
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2019

End-to-end deep reinforcement learning for multi-agent End-to-end deep reinforcement learning for multi-agent

collaborative exploration collaborative exploration

Zichen CHEN

Budhitama SUBAGDJA
Singapore Management University, budhitamas@smu.edu.sg

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

End-to-end Deep Reinforcement Learning
for Multi-agent Collaborative Exploration

Zichen Chen1, Budhitama Subagdja2, and Ah-Hwee Tan1

1School of Computer Science and Engineering
Nanyang Technological University, Singapore
2ST Engineering-NTU Corporate Laboratory

School of Electrical and Electronic Engineering
Nanyang Technological University, Singapore

zichen002@e.ntu.edu.sg, {budhitama, asahtan}@ntu.edu.sg

Abstract—Exploring an unknown environment by multiple
autonomous robots is a major challenge in domains such as
autonomous surveillance, search and rescue, and domestic clean-
ing. Conventional methods usually employ a fixed strategy to
allocate the robots or agents to explore selected locations like
frontier points to construct a map of the environment. Although
these methods can be effective in a single agent case, assigning
multiple robots to explore different locations is more challenging
as different agents may interfere each other making the overall
tasks less efficient. In this paper, we present an approach to
multi-agent exploration wherein the agents learn the effective
strategy to allocate and explore the environment using a new deep
reinforcement learning architecture. We propose CNN-based
Multi-agent Proximal Policy Optimization (CMAPPO) algorithm
for allocating multiple agents to explore different environments
while, over time, improving their strategies to allocate the tasks
more efficiently. This algorithm combines convolutional neural
network to process multi-channel visual inputs from the observed
environment, curriculum-based learning for improving learning
efficiency, and PPO algorithm for motivation based reinforcement
learning. Based on our evaluation, the proposed method can
learn more efficient strategy for multiple agents to explore the
environment than the conventional frontier-based method.

Index Terms—Multi-agent exploration, Deep learning, Rein-
forcement Learning

I. INTRODUCTION

One fundamental challenge in robotics domain is exploring
an environment when no a priori knowledge or only partial
information about the environment is available. The robot or
agent needs to map the environment while performing its
domain tasks like surveillance[1], search and rescue tasks[2],
cleaning[3], or collecting objects[4].

The common method of robots exploration is by taking a
frontier point which is located in the boundary between a
known area and an unknown region as the target location to
visit. This point is selected from other frontiers as revealed
whenever the robots observe the environment. Some ad-hoc
strategies or heuristics can be applied to optimize the selection
or allocation of the targets to the agents[5][6]. However,

The research was partially supported by the ST Engineering NTU Corporate
Lab through the NRF corporate lab@university scheme.

when multiple robots are involved, the task becomes more
challenging as they have to explore the unknown environment
as efficient and fast as possible while avoiding conflicts or
interferences among the agents that can reduce the efficiency.

In this paper, we present a learning approach for multi-
agent exploration task rather than a fixed strategy to allocate
the agents to their targets. We develop a deep reinforcement
learning model that takes raw visual observations of the
environment and represents the state of affair in terms of multi-
channel maps of agents, known regions, unexplored areas, and
obstacles. The state representation is used as the input to a
CNN (Convolutional Neural Network) model to process and
extract important features of the environment relevant to the
exploration task in hand. The extracted features are then used
as the input to a PPO (Proximal Policy Optimization) network
to determine the target action for every agent to take.

To further improve the learning performance, we apply a
curriculum model and intrinsic rewards to direct the explo-
ration. In this way, a new better strategy can be discovered
allowing efficient exploration applicable to different environ-
ments and conditions.

We evaluate our approach by comparing it with the state-
of-the-art Frontier-based multi-agent exploration algorithm [5]
[6]. The experimental results show that our learning approach
can discover better strategies for the multi-agent indoor explo-
ration problem. The model exhibit reasonable generalization
ability across teams of agents of different sizes and in various
environments.

For the remaining parts of this article, we firstly give a brief
review of the relevant literature in Sec.II, and then present the
formulation and training process of CMAPPO in Sec.III. An
enhancement with curriculum method is introduced in Sec.IV.
Lastly, the experiments and a conclusion are subsequently
presented in Sec.V and Sec.VI.

II. RELATED WORK

Yamauchi [5] introduces the frontier-based method in the
multi-agent systems. Frontiers are defined as the areas on
the boundary between the open environment and unexplored

environment. During the exploration time, each agent can
maintain its local map and make a decision individually on
which frontier points to visit. The goal of this method is to
explore the environment as much as possible and to obtain
more information about the world. Although the agents have
shared a global map of the explored areas in the environment,
they may still fall into conflicting or overcrowded situations
since they still act individually without coordination.

Based on the frontier-based method, Bautin et al. [7]
propose an improved method wherein each agent evaluates
its relative rank among the other agents in terms of travel
distance to each frontier. Based on the rank, each agent is
assigned to the corresponding frontier as the location to visit
and explore. Recently, the leading solutions to this problem
are offered by segmentation-based exploration [6], perception-
based exploration [8], and topological-based exploration [9].

On the other hand, tackling multi-agent problems using deep
reinforcement learning have been increasingly popular nowa-
days. Tampuu et al. [10] introduce multi-agent cooperation and
competition problem using deep Q-Learning framework in a
famous video game Pong. They can learn robust strategies to
play against and cooperate with another adaptive agent to gain
scores. However, the solution is only for two agents (or two
adversarial agents) and may not be transferable to other sit-
uations. Compared to traditional optimization solutions, deep
reinforcement learning provides a solution through adaptation
and learning.

Few works have been done in applying deep reinforcement
learning robot exploration problems. Recently, Zhu et al.
[11] use CNN and LSTM for feature extraction and A3C to
approximate the model. However, their method is only for a
single agent with known map and still requiring A* algorithm
for planning the path to reach the nearest frontier point similar
to the frontier-based method. To the best of our knowledge, the
work presented in this paper is the first attempt to apply deep
reinforcement learning for multi-agent exploration in unknown
environment with only visual observation as the inputs.

III. CMAPPO MODEL

In this section, we introduce the proposed CMAPPO re-
inforcement learning method to solve the coordinated multi-
agent exploration. We present it in two parts, one is the CNN-
based observation model for understanding the exploration
environment situation, the other is learning-based approach
for performing multi-agent exploration.

A. Representation Learning

To represent the current observed situation and identify the
important features, we use a CNN model. The CNN reflects
the exploration situation and features in the environment that
are relevant to the agents’ overall exploration tasks.

In order to enable the agents to learn the coordinated
exploration strategy, the features discovered from the CNN
model are used as the input state to a reinforcement learner.
In this case, the exploration strategy can be learned from
scratch without any prior knowledge through two stages of

learning: feature extraction by CNN and actions learning by a
reinforcement learner.

The architecture of CMAPPO can be depicted in Fig. 1.
The CNN part of the architecture contains six layers - three
convolutional and three fully-connected networks to extract
features from the raw visual input of the environment.

The first convolutional layer filters the 84x84x3 input pat-
tern where the observation is decomposed to agents channel,
obstacles channel, unexplored regions channel and explored
regions channel. Each of the input channels are connected
with 16 filters with kernel size of 8x8 and a stride of 4. The
second convolutional layer takes the input from the output of
the first convolutional layer and produces the output with 32
filters, each with kernel size of 4x4 and a stride of 2. The third
convolutional layer is same as the second one and takes the
output of the second layer as the input. Each hidden layer is
followed by the ReLUs non-linearity with 256 neurons.

B. Proximal Policy Optimization Based Learning System

Proximal Policy Optimization (PPO) [12] is a new family
of policy gradient methods for deep reinforcement learning,
which alternate between sampling data through interaction
with the environment. It formulates the constraint as a penalty
in the objective function and optimizes it with stochastic
gradient ascent.

We extend the PPO to handle the multi-agent issues by
developing centralized learning and decentralized execution.

In particular, the agents share and contribute to the same
PPO network. We consider that the system involves n agents
and each agent i can obtain its state si,t at time t. With the
given state s for agent i, we compute the value and update the
policy with experiences collected by all agents simultaneously.
Each agent utilizes the same policy to generate an exploration
strategy.

The training process alternates between actions by executing
the policy in parallel and updating the policy with the all se-
lected actions. We use the constraints and advantage estimation
to optimize the KL divergence, which can be described as
follows,

LKLPEN (θ) = E[πθ(at|st)
πθold(at|st)

At(st, at)−βKL[πθold(·|st), πθ(·|st)]],
(1)

where πθ is the policy, a is the selected action, At is the
generalized advantage function, and β is a parameter used for
next policy update. In each iteration, the selected actions are
used to build the surrogate loss LKLPEN (θ) that is optimized
with the Adam optimizer [13] under the KL divergence
constraint for K epochs.

In PPO, the value function V is used to estimate the
advantage Âti that does not look beyond time-step T . After
running the policy for T timesteps, the selected actions are
used for an update. The loss LV for value Vφ is built with
squared-error loss and Adam optimizer, which can be defined
as follows,

LV (φ) = −
N∑
i=1

Ti∑
t=1

(
∑
t′>t

γt
′−tr

t′
i − Vφ(sti))2 (2)

Environment

Feature Extraction

Reinforcement

Learning

Visual

Observation

Decomposed

Representation

Obstacles Agents

Explored regions Unexplored regions

Convolution

+

Relu

Fully connected

+

Relu

 CNN Model

PPO

.
.
.

.
.
.

.
.
.

Actions

.
.
.

Rewards

Accumulated

Rewards

84x84x3

Fig. 1: The architecture of the CMAPPO. In decomposed representation, the information of obstacles is incrementally increased during the
unknown environment exploration.

We use a truncated version of generalized advantage estima-
tion, which can be formulated as follows

Âti =

Ti∑
l=0

(γλ)l−t+1δl−1
i ,

δti = rti + γV (st+1
i)− V (sti),

(3)

where i is the agent, t specifies the time index in [0, T], γ is
the discount parameter for future rewards, and λ is a parameter
which provides a bias-variance trade off. Policy and value
function are updated independently and their parameters are
not shared during the training. The multiple PPO can be scaled
to the multi-agent system in a decentralized fashion where
each agent performs the action individually. The completed
procedure is presented in the Algorithm 1. In the next section,
we will introduce some enhancement strategies to improve
learning efficiency in exploring an unknown environment.

C. Problem Setup

Reinforcement learning for the multi-agent coordinated ex-
ploration problem can be formulated as a Markov Decision
Process (MDP). Formally, an MDP can be described as a
6-tuple (S,A, r, p, γ, o), where S is the state space, A is
the action space, r is the reward function, p is the state
transition distribution, γ is the observation space and o is
the observation probability distribution. In the multiple agents
setting, the training network is centralized for policy learning
and decentralized for action execution. Each agent has its own
local observations. We describe the detailed information about
our state space, action space and reward function as follows.

1) State Space: As mentioned before, the observation oti
consists of current self agent situation map ota, other agent sit-
uation map ota′ , obstacles (walls) map otw, unexplored regions
map (goals) map otg and explored regions map ote. The self-
agent situation map ota shows current self location while other
agent situation map ota′ indicates the locations of other agents.
The obstacles map otw represents the obstacles where an agent
can not pass through. The unexplored regions map otg repre-
sents a region that has not been explored or visited yet, and the
explored regions map ote represents empty regions that have
been explored by the agents. The observations are processed
by CNN to approximate the policy network. Specifically, those

inputs include the measurements of the current frames from
a 360-degree scanner which has a maximum range of 1. It
provides the 84x84 matrix of the distance values as the input
for each channel (i.e. oti ∈ R3x84x84).

2) Action Space: The action space consists of directional
actions in discrete space. Each agent has four actions: move
up, move down, move right and move left. For each step the
agent only can move one cell and the agent only can scan its
surrounding within range of a single cell. The output size is
4i, where i is the number of agents.

3) Reward Function: The rewards for each agent can be
formulated as follows,

rti = (gr)ti + (pr)ti + (f r)ti. (4)

where rti is the reward received by agent i at timestep t which
is the sum of three components, gr, pr and terminal reward f r.
In particular, each agent is rewarded by (gr)ti for arriving at
an unexplored region

(gr)ti =
{
runexplored if

∥∥P ti − P tg∥∥ ≤ 1.0
0 otherwise

, (5)

where the P ti and P tg are the centre location of the agent and
the unexplored region respectively.

The agent will be given a small punishment (pr)ti at each
timestep. (f r)ti is a final reward and will be given when all
the areas are completely explored. We set runexplored = 0.2,
pr = 0.001 and f r = 1.0 in the training.

IV. ENHANCEMENT OF CMAPPO

A. Curriculum Learning Based Sampling

Although CMAPPO may be able to learn some efficient
strategy based on the raw input image of the map, it can take
too long to finish given the complexity of the environment
and limited observation of each agent. In this case, we apply
curriculum learning to direct the learning process to acquire
knowledge more accurately. The learning is conducted in a
teacher-student fashion that the teacher monitors the training
process and different curriculum levels, while the student
learns the given tasks.

Algorithm 1: CMAPPO Algorithm
Input : Environment situation observation images
Output: Motion action for each agents

1 Initialize the policy network πθ and value function V (st).
2 while True do
3 for agent i = 1, 2, ...N do
4 Run policy πθold in environment for T time-steps.
5 Process the observation through the CNN model, obtaining oti .
6 Obtain observation, reward and action {oti , rti , ati}.
7 Compute advantage estimates Â1, ..., ÂT using Equation 3.
8 If Ti > Tmax, Break (where Tmax is the maximun step)
9 end

10 πθold ← πθ
11 for j = 1, ..., Eπ do
12 LKLPEN (θ) = Êti[

πθ(a
t
i|o
t
i)

πθold
(ati|o

t
i)
Âti − βKL[πθold |πθ]]

13 if KL divergence is not satisfied then
14 break
15 end
16 Update θ by Adam optimizer.
17 end
18 for k = 1, ..., EV do
19 LV (φ) = −

∑N
i=1

∑Ti
t=1(

∑
t′>t γ

t′−tr
t′
i − Vφ(sti))2

20 Update φ by Adam optimizer.
21 end
22 if KL[πθold |πθ]>βhighKLtarget then
23 β ← αβ
24 end
25 else
26 KL[πθold |πθ]<βhighKLtargetend
27 β ← β/α
28 end

Based on [14], we define the curriculum as training distri-
bution Qλ and formulate the curriculum learning as follows

Qλ(z) ∝Wλ(z)P (z) ∀z. (6)

denote z as the random variable representing an example, P (z)
is the target training distribution, Wλ(z) is the weight applied
to example z at stage level λ in the curriculum sequence, and
0 ≤ λ ≤ 1. The entropy of Qλ distribution is increasing with
Wλ(z) and should meet the following requirements

H(Qλ) < H(Qλ+ε) ∀ε > 0, (7)

In this case, Wλ(z) is monotonically increasing whenever
new example (ε) is added.

B. Intrinsic-driven Exploration

To improve the exploration, it is possible to provide the
rewards not only from the environment or the domain itself
but also from a condition intrinsic to the agent. The idea of in-
trinsic reward is introduced by Pathak et al. [15]. They propose
that intrinsic reward can be a signal to enable the agents to
explore the environment more rather than just getting extrinsic
rewards. The approach is to reward the agents according to
how much surprising the environment is, which drives the
agents to learn more strategies to explore the unvisited area
and find more about the surprising states. Specifically, agents
tend to discover the new area (unexplored regions) more often.

With the intrinsic reward, the networks are trained by a
forward and an inverse model. In the inverse model, the policy
π is trained to optimize the sum of the extrinsic reward and

the intrinsic reward and encodes the states st and st+1 into
features φ(st) and φ(st+1) that are trained to predict action at.
In the forward model, φ(st) and at are the inputs to predict the
feature representation φ̂(st+1) of st+1. The prediction error in
the feature space is used as the intrinsic reward, which means
a bigger difference of observations enables the agent to obtain
a higher intrinsic reward.

We use ât = (st, st+1; θI) to represent the latent space and
LI (intrinsic loss) to calculate the difference between reality
and prediction. The later state can be predicted by action and
current state feature, denoted as φ̂(st+1) = f(φ(st), at; θF).
We use LF (PPO loss) to calculate the difference.

For optimizing the CMAPPO, the loss of final model is
minθπ,θI ,θF

[
−λEπ(st;θπ)[Σtrt] + (1− β)LI + βLF

]
, where

θπ is optimized to maximize the expected sum of rewards, θI
is the likelihood estimation that is maximum by minimizing
LI amounts under a multinomial distribution, LI is the loss
function that measures the discrepancy between the predicted
and actual actions, θF are optimized by minimizing the loss
function LF , 0 ≤ β ≤ 1 is used to weigh the inverse model
loss against the forward model loss, λ > 0 is used to weigh the
importance of the policy gradient loss against the importance
of learning the intrinsic reward signal. The intrinsic reward
ir is computed as ηLF (φ̂(st+1), φ(st)), where η is a scaling
factor. The completed rewards can be formulated as follows

rti = (gr)ti + (pr)ti + (f r)ti + ζ(ir)ti, (8)

we set η = 1/128 and ζ = 0.01 in the experiments.

V. EXPERIMENTS AND RESULTS

A. Experiment Environment

The algorithm of CMAPPO is implemented with Tensor-
Flow [16] and the group of agents with scanning camera
and the environment are simulated in the Unity simulation
framework. We train the multi-agent coordinated exploration
on a computer with a Ryzen Threadripper 1900X CPU and an
Nvidia GTX 1080 Ti GPU.

The environment is presented as a 20 x 20 cells space.
Each unit in the environment is assigned to one object (Figure
1): obstacle (red), explored region (green), unexplored region
(black) and agent (self-perspective agent is blue, other agents
are grey).

In the training experiment, we assume each agent can only
move one cell within one cell scanning range at a time in
the environment. We reinitialize the exploration scene when
the agents are reaching the maximal steps or completing all
the tasks. To demonstrate the robustness of our model, we
randomly place the agents and doors, generating random office
environments for the agents at each re-initialization. We use
Average Moving Distance (AMD) as the measurement, which
is the average moving cells of 100 times experiments. As for
the evaluation, Table I shows the results from the experiments
as averaged over 100 runs for each different environment.

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

Fig. 2: The sample maps of different stage levels. The top is the
maze-like environment, the bottom is the office-like environment.

(a) (b)

Fig. 3: (a) and (b) are the example of randomly generated maze-like
scene and office-like scene respectively.

B. Curriculum Experiment Environment

The environments with curriculum learning have different
lesson levels. The first lesson places the agents in one room
to explore, so that the agents only learn to reach unexplored
regions within a small area. The main objective here is to
assist the agents to learn useful exploration knowledge and
develop collaboration strategies first. We created a simple
curriculum with 4 stages, which can be illustrated as four
different uncovered regions as in Fig. 2.

The maximal steps are 1000 for each individual agent. The
strength of the entropy regularization β is 0.001, discount
factor γ is 0.7, and update value estimate λ is weighted by
0.95, with the constraint parameter ε 0.2.

C. Evaluation of CMAPPO

In order to evaluate the performance of our proposed
CMAPPO model (with curriculum learning and intrinsic re-
ward), new maps are randomly generated as our testing scenes
(examples are illustrated in Fig. 3, the doors are randomly
positioned). We apply the CMAPPO method in a varying
difficulty level of the environment.

In all trials with CMAPPO and curriculum learning, the
agents can completely explore the entire areas in the environ-
ment. Without the curriculum stages and the intrinsic reward,
it fails to complete the exploration tasks as shown in Fig. 4
as no CI configuration. The figure shows the average steps
taken to explore the entire environment in every consecutive
stage of training with the curriculum-based method. It is shown
that, features learned from a simpler environment in one stage
enables faster more stable learning on another more complex
one in the next subsequent stage of learning. By applying the
curriculum-based learning, the agents can also generalize their
learned knowledge to be applicable in a variety of conditions
and environments.

Agents/Method CMAPPO Frontier-based
Method

Maze Office Maze Office
One agent 501 501 758 933
Two Agents 387 386 676 605
Three Agents 348 311 440 410
Four Agents 226 254 334 371

TABLE I: Performance metrics of AMD evaluated for CMAPPO
method, and Frontier-based method on the target unknown environ-
ment with different number of agents (the results are rounded off to
the nearest integer).

CMAPPO is able to learn the strategies for coordinated
exploration in the complex unknown environment. The results
are shown in Table I, which compares CMAPPO with the
conventional Frontier-based method applied with an ad hoc
strategy to efficiently allocate the exploration tasks to different
agents. The comparison is done for different unknown environ-
ments. The Frontier-based method is a coordinated multi-agent
exploration algorithm [5] [6]. Each agent selects its target
based on the distance to the possible target frontier points and
the utility of those points. During the exploration, the detailed
selection criteria of how the agent i chooses a target t can be
described as follows

(i, t) = arg max
(i′,t′)

(Ut′ − β · V i
′

t′) (9)

where Ut′ is the computed utility of target t, utility is defined
as the minimum distance of an agent within scanning range
to visit, and V i

′

t′ is the distance to target t. β is the relative
importance of utility and distance, which generally is set to 1.

It can be seen that CMAPPO takes less steps than Frontier-
based method. In Table I, we can observe that CMAPPO can
make the agents explore the environment efficiently. When
the number of agent is small, the CMAPPO agents can signif-
icantly outperform the frontier-based ones in terms of AMD.
With more agents involved, the difference of AMD is reduced,
but CMAPPO agents can still explore the environment more
efficiently.

Table I shows that the number of steps taken using the
strategy learned by CMAPPO is consistently smaller for
all configurations of environment and the number of agents
than the one using the Frontier-based strategy which also
considers other agents situations. This indicates that the deep
reinforcement learning of CMAPPO can acquire an effective
coordination strategy directly from raw input images from the
map of the environment without explicitly taking the utility or
cost information of other agents into consideration.

VI. CONCLUSION

In this paper, we develop the multi-agent exploration
method wherein the agents learn their coordinating strategy
to allocate their tasks from experiences. We combine the
concept of curriculum learning and intrinsic reward to a
deep reinforcement learning system called CMAPPO to solve
multi-agent exploration in unknown environment problems
which only takes raw visual observation as the inputs. We
have demonstrated the learning capabilities of the proposed
method against the state-of-the-art Frontier-based exploration

(a) One Agent (b) Two Agents

(c) Three Agents (d) Four Agents

Fig. 4: The AMD of average two training samples (maze-like maps) with CMAPPO method in 4 stage levels compared to the model without
curriculum learning and intrinsic reward (No C&I). The total training episodes are 35,000, averaged over 100 runs.

method in various environment and conditions. It has been
demonstrated that CMAPPO can learn better exploration co-
ordination strategies that consistently outperform the Frontier-
based method with a fixed mechanism for multi-agent task
allocation based on cost and utility. In the future, the study
can be extended to include bigger more complex environment
evaluated in actual robotic systems to evaluate the practicality
of the approach. The proposed model can also be extended
further by including other kinds of intrinsic motivation such
as exploration strategies based on novelty.

REFERENCES

[1] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas, “Co-
operative air and ground surveillance,” IEEE Robotics &
Automation Magazine, vol. 13, no. 3, pp. 16–25, 2006.

[2] Z. Beck, L. Teacy, A. Rogers, and N. R. Jennings,
“Online planning for collaborative search and rescue by
heterogeneous robot teams,” in AAMAS. IFAAMAS,
2016, pp. 1024–1033.

[3] J. Fink, V. Bauwens, F. Kaplan, and P. Dillenbourg,
“Living with a vacuum cleaning robot,” International
Journal of Social Robotics, vol. 5, no. 3, pp. 389–408,
2013.

[4] Z. Libin, Y. Qinghua, B. Guanjun, W. Yan, Q. Liyong,
G. Feng, and X. Fang, “Overview of research on agri-
cultural robot in china,” IJABE, vol. 1, no. 1, pp. 12–21,
2008.

[5] B. Yamauchi, “Frontier-based exploration using multiple
robots,” in AAMAS. ACM, 1998, pp. 47–53.

[6] K. M. Wurm, C. Stachniss, and W. Burgard, “Coordi-
nated multi-robot exploration using a segmentation of the
environment,” in IROS. IEEE, 2008, pp. 1160–1165.

[7] A. Bautin, O. Simonin, and F. Charpillet, “Minpos:
A novel frontier allocation algorithm for multi-robot
exploration,” in ICIRA. Springer, 2012, pp. 496–508.

[8] M. Beetz, M. Tenorth, D. Jain, and J. Bandouch, “To-
wards automated models of activities of daily life,”
Technology and disability, vol. 22, no. 1, 2, pp. 27–40,
2010.

[9] V. Govindarajan, S. Bhattacharya, and V. Kumar,
“Human-robot collaborative topological exploration for
search and rescue applications,” in DARS. Springer,
2016, pp. 17–32.

[10] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Ko-
rjus, J. Aru, J. Aru, and R. Vicente, “Multiagent cooper-
ation and competition with deep reinforcement learning,”
PloS one, vol. 12, no. 4, p. e0172395, 2017.

[11] D. Zhu, T. Li, D. Ho, C. Wang, and M. Q.-H. Meng,
“Deep reinforcement learning supervised autonomous
exploration in office environments,” in ICRA. IEEE,
2018, pp. 7548–7555.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[14] Y. Bengio, J. Louradour, R. Collobert, and J. Weston,
“Curriculum learning,” in ICML. ACM, 2009, pp. 41–
48.

[15] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell,
“Curiosity-driven exploration by self-supervised predic-
tion,” in ICML, 2017.

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard
et al., “Tensorflow: a system for large-scale machine
learning.” in OSDI, vol. 16, 2016, pp. 265–283.

	End-to-end deep reinforcement learning for multi-agent collaborative exploration
	Citation

	tmp.1632911224.pdf.GgcZl

