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Abstract—This paper presents a self-organizing approach
to the learning of procedural and declarative knowledge in
parallel using independent but interconnected memory models.
The proposed system, employing fusion Adaptive Resonance
Theory (fusion ART) network as a building block, consists of
a declarative memory module, that learns both episodic traces
and semantic knowledge in real time, as well as a procedural
memory module that learns reactive responses to its environment
through reinforcement learning. More importantly, the proposed
multi-memory system demonstrates how the various memory
modules transfer knowledge and cooperate with each other for
a higher overall performance. We present experimental studies,
wherein the proposed system is tasked to learn the procedural
and declarative knowledge for an autonomous agent playing
in a first person game environment called Unreal Tournament.
Our experimental results show that the multi-memory system is
able to enhance the performance of the agent in a real time
environment by utilizing both its procedural and declarative
knowledge.

Index Terms—self-organizing, ART, agent, episodic memory,
semantic memory, procedural memory, Unreal Tournament.

I. INTRODUCTION

Memory forms the basis of human’s knowledge and behav-
iors. Two types of long term memories facilitate our brain
to react upon current situations based on past experiences:
explicit (declarative) memory and implicit (non-declarative or
procedural) memory. As their names suggest, explicit memory
can be easily expressed using words, whereas implicit memory
cannot be easily expressed. Within declarative memory, con-
cepts and relations are remembered explicitly, while in non-
declarative memory, information is processed without using
explicit knowledge. Declarative memory typically can be fur-
ther categorized into two types: episodic memory enables one
to remember personal experiences that can be explicitly stated
while semantic memory stores meanings, concepts, rules, and
general facts unrelated to specific experiences [19].

Evidences from cognitive neuroscience imply that both
declarative and procedural memory are crucial parts for sup-
porting many different types of cognitive functions. Procedural
memory executes complex procedures in the absence of con-
sciousness. Through intensively rehearsal on complex action
sequences, procedural memory guides the association of all
relevant cognitive modules to accomplish various tasks, which
serves a critical role for the further development of cognitive

skills. On the other hand, while semantic memory represents
high level concepts and knowledge which forms the basis of
our understanding, recent research has found episodic memory
to be crucial in supporting many cognitive capabilities, in-
cluding concept formation, spatio-temporal learning and goal
processing [3].

Although prior research showed that the different compo-
nents of our long term memory systems interact with one
another to serve their roles and functionalities, most existing
computational studies on memory learning still model them
as isolated memory systems. Even those models, which focus
on understanding the relations among memories, are usually
limited to studying the interactions between just two memory
systems (e.g. between semantic and episodic memory). In
this paper, we propose a biologically inspired multi-memory
system for modeling the structures and connections between
the procedural and declarative memories, based on a unified
set of computational principles and algorithms under fusion
Adaptive Resonance Theory (fusion ART) [16]. Using fusion
ART as a building block, our proposed multi-memory system
includes a procedural memory model that learns decision
rules through reinforcement learning, an episodic memory
model that encodes an individual’s experience in the form
of events and spatio-temporal relations among events, and a
semantic memory that captures factual knowledge from past
experiences. The system further incorporates a generic process
of memory consolidation, wherein the specific information
stored in the episodic memory can be transferred to produce
more general and abstract semantic knowledge. In this way,
the proposed system supports not only the distributed and
redundant knowledge representations across multiple mem-
ory models, but also independent and parallel processing in
different time scales, achieving robust memory learning and
preventing catastrophic forgetting.

We have conducted experimental studies, wherein the pro-
posed multi-memory model is used to learn procedural and
declarative memory of an agent playing in a first person
shooting game called Unreal Tournament. Our experiment
results show how the proposed memory system improves the
learning capability of the agent in real time while managing
and utilizing various types of procedural and declarative
knowledge.
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The rest of this paper is organized as follows. Section II
provides a brief discussion of related works on procedural
and declarative memory models. Section III presents the
architecture of our proposed multi-memory system, including
the modeling of episodic, semantic and procedural memory, as
well as their interactions. Section IV shows the experimental
evaluation of the proposed system on a shooting game domain.
The final section concludes and highlights future work.

II. RELATED WORK

In literature, many models have been proposed to represent
and learn each individual type of memory. Several works
develop computational models of episodic memory as a trace
of events and activities stored in a linear order wherein some
operations are designed specifically to retrieve and modify the
memory to support particular tasks [9], [20]. These approaches
are limited to learning complex relations between events
and retrieving episodes with imperfect or noisy cues. Some
works use neural networks to model episodic memory with
inherent supports for partial matching and pattern generaliza-
tion. Shastri focuses on complex relational representation in
SMRITI [13]. The model can handle role-entity bindings in
which retrieval cues can involve transient values for retrieval
using partial information, while omitting the temporal or se-
quential relations between items altogether. On the other hand,
TESMECOR [12] employs sparsely distributed neural network
approach to handle spatio-temporal or multimodal patterns,
which rapidly stores distributed patterns while providing a
robust retrieval with complex sequential representation. How-
ever, it still retains the sequences of events, rather than chunks
of episodes.

Early semantic memory modelings provide various abstract
computational models ranging from statistical, associative to
neural network models. While most associative models (e.g.
[1]) and network models (e.g. [6]) focus on representation but
not on learning of such semantic knowledge; typical statistical
models (e.g. [7], [9]) allow learning but only work for a
limited form of semantic memory. Some others are based on
neural architectures corresponding to the memory systems in
the brain. Hinton [5] emulates the semantic network model
by setting up interconnected neural fields reflecting different
elements of a proposition. Beyond representing relationships
between concepts, the connectionist architecture supports rec-
ollection and generalization through pattern completion across
the network. Farah and McClelland [4] suggest a bidirectional
network model consisting of different interconnected neural
fields corresponding to their sensory-functional features.

Besides studying individual memory as an isolated system,
some existing works attempt to understand the interactions
among declarative memories. REM-II [9] connects episodic
memory and semantic memory together to learn statistical
relationships between items within and across time. Another
episodic memory model based on the SOAR [10] embeds
episodic memory directly to the symbolic semantic memory
model as additional properties providing contextual and histor-
ical information of each assertion and update in the memory.

A more realistic interaction model called Complementary
Learning Systems (CLS) [8] reflects connections between
hippocampus and neocortex (brain areas commonly known as
associated with episodic and semantic memory respectively)
in the brain and comprises a particular memory consolidation
process.

The typical connectionist models of procedural memory
(e.g. [2]) learn cognitive and motor skills as associated pairs or
temporal sequences of actions. On the other hand, fragment-
based or chunking models (e.g. [11]) acquire procedural
knowledge through case-based learning of memory chunks
or fragments. More recently, the hybrid models of the two
procedural learning paradigms further investigate the cognitive
capabilities and functionalities emerging from the interaction
between procedural and declarative learning. In these models,
the sub-symbolic learning from procedural memory (e.g. [14])
takes the controls of various tasks, while the symbolic and
explicit rules are inferred through the declarative memory.

III. THE MULTIPLE-MEMORY MODEL

The proposed procedural-declarative memory system is con-
sidered to be an integral part of the reasoning mechanism of an
agent (Figure 1). At each point of time, the agent interacts with
the environment and performs certain tasks based on its current
level of procedural skills and declarative knowledge. The
perception and information characterizing a single experience
from the agent reasoning system can be captured as a snapshot
and then encoded to be an individual event. The encoded
event is held temporarily in a shared working memory in
which the episodic memory automatically stores and organizes
events in subsequent order into units of episode. The events
and episodes stored in episodic memory trigger the learning
of semantic memory through a consolidation process, which
further leads to the formation of new knowledge and behavior
patterns.

In general, the three proposed memory modules learn and
run concurrently but in different paces. Their major memory
operations to facilitate the reasoning process can be listed as
follows:

∙ Action selection by procedural memory. At any point
in time, the current action to take is selected through
the procedural memory by executing the fired procedural
rule.

∙ Automatic encoding in episodic memory. Events held
in working memory are automatically captured and stored
in episodic memory.

∙ Memory consolidation by pattern reinstatements. At
some point in time, the contents of episodic memory are
read out to the working memory which starts the learning
process in semantic memory.

∙ Declarative memory retrieval by pattern completion.
The information and knowledge in the episodic and
semantic memory can be retrieved by providing memory
cues as a subset or portions of the target information to
be retrieved.
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Fig. 1. The multi-memory system

∙ Behavior learning in procedural memory. The asso-
ciation between behavior and current state of the agent
can be learned by procedural memory through reinforce-
ment learning across the sensory, motor, and feedback
channels.

The proposed memory model is based on fusion Adaptive
Resonance Theory (ART) [16] which performs unsupervised
learning input patterns in real time. Given a set of input
patterns , one for each input channel, fusion ART employs
a bi-directional process of recognition and prediction to find
the best matching category. It also learns continuously by
updating the weights of neural connections at the end of each
search cycle. In addition, the fusion ART model may grow
dynamically by allocating a new category node if no match
can be found. This type of neural network is chosen as the
building block of our memory system as it enables continuous
formation of memory with adjustable vigilance to control the
growth of the network and the level of generalization. By
applying fuzzy operations and complement coding [16], fusion
ART can generalize input patterns dynamically and capture a
range of values every time it learns.

A. Fusion ART

Fusion ART network is used to learn the individual memory
modules in a unified manner. In this case, each memory trace
stored is represented as a multi-channel pattern. Figure 2
illustrates the fusion ART architecture, which may be viewed
as an ART network with multiple input fields.

Fig. 2. Fusion ART

The detailed dynamics of a multi-channel fusion ART can
be described as follows.

Input vectors: Let I𝑘 = (𝐼𝑘1 , 𝐼
𝑘
2 , . . . , 𝐼

𝑘
𝑛) denote an input

vector, where 𝐼𝑘𝑖 ∈ [0, 1] indicates the input 𝑖 to channel 𝑘, for
𝑘 = 1, . . . , 𝑛. With complement coding, the input vector I𝑘 is
augmented with a complement vector Ī𝑘 such that 𝐼𝑘𝑖 = 1−𝐼𝑘𝑖 .

Input fields: Let 𝐹 𝑘
1 denote an input field that holds the

input pattern for channel 𝑘. Let x𝑘 = (𝑥𝑘
1 , 𝑥

𝑘
2 , . . . , 𝑥

𝑘
𝑛) be the

activity vector of 𝐹 𝑘
1 receiving the input vector I𝑘 (including

the complement).
Category fields: Let 𝐹𝑖 denote a category field and 𝑖 > 1 indi-
cate that it is the 𝑖th field. The standard multi-channel ART has
only one category field which is 𝐹2. Let y = (𝑦1, 𝑦2, . . . , 𝑦𝑚)
be the activity vector of 𝐹2.
Weight vectors: Let w𝑘

𝑗 denote the weight vector associated
with the 𝑗th node in 𝐹2 for learning the input pattern in 𝐹 𝑘

1 .
Parameters: Each field’s dynamics is determined by choice
parameters 𝛼𝑘 ≥ 0, learning rate parameters 𝛽𝑘 ∈ [0, 1],
contribution parameters 𝛾𝑘 ∈ [0, 1] and vigilance parameters
𝜌𝑘 ∈ [0, 1].

The dynamics of a multi-channel ART can be considered as
a system of continuous resonance search processes comprising
the basic operations as follows.
Code activation: Given an activity vector, x𝑘, a node 𝑗 in 𝐹2

is activated by the choice function

𝑇𝑗 =

𝑛∑

𝑘=1

𝛾𝑘
∣x𝑘 ∧w𝑘

𝑗 ∣
𝛼𝑘 + ∣w𝑘

𝑗 ∣
, (1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)𝑖 ≡
𝑚𝑖𝑛(𝑝𝑖, 𝑞𝑖), and the norm ∣.∣ is defined by ∣p∣ ≡ ∑

𝑖 𝑝𝑖 for
vectors p and q.
Code competition: A code competition process follows to
select a 𝐹2 node with the highest choice function value. The
winner is indexed at 𝐽 where

𝑇𝐽 = max{𝑇𝑗 : for all 𝐹2 node 𝑗}. (2)

When a category choice is made at node 𝐽 , 𝑦𝐽 = 1; and
𝑦𝑗 = 0 for all 𝑗 ∕= 𝐽 indicating a winner-take-all strategy.
Template matching: A template matching process checks if
resonance occurs. Specifically, for each channel 𝑘, it checks
the match function 𝑚𝑘

𝐽 of the chosen node 𝐽 meets its
vigilance criterion such that

𝑚𝑘
𝐽 =

∣x𝑘 ∧w𝑘
𝐽 ∣

∣x𝑘∣ ≥ 𝜌𝑘. (3)

If any of the vigilance constraints is violated, mismatch
reset occurs or 𝑇𝐽 is set to 0 for the duration of the input
presentation. Another 𝐹2 node 𝐽 is selected using choice
function and code competition until a resonance is achieved.
If no selected node in 𝐹2 meets the vigilance, an uncommitted
node is recruited in 𝐹2 as a new category node selected by
default.
Template learning: Once a resonance occurs, for each channel
𝑘, the weight vector w𝑘

𝐽 is modified by the following learning
rule:

w
𝑘(new)
𝐽 = (1− 𝛽𝑘)w

𝑘(old)
𝐽 + 𝛽𝑘(x𝑘 ∧w

𝑘(old)
𝐽 ). (4)

Activity readout: The chosen 𝐹2 node 𝐽 may perform a
readout of its weight vectors to an input field 𝐹 𝑘

1 such that
x𝑘(new) = w𝑘

𝐽 .
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A fusion ART network, consisting of different input (output)
fields and a category field, is a flexible architecture that can be
made for a wide variety of purposes. The neural network can
learn and categorize inputs and can be made to map a category
to some predefined fields by a readout process to produce the
output. Another important feature of the fusion ART network
regarding its use in memory is that no separate phase of
operation is necessary for conducting recognition (activation)
and learning. Learning can be conducted by adjusting the
weighted connections while the network searches and selects
the best matching node. When no existing node can be
matched, a new uncommitted node is allocated to represent
the new pattern. Hence, the network can grow in response to
novel patterns.

B. Episodic Memory Model

The two key elements of episodic memory are events and
episodes. An event can be represented as an aggregation
of attributes describing a snapshot of experience in time.
The event attribute values characterize the what (e.g subject,
relation, action, object), where (e.g location, country, place),
and when (e.g date, time, day, night) information of an event.
Figure 3 shows an example of the structure of an event
based on Unreal Tournament video game domain [21] used
in our experiment (explained in later sections). An event may
consist of information about location, states (health level,
ammo level, distance to enemy, and reachable items around),
behaviors (running around, collecting items, escaping from the
enemy, and engaging in battle), and a reward (or punishment)
level (e.g kill the enemy, being killed or damaged). These
information can be represented as a vector which later can be
processed as an input for episodic memory.

Fig. 3. Event encoding

An event can be encoded as an input vector to the fusion
ART network and a category can be selected as an activated
node by a bottom-up activation process. On the other hand,
the top-down activation (readout operation) achieves the recall
task. Figure 4(a) illustrates the bottom up and top down
operations for learning, recognition, and recalling an event.
The figure shows that to store and recall an event, two layers
of neural fields 𝐹1 and 𝐹2 are involved.

On the other hand, an episode can be defined as a list
of events collected in a temporal order. Our approach to
encode a sequential order of events in the neural network
is by maintaining a graded pattern of neural activations as
each activation decays over time. Every time a new activation
occurs in a neural node (neuron) 𝑗, the value is decayed so
that 𝑦(𝑛𝑒𝑤)

𝑗 = 𝑦
(𝑜𝑙𝑑)
𝑗 (1 − 𝜏) where 𝜏 ∈ (0, 1) is the decaying

factor and 𝑦𝑗 is the activation value of node 𝑗. The activation
values form a certain pattern such that 𝑦𝑡𝑖 > 𝑦𝑡𝑖−1

> 𝑦𝑡𝑖−2
>

... > 𝑦𝑡𝑖−𝑛
holds where 𝑡0, 𝑡1, 𝑡2, ..., 𝑡𝑛 denote time points

and 𝑦𝑡𝑗 is a node value activated or selected at time 𝑡𝑗 .
In this case 𝑡𝑖 is the current or the latest time point. The
graded sequential pattern can also be learnt more permanently
as weighted connections for example using the bi-directional
activation and learning in fusion ART. Figure 4(b) illustrates
the bottom up and top down operations between neural fields
𝐹2 and 𝐹3 for learning, recognition, and recalling an episode.

Fig. 4. (a) Operations between 𝐹1 and 𝐹2; (b) Operations between 𝐹2 and
𝐹3

Figure 5 shows the overall structure of the episodic memory
model comprising three layers of memory fields. The network
between 𝐹1 and 𝐹2 can be considered as a fusion ART for
learning individual events. 𝐹2 serves as a medium-term mem-
ory buffer for event activations that holds the graded pattern of
activations for representing a sequence. The sequential activity
pattern can be learnt permanently as weighted connections
between 𝐹2 and 𝐹3, and hence they form another fusion ART
for learning episodes.

Fig. 5. The episodic memory model

To retrieve an episode, a continuous search process takes
place in episodic memory in which the pattern of cue is formed
in 𝐹2 while 𝐹3 nodes are activated and selected at the same
time by the resonance search process. As long as a matching
node is not found (still less than the vigilance of 𝐹2), an
𝐹2 node is activated for every event received (or may not be
active at all if the event is absent) while all other nodes are
decayed so that 𝑦(𝑛𝑒𝑤)

𝑗 = 𝑦
(𝑜𝑙𝑑)
𝑗 (1−𝜏) where 𝑦𝑗 is a node 𝑗 in

𝐹2 field. The continuous retrieval model described above has
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been demonstrated in [22] to robustly retrieve episodic traces
using different partial and noisy memory cues. For example,
given a sequence A,B,C,D,E as a memory trace among other
sequence entries in the episodic memory, the sequence can be
correctly retrieved using cues of ’A,B,C’, ’A,B’, or ’D,E’ as
a target episode presented partially and sequentially. Figure 6
illustrates how memory cues can be used to retrieve a complete
episode. Based on the presentation of a memory cue as a
sequence (Figure 6i-iii), the neural network finds the best
matching node in the category field 𝐹3.

Fig. 6. Memory cues as partial target episodes (complement coding in 𝐹2

is not shown for simplicity)

C. Semantic Memory Model

Different from episodic memory, we view that the semantic
memory is not unitary. In other words, there may be different
types of semantic memory network, each represents different
structure of knowledge. In contrast to episodic memory, each
entry in semantic memory generalizes similar inputs into the
same category rather than as separate entries. Each type of
semantic memory can be made as a fusion ART with each
input field representing a property or an attribute of a concept.
The generalization can be achieved by lowering the vigilance
parameter 𝜌 so that slightly different input patterns will still
activate the same category.

Fig. 7. Different types of semantic memory and the memory consolidation
process

Figure 7 illustrates the structure of various types of the
semantic memory. A semantic memory network may consist
of domain specific associative rules (e.g a set of association
between a certain object and its location in the environment, a
set of rule associating the effectiveness of a certain weapon and
the distance to the opponent) or generic causal relations asso-
ciating a particular type of event to another that follows. These
types of semantic knowledge can be derived by exposing the
played back items from the episodic memory to the input of
the semantic memory using a lower vigilance parameter and a

smaller learning rate such that similar instances may gradually
be clustered together regardless of their order.

D. Memory Consolidation From Episodic to Semantic Mem-
ory

As two integral components of declarative memory system,
episodic memory and semantic memory have been commonly
recognized to be intrinsically related [18]: while seman-
tic memory can be considered to be high level concepts
and knowledge extracted from specific experiences stored in
episodic memory, semantic memory influences daily activities
and guides the formation of new episodic memory. Essentially,
in this proposed memory system, episodic and semantic mem-
ory run and learn independently in parallel but at different
paces. Episodic memory serves as a long-term temporary
buffer for rapidly storing events and episodes. The stored
events and episodes then can be recalled at a later time through
a memory consolidation process to gradually extract and learn
general facts and rules as semantic memory.

In our proposed system, the knowledge transfer process
from episodic to semantic memory starts with a playing-
back of the stored episodes from episodic memory model.
During each episode reproduction, each associated event in the
episode will be presented as both the episodic memory output
(via 𝐹1) and the activation pattern of the working memory. The
ordering of event reproductions should be consistent with the
temporal information stored (via weights of 𝐹2). As each event
is presented, it will be reevaluated and checked against its
relevance with the current knowledge transfer process. In case
the presented event describes the experience of interest, the
event representation (shown in Figure 3) held in the working
memory is forwarded to semantic memory as a training sample
for learning the specific semantic knowledge. Otherwise, the
content of working memory is discarded and the reproduction
is continued from the next stored event.

E. Procedural Memory Model

The procedural memory model is based on a 3-channel
Fusion ART model, also known as Temporal Difference-
Fusion Architecture for Learning, COgnition, and Navigation
(i.e. TD-FALCON). FALCON learns action and value policies
through reinforcement learning across the sensory, motor, and
feedback channels. As shown in Figure 8, FALCON [17]
comprises a cognitive field 𝐹 𝑐

2 and three input fields, namely
a sensory field 𝐹 𝑐1

1 for representing current states, an action
field 𝐹 𝑐2

1 for representing actions, and a reward field 𝐹 𝑐3
1 for

representing reinforcement values.

Fig. 8. The procedural memory model
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TD-FALCON [15] incorporates Temporal Difference (TD)
methods to estimate and learn value functions of action-state
pairs 𝑄(𝑠, 𝑎) that indicates the goodness for a learning system
to take a certain action 𝑎 in a given state 𝑠. Such value
functions are then used in the action selection mechanism,
also known as the policy, to select an action with the maximal
payoff.

Given the current state s, the proposed model first decides
between exploration and exploitation by following an action
selection policy. For exploration, a random action is picked.
For exploitation, the proposed model searches for optimal
action through a direct code access procedure [15]. Upon
receiving a feedback from the environment after performing
the action, a TD formula is used to compute a new estimate
of the Q value of performing the chosen action in the current
state. The new Q value is then used as the teaching signal
for the procedural memory model to learn the association of
the current state and the chosen action to the estimated Q
value. The details of the action selection policy, the direct
code access procedure, and the Temporal Difference equation
are elaborated as follow.

Action Selection Policy: Through a direct code access pro-
cedure, TD-FALCON searches for the cognitive node which
matches with the current state and has the maximal reward
value. For direct code access, the activity vectors 𝑥𝑐1, 𝑥𝑐2,
and 𝑥𝑐3 are initialized by 𝑥𝑐1 = 𝑆, 𝑥𝑐2 = (1, ..., 1), and
𝑥𝑐3 = (1, 0). TD-FALCON then performs code activation and
code competition according to equations (5) and (6) to select
a cognitive node.

Upon selecting a winning 𝐹 𝑐
2 node 𝐽 , the chosen node 𝐽

performs a readout of its weight vector to the action field 𝐹 𝑐2
1

such that

x𝑐2(new) = x𝑐2(old) ∧w𝑐2
𝐽 . (5)

An action 𝑎𝐼 is then chosen, which has the highest activation
value

𝑥𝑐2
𝐼 = max{𝑥𝑐2(new)

𝑖 : for all 𝐹 𝑐2
𝑖 node 𝑖}. (6)

Learning Value Function: A typical Temporal Difference
equation for iterative estimation of value functions 𝑄(𝑠, 𝑎) is
given by

Δ𝑄(𝑠, 𝑎) = 𝛼𝑇𝐷𝑒𝑟𝑟. (7)

where 𝛼 ∈ [0, 1] is the learning parameter and 𝑇𝐷𝑒𝑟𝑟 is
a function of the current Q-value predicted by TD-FALCON
and the Q-value newly computed by the TD formula.

TD-FALCON employs a Bounded Q-learning rule, wherein
the temporal error term is computed by

Δ𝑄(𝑠, 𝑎) = 𝛼𝑇𝐷𝑒𝑟𝑟(1−Δ𝑄(𝑠, 𝑎)). (8)

where 𝑇𝐷𝑒𝑟𝑟 = 𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎), of which
𝑟 is the immediate reward value, 𝛾 ∈ [0, 1] is the discount pa-
rameter, and 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) denotes the maximum estimated
value of the next state 𝑠′.

F. Decision Making Through Procedural-Declarative Memory

As shown in Figure 1, all memory modules are connected
through a medium term working memory which holds all pos-
sible details of the current perception and internal status. The
decision making of a memory-enhanced agent is conducted
through interactions among all existing memory modules. At
any time of point, by feeding memory patterns of working
memory as input cues, each memory module retrieves and
outputs its best matching memory pattern. These activated
memory patterns represent the most relevant knowledge stored
in different memory modules based on the current situation,
combining together to form the current decision making of
the agent. Take an example on a shooting game, given the
observed situation at some time point (shared by working
memory), the current decision making of the agent may consist
of an “engaging in battle” action selected from procedural
memory and the best weapon choice based on semantic
memory. Additionally, during the online learning of different
memory modules, the knowledge learned and activated from
declarative memory influences the agent’s behaviors, which
will eventually link to the discovery of new procedural and
declarative knowledge.

IV. CASE STUDY ON UNREAL TOURNAMENT

In order to evaluate the integrated procedural-declarative
memory model, we embed the proposed memory system into
an autonomous non-player character (NPC) agent playing the
Unreal Tournament (UT) game. The experiments using UT
are conducted to see if the proposed memory model can
produce useful knowledge for the agent that improves its
performance. The scenario of the game used in the experiment
is ”Death match”, wherein the objective of each agent is to
kill as many opponents as possible and to avoid being killed
by others. In the game, two (or more) NPCs are running
around and shooting each other. They can collect objects in the
environment, like health or medical kit to increase its strength
and different types of weapon and ammunition for shooting.

In the experiment, all agents that we evaluate in the experi-
ment play against a baseline NPC agent called AdvanceBot
that behave according to a set of hardcoded rules. There
are four different hard-coded behavior modes in AdvanceBot
(i.e. running around, collecting items, escaping away and
engaging in battle). AdvanceBot always chooses one of the
four behaviors based on a set of predefined rules. Under the
battle engagement behavior, the agent also always tries to
select the best weapon available for shooting based on some
heuristics optimized for a certain environment map used in the
game.

A. Memory Enhanced Agents

To investigate how the individual memory modules con-
tribute to the overall agent performance, different agents with
different memory modules embedded are tested and compared.
This experiment employs two memory-based agents, namely
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TABLE I
SAMPLE RULES LEARNT IN PROCEDURAL MEMORY

IF health is around 19, and not being damaged,
and not seen enemy,
and has adequate ammo,
and currently in running around state;
THEN go into collecting items state;
WITH reward of 0.556.

IF health is 0.4, and being damaged,
and opponent is in sight,
and has adequate ammo,
and currently in collecting item state;
THEN go into engaging in battle state;
WITH reward of 0.718.

RLBot with procedural memory embedded and MemBot in-
corporating the full integrated procedural-declarative memory
system.

a) Agents with Procedural Memory: The agent embed-
ding procedural memory module (i.e. RLBot) is made by
employing the same set of behaviors as AdvanceBot. The
agent learns and performs its behavior selection through the
reinforcement learning algorithm as stated in Section III-E.
The state, action, and reward vectors in Figure 9 correspond
to the input fields in a multi-channel ART network of RLBot.
Behavior pattern (i.e. running around, collecting items, escap-
ing away and engaging in battle) in the state vector represents
the behavior currently selected. The action vector indicates the
next behavior to be selected. Based on the state field and the
reward (set to the maximum), the network searches the best
match category node and reads out the output to the action
field indicating the behavior type to be selected. The network
then receives feedbacks in terms of the new state and any
reward given by the environment.

Fig. 9. State, action and reward representation for procedural memory model

The network learns by updating the weighted connections
according to the feedback received and applying temporal
difference methods as described by III-E to update the re-
ward field. The agent receives the reward signal (positive or
negative) whenever it kills or is killed by another agent. In
this way, RLBot continually learns and acquires procedural
knowledge on behavior selections (as illustrated by the sample
rule shown in Table I) while playing the games. In contrast
to AdvanceBot, RLBot chooses an available weapon randomly
in the battle engagement behavior. Another agent called RL-
Bot++ is also used to employ the same reinforcement learning
model as RLBot but select the weapon based on the optimized
predefined rules just like in AdvanceBot.

TABLE II
SAMPLE RULES LEARNT IN SEMANTIC MEMORY

IF distance is not so far [1800 2099]
THEN ASSAULT_RIFLE effectiveness 0.07

IF distance is very near [300 599]
THEN ASSAULT_RIFLE effectiveness 0.048

IF distance is extremely near [0 299]
THEN SHOCK_RIFLE effectiveness 0.946

IF distance is very near [300 599]
THEN ROCKET_LAUNCHER effectiveness 0.932

Note: the largest visible distance to enemy is 300

b) Agent with Procedural-Declarative Memories: The
proposed declarative model is embedded in an agent (i.e.
MemBot) which has the same architecture as RLBot but with
the episodic and semantic memories running concurrently.
The episodic memory captures episodes based on the event
information in the working memory. An event from the UT
game is encoded as a vector shown in Figure 3. There are four
input fields in episodic memory for location, state, selected
behavior, and the reward received. In the experiment, the
vigilance of all input fields (𝜌𝑒) and the 𝐹2 field (𝜌𝑠) are set to
1.0 and 0.9 respectively so that it tends to always store distinct
events and episodes in response to the incoming events.

As described in Section III-C, the semantic network is
applied to learn weapon effectiveness in the experiment. The
network has three input fields: the Weapon field representing
the identity of the weapon (𝐹 𝑎

1 ); the Distance field representing
the distance between the agent and its opponent at the time
of shooting (𝐹 𝑏

1 ); and the Effectiveness field representing the
chance to kill the enemy (𝐹 𝑐

1 ). In the experiment, the vigilance
of the Weapon (𝜌𝑎), Distance (𝜌𝑏), and Effectiveness (𝜌𝑐) fields
are 1.0, 0.9, and 0.8 respectively. The learning rate 𝛽𝑎, 𝛽𝑏,
and 𝛽𝑐 are 1.0, 0.1, and 0.2 respectively. Similar to the action
selection process with procedural memory, the agent reasoning
system can use the knowledge in the semantic memory by
providing the current distance to the opponent while setting up
the effectiveness to maximum (the greatest chance of killing)
as memory cues. The retrieved values support the agent to
decide which weapon to select during the battle. If the cue is
not recognized, a random weapon is selected.

Table II illustrates the sample learned rules of weapon
effectiveness in symbolic forms. Each rule corresponds to a
category node in 𝐹2 layer of the semantic memory. The gen-
eralization employed using Fuzzy operators makes it possible
to represent the values of antecedents with a range of values.
Table II also shows the symbolic categorization of the distance
range for interpreting the rules.

B. Results and Discussion

Experiments are conducted by letting RLBot, RLBot++ and
the memory-based RLBot (i.e. MemBot) to individually play
against AdvanceBot. A single experiment run consists of 25
games or trials, which is counted whenever the agent kills or
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is killed by another agent.

10

5

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

re
D
iff
er
en

ce

Trails

20

15Sc
or

RandomWeapon Selection (RLBot) Weapon Selection Through SM (MemBot)

Predefined selection (RLBot++)

Fig. 10. Performance of RLBot, RLBot++, and MemBot over 25 trials

Figure 10 shows the performance of both RLBot, RLBot++
and MemBot in terms of game score differences against
AdvanceBot averaged over four independent runs. From the
performance plotting of RLBot, it dominates over its hard-
coded opponent gradually. It shows that the procedural mem-
ory facilitates the agent through interacting with the environ-
ment and enhances its learning capability. By comparing its
performance with MemBot, the experiment also confirms that
the incorporation of the episodic and semantic memory module
further improves the learning which results in a much better
performance than using the reinforcement learning alone (i.e.
RLBot). This indicates that the semantic memory successfully
learns useful knowledge for the weapon selection portion
of the reasoning mechanism. The performance of MemBot
can eventually reach the same level as the weapon selection
optimized rules (i.e. RLBot++).

V. CONCLUSION

In this paper, we have presented a multi-memory sys-
tem supporting the distributed knowledge representations and
parallel memory learning across procedural and declarative
memory. Based on fusion Adaptive Resonance Theory, the
proposed system promotes the rapid and robust learning on
declarative traces as well as effective online reinforcement
learning. Within the proposed system, each individual memory
module performs independent learning in different paces. The
memory modules cooperate closely with each other though
memory consolidations and knowledge transfers in order to
realize their individual roles and functionalities, as well as
to facilitate the process of decision making. The proposed
memory system has been evaluated in an online shooting
game, wherein the proposed system is used to learn the declar-
ative and procedural memories of an agent. Our experiments
also confirms that the proposed system improves the learning
of the agent in real time. In this paper, we show that the
cooperations among different memory modules emerge more
intelligence compared to modeling them in isolation. For the
future development of this multi-memory system, we aim to
study on more general forms of semantic network, as well
as enhancing the dynamic management of each individual
memory module.
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