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A Self-Organizing Approach to Episodic Memory Modeling

Wenwen Wang, Budhitama Subagdja, Ah-Hwee Tan, Senior Member, IEEE
and Janusz A. Starzyk, Senior Member, IEEE

Abstract— This paper presents a neural model that learns
episodic traces in response to a continual stream of sensory
input and feedback received from the environment. The pro-
posed model, based on fusion Adaptive Resonance Theory
(fusion ART) network, extracts key events and encodes spatio-
temporal relations between events by creating cognitive nodes
dynamically. The model further incorporates a novel memory
search procedure, which performs parallel search of stored
episodic traces continuously. Comparing with prior systems, the
proposed episodic memory model presents a robust approach
to encoding key events and episodes and recalling them using
partial and erroneous cues. We present experimental studies,
wherein the model is used to learn episodic memory of an
agent’s experience in a first person game environment called
Unreal Tournament. Our experimental results show that the
model produces highly robust performance in encoding and
recalling events and episodes even with incomplete and noisy
cues.

I. INTRODUCTION

Episodic memory is a special class of memory system
that allows one to remember his/her own experiences in
an explicit and conscious manner [13]. Although episodic
memory is considered to be less important than semantic
memory, recent research has found episodic memory to be
crucial in supporting many cognitive capabilities, includ-
ing concept formation, representation of events in spatio-
temporal dimension and record of progress in goal processing
[3].

The specific functionalities mentioned above suggest that
episodic memory should not be just a storage of one’s
past experiences, but should support the representation of
complex conceptual and spatio-temporal relations among
one’s experienced events and situations. While many existing
episodic memory models provide the encoding of events
and relations between events, most still have limitations in
capturing conceptual relations between events (e.g. [6], [7]).
On the other hand, those models supporting the intricate
relations of concepts and events are not able to process
complex sequences of events as a whole (e.g. [9], [4], [10]).

In this paper, we present our study on the representation
and learning of episodic memory. Based on a generalization
of fusion Adaptive Resonance Theory (ART) [12], we show
how the neural network can be used in an episodic memory
model, for encoding an individual’s experience in the form
of events as well as the spatio-temporal relations among
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events. The model supports complex-event storage through
its multiple-channel pattern learning capability inherited from
fusion ART. An additional encoding scheme is also intro-
duced that allows complex sequences of events to be grouped
and recognized. The model further incorporates a novel
approximate memory search procedure, which performs par-
allel search of stored episodic traces continuously in response
to potentially imperfect search cues.

We have conducted experimental studies, wherein the
proposed model is used to learn episodic memory based on
an agent’s encounters in a first person shooting game called
Unreal Tournament. Our experiment results show that the
model is able to provide a robust level of performance in
encoding and recalling events and episodes using various
types of input queries involving incomplete and noisy cues.

The rest of this paper is organized as follows. Section
II discusses the issues and challenges in modeling episodic
memory. Section III presents the architecture of our proposed
episodic memory model. Section IV and section V present
the algorithms and processes for event and episode encoding
and retrieval respectively. Section VI reports the experimental
results based on the Unreal Tournament game. Section VII
provides a brief discussion of selected work on episodic
memory models. The final section concludes and highlights
future work.

II. ISSUES AND CHALLENGES

A. Memory Formation

As discussed in Section I, two basic elements of episodic
memory are events and episodes. An event can be described
as a snapshot of experience. Usually, by aggregating at-
tributes of interest, a remembered event can be used to
answer critical questions about the corresponding experience,
such as what, where and when. On the other hand, an episode
can be considered as a temporal sequence of events that one
experiences.

To enable efficient encoding of events and episodes,
an episodic memory model should be able to distinguish
between distinct events and episodes with a well-defined
matching scheme. The basic challenge regarding building
the memory storage matching scheme is: On one hand, the
novelty detection should be sufficiently strict to distinguish
highly similar but semantically different events (e.g. “Mary
borrowed a book from Emma yesterday” is different from
“Mary borrowed a book from Bob yesterday”); On the
other hand, it should also be loose enough to tolerate minor
differences for events within a single episode, such as slight
changes within observed events and their temporal order.
Hence, the critical characteristics for the matching scheme is
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its high efficiency in determining the significant differences
while tolerating all minor variances for both events and
episodes encoding. Therefore, an efficient matching scheme
should also lead to a parsimonious memory storage as well
as faster memory operations.

B. Memory Retrieval

We identify three major tasks in episodic memory retrieval,
namely event detection, episode recognition, and episode
recall, described as follows.
• Event detection refers to the recognition of a previously

learned event based on a possibly incomplete descrip-
tion of the current situation. The episodic memory
model should be able to search for similar memorized
events, which can be used to complete or refine the
given description.

• Episode recognition refers to the identification of a
stored episode in the episodic memory in response to a
partial event sequence. Following the effect of episode
recognition, episodic memory model may also perform
event completion if the present event sequence has
missing parts in the event representation. Two basic
requirements of episode recognition include: (1) toler-
ance to incomplete cues, which only form part of the
stored episodes and (2) tolerance to errors in situational
information, for example, noise in event attributes and
variations in the order of event sequences.

• Episode recall is the playback of episode(s) in response
to an external cue, such as “what did I do yesterday?”.
When a cue is presented, episodic memory answers the
cue with the most closely matched episode according
to its similarity. During the episode playback, compared
with the stored information, an instant cue may present
minor disparities in individual event representations as
well as their temporal orderings. The episodic memory
model should be able to identify and tolerate this
imperfection during recall.

C. Summary

Taking the above into consideration, an episodic memory
model should satisfy the following basic requirements:
• Efficient event representation, which is able to describe

complex situations and events
• Efficient episode representation, which explores spatio-

temporal relations among events which form the episode
• Well-defined generalizations on representations, which

accurately distinguishes critical and irrelevant differ-
ences among them (for both events and episodes)

• Fast memory operations, including memory encoding
and retrieving

• High error tolerance to incomplete or noisy cues

III. THE PROPOSED MODEL

Our proposed episodic memory (EM) model is built by hi-
erarchically joining two multi-channel self-organizing neural
networks, called fusion ART networks. Based on Adaptive
Resonance Theory (ART) [2], fusion ART dynamics offers

a set of universal computational processes for encoding,
recognition, and reproduction of patterns.

As shown in Figure 1, the model consists of three layers
of memory fields: F1, F2 and F3. The F1 layer, connected
with the working memory, holds the activation values of all
situational attributes. Based on the F1 pattern of activations, a
cognitive node in F2 is selected and activated as a recognition
of the event. Following that, the activation pattern of an
incoming event can be learnt by adjusting the weights in
the connections between F1 and F2.

Besides categorizing events, the F2 layer also acts as
a medium-term memory buffer for event activations. A
sequence of events produces a series of activations in F2.
The activations in F2 decay over time such that a graded
pattern of activations is formed representing the order of the
sequence. This activity pattern, which represents an episode,
is similarly learnt as weighted connections between F2 and
the selected category in F3.

Once an episode is recognized through a selected node
in F3 is selected, the complete episode can be reproduced
by a top down activation process (readout) from F3 to F2.
The events in the episode can also be reproduced by reading
out the activations from F2 to F1 following the order of the
sequence held in the F2 layer.

Fig. 1. Episodic model

The computational principles and algorithms used for
encoding, storing and retrieving events and episodes are
described in details in the following sections.

IV. EVENT ENCODING AND RETRIEVAL

An event consists of attributes characterizing what (e.g. sub-
ject, relation, action, object), where (e.g. location, country,
place), and when (e.g. date, time, day, night) an event occurs.
Figure 2 shows an example of the structure of an input event
based on the Unreal Tournament domain [14]. This structure
is also used in the experiments for evaluating the proposed
model (explained in later sections). In the structure shown,
the location is expressed using a 3-dimensional cartesian
coordinate system; other task and internal states include
the observed distance from the enemy (another agent), the
availability of collectable items, and the agent’s health and
ammo level.

There are four behavior choices (actions) available for the
agent, including running around, collecting items, escaping
from battle and engaging in fire. The consequence of a battle
situation (e.g. killing and being damaged) is presented to
the model as a reward value. Information about time is not
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included in this case, but it can be assumed that the temporal
information has been represented inherently in the episode.

Fig. 2. Event encoding

A. Fusion ART

Fusion ART network is used to learn individual events
encoded as weighted connections between the F1 and F2

layers. In this case, an event is represented as a multi-channel
input vector. Figure 3 illustrates the fusion ART architecture,
which may be viewed as an ART network with multiple input
fields. Each event’s attribute is represented as the activity of
a node in the corresponding input field.

Fig. 3. Fusion ART

The detailed dynamics of a multi-channel fusion ART
can be described as follows.

Input vectors: Let Ik = (Ik
1 , Ik

2 , . . . , Ik
n) denote an input

vector, where Ik
i ∈ [0, 1] indicates the input i to channel

k, for k = 1, . . . , n. With complement coding, the input
vector Ik is augmented with a complement vector Īk such
that Īk

i = 1− Ik
i .

Input fields: Let F k
1 denote an input field that holds the

input pattern for channel k. Let xk = (xk
1 , xk

2 , . . . , xk
n) be the

activity vector of F k
1 receiving the input vector Ik (including

the complement).
Category fields: Let Fi denote a category field and i > 1
indicate that it is the ith field. The standard multi-channel
ART has only one category field which is F2. Let y =
(y1, y2, . . . , ym) be the activity vector of F2.
Weight vectors: Let wk

j denote the weight vector associated
with the jth node in F2 for learning the input pattern in F k

1 .
Parameters: Each field’s dynamics is determined by choice
parameters αk ≥ 0, learning rate parameters βk ∈ [0, 1],
contribution parameters γk ∈ [0, 1] and vigilance parameters
ρk ∈ [0, 1].

The dynamics of a multi-channel ART can be considered
as a system of continuous resonance search processes com-
prising the basic operations as follows.
Code activation: A node j in F2 is activated by the choice
function

Tj =
n∑

k=1

γk
|xk ∧wk

j |
αk + |wk

j |
, (1)

where the fuzzy AND operation ∧ is defined by (p∧ q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡ ∑

i pi for
vectors p and q.
Code competition: A code competition process follows to
select a F2 node with the highest choice function value. The
winner is indexed at J where

TJ = max{Tj : for all F2 node j}. (2)

When a category choice is made at node J , yJ = 1; and
yj = 0 for all j 6= J indicating a winner-take-all strategy.
Template matching: A template matching process checks if
resonance occurs. Specifically, for each channel k, it checks
the match function mk

J of the chosen node J meets its
vigilance criterion such that

mk
J =

|xk ∧wk
J |

|xk| ≥ ρk. (3)

If any of the vigilance constraints is violated, mismatch
reset occurs or TJ is set to 0 for the duration of the
input presentation. Another F2 node J is selected using
choice function and code competition until a resonance is
achieved. If no selected node in F2 meets the vigilance, an
uncommitted node is recruited in F2 as a new category node
selected by default.
Template learning: Once a resonance occurs, for each
channel k, the weight vector wk

J is modified by the following
learning rule:

wk(new)
J = (1− βk)wk(old)

J + βk(xk ∧wk(old)
J ). (4)

Activity readout: The chosen F2 node J may perform a
readout of its weight vectors to an input field F k

1 such that
xk(new) = wk

J .
A fusion ART network, consisting of different input (out-

put) fields and a category field, is a flexible architecture that
can be made for a wide variety of purposes. The neural
network can learn and categorize inputs and can be made
to map a category to some predefined fields by a readout
process to produce the output. Another important feature of
the fusion ART network regarding its use in episodic memory
is that no separate phase of operation is necessary for
conducting recognition (activation) and learning. Learning
can be conducted by adjusting the weighted connections
while the network search and select the best matching node.
When no existing node can be matched, a new uncommitted
node is allocated to represent the new pattern. Hence, the
network can grow in response to novel patterns.

B. Algorithm for Event Encoding and Retrieval

Based on the above description of fusion ART, an event can
be encoded as an input vector to the network as defined
in Figure 2. Using the standard operations of fusion ART,
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the recognition task can be realized by a bottom-up acti-
vation given the input vector. On the other hand, the top-
down activation (readout operation) achieves the recall task.
Figure 4 illustrates the bottom up and top down operations
for learning, recognition, and recalling an event.

In particular, the algorithm for learning and recognizing
events can be described as follows:

Algorithm 1 (Event Encoding):
——————————————————————————–
1 Given an incoming pattern of event in F1

2 Activate and select a node (through winner-take-all) in F2

3 WHILE the node is not in resonant condition
or the node has been selected previously

5 Do reset the current node activation
6 Do choose another node in F2

7 IF no matching node can be found in F2 THEN
8 Do recruit an uncommitted node in F2

9 Do learn it as a novel event
——————————————————————————–

The algorithm for event recognition and encoding above is
also designed to handle complex sequences involving repeti-
tion of events. The iteration condition in line 3 Algorithm 1
ensures that the same node will not be selected if it has
been selected previously as a matching category in the same
episode. This leads to the duplication of an event category
if the event pattern is repeated in a sequence (episode). One
important parameter for event recognition and encoding is
ρk, the vigilance parameter for each input channel k in F1.
The vigilance values are is used as thresholds for the template
matching process, as described in Section IV-A. If the same
vigilance value is applied to all input channels in F1 layer,
ρe is introduced to represent this unified vigilance value for
encoding and retrieval of events.

Fig. 4. Operations between F1 and F2

V. EPISODE LEARNING AND RETRIEVAL

A. Episode Representation and Learning Algorithm

A crucial part of EM is to retain the sequential or temporal
order between events. However, in the standard model of
fusion ART, this feature of sequential representation is still
lacking. The EM model proposed in this paper extends the
fusion ART model so that it can associate and group patterns
across time. The approach of encoding temporal relation in
ART-based neural network has actually been suggested in [5],
[1].

The method, called invariance principle, suggests that
activation values can be retained in a working memory
(neural field) in such a way that the temporal order in which
they occur are encoded by their activity pattern. To retain the

temporal order, each entry of activation item multiplicatively
modifies the activity of all previous items. Based on the
multiplying factor, an analog pattern emerges in the neural
field reflecting the order the events are presented. Thus, the
temporal order of items in a sequence, encoded as relative
ratios between their values, remains invariant.

The method has accurately emulated the characteristic
of serial learning conforming the psychological data about
human working memory [5]. The approach has also been
simplified as gradient encoding by replacing the multiplica-
tion with the adding/subtracting operation and is successfully
applied to iFALCON, a belief-desire-intention (BDI) agent
architecture composed of fusion ARTs [11].

To represent a sequence in our EM model, the invariance
principle is applied, so that an activation value in F2 indicates
a time point or a position in an ordered sequence. The most
recently activated node in F2 has the maximum activation
of 1 while the previously selected ones are multiplied by
a certain factor decaying the values over time. Suppose
t0, t1, t2, ..., tn denote the time points in an increasing order,
and yti is a node value of the activity vector of the category
field that is activated or selected at time ti, the activation
values in F2 form a certain pattern such that yti > yti−1 >
yti−2 > ... > yti−n holds where ti is the current or the latest
time point. This pattern of activation also corresponds to the
so called recency effect in STM (Short-Term Memory) in
which a later recently presented item has a higher chance to
be recalled from the memory.

Fig. 5. Operations between F2 and F3

The process of episode learning in the proposed model
is shown in Figure 5. While a newly activated node has an
activation of 1, the activation value of any other node j in F2

is decayed in each time step so that y
(new)
j = y

(old)
j (1− τ),

where yj is the activation value of the jth node in F2 and
τ ∈ (0, 1) is the decaying factor.

Concurrently, the sequential pattern can be stored more
permanently as weighted connections in the fusion ART net-
work. As mentioned previously, F2 and F3 can be considered
respectively as the input field and category field of another
fusion ART neural network with a single input field only.
Each node in F3 represents an episode encoded as a pattern
of sequential order according to the invariance principle in
its weighted connections.

The overall algorithm of episode learning can be described
as follows:

450



Algorithm 2 (Episode activation and learning):
——————————————————————————–
1 FOR EACH event in an episode S
2 Do select a node in F2 based on the input pattern in F1

3 Do set the activation yj of the selected node to maximum
4 Do decay activations of all previously selected nodes i

so that y
(new)
i = y

(old)
i (1− τ)

5 At the end of S,
Do activate, select, and learn a node in F3

based on the pattern formed in F2 by resonance search
——————————————————————————–

One important parameter used in the episode learning
algorithm is ρs, the vigilance parameter in the F2 field. The
vigilance parameter is used as a threshold for the template
matching process as described in Section IV-A.

B. Episode Retrieval

After episodes are learnt, a particular episode can be recalled
based on different types of cues. A cue for the retrieval can be
a partial sequence of the episode starting from the beginning
or any position in the sequence. Based on the cue, the entire
episode can be reproduced through the read out operation. An
important characteristic of the proposed EM model is that the
retrieval can be done in a robust manner as the activation and
matching processes comprise analog patterns. This feature is
useful when the cue for retrieval is imperfect or noisy. The
approximate retrieval is also made possible by the use of
fusion ART as the basic computational principle for all parts
of the EM. For example, lowering the vigilance parameter
ρs of F2 can make it more tolerant to noises or incomplete
cues.

To retrieve an episode based on a weak cue, such as
a subsequence of episode, a continuous search process is
applied, in which the activity pattern of the cue is formed
in F2 while the F3 nodes are activated and selected at the
same time through the resonance search process. As long as
a matching node is not found (still less than ρe), the next
event is received activating another node in F2 while all
other nodes are decayed. For a cue as a partial episode, the
missing event can mean no more new activation in F2 while
other nodes are still decayed. The algorithm for recognizing
an episode based on imperfect cues can be described in
Algorithm 3.

Algorithm 3 (Episode recognition):
———————————————————————————–
1 FOR EACH incoming event
2 Do select a node in F2

based on the incoming event in F1 by resonance search
3 Do set the selected node activation yj to maximum
4 Do decay the value of every previously selected node i

so that y
(new)
i = y

(old)
i (1− τ)

5 Do activate and select a node (winner-take-all)
in F3 based on the current pattern formed in F2

6 IF the selected node matches with the pattern THEN
7 Episode is recognized and the search finishes
8 Continue to the next stage of retrieval by exiting the loop
———————————————————————————–

Once an episode is recognized, the complete pattern of
sequence can be reproduced readily in the F2 layer by the
read out operation from the selected node in F3 to the nodes
in F2. However, to reproduce the complete episode as a
sequence of events, the corresponding values in F1 layer
must be reproduced one at a time following the sequential
order of the event in the episode. The proposed EM model
uses a vector complementing the values in F2 before reading
out the complete events in F1. After the sequential pattern is
readout to the field in F2 which can be expressed as vector y,
a complementing vector y can be produced so that for every
element i in the vector, yi = 1− yi. Given the vector y, the
node corresponding to the largest element in y is selected
first to be read out to the F1 fields. Subsequently, the current
selected element in the vector is suppressed by resetting it
to zero, and the next largest is selected for reading out until
everything is suppressed. In this way, the whole events of
the retrieved episode can be reproduced in the right order.

VI. EXPERIMENTS

In this section, we demonstrate the performance of the pro-
posed EM model in a first-person shooter game environment
called Unreal Tournament (UT). During the game, a non-
player character (NPC) agent receives events describing the
situation it experiences. The EM model is used to learn
episodic traces from those events, which are subsequently
subjected to various recall tasks for performance evaluation.

A. Experiment Setup

An event in the UT can be defined as a vector, as shown
in Figure 2. Each episode includes all events experienced by
the agent during a battle in the game.

The data set applied in the experiments is taken from 50
battles (i.e. episodes) played by an agent. There are in total
1847 events in the data set. The number of events within
an episode varies from 7 to over 250. After the EM model
is built using the collected data set, tests are conducted
to evaluate the accuracy of memory retrieval, subject to
variations of cues, described as follows:

• The cue is a full or partial event sequence of a recorded
episode starting from the beginning of the episode.
The test are conducted over different cue length and
vigilance parameter ρs.

• The cue is a full or partial event sequence of recorded
episodes starting from the end of the episode. The test
are conducted over different cue length and vigilance
parameter ρs.

• The cue is a fixed-length partial event sequence of
recorded episodes starting from various location of the
episode. The test are conducted over different cue length
and vigilance parameter ρs.

• The cue is a noisy or erroneous full length event
sequence of recorded episodes. The test are conducted
over different error rates and combinations of vigilance
parameters (ρe and ρs).
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For the ease of the parameter setting, all our present
experiments use a stanndard vigilance value (ρe) throughout
all the fields in the F1 layer.

B. Retrieving from Beginning of Episodes
In this retrieval test, we extract partial sequences from the

beginning of the recorded episodes as cues for retrieving the
episodes. The cues are of different lengths, ranging from
whole, 1/2, 1/3, 1/4, to 1/5 of the length of the episodes.
Figure 6 shows the retrieval accuracy using cues of various
length under different vigilance values of ρs.

Fig. 6. Accuracies of retrieval with cues from beginning of episodes.

As shown in Figure 6, the model can accurately retrieve
most stored episodes based on partial cues with different
lengths over a large range of vigilance values. A longer cue
typically provides a higher retrieval accuracy. Meanwhile, a
lower vigilance gives more tolerance to the differences in
cue, thus enhancing the accuracy.

C. Retrieving from End of Episodes
In this retrieval test, cues are extracted from the end of the
recorded episodes. Similarly, cues of various length are used,
ranging from whole, 1/2, 1/3, 1/4 to 1/5 of the original length
of the episodes. Figure 7 shows the retrieval accuracy using
cues of different length under different vigilance values of
ρs.

Fig. 7. Accuracies of retrieving with cues from end of episodes.

Referring to Figure 7, with a low vigilance level, the model
can accurately retrieve most stored episodes based on the
partial cue with different lengths. It is because a lower vig-
ilance gives more tolerance to cue differences. Additionally,
a longer cue generally provides a higher retrieval accuracy.

D. Retrieving from Arbitrary Location of Episodes

In this retrieval test, each stored episode is divided into four
partial cues. Each such partial cue is forwarded to the model
for episode retrieval. Figure 8 shows the retrieval accuracy
under various vigilance parameter ρs.

Fig. 8. Accuracies of retrieving from arbitrary location.

As shown in Figure 8, with a low vigilance level, the model
can accurately retrieve most stored episodes based on partial
cues extracted from various locations. However, at a high vig-
ilance level, the retrieval accuracy drops significantly when
the cue is near the middle segments within the episodes.

E. Retrieving with Noisy Events

To test the robustness of the model, we further conduct the
retrieval test with noisy data. Two types of errors are applied
in the test as follows:
• Error in individual event’s attributes;
• Error in event ordering within a complete sequence.
In this section, we test the model’s robustness in dealing

with the first type of noise. The corresponding noisy data
set is directly derived from the original data set using the
method described in Algorithm 4, with specified error rate.

Algorithm 4 (Generation of noisy events):
——————————————————————————–
Input: Error rate r ∈ (0, 1)
1 FOR EACH event in the original data set
2 FOR EACH attribute A in the event
3 IF A is boolean value
4 Toggle A value with a probability of r
5 IF A is real value
6 A.value = A.max− (A.value−A.min)

with a probability of r
——————————————————————————–

We test the model with various error rates on event
representation and the results are shown in Figures 9 to 12.
We observe that, to achieve a high retrieval accuracy with
noisy cues, the model requires a high vigilance ρe for event
recognition in the F2 layer, but a low vigilance ρs during
sequence recognition in the F3 layer. With ρs = 0.5 and
ρe = 1.0, the model can achieve 100% retrieval accuracy
with an error rate as high as 10%. The results show that
during event recognition, the higher vigilance (ρe) is required
to distinguish the highly similar but conceptually different
events; In contrast, episode recognition should be able to
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Fig. 9. Accuracies of retrieving with original data set.

Fig. 10. Accuracies of retrieving with 2% error on event representation.

Fig. 11. Accuracies of retrieving with 5% error on event representation.

Fig. 12. Accuracies of retrieving with 10% error on event representation.

tolerate minor changes within events and their temporal
orders, which is achieved by lowering its vigilance (ρs). By
tuning vigilance values, the model tackles the challenge of
building an efficient memory storage matching scheme as
stated in Section II.

F. Retrieving with Noisy Episodes

In this section, we test the model reliability in dealing with
the second type of noise. The corresponding noisy data set is
derived from the original data set using the method described
in Algorithm 5, given the desired rate of noise.

Algorithm 5 (Generation of noisy episodes):
——————————————————————————–
1 FOR EACH sequence S1 stored
2 Randomly select another stored sequence S2

3 Randomly set the value of x, (0 < x < S1.length)
4 Set y = x + n, where n/S1.length is the desired error rate
5 Replace S1s partial sequence in S1 indexed by [x, y]

with the corresponding partial sequence of S2

——————————————————————————–

We test the model with various error rates on sequence
representations and the results are shown in Figure 13.
Similar to the previous results, to achieve tolerance to high
level of noise, the model requires a relatively low vigilance
(ρs). With a vigilance of 0.5, the model can achieve 100%
retrieval accuracy with an error rate as high as 20%. All the
tests presented in this session were conducted with ρe = 1.0.

Fig. 13. Accuracies of retrieving with various error rates on sequence
representation.

VII. RELATED WORK

Many prior systems model episodic memory as a trace
of events and activities stored in a linear order, wherein
some operations are designed specifically to retrieve and
modify the memory to support specific tasks (e.g. [6]). These
approaches are limited to encoding simple sequential trace
structure and may not be able to learn complex relations
between events and retrieve episodes with imperfect or noisy
cues. Our proposed model addresses this issue by repre-
senting events as multi-channel activation patterns allowing
retrieval based on partial matching. Furthermore, the fusion
ARTs fuzzy operations and the complement coding technique
enable patterns to be generalized, so that irrelevant attributes
of an event can also be suppressed through learning.
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Another approach of episodic memory modeling uses the
tree structure of a general cognitive architecture (SOAR) to
store episodes instead of the linear trace (e.g. [7]). Each
node in the memory tree includes some temporal information
about its occurrence so that more complex representation
can be expressed and episodes can be retrieved based on
partial match. However, as it requires to store every snapshot
of working memory, the system may not be efficient due
to possible large storage of snapshots. In contrast, our EM
model clusters both individual events and their sequential
patterns based on similarities instead of holding all incom-
ing information in a trace buffer. Our approach inherently
comprises more compact storage and efficient processing.

Other models also regard the plausible neural embodiment
of episodic memory. Most neural network models of EM use
associative networks that store relations between attributes of
events and episodes (e.g. [9], [4]). Although they can handle
partial and approximate matching of events and episodes with
complex relationships, the associative model may still be lim-
ited in recalling information based on sequential cues. Some
of the existing episodic memory models have attempted to
address these challenges, in particular episode formation.
SMRITI encodes events as relational structures composed
of role-entity bindings [10]. The model attempts to address
temporal associations among events within an episode by
strengthening the links between events that are “close” in
time. The simple sequential learning scheme is insufficient
in learning complex sequential information, that may involve
repeating events and episodes of varying length. The model
also views individual events in separation and does not
address the fundamental relations among various events,
including possible event clustering and temporal ordering.
Our proposed model tackles these issues by employing two
levels of fusion ART. The first level deals with repetition by
growing separate categories whenever repeated events occur.
The second level clusters sequential patterns formed at the
first level including repetitions so that various lengths of
complex sequential patterns can be learnt at once. Another
model called TESMECOR [8] captures complex spatio-
temporal patterns and supports retrievals based on degraded
cues. Using two neural layers consisting nearly complete hor-
izontal connections, the model distributedly captures events
and episodes without clustering. Although it may be the
most comparable architecture to our model, our approach
offers modularity and flexibility by employing two levels of
clustering that may be used by other systems.

Compared with pior work, our proposed EM model han-
dles cues as input patterns which may contain noises or
errors. The correct episode can still be recognized and re-
called accurately regardless of these imperfect input patterns
from the possible noisy or erroneous cues. This capability
is achieved by employing the natural decay process on the
activations of the selected events, which inherently exhibits
a continuous search process towards the best match.

VIII. CONCLUSION

We have presented a new episode memory model, based
on a class of self-organizing neural networks known as
fusion Adaptive Resonance Theory and the technique of
invariance principle. The model encodes the potentially com-
plex conceptual and spatio-temporal relations among past
situations. The stored information can be retrieved with
various imperfect cues containing noises and errors.

We have conducted empirical experimental evaluation on
the proposed model using a first-person shooting game.
Various tests are performed on the built memory model to
access its efficiency of possible memory retrieving during
the games. Our experimental results show that the model is
able to provide a robust level of performance in encoding
and recalling events and episodes even with incomplete and
noisy cues. This is mainly due to its approximate retrieval
using resonance search.

This paper has focused on the learning and retrieval
functions within the episodic memory model. As discussed,
episodic memory requires interactions with other related
cognitive components to reveal its crucial roles and function-
alities. Therefore, one immediate extension of our work is to
explore its interaction with other memory systems, especially
semantic memory.
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