
3 can be adjusted accordingly.

The continuous line refers to(1, 0) weight pair, and the
dashed line refers to(0, 1) pair. Thedon’t-care values
and non-complement zeros in weight connections are not
shown. A more complex plan can be described to comprise
a sequence of action in thebody attribute. The following
plan contains a plan body with a sequence of subgoals:

{’plan’:
{’goal’: [’-bupA’,’bbtmA’,’bupB’,

’bbtmB’,’bupC’,’-bbtmC’],
’perc’: [],

’body’: [{’action’:[’subgoal’],
’goal’:[’-bupC’,’-bbtmC’]},

{’action’:[’subgoal’],
’goal’:[’bupC’,’bbtmB’]},

{’action’:[’subgoal’],
’goal’:[’bupB’,’bbtmA’]} ]

}
}

To learn this plan, a node inF c
2 is firstly selected based on

the inputdesiresandbeliefs. While the node inF c
2 is acti-

vated, the actions are presented sequentially in the respec-
tive order to activate differentF c

3 nodes. The corresponding
weights betweenF c

2 andF c
3 are then adjusted following the

gradient encoding scheme.
Two types of plans are applied: primitive plans which

consists of only a single step of action, and control plans
that may include sequences. The primitive plans can be
used as basic rules that model the environment, while the
control plan is used as a strategy to achieve the goal. In
our implementation, we mapped twelve different primitive
plans and one control plan into the network.

To evaluate the model, two cases are formulated as fol-
lows: (1) A blocks world agent with complete learnt plans
(both primitive and control plans); and (2) an agent with
learnt incomplete plans (primitive plans only). Each con-
figuration is tested to achieve the goals shown in Figure 3
from twelve different initial blocks configurations shown in
Figure 4.

Figure 4. Tested initial blocks configurations.

Each iFALCON plans configuration is applied to reach
the goal from every blocks configuration. Different con-
figurations produce different numbers of steps. A random
choice mechanism is applied to the internal mechanism of
iFALCON so that when more than one node have the same
maximum values, a plan node is selected at random. Con-
sequently, the choices may be different even for the same
configuration. Figure 5 presents the results from 100 trials
for each configuration.
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Figure 5. Results of Blocks World.

The results show that when more plans are available
(plans configuration 1: primitive plans and a control plan),
all blocks configuration can be solved for every trial. Few
configurations require many steps (configuration 7 and 4)
with some degree of variability, but most of the time, the
steps taken are much lesser than the maximum. This indi-
cates that in some cases, even with control plans, the agent
can not rely solely on its plans and must make different
choices. It is also indicated that the deliberation strategy
and backtracking process can lead the choices to the solu-
tion although the steps taken can be many. Using the com-
plete set of plans, the goal can be achieved in three steps at
minimum.

On the other hand, when the plans learnt are incomplete
(with primitive plans only), some failures may occur (con-
figuration 3, 5, 6, and 7). However, the figure shows that,
most of the time, the network eventually reaches the solu-
tion even though it takes so many steps comparing with the
results using the complete set of plans. From 100 trials,
maximally only five cases failed (configuration 6). In fact,
in a case where the solution is straightforward (configura-



tion 8), it takes only a single step of action rather than three
steps like in its complete set of plans counterpart. This in-
dicates that, more knowledge (plans) does not always lead
to better performance.

Overall, the case study has confirmed that the iFALCON
can function as a BDI agent architecture driven by explicit
plans. The results also reveal that iFALCON can emulate
the process of reasoning and planning beyond BDI model
so that new solutions can be found even though the initial
knowledge available is limited and incomplete.

5 Conclusion

This paper has presented a model of BDI agent realized
as a neural network architecture. The model explains how
beliefs, desires, intentions, and plans can be mapped into
artificial neural substrates. The novelty of this model is in
the application of the gradient encoding technique for repre-
senting stacks and sequence structure. The combination of
gradient encoding and the activation mechanism of fusion
ART allows sequences to be grouped or encapsulated under
a single neural code which is an important feature to real-
ize a BDI agent. The model also enables the storage and
reproduction of different neural activations in a sequential
manner. The iFALCON model has been successfully imple-
mented and tested to store and execute plans. Furthermore,
beyond the BDI model, the test revealed the capability of
planning to explore and find new solutions.

However, there are still some important issues left un-
touched by this paper. Parallel to the symbolic-based BDI
agent counterpart, the iFALCON neural network still has
some open issues in realizing the appropriate deliberation
strategies. In this paper, we start to address this problem
by looking at the relationship of the network generalization
feature and themeans-endsreasoning capability. The test
conducted has indicated the potential of adjusting vigilance
criterion of different neural fields to realize the reasoning
mechanism for BDI agents. The next stage in developing
iFALCON may also involve the study of autonomous learn-
ing complementary to the current supervised learning. In
any case, the iFALCON architecture opens up the possibil-
ity of enhancing the BDI agent model beyond the symbolic
frameworks. The architecture may also set a new direction
in exploring the potential of neural network, particularly
ART-based, to realize the model of intentional agents that
is more biologically plausible.
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