
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2009

Zeros and ones Zeros and ones

M. THULASIDAS
Singapore Management University, manojt@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
THULASIDAS, M.. Zeros and ones. (2009). Wilmott. 52-55.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6142

This Magazine Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

takes us longer to say than what it stands for. But, getting back to our topic,
paradigms are powerful and useful means to guide our interactions with
unfamiliar systems and environments, especially in computers, which are
strange and complicated beasts to begin with.

A basic computer processor is deceptively simple. It is a string of gates. A
gate is a switch (more or less) made up of a small group of transistors. A 32-
bit processor has 32 switches in an array. Each switch can be either off, rep-
resenting a zero, or on (one). And a processor can do only one function –
add the contents of another array of gates (called a register) to itself. In
other words, it can only “accumulate.”

In writing this last sentence, I have already started a process of abstrac-
tion. I wrote “contents,” thinking of the register as a container holding
numbers. It is the power of multiple levels of abstraction, each of which is
simple and obvious, but building on whatever comes before it, that makes a
computer enormously powerful.

52 Wilmott magazine

C
omputers are notorious for their infu-
riatingly literal obedience. I am sure
anyone who has ever worked with a
computer has come across the lack of
empathy on its part – it follows our
instructions to the dot, yet ends up

accomplishing something altogether different
from what we intend. We have all been bitten in
the rear end by this literal adherence to logic at
the expense of commonsense. We can attribute at
least some of the blame to our lack of understand-
ing (yes, literal and complete understanding) of
the paradigms used in computing.

Paradigms all the way
Paradigms permeate almost all aspects of comput-
ing. Some of these paradigms are natural. For
instance, it is natural to talk about an image or a song when we actually mean
a JPEG or an MP3 file. “File” is already an abstraction evolved in the file-folder
paradigm popularized in Windows systems. The underlying objects or
streams are again abstractions for patterns of ones and zeros, which represent
voltage levels in transistors, or spin states on a magnetic disk. There is an end-
less hierarchy of paradigms. Like the proverbial turtles that confounded
Bertrand Russell (or was it Samuel Johnson?), it is paradigms all the way down.

Some paradigms have faded into the background, although the termi-
nology evolved from them lingers. The original paradigm for computer net-
works (and of the Internet) was a mesh of interconnections residing in the
sky above. This view is more or less replaced by the World Wide Web residing
on the ground at our level. But we still use the original paradigm whenever
we say “download” or “upload.” The World Wide Web, by the way, is repre-
sented by the acronym www, which figures in the name of all Web sites. It is
an acronym with the dubious distinction of being about the only one that

Manoj Thulasidas

Zeros and Ones
Spare a thought for the way

your glorified adding

machine makes sense of

things ...

Workplace paradigms

^

We can see abstractions, followed by the modularization of the abstracted
concept, in every aspect of computing, both hardware and software. Groups
of transistors become arrays of gates, and then processors, registers, cache, or
memory. Accumulations (additions) become all arithmetic operations, string
manipulations, user interfaces, image and video editing, and so on.

Another feature of computing that aids in the seemingly endless march
of the Moore’s Law (which states that computers will double in their power
every 18 months) is that each advance seems to fuel further advances, gener-
ating an explosive growth. The first compiler, for instance, was written in
the primitive assembler level language. The second one was written using
the first one, and so on. Even in hardware development, one generation of
computers become the tools in designing the next generation, stoking a
seemingly inexorable cycle of development.

While this positive feedback in hardware and software is a good thing,
the explosive nature of growth may take us in wrong directions, much like
the strong growth in the credit market led to the banking collapses of 2008.
Many computing experts now wonder whether the object-oriented technol-
ogy has been overplayed.

Magic of object-oriented languages
Nowhere is the dominance of paradigms more obvious than in object-ori-
ented languages. Just take a look at the words that we use to describe some
their features: polymorphism, inheritance, virtual, abstract, overloading –
all of them normal (or near-normal) everyday words, but signifying notions
and concepts quite far from their literal meaning. Yet, and here is the rub,
their meaning in the computing context seems exquisitely appropriate. Is it
a sign that we have taken these paradigms too far? Perhaps. After all, the
“object” in object-oriented programming is already an abstract paradigm,
having nothing to do with “That Obscure Object of Desire,” for instance.

We do see the abstraction process running a bit wild in design patterns.
When a pattern calls itself a visitor or a factory, it takes a geekily forgiving
heart to grant the poetic license silently usurped. Design patterns, despite
the liberties they take with our sensitivities, add enormous power to object-
oriented programming, which is already very powerful, with all the built-in
features like polymorphism, inheritance, overloading, and so on.

To someone with an exclusive background in sequential programming, all
these features of object-oriented languages may seem like pure magic. But most
of the features are really extensions or variations on their sequential program-
ming equivalents. A class is merely a structure, and can even be declared as such
in C++. When you add a method in a class, you can imagine that the compiler is
secretly adding a global function with an extra argument (the reference to the
object) and a unique identifier (say, a hash value of the class name). Polymorphic
functions also can be implemented by adding a hash value of the function sig-
nature to the function names, and putting them in the global scope.

The real value of the object-oriented methodology is that it encourages
good design. But good programming discipline goes beyond mere adapta-
tion of an object-oriented language, which is why my first C++ teacher said:
“You can write bad Fortran in C++ if you really want. Just that you have to
work a little harder to do it.”

Wilmott magazine 53

For all their magical powers, the object-oriented programming languages
all suffer from some common weaknesses. One of their major disadvantages
is, in fact, one of the basic design features of object-oriented programming.
Objects are memory locations containing data, as laid down by the program-
mer (and the computer). Memory locations remember the state of the object –
by design. What state an object is in determines what it does when a method
is invoked. So, the object oriented-approach is inherently stateful, if we can
agree on what “state” means in the object-oriented context.

But in a user interface, where we do not have much control over the
sequence in which various steps are executed, we might get erroneous
results in stateful programming, depending on what step gets executed and
at what point in time. Such considerations are especially important when
we work with parallel computers in complex situations. One desirable
property in such cases is that the functions return a number solely based
on their arguments. This property, termed “purity,” is the basic design goal
of most functional languages, although their architects will concede that
most of them are not strictly “pure.”

Functional programming
Functional programming is the programming methodology that puts
great emphasis on statelessness and religiously avoids side effects of one
function in the evaluation of any other function. Functions in this method-
ology are like mathematical functions. The conventional programming
style, on the other hand, is considered “imperative” and uses states and
their changes for accomplishing computing tasks.

Adapting this notion of functional programming may sound like
regressing back to the preobject-oriented age, and sacrificing all the advan-
tages thereof. But there are practitioners, both in academia and in the
industry, who strongly believe that functional languages are the only
approach that ensures stability and robustness in financial and number
crunching applications.

Functional languages, by definition, are stateless. They do everything
through functions, which return results that are, well, functions of their
arguments. This statelessness immediately makes the functions behave like
their mathematical counterparts. Similarly, in a functional language, vari-
ables behave like mathematical variables rather than labels for memory
locations. And a statement like x = x + 1 would make no sense. After all, it
makes no sense in real life either.

This strong mathematical underpinning makes functional program-
ming the darling of mathematicians. A piece of code written in a functional
programming language is a set of declarations quite unlike a standard com-
puter language such as C or C++, where the code represents a series of
instructions for the computer. In other words, a functional language is
declarative – its statements are mathematical declarations of facts and rela-
tionships, which is another reason why a statement like x = x + 1 would be
illegal.

The declarative nature of the language makes it “lazy,” meaning that it
computes a result only when we ask for it. (At least, that is the principle. In
real life, full computational laziness may be difficult to achieve.)

Computational laziness makes a functional programming language capable
of handling many situations that would be impossible or exceedingly diffi-
cult for procedural languages. Users of Mathematica, which is a functional
language for symbolic manipulation of mathematical equations, would
immediately appreciate the advantages of computational laziness and other
functional features such as its declarative nature. In Mathematica, we can
carry out an operation like solving an equation, for instance. Once that is
done, we can add a few more constraints at the bottom of our notebook,
scroll up to the command to solve the original equation, and re-execute it,
fully expecting the later constraints to be respected. They will be, because a
statement appearing at a later part in the program listing is not some
instruction to be carried out at a later point in a sequence. It is merely a
mathematical declaration of truism, no matter where it appears.

This affinity of functional languages toward mathematics may appeal to
quants as well, who are, after all, mathematicians of the applied kind. To see
where the appeal stems from, let us consider a simple example of comput-
ing the factorial of an integer. In C or C++, we can write a factorial function
either using a loop or making use of recursion. In a functional language, on
the other hand, we merely restate the mathematical definition, using the
syntax of the language we are working with. In mathematics, we define fac-
torial as:

n! =
{

1 n = 1
n × (n − 1)! otherwise

(1)

And in Haskell (a well known functional programming language), we
can write:

bang 1 = 1

bang n = n ∗ bang (n − 1)
(2)

And expect to make the call bang 12 to get the factorial of 12. This exam-
ple may look artificially simple. But we can port even more complicated
problems from mathematics directly to a functional language. For an exam-
ple closer to home, let us consider a binomial pricing model, illustrating
that the ease and elegance with which Haskell handles factorials do indeed
extend to real-life quantitative finance problems as well.

A new kind of binomial tree
The binomial tree pricing model works by assuming that the price of an
underlying asset can only move up or down by constant factors u and d dur-
ing a small time interval δt. Stringing together many such time intervals, we
make up the expiration time of the derivative instrument we are trying to
price. The derivative is defined as a function of the price of the underlying
asset at any point in time.

We can visualize the binomial tree as shown in Figure 1. At time t = 0, we
have the asset price S(0) = S0. At t = δt (with the maturity T = Nδt), we have two
possible asset values, S(t) = S0u and S(t) = S0d = S0/u, where we have chosen d =
1/u. In general, at time iδt, at the asset price node level j, we have

Sij = S0uj (3)

By choosing the same size of up-and-down price movements, we have creat-
ed a recombinant binomial tree, which is why we have only 2i + 1 price
nodes at any time step idt. In order to price the derivative, we have to assign
risk-neutral probabilities to the up-and-down price movements. The risk-
neutral probability for an upward movement of u is denoted by p. With
these notations, we can write down the fair value of an American call option
(of expiry T, underlying asset price S0, strike price K, risk-free interest rate r,
asset price volatility d, and number of time steps in the binomial tree N),
using the binomial tree pricing model as follows:

OptionPrice(T, S0, K, r, σ, N) = f00 (4)

where fij denotes the fair value of the option at any the node i in time
and j in price (referring to Figure 1).

fij =
{

Max(Sij − K, 0) if i = N
Max(Sij − 0, e−δtr(pfi+1j+1 + (1 + p)fi+1j−1) otherwise

(5)

At maturity, i = N and iδt = T, where we exercise the option if it is in the
money, which is what the first Max function denotes. The last term in the
expression above represents the risk-neutral backward propagation of the

54 Wilmott magazine

MANOJ THULASIDAS

Figure 1: The binomial tree. On the x-axis, labeled i, we have the time steps. The
y-axis represents the price of the underlying, labeled j. The only difference from
the standard binomial tree is that we have let j be both positive and negative,
which is mathematically natural, and hence simplifies the notation in a functional
language.

Wilmott magazine 55

option price from the time layer at (i + 1) jiδt to iδt. At each node, if the
option price is less than the intrinsic value, we exercise the option, which is
the second Max function.

The common choice for the upward price movement depends on the
volatility of the underlying asset. u = exp(σ√δt) and the downward move-
ment is chosen to be the same d = 1/u to ensure that we have a recombinant
tree. For risk neutrality, we have the probability defined as:

p = erδt − d

u − d
(6)

For the purpose of illustrating how our binomial tree translates to the
functional programming language of Haskell, let us put all these equations
together once more.

OptionPrice(T, S0, K, r, σ, N) = f00

where

fij =
⎧⎨
⎩

Max(Sij − K, 0) if i = N

Max(Sij − 0, e−δtr(pfi+1j+1+
(1 + p)fi+1j−1)

otherwise

Sij = S0uj

u = eσ
√

δt

d = 1/u

δt = T/N

p = erδt − d

u − d

(7)

Now, let us look at the code in Haskell.

As we can see, it is a near-verbatim rendition of the mathematical state-
ments, nothing more. This code snippet actually runs as it is, and produces
the result.

*Main> optionPrice 1 100 110 0.05 0.3 20
10.10369526959085

(9)

optionPrice t s0 k r sigma n = f 0 0

where

f i j =

if i == n

then max ((s i j) - k) 0

else max ((s i j) - k)

(exp(-r*dt) * (p * f(i+1)(j+1) + (8)

(1-p) * f(i+1)(j-1)))

s i j = s0 * u**j

u = exp(sigma * sqrt dt)

d = 1 / u

dt = t / n

p = (exp(r*dt)-d) / (u-d)

Looking at the remarkable similarity between the mathematical equa-
tions and the code in Haskell, we can understand why mathematicians love
the idea of functional programming. This particular implementation of the
binomial pricing model may not be the most computationally efficient, but
it certainly is one of great elegance and brevity.

A functional programming language may not be appropriate for a full-
fledged implementation of a financial program because of performance
issues. However, many of its underlying principles, such as type abstractions
and strict purity, may prove invaluable in programs we use in quantitative
finance where heavy mathematics and number crunching are involved. The
mathematical rigor enables us to employ complex functional manipula-
tions at the program level. The religious adherence to the notion of stateless-
ness in functional programming has another great benefit. It helps in paral-
lel and grid computing, enabling the computations with almost no extra
work.

Back to the basics
Rich in paradigms, the field of computing has a strong influence on the way
we think and view the world. If you don’t believe me, just look at the way we
learn things these days. Do we learn anything now, or do we merely learn
how to access information through browsing and searching? Even our arith-
metic abilities have eroded, along with the advent of calculators and spread-
sheets. I remember the legends of great minds like Enrico Fermi, who esti-
mated the power output of the first nuclear blast by floating a few pieces of
scrap paper, and like Richard Feynman, who beat an abacus expert by doing
binomial expansion. I wonder if the Fermis and Feynmans of our age would
be able to pull those stunts without pulling out their pocket calculators.

Procedural programming, through its unwarranted reuse of mathemati-
cal symbols and patterns, has shaped the way we interact with our comput-
ers. The paradigm that has evolved is distinctly unmathematical. Functional
programming represents a counter attack, a campaign to win our minds
back from the damaging influences of the mathematical monstrosities of
procedural languages. The success of this battle may depend more on might
and momentum than on truth and beauty. In our neck of the woods, this
statement translates to a simple question: can we find enough developers
who can do functional programming? Or is it cheaper and more efficient to
stick to procedural and object-oriented methodologies?

ABOUT THE AUTHOR
The author is a scientist from the European Organization for Nuclear Research (CERN), who

currently works as a senior quantitative professional at Standard Chartered in Singapore. The

views expressed in this column are his own, which have not been influenced by considerations

of his employer's business or client relationships. More information about the author and his

forthcoming book (Principles of Quantitative Development, to be published by John Wiley &

Sons Ltd.) can be found at his blog: http//www.Thulasidas.com.
W

MANOJ THULASIDAS

	Zeros and ones
	Citation

	36-38_Thulasidas_May09.qxd

