
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2021

Cache-efficient fork-processing patterns on large graphs Cache-efficient fork-processing patterns on large graphs

Shengliang LU

Shixuan SUN

Johns PAUL

Yuchen LI
Singapore Management University, yuchenli@smu.edu.sg

Bingsheng HE

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Graphics and Human Computer

Interfaces Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Cache-Efficient Fork-Processing Patterns on Large Graphs
Shengliang Lu

National University of Singapore

Singapore

Shixuan Sun

National University of Singapore

Singapore

Johns Paul

National University of Singapore

Singapore

Yuchen Li

Singapore Management University

Singapore

Bingsheng He

National University of Singapore

Singapore

ABSTRACT
As large graph processing emerges, we observe a costly fork-processing
pattern (FPP) that is common in many graph algorithms. The unique

feature of the FPP is that it launches many independent queries from
different source vertices on the same graph. For example, an al-

gorithm in analyzing the network community profile can execute

Personalized PageRanks that start from tens of thousands of source

vertices at the same time. We study the efficiency of handling FPPs

in state-of-the-art graph processing systems on multi-core archi-

tectures, including Ligra, Gemini, and GraphIt. We find that those

systems suffer from severe cache miss penalty because of the irreg-

ular and uncoordinated memory accesses in processing FPPs.

In this paper, we propose ForkGraph, a cache-efficient FPP pro-

cessing system on multi-core architectures. In order to improve

the cache reuse, we divide the graph into partitions each sized

of LLC (last-level cache) capacity, and the queries in an FPP are

buffered and executed on the partition basis. We further develop

efficient intra- and inter-partition execution strategies for efficiency.

For intra-partition processing, since the graph partition fits into

LLC, we propose to execute each graph query with efficient se-

quential algorithms (in contrast with parallel algorithms in exist-

ing parallel graph processing systems) and present an atomic-free

query processing method by consolidating contending operations

to cache-resident graph partition. For inter-partition processing,

we propose two designs, yielding and priority-based scheduling,

to reduce redundant work in processing. Besides, we theoretically

prove that ForkGraph performs the same amount of work, to within

a constant factor, as the fastest known sequential algorithms in FPP

queries processing, which is work efficient. Our evaluations on

real-world graphs show that ForkGraph significantly outperforms

state-of-the-art graph processing systems (including Ligra, Gemini,

and GraphIt) with two orders of magnitude speedups.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis; •
Computing methodologies → Parallel algorithms; • Infor-
mation systems→ Parallel and distributed DBMSs.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8343-1/21/06.

https://doi.org/10.1145/3448016.3457253

KEYWORDS
Graph Processing Systems; Fork-Processing Pattern; Concurrent

Query Execution; Buffered Execution Model

ACM Reference Format:
Shengliang Lu, Shixuan Sun, Johns Paul, Yuchen Li, and Bingsheng He. 2021.

Cache-Efficient Fork-Processing Patterns on Large Graphs. In Proceedings
of the 2021 International Conference on Management of Data (SIGMOD ’21),
June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3448016.3457253

1 INTRODUCTION
Graphs are de facto data structures in various applications such as

social network analysis, bioinformatics, online transaction analysis,

and weblink analysis. We observe a costly fork-processing pattern
(FPP) that is common in many graph processing algorithms, as

defined in Algorithm 1. The unique feature of an FPP is that it

launches many independent queries from different source vertices

on the same graph (we call those queries FPP queries). Below are

several representative examples of FPP-based graph algorithms.

Algorithm 1 Fork-processing pattern (FPP) on graph.

1: Generate vertex set 𝑆

2: parallel_for_each vertex 𝑣 ∈ 𝑆 do
3: Launch a graph query from 𝑣

(1) Betweenness centrality (BC) is widely used to calculate the

relative importance of vertices in a graph [26]. On an unweighted

graph, BC is solved by first invoking many independent BFSs

(breadth-first searches), each from a random vertex. Next, the algo-

rithm gathers the results of each BFS to obtain the centrality of ver-

tices [8]. Although various algorithm variants have been proposed,

they have common FPPs of launching massive BFS queries [18, 52].

(2) Network community profile (NCP) is defined as the function of
the (approximate) best conductance for clusters of a given size in the

graph versus the cluster size [33]. An efficient method computing

NCP is based on local clustering algorithms, which start a number

of PPRs (personalized page ranks) from randomly selected vertices

to calculate NCP approximately [17, 47, 51, 56]. The number of PPRs

can be at the scale of tens of thousands in the previous study [47].

(3) Landmark labeling (LL) pre-computes the shortest paths be-

tween selected landmark vertices to accelerate the path queries.

Researchers proposed to compute the labels by executing a batch

of SSSPs (single-source shortest paths) or BFSs simultaneously [1].

The number of queries in a batch can range from 16 to 1,024 in the

previous studies [1].

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3457253

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1208

https://doi.org/10.1145/3448016.3457253
https://doi.org/10.1145/3448016.3457253
https://creativecommons.org/licenses/by/4.0/

Table 1: Profiling performance analysis of processing 10,000 PPRs on LiveJournal graph using existing GPSs.
System Ligra Gemini GraphIt

#Threads in total 1 10 10 1 10 10 1 10 10

Execution Scheme single-threaded 𝑡 = 10 𝑡 = 1 single-threaded 𝑡 = 10 𝑡 = 1 single-threaded 𝑡 = 10 𝑡 = 1

Instructions (×1014) 4.57 4.59 4.56 2.07 2.20 2.46 1.30 1.55 1.31

LLC loads (×1012) 9.10 9.00 9.21 1.30 1.46 1.37 1.59 1.63 1.60

LLC miss ratio 50.0% 48.1% 79.0% 40.1% 31.6% 76.4% 50.1% 38.9% 85.6%

Runtime (hour) 46.74 7.65 6.75 11.66 2.56 1.64 8.39 2.09 1.59

In practice, the processing time of the FPP is the major bottleneck

of those graph algorithms, which takes an overwhelming majority

of the execution time (> 90%) in our experiments. In this paper,

we study whether and how we can improve the performance of

handling FPPs on large graphs.

As large graph processing emerges recently, substantial efforts

have been made in developing parallel graph processing systems

(GPSs) [40, 45, 62, 66]. Those GPSs mainly focus on improving the

performance of a single query by taking advantage of the intra-

query parallelism. Since an FPP has many independent queries,

we study how existing GPSs can take advantage of inter-query

parallelism. To this end, we use 𝑡 to denote the number of threads

assigned to a query, and evaluate different 𝑡 values for balancing

the intra- and inter-query parallelisms.

We evaluate three state-of-the-art GPSs (Ligra [45], Gemini [66],

and GraphIt [62]) on a 10-core machine (with hyperthreading dis-

abled). Table 1 presents the performance analysis of handling 10,000

PPRs for NCP on a real graph. The detailed experimental setup can

be found in Section 6. For varying different 𝑡 values, we fix the

total number of threads to be ten (one thread per core). Specifically,

when 𝑡 = 1, GPSs fully take advantage of inter-query parallelism.

When 𝑡 = 10, GPSs process queries one by one, and each query runs

in parallel, taking advantage of intra-query parallelism only. We

find that the configuration of 𝑡 = 1 achieves the best performance

among different 𝑡 values. In the table, we also show the profiling of

executing GPSs using a single thread.

Wemake an important observation across different GPSs. Despite

that the executions with configurations of 𝑡 = 1 achieve the best

performance by taking advantage of inter-query parallelism, they

suffer from a high LLC (last level cache) miss ratio. It can be up to

85.6%, a huge rise from both the single-threaded execution and the

approach of intra-query parallelism (𝑡 = 10). When 𝑡 = 1, threads

are handling FPP queries independently and simultaneously, and

they are filling up the CPU cache with different parts of the graph.

Such uncoordinated memory accesses among FPP queries cause

severe LLC cache misses. We present more details in Section 2.

To improve the efficiency of handling FPPs, we develop Fork-
Graph, a cache-efficient system for processing FPPs for in-memory

graphs on multi-core machines. The core design of ForkGraph is

based on a novel buffered execution model on graphs to leverage the

locality and sharing opportunities among FPP queries by coordinat-

ing their operations to the graph. Specifically, we divide the graph

data into LLC-sized partitions and associate each partition with a

buffer to store the queries’ operations to the partition. We dynami-

cally schedule a partition to process, and the buffered operations

are performed in a batch on the cache-resident graph partition.

We further develop efficient intra- and inter-partition processing

strategies for efficiency. For intra-partition processing, since the

graph partition fits into LLC, we propose to execute each buffered

operation with efficient sequential algorithms (unlike parallel al-

gorithms in existing graph systems that have more work due to

parallelism) and develop atomic-free mechanisms by consolidating

contending operations in the cache-resident graph partition. For

inter-partition processing, we observe that a wrong execution order

of graph partitions causes a significant amount of redundant work,

as well as the benefits of each buffered operation in the same graph

partition vary significantly in many graph applications. Thus, we

propose two designs accordingly. The first is priority-based sched-

uling to select the partition that could lead to convergence quickly.

The second is yielding optimization that early terminates a query’s

intra-partition processing to reduce redundant work.

Besides, with the designs in intra- and inter-partition processing,

ForkGraph performs the same amount of work, to within a constant

factor, as the fastest known sequential algorithms in FPP queries

processing, which is work efficient.

We perform a comprehensive analysis of ForkGraph’s perfor-

mance in comparison with three state-of-the-art GPSs (Ligra, Gem-

ini, and GraphIt). The workload includes three applications BC,

NCP, and LL on eight real-world graphs. Our experiments show

that ForkGraph reduces the total number of LLC misses by up to

a factor of 100× compared to other GPSs, and consistently out-

performs GPSs, showing 32×, 307×, and 38× speedups over Ligra,

Gemini, and GraphIt on average, respectively.

Supplement results are presented in the complete version [36].

Our source code is publicly available at (https://github.com/Xtra-
Computing/ForkGraph).

The remainder of this paper is organized as follows. In Section 2,

we introduce the preliminary and motivation. Section 3 presents

an overview of ForkGraph. We present the design of intra- and

inter-partition processing in Section 4 and Section 5, respectively.

We present the experimental results in Section 6. Finally, we review

the related work in Section 7 and conclude in Section 8.

2 PRELIMINARIES AND MOTIVATIONS
2.1 Preliminaries
A graph 𝐺 = (𝑉 , 𝐸) is defined to be a directed graph, where 𝑉 is

a set of vertices and 𝐸 is a set of edges. An undirected graph can

be represented as a directed graph by replacing each undirected

edge with two edges from both directions. Given𝐺 = (𝑉 , 𝐸), graph
partition is defined as follows.

Definition 2.1 (Graph Partition) A partition plan of graph 𝐺 is

a division of 𝑉 into |𝑷 | disjoint vertex sets. A partition 𝑃𝑖 of the

graph 𝐺 is a subgraph of 𝐺 on the 𝑖-th vertex set with 1 ≤ 𝑖 ≤ |𝑷 |.
𝑉𝑃𝑖 and 𝐸𝑃𝑖 denote the vertex set and the edge set of 𝑃𝑖 , respectively.

Specifically, 𝐸𝑃𝑖 = {𝑒 (𝑢, 𝑣) ∈ 𝐸 |𝑢 ∈ 𝑉𝑃𝑖 }.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1209

https://github.com/Xtra-Computing/ForkGraph
https://github.com/Xtra-Computing/ForkGraph

FPP-based graph applications. We have observed the existence

of FPPs in many graph applications beyond those presented in

the Introduction, including ant colony optimization [16], single-

source 𝑘-shortest path [57], and graph learning using randomwalks

[21, 42].

Definition 2.2 (FPPQueries) Given a graph 𝐺 = (𝑉 , 𝐸), the FPP
queries denoted by 𝑄 = {𝑞1, 𝑞2, ..., 𝑞 |𝑄 |} are a set of graph queries

that are homogeneous graph queries (e.g., PPRs) simultaneously
launched from source vertices 𝑠𝑟𝑐1, 𝑠𝑟𝑐2, ..., 𝑠𝑟𝑐 |𝑄 | ∈ 𝑉 on the same

graph 𝐺 , where |𝑄 | denotes the number of queries in the FPP.

|𝑄 | varies in different applications. In the previous studies, it

ranges from tens to thousands. For example, Shun et al. [47] run 10
5

PPRs from random vertices to compute NCP. The LL calculation in

Akiba et al. [1] performs batches of SSSPs/BFSs simultaneously, and

the number of queries in a batch varies from 16 to 1,024. Some graph

workloads in the previous studies do not belong to FPP, such as

single-query applications like a single BFS [5], multiple dependent

queries like multi-commodity flow [3], and heterogeneous graph

queries [58]. As FPP is emerging in many graph processing, mining,

and learning applications, we focus on FPP queries.

Definition 2.3 (An FPP Query’s Operations to Graph) An FPP

query can have many operations that are spreading randomly in

the graph. We define an operation of an FPP query as a triple in

the format of ⟨𝑞𝑖 , 𝑣, 𝑣𝑎𝑙⟩ to represent an operation belonging to 𝑞𝑖
at vertex 𝑣 with value(s) 𝑣𝑎𝑙 .

For example, in an SSSP query 𝑞1, each vertex 𝑣 is assigned with

a property that represents the length of the shortest path found

from source vertex 𝑠𝑟𝑐1 to 𝑣 ; an operation to vertex 𝑣 contains the

length 𝑙 of a path from 𝑠𝑟𝑐 to 𝑣 , denoted as ⟨𝑞1, 𝑣, 𝑙⟩. If 𝑙 is shorter
than the existing path, we update the vertex’s property using the

operation and generate new operations to the vertex’s neighbors.

2.2 Motivation
We present more detailed results of Table 1 to explain our mo-

tivation. First, the large number of LLC misses is the performance
bottleneck. When evaluating 10,000 PPRs using the three GPSs, we

observed that the number of stalled memory cycles is 34 − 40% of

the total time spent in memory units when leveraging intra-query

parallelism (𝑡 = 10). The percentage increases up to 55%when lever-

aging inter-query parallelism (𝑡 = 1). The memory stalls are mainly

caused by the LLC misses, which bottleneck the performance. Thus,

we focus on LLC among the multi-layer caches in this work.

Second, leveraging the inter-query parallelism in existing GPSs
brings uncoordinated memory accesses and thus more LLC misses,
which limit the potential benefits of the inter-query parallelism. Fig-
ure 1 shows the evaluation of the GPSs’ performance and the num-

ber of LLC misses by varying the 𝑡 value on a 10-core machine.

Figure 1a shows that leveraging inter-query parallelism by setting

𝑡 = 1 is better than other settings, mainly because of the reduced

synchronization and locking overhead among threads, as well as

better load balancing among threads. However, as shown in Fig-

ure 1b, the total number of LLC misses significantly increases (up

to 2.1×) as 𝑡 changes from ten to one.

As threads under the inter-query parallelism are filling up the

CPU cache with different parts of the graph, the uncoordinated

memory accesses among FPP queries cause high LLC cache misses

Ligra Gemini GraphIt

0

0.5

1

N
o
r
m
a
l
i
z
e
d
e
x
e
c
u
t
i
o
n
t
i
m
e 𝑡 = 10 𝑡 = 5 𝑡 = 2 𝑡 = 1

(a) Normalized execution time.

Ligra Gemini GraphIt

0

1

2

N
o
r
m
a
l
i
z
e
d
#
L
L
C
m
i
s
s
e
s 𝑡 = 10 𝑡 = 5 𝑡 = 2 𝑡 = 1

(b) Normalized #LLC misses.
Figure 1: GPSs’ performance affected by cache contention
with different numbers of threads assigned to each query,
tested with 10,000 PPRs on LiveJournal graph.

q1

A

B

C D H

F

GE

B

C D H

F

G

F

G

Main
Memory

q2 q3

LLC

Figure 2: A GPS leveraging the inter-query parallelism.

and limit the potential benefits of the inter-query parallelism. We

use Figure 2 to illustrate the scenario of uncoordinated operations of

FPP queries to the graph. In this example, a GPS is processing three

FPP queries simultaneously, each with a thread sharing the LLC.

Since threads are handling FPP queries independently, they contend

with each other to the limited cache for storing different parts of

the graph. This causes severe cache thrashing and downgrades the

performance of handling FPPs.

We also observe that, among these three GPS, GraphIt is the only

GPS with cache-optimized techniques to break the graph into LLC-

sized segments to limit random accesses within the cache [60, 62]

and thus performs better than other GPSs when leveraging the

intra-query parallelism. However, GraphIt is the most vulnerable

GPS when leveraging the inter-query parallelism with the cache

optimization. Particularly, GraphIt (𝑡 = 1) spends 1.59 hours on

10,000 PPRs. Thus, the total CPU time on 10 cores is 15.9 hours,

190% over the CPU time of the single-threaded counterpart (8.39

hours). Similarly, the CPU time of Ligra (𝑡 = 1) is only 144% over the

CPU time of the single-threaded counterpart as it does not optimize

the cache for intra-query parallelism.

Although inter-query parallelism exhibits poor cache efficiency,

it still outperforms the default intra-query parallelism in GPSs for

most of the cases. The reasons are as follows. First, the inter-query

parallelism inherently eliminates cost synchronizations among

threads. Second, the inter-query parallelism can benefit from effi-

cient execution by employing state-of-the-art sequential algorithms.

Last but not least, as Beamer et al. [6] show that many parallel

implementations do not fully utilize the memory bandwidth, the

inter-query parallelism mitigates data dependences and increases

memory-level parallelism during processing. It thus shows the

potential for significant performance improvement on GPSs with

current memory systems.

In summary, the above-mentioned insights motivate us to pro-

pose a system to address the cache inefficiency in leveraging inter-

query parallelism so that we can efficiently support FPP queries.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1210

Front End

Runtime

Storage

Ligra EdgeMap/VertexMap

Inter-partition
Scheduling

Intra-partition
Consolidation

Buffer
Management

YieldFunctor
API

PriorityFunctor
API

Ligra Graph Access Methods

Ligra Graph Format
Partition

Management

Figure 3: System overview of ForkGraph.

3 SYSTEM OVERVIEW
To improve the cache efficiency of processing FPPs, we propose

a cache-efficient system, namely ForkGraph. The core design of

ForkGraph is based on a novel buffered execution model. We divide

graph𝐺 into LLC-sized partitions and associate each partition with

a buffer that stores the FPP queries’ operations to the partition. The

buffered execution model leverages the temporal localities among

FPP queries by batching operations from different queries and exe-

cutes them in a batch for each partition. Since each graph partition

can fit into LLC, random memory accesses of the operations in the

batch are naturally limited in the LLC with a low cache miss rate.

We develop efficient intra- and inter-partition processing strate-

gies for efficiency. For intra-partition processing, the work effi-

ciency becomes essential since most operations are processed in

cache-resident graph partitions. Therefore, we propose to apply

sequential implementations to execute multiple operations simulta-

neously. We leverage inter-query parallelism by assigning a single

thread to handle each buffered operation. We adopt sequential im-

plementations because they are usually more work-efficient than

parallel algorithms. Besides, ForkGraph consolidates the operations

in the buffer that belong to the same query, and thus the operations

belonging to the same query can be processed in an atomic-free

manner. Moreover, this query-centric operation consolidation sig-

nificantly reduces redundant operations.

For inter-partition processing, we observe that a wrong exe-

cution order of graph partitions causes a significant amount of

redundant work, as well as the benefits of each buffered operation

in the same graph partition vary significantly in many graph ap-

plications. We show these two observations in the experiments.

Thus, we have two tasks: 1) to determine when to terminate intra-

partition processing and switch to the next partition, and 2) to

decide which partition to process next. We propose a yielding opti-

mization to early terminate a query in intra-partition processing to

reduce redundant work within a partition. Furthermore, ForkGraph

applies a priority-based scheduling to select the partition that leads

to convergence quickly. We will detail the design of inter-partition

scheduling shortly in Section 5.

Currently, ForkGraph supports a list of queries commonly used in

FPPs, including BFSs [46], DFSs (Depth-first searches) [49], SSSPs [15],

PPRs [47], and RWs (randomwalks) [2]. On top of those queries, one

can implement FPPs for applications like NCP, BC, and LL. Based

on ForkGraph, users can also easily implement more fundamental

query types to support other FPP-based graph applications.

3.1 System Architecture
Figure 3 shows the architecture of ForkGraph. ForkGraph extends

the Ligra framework by including its APIs (application program-

ming interfaces), graph access methods, and the graph storage.

Algorithm 2 ForkGraph: FPP Processing on graph partitions 𝑷 .

1: InitBuffers(𝑷 ,𝑄)

2: while At least one buffer has operations do
3: 𝑷𝑐 ← ScheduleNextPart() ⊲ see Sec. 5

4: IntraPartProcess(𝑷𝑐) ⊲ see Sec. 4

5: procedure ScheduleNextPart()
6: nextP← get the next partition according to PriorityFunctor()

7: return nextP

8: procedure IntraPartProcess(𝑷𝑐)
9: Consolidate operations in 𝑷𝑐 .buffer according to each query

10: parallel_for_each 𝑞 ∈ 𝑄 do
11: for op ∈ 𝑷𝑐 .buffer.getOps(𝑞) do
12: newOps← Compute(op, 𝑷𝑐)
13: Use newOps to update 𝑷𝑐 .buffer
14: if CanYield(𝑷𝑐 , 𝑞, YieldFunctor()) then
15: Yield() and goto Line 10 ⊲ terminating 𝑞, see Sec. 5

16: Send operations to neighbor partitions

We choose Ligra because of its high performance and wide adop-

tions by lines of excellent works, including [13, 14, 44, 47]. Another

reason is that users can leverage the friendly programming inter-

faces in Ligra. It provides two very simple APIs vertexMap and

edgeMap, used for user-defined functions over vertices and edges,

respectively, making programs in Ligra very simple and concise.

On top of Ligra, we expose two user-defined APIs including

priority functor and yield functor to users for customizing the

logic for inter-partition scheduling. We also add the inter-partition

scheduling and intra-partition consolidation on top of Ligra’s run-

time. We reuse the efficient graph storage and the access methods to

edges/vertices in Ligra, which adopts the popular CSR (Compressed

Sparse Row) format to store a graph. We add graph partition and

buffer management based on the efficient storage of Ligra.

3.2 Overall Execution Flow
Algorithm 2 shows the overall execution flow of ForkGraph on

handling an FPP. We assume that the graph is already partitioned,

and the set of graph partitions are represented as 𝑷 . At Line 1,

ForkGraph initializes a buffer, which is a dynamic-sized contiguous

memory space, for each partition. Also, we assign the FPP queries

in 𝑄 to the corresponding buffers in the initialization.

As long as there exists a non-empty buffer (Line 2), ForkGraph

invokes ScheduleNextPart to find the next partition 𝑃𝑐 to pro-

cess. The scheduling is priority-based, targeting at convergence

quickly. Next, ForkGraph processes the buffered operations in the

scheduled partition 𝑃𝑐 by calling IntraPartProcess at Line 4. In

IntraPartProcess, ForkGraph consolidates the operations in the

buffer and assigns operations of the same query to a single thread

so that the Compute procedure is in an atomic-free manner. Thus,

we put a “parallel for” execution for different queries at Line 10.

The processing of queries’ operations can generate many new op-

erations targeting at 𝑃𝑐 and 𝑃𝑐 ’s neighbor partitions. We have two

cases for each of the new operations generated: 1) if it targets 𝑷𝑐 , we
put it to the 𝑷𝑐 ’s buffer; 2) if it targets other graph partitions, we do

not send them to the buffers of their target partitions immediately.

For each of the (|𝑷 | − 1) partitions, we maintain a local buffer and

store the operation into the local buffer. We send them in batches

after finishing processing 𝑷𝑐 (at Line 16).

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1211

q1 q2
P1 P2

P4P3

B2B1

B4B3

A

B

C D H

F G

E

I

J

K L M

N

O

(a) Initialization.

P2P1

P4P3

B2B1

B4B3

A

B

C D H

F G

E

I

J

K L M

N

O

(b) Processed operations in 𝑷3.

Figure 4: ForkGraph processes two SSSP queries 𝒒1 and 𝒒2
start from vertices A and I, respectively, as highlighted.

At Line 14, ForkGraph monitors the processing of query 𝑞 and

adopts the yielding optimization to terminate the processing of 𝑞

earlier for work efficiency. The yielding happens within the intra-

partition processing, but controls the amount of the work spent

in the current partition to trigger the scheduling of the next par-

tition to process. This is similar to the concept of yield in process

scheduling in operating systems.

An example in buffered execution. We use an example in Fig-

ure 4 to illustrate the buffered execution. There are 15 vertices

divided into four partitions, and we set the weight of all edges to

be one for simplicity purposes. We consider an SSSP-based FPP

such as LL, and use two SSSPs 𝑞1 and 𝑞2, from source vertices A
and I in partitions 𝑃1 and 𝑃3, respectively. ForkGraph initializes

these queries as operations in the corresponding buffers, as shown

in Figure 4a. Suppose 𝑃3 is the first partition scheduled to process.

Figure 4b shows the state after processing 𝑃3. ForkGraph sends op-

erations to neighbor partitions, 𝑃1 and 𝑃4, as shown in their buffers

𝐵1 and 𝐵4. This process repeats until all buffers are empty.

4 INTRA-PARTITION PROCESSING
By applying the buffered execution model, ForkGraph explores

the opportunities of optimizing cache-efficient intra-partition pro-

cessing of FPPs by batching the operations to LLC-sized graph

partitions. In this in-cache processing, work efficiency becomes

essential, with the following two main issues. First, we find that

the parallel execution model adopted by the current GPSs can be

extremely inefficient for in-cache processing many operations. We

give more details shortly in Section 4.1. Second, processing many

operations at the same time could cause severe synchronization

overheads and conflicts if they are from the same query. For ex-

ample, one operation may read the property of a vertex and the

other operation from the same query may update the property of

the same vertex, which causes read-write conflicts. We develop an

atomic-free approach to eliminate the conflicts in Section 4.2.

4.1 Sequential vs. Parallel Execution
The current GPSs [40, 45, 62, 66] use parallel algorithms to execute

one query in order to take advantage of intra-query parallelism,

which, however, is not free. Firstly, it comes with the overhead in

parallelization, such as thread synchronization, locking, and sched-

uling. Second, most of the parallel algorithms perform significantly

more work than their sequential counterparts. Those overheads can

become relatively more significant given the in-cache processing.

Since there are usually more operations than the number of

available CPU threads in handling FPPs, we propose to leverage the

q1 q2 q3

(a) Without consolidation.

consolidate

(b) With consolidation.

Figure 5: Comparison of the execution on buffered opera-
tions with and without consolidation.

inter-query parallelism. Particularly, we choose the sequential al-

gorithm to execute each operation and execute multiple operations

simultaneously, i.e., each thread fetches one operation at a time

from the buffer and processes it using the corresponding sequential

algorithm. Specifically, ForkGraph reuses sequential algorithms

from existing works. The SSSP and BFS algorithms are obtained

from the problem based benchmark suite (PBBS) [46], and we reuse

the sequential PPR implementation from [47].

For a partition, if the buffer only has one operation and there are

no other on-going operations, we can switch to parallel algorithms

to process operation. However, we hardly observe this scenario

happening and thus use sequential algorithms in most cases.

4.2 Query-centric Operation Consolidation
As multiple operations are processed simultaneously, different

threads can process operations of the same query at the same time,

which may cause access conflicts. Therefore, it requires locking

and atomic operations when threads simultaneously read and write

the query-specific data, e.g., the intermediate results and vertices’

properties. This is also commonly seen in GPSs [40, 45, 62, 66] that

parallelize the processing of a single query.

In this work, we propose an atomic-free approach that efficiently

eliminates the conflicts among processing different operations from

the same query. Particularly, ForkGraph consolidates the operations
based on the queries they belong to and uses a single thread to

handle a set of consolidated operations from the same query. Multi-

ple threads execute different FPP queries simultaneously, as shown

in Algorithm 2 Line 10. The consolidation has the following ben-

efits. First, operations of the same query can be processed in an

atomic-free manner since there is only one thread updating the

query-specific data. Second, as the thread only processes data of the

same query and the query-specific data is stored in a contiguous

memory space, it avoids stride memory accesses to data of other

queries.

Figure 5 illustrates an example of the differences between pro-

cessing with and without consolidation. We assume there are three

threads. Without consolidation, threads fetch operations in the

buffer and process them simultaneously. As shown in Figure 5a,

when two threads process the operations from the same query 𝑞2,

we need to apply atomic operations to resolve the potential con-

flicts (read-write conflicts). Figure 5b shows that we perform the

operation processing in an atomic-free manner by consolidating

buffered operations and assigning those operations belonging to

the same query to one thread.

Given the user-defined priority functor, we can further reduce the

redundant work based on query-centric consolidation. The priority

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1212

⟨q2, M, 3⟩

⟨q2, M, 4⟩

⟨q2, M, 6⟩

Time

⟨q2, M, 2⟩*

…

Done

Done

Done

⟨q2, M, 2⟩*

…

⟨q2, M, 3⟩

⟨q2, M, 4⟩

Done

⟨q2, M, 2⟩*

…

(a) Without priority functor.

⟨q2, M, 2⟩*

⟨q2, M, 3⟩

⟨q2, M, 6⟩

PQ

Time

…
⟨q2, N, 3⟩*

⟨q2, M, 3⟩

⟨q2, M, 6⟩

⟨q2, M, 3⟩

⟨q2, M, 6⟩… …

…
front

back

(b) With the priority functor.

Figure 6: Comparison of the redundancy in processing oper-
ations with and without using the priority functor in SSSP.
We highlight the operations with the optimal value using ∗.

functor relies on the logics of the sequential algorithms provided.

During the consolidation, we maintain an order of operations from

the same query according to the priority functor. In the execution,

we always choose the one with the highest priority, which has more

pruning power on redundant work. Particularly, commonly adopted

SSSP implementations, e.g., Dijkstra’s algorithm, rely on a priority

queue (PQ) that assigns higher priorities to shorter paths. The

algorithm uses shorter paths conveyed in the operations to prune

non-optimal ones. The sequential PPR implementation from [47]

relies on a multiset structure that allows inserting all operations of

the same query to the same queue for sequential processing in the

decreasing order of the residual values. When solving a BFS, the

priority value is the lowest level from the source in BFSs.

Figure 6 gives an example of processing consolidated operations

of an SSSP query, where we can leverage the user-defined priority

functor to reduce the number of redundant operations. Without pri-

oritizing, a thread is fetching the operations to process one by one.

The operation with the most significant value can be in any place

of the buffer. For example, ⟨𝑞2,M, 2⟩ contains the optimal value

and is queued after many other operations in Figure 6a. The opera-

tions before ⟨𝑞2,M, 2⟩ are all redundant. In contrast, as shown in

Figure 6b, by leveraging the priority functor of Dijkstra’s algorithm

for solving SSSP [15], ForkGraph processes the most beneficial op-

eration of the same query. Here, the processing of ⟨𝑞2,M, 2⟩ in the

first place can effectively prune the redundant ones.

5 INTER-PARTITION SCHEDULING
With efficient intra-partition processing, we still need to decide the

order of scheduling partitions to execute. We observe that a wrong

execution order of partitions takes more steps to converge and

causes momentous redundant work. In this section, we focus on the

following two issues of inter-partition scheduling that significantly

affect the work efficiency of handling the entire FPP.

First, when should ForkGraph terminate intra-partition processing
and switch to the next partition? One basic approach is to finish

all the operations within the current partition before switching to

the next partition. However, this would cause a significant amount

of redundant work. According to the usage of the priority functor

in query-centric consolidation, the later operations of the same

query tend to have diminishing contributions to the convergence

of many graph problems [40, 45]. They can even be pruned by the

future operations generated by other partitions. Correspondingly,

we present a yielding optimization to decide the early termination

of a query in intra-partition processing (Section 5.1).

Second, which partition should ForkGraph process the next? We

propose a priority-based scheduling to select the partition that

could lead to quick convergence as the next to process (Section 5.2).

5.1 Heuristic-Based Yielding
The yielding optimization partially processes a partition to avoid re-

dundant work, i.e., early termination for intra-partition processing.

Determining the optimal strategy for yielding on early termina-

tion is impractical due to the complexity of graph structures and

the convergence of graph applications. For example, one question

here is: how to determine the utility (or benefits) of executing an

operation to the convergence of the entire application. Existing stud-

ies [23, 47, 59] rely on heuristics, such as priority, to approximate

the utility. Our problem is more challenging and more complex than

this question. Therefore, like the previous studies, we empirically

use two heuristics in ForkGraph to decide if a thread should yield

the processing of a query. The threshold values of these heuristics

can be tuned and adjusted by users. We experimentally evaluate

their impacts in the evaluation.

Yielding heuristic 1: on the number of edges processed. The first
heuristic is to examine the number of edges processed since the start

of processing in the partition and yield if the number is beyond a

threshold. For example, the processing of a PPR gradually converges

into local stable states with more edges processed but could be

easily fluctuated by operations sent from other partitions in later

steps. Similarly, an SSSP process goes deeply in a subgraph with

more paths enumerated via processing edges, where the chance

of generating non-optimal paths is higher since there are more

routes from neighbor partitions that could lead to shorter ones.

Such operations tend to be redundant. ForkGraph reduces such

operations by limiting the number of edges processed.

Yielding heuristic 2: on the operations’ values updated. The sec-
ond heuristic is to check if the values updated so far in the parti-

tion exceeds a range, inspired by the Δ-stepping and similar ap-

proaches [7, 39]. The heuristic works in this way: for each query

in the partition, we record the value 𝛼 conveyed from the first op-

eration we execute. Based on the intra-partition processing, this

operation has the most benefits to the convergence. If the currently

processed operation’s value is much worse (greater or smaller) than

𝛼 value by a factor or a threshold, we should yield the processing.

For example, when solving SSSPs, if the shortest path to process

in the current partition is greater than 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 +Δ, where 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 is

the distance from the source vertex to the closest unprocessed ver-

tices, there is a high chance that there would be better paths [39, 59]

that are not yet exploited.Δ is a tunable parameter of theΔ-stepping
algorithm, and the algorithm restricts the processing to vertices

whose distances from the source are within [𝑑𝑖𝑠𝑡𝑚𝑖𝑛, 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 + Δ).
Similarly, in solving PPRs, if the highest residual of vertices in the

partition is not significant enough, instead of continuing processing

for local stable states, a better solution is to yield and wait for more

influencing operations propagated to this partition.

The yielding heuristics only pause the processing of the current

query in the partition. After a query yields, the unprocessed op-

erations (including newly generated ones) for that query are kept

in the partition’s buffer and processed later. The processing will

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1213

P2

P1
A CB H E

D

F

⟨q1,D,2⟩
⟨q1,D,5⟩
⟨q1,F,5⟩
B2

⟨q1,H,2⟩
B1

(a) Finish 𝒒1 in 𝑷1 w/o yielding.

⟨q1,H,3⟩
B1

⟨q1,D,2⟩
⟨q1,D,5⟩
⟨q1,F,5⟩
B2

P2

P1
A CB H E

D

F

(b) Yield 𝒒1 at edge H to E.

Figure 7: Comparison of the execution and number of oper-
ations with and without yielding in 𝑷1. Shorest path query
𝒒1 starts at vertex A in 𝑷1. All edges are with unit lengths.

eventually converge as the standard algorithms and the correctness

of processing results are guaranteed.

Figure 7 shows the comparison of the execution and the number

of operations during processing with and without yielding. The

figure reflects the states of finishing processing 𝑃1 and switching

to 𝑃2. In Figure 7a, ForkGraph switches to 𝑃2 when it finishes all

operations in 𝑃1 and sends three operations to 𝑃2. It then schedules

to process 𝑃2. We can expect that ForkGraph has to revisit and

update vertex E in 𝑃1 again because the shortest path from A to E
will be found via vertex D.

In Figure 7b, ForkGraph yields the process after vertex H, stores
the operation at H in 𝑃1, and sends one operation to 𝑃2. When

ForkGraph finishes the execution in 𝑃2, it sends the shortest path

update in an operation ⟨𝑞1, E, 3⟩ to E. Compared with the execution

without yielding, the redundant operations ⟨𝑞1,D, 5⟩ and ⟨𝑞1, F, 5⟩
are pruned. ForkGraph will resume to process the remaining opera-

tion ⟨𝑞1,H, 3⟩ in 𝑃1’s buffer together with operations sent from 𝑃2.

In this way, we reduce the redundant updates and guarantee the

exact results.

To summarize, yielding can significantly reduce the redundant

operations within the current partition and the redundant opera-

tions propagated to neighbor partitions. Furthermore, we give a

theoretical proof to show that the yielding helps the work efficiency

of FPP queries processing in the complete version [36].

5.2 Priority-Based Scheduling
When ForkGraph finishes the processing of a partition, inter-partition

scheduling selects another partition with a non-empty buffer to

process. A wrong execution order of graph partitions leads to the

repeated revisiting of partitions. To avoid such inefficiency, we

propose a priority-based scheduling that aims to pick a partition

that can lead to quick convergence of the FPP processing to process.

We assign each partition with a priority value based on the priority

functor. Intuitively, some partitions are buffering operations that

would quickly lead to the convergence of queries, e.g., the shortest

path or the most effective value changes in PPR updates. There-

fore, we prefer to process these partitions’ buffered operations than

others for quick convergence.

The key question is how to determine the priority value of each

partition. The priority of a partition is defined to be the highest

priority value among all the operations in the partition and the

priority values are generated in the priority functor. Like many

existing studies, the priority functor in ForkGraph is defined on

per operation (i.e., per vertex), rather than on a set of vertices.

For example, Dijkstra’s algorithm for SSSP takes shorter distances

as higher priorities [15], and it always uses the shortest path to

P1

P3P2

A
C

B

E
D

P4F
⟨q1,F,3⟩
⟨q1,F,4⟩
⟨q2,F,6⟩
⟨q2,F,5⟩
B4

⟨q1,E,2⟩
⟨q2,E,1⟩
B3

⟨q1,D,9⟩
⟨q2,D,8⟩
B2

B1

pv=8

pv=1

pv=3

Scheduling Execution order #Operations processed
Random P1,P2,P4,P2,P3,P2,P4 11
Max #operations P1,P4,P2,P3,P2,P4 9
FIFO P1,P3,P4,P2,P4 7
Priority-based P1,P3,P2,P4 6

Figure 8: The execution orders under different scheduling
methods. Shortest path queries 𝒒1 and 𝒒2 start in 𝑷1. Only
vertices with edges crossing partitions are shown for brevity.
All edges are with unit lengths.

update other vertices. As there can be many buffered operations in

a partition, selecting the value with the highest priority is a simple

and effective approach to determine each partition’s priority.

With a given priority functor, ForkGraph always schedules the

partition with the highest priority in the graph to process next.

However, the scheduled partition might be the most desired par-

tition for only a subset of FPP queries, but not for all. Redundant

operations may be generated when executing operations of queries

that desire other partitions. To deal with the redundancy, we con-

trol the amount of work spent by each query using the proposed

yielding optimization. We theoretically prove that ForkGraph is

work-efficient on handling FPP queries and one of the reasons is

that the yielding optimization effectively reduces such redundancy.

Due to the space limit, we put the proof in the appendix of the

complete version of this paper [36].

Figure 8 shows the comparison of the execution orders using

different scheduling methods. 𝑝𝑣 denotes the priority value of each

partition at this stage. The random scheduling picks an arbitrary

partition with operations to process at each step, which could take

more steps than other methods, resulting in slow convergence. The

heuristic of picking up the partition with the most number of oper-

ations (denoted as “Max #operations” in the figure) could maximize

the reuse of cache content. However, our experiments in Section 6.4

show that it is slower than other methods because of involving

more redundant work. The FIFO-based scheduling visits partitions

based on the orders of operation generated. Compared with these

methods, leveraging the priority functors from Dijkstra’s algorithm,

ForkGraph can schedule the execution orders to maximize the ex-

ploitation of shortest paths and reduce redundant work. In this

example, the priority-based scheduling method shows the smallest

number of visits to partitions and the least number of operations

processed. We provide the detailed work-through of this example

in the appendix of the complete version [36].

The priority functors are programmed by users. Sometimes, it

can be non-trivial to develop a functor for a certain graph operation.

Fortunately, in the decades of research on graph processing, priority

functors have been developed for many graph algorithms [15, 46,

47], especially in a wide range of existing sequential algorithms.

Thus, users can reuse the implementation of those priority functors

as what we did in the experiments. By default, ForkGraph uses FIFO

queues to schedule partitions.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1214

6 EXPERIMENTAL EVALUATION
In this section, we evaluate ForkGraph on handling FPPs on real-

world graphs compared with state-of-the-art GPSs.

6.1 Experimental Setup
Hardware configuration. We conduct experiments on a Linux

server with a 10-core Intel
®
XEON

®
W-2155 CPU (hyperthreading

disabled) and 256GB memory. The frequency of the CPU is 3.3GHz,

and the LLC is 13.75MB. We compile all the implementations using

g++ 7.5.0 with -O3 flag and OpenMP enabled.

Implementation Details. We develop ForkGraph in C++ with

OpenMP, where most of the components added to Ligra are devel-

oped by reusing existing GPSs’ primitives or using the C++ Standard

Template Library (STL). For inter-partition scheduling, we adopt the

priority queue container in STL because the scheduling workload

is not heavy (there are at most |𝑷 | elements maintained, each of

which is the priority of a partition, where |𝑷 | << |𝑉 |); as discussed
early, we directly adopt the priority functors and yielding functors

from the state-of-the-art sequential implementations [15, 39, 47].

For intra-partition processing, ForkGraph fixes the total number

of available threads as the number of hardware threads to ensure

high CPU utilization, as well as avoid high context switches and

process migration overhead.

In the buffer management, we develop a simple and efficient

multi-bucket structure to buffer operations, where we allocate

𝐾 (𝐾 ≤ |𝑄 |) independent buckets for each partition’s buffer. We

equally divide the |𝑄 | queries into 𝐾 corresponding groups and

assign each group to explicitly use one of the buckets in each buffer,

reducing the overhead of consolidating different queries’ operation.

In our evaluation, we set 𝐾 to be much larger than the number

of cores in the system to allow fine-grained workload allocation.

We implement the bucket using a parallel vector structure from

GraphIt’s code base [62], which dynamically adjusts capacities with

a tunable growth factor, to make each bucket dynamic-sized and in

contiguous memory, without wasting much memory.

For graph partitioning, we mostly use METIS [29], one of the

state-of-the-art edge-cut tools, to pre-process the graph with the

objective of minimizing the total number of edges across differ-

ent partitions. Since METIS shows poor partitioning quality on

large-scale social network graphs [53], we randomly partition these

graphs into parts with equal number of vertices.

In the evaluation, we use the priority functor in Dijkstra’s algo-

rithm [15], and set yielding heuristic 2 as guided in the Δ-stepping
algorithm [39] for BC and LL; we use the priority functor in [47],

and set yielding heuristic 1 as guided in the appendix of [36] for

NCP. Particularly, the priority-based scheduling is implemented as

priority queue with binary comparison functors (comparators) for

all the three applications evaluated in this paper. In the evaluation

of BC and LL, the functors compare two operations and return “true”

if the path length carried by the first operation is shorter than that

carried by the second. For NCP, the functor returns “true” if the

residual carried by the first operation is higher than the one carried

by the second. This setup is used for all the tests in the rest of this

paper, unless specified otherwise.

System settings. The system settings contain three major perspec-

tives. First, given a machine, for any given graph, the partition

size is fixed to be the LLC size. In other words, |𝑷 | is calculated as

𝐺.𝑠𝑖𝑧𝑒/𝐿𝐿𝐶.𝑠𝑖𝑧𝑒 . Second, users can provide the priority functors.

Typically, users obtain the priority functors from existing sequen-

tial algorithms. If there is no functor provided, ForkGraph uses a

FIFO queue for processing and scheduling by default. Third, we set

the yielding heuristics based on the work efficiency analysis. In this

way, ForkGraph shows comparable or the best performance among

different settings, as shown later in Table 4. Although these settings

may not achieve the best-case performance, they are sufficiently

good in practice.

Comparisons. We compare ForkGraph to the other three repre-

sentative GPSs, Ligra [45], Gemini [66], and GraphIt [62]. Ligra

has the fastest implementation of many algorithms, as it is still

actively maintained [13, 47]. Gemini is a distributed graph process-

ing system with notable shared-machine performance. Gemini is

compiled and tested with message passing functions disabled. We

also compare with GraphIt [62], the state-of-the-art DSL (domain-

specific language) for high-performance graph analytics. All three

systems allow users to explore various optimization and tradeoffs

(such as push vs. pull, and dense vs. sparse frontier). In our evalua-

tion, all the systems are carefully tuned and tested with different

configurations. Particularly, the tuned configurations include the

direction switch threshold in Ligra and Gemini, the scheduling in

GraphIt, the yielding and priority-based scheduling in ForkGraph.

We present the best result for all systems among those tests.

As mentioned in the Introduction, we use 𝑡 to denote the number

of threads assigned to a query in Ligra, Gemini, and GraphIt. Partic-

ularly, when 𝑡 = 10 and FPP queries are executed one by one (with

intra-query parallelism on ten cores), we denote these three GPSs

as Ligra (𝑡 = 10), Gemini (𝑡 = 10), and GraphIt (𝑡 = 10), respectively.

When 𝑡 = 1, we run each query independently using one hardware

thread and use OpenMP’s dynamic scheduling to allow each GPS to

fetch and process FPP queries without synchronizations. We denote

those implemenations as Ligra (𝑡 = 1), Gemini (𝑡 = 1), and GraphIt

(𝑡 = 1), respectively.

Wemeasure the time for each system to complete the FPP queries

processing. This measurement excludes the time spent reading data

from the disk because we focus on optimizing the in-memory com-

putation. For each of the FPP-based graph applications evaluated,

we generate three testing sets per graph, representing three testing

instances of an application on a graph. We run all tests five times

and report the average execution time of the 3 × 5 = 15 tests. Note

that there are a few FPP queries in each test, representing a single

instance of an FPP application. Details are given below.

Applications. We evaluate competing systems’ performance on

three applications, BC, LL, and NCP. To keep consistent with previ-

ous work [1, 18, 47], we configure the three applications as follows.

• The original BC performs one SSSP from each vertex for a

weighted graph (for unweighted graphs, one BFS from each vertex).

This is too time-consuming to be practical. Instead, we adopt an ap-

proximate approach by Eppstein et al. [52]. The algorithm samples

the starting nodes from the graph. Therefore, in our evaluation, we

randomly sample a batch of 100 source vertices for each graph [18].

• The testing of NCP follows [47]. Each NCP requires running

PPRs using a seeding of 0.01% of the vertices that are randomly

sampled in the target graph.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1215

Table 2: Input graphs (𝑑 is the average degree).

Graph Source #𝑽 #𝑬 𝒅 Memory |𝑷 |
Ca California [11] 1.9M 4.6M 2.4 0.07GB 5

Us USA [11] 23.9M 57.7M 2.4 0.82GB 62

Eu Europe [4] 50.9M 0.1B 2.1 1.65GB 120

Or Orkut [32] 3.1M 0.1B 38.1 1.37GB 100

Wk Wikipedia [10] 3.6M 45.0M 12.6 0.54GB 40

Lj LiveJournal [32] 4.8M 87.5M 18.0 1.04GB 76

Pt Patents [32] 16.5M 33.0M 2.0 0.50GB 37

Tw Twitter [30] 61.6M 1.5B 23.8 17.27GB 1256

• The testing of LL follows [1]; each LL requires executing 1,024

independent SSSPs from source vertices that are randomly sampled

in the target graph.

Data sets. All the data sets are publicly available and widely used

in the previous literature [45, 62, 66] to benchmark algorithms

and frameworks. The data sets are listed in Table 2. Following the

experimental studies in [45] and [12], we create weighted graphs by

selecting edgeweights between [1, 𝑙𝑜𝑔 |𝑉 |) uniformly at random.Ca,
Us, and Eu are road networks, Or, Lj, and Tw are social networks,

Wk is a hyperlink network, and Pt is a citation network.

Experimental outline. We first present the overall comparison

between ForkGraph and other GPSs in Section 6.2. In Section 6.3,

we present the profiling results on cache performance and work

efficiency. In Section 6.4, we evaluate the impacts of individual

techniques and system tuning. Due to the space limit, we summarize

some other results in Section 6.5 and present the details in the

appendix of the complete version [36].

6.2 Overall Performance Comparison
Finding (1): ForkGraph significantly outperforms Ligra, Gemini,

and GraphIt in different execution schemes by 32×, 307×, and 38×
speedups on average, respectively.

Figure 9 shows the performance of the applications with differ-

ent implementations. For Ligra, Gemini, and GraphIt, we evalu-

ate different threading configurations (𝑡), and only show the best

results for brevity. As the execution time of different test cases

varies significantly, we present the normalized execution time to

the performance of Ligra (𝑡 = 1). The normalized performance of

ForkGraph is annotated on the plots.

In Figures 9a and 9c, since Ligra (𝑡 = 1), Gemini (𝑡 = 1), and

GraphIt (𝑡 = 10) outperform Ligra (𝑡 = 10), Gemini (𝑡 = 10), and

GraphIt (𝑡 = 1), respectively, for almost all the cases, we omit the

results for brevity. Similarly, we omit the results of Ligra (𝑡 = 10),

Gemini (𝑡 = 10), and GraphIt (𝑡 = 10) in Figure 9b.

Overall, ForkGraph significantly outperforms the other three

GPSs in different schemes on all the tested applications with two

orders of magnitude speedups on average. Besides, we show later

that ForkGraph reduces the number of LLC misses by more than a

factor of 10×. We make the following observations in comparison

with each of state-of-the-art GPSs.

First, ForkGraph shows 51× speedups over Ligra (𝑡 = 10) and

32× over Ligra (𝑡 = 1) on average. ForkGraph accelerates the con-

vergence within partitions with low cache thrashing and adopts

the sequential implementation to reduce the total workload.

Second, Gemini’s implementations suffer from high synchro-

nization overhead in each iteration because it is designed with the

Ca Us Eu Or Wk Lj Pt Tw

0.0

0.5

1.0

1.5

2.0

2.5

3.0
5.48 14.30

0.01 0.01 0.13

0.79

0.28

0.91

0.59
0.51

N
o
r
m
a
l
i
z
e
d
e
x
e
c
u
t
i
o
n
t
i
m
e Ligra (𝑡 = 1) Gemini (𝑡 = 1) GraphIt (𝑡 = 10) ForkGraph

(a) BC

Or Wk Lj Pt Tw

0.0

0.2

0.4

0.6

0.8

1.0

0.49

0.08
0.03

0.13
0.05

N
o
r
m
a
l
i
z
e
d
e
x
e
c
u
t
i
o
n
t
i
m
e Ligra (𝑡 = 1) Gemini (𝑡 = 1) GraphIt (𝑡 = 1) ForkGraph

(b) NCP

Ca Us Eu Wk Pt

0.0

0.5

1.0

1.5

2.0

2.5

3.0
5.86 26.07

0.01 0.01 0.13 0.21

0.62
N
o
r
m
a
l
i
z
e
d
e
x
e
c
u
t
i
o
n
t
i
m
e Ligra (𝑡 = 1) Gemini (𝑡 = 1) GraphIt (𝑡 = 10) ForkGraph

(c) LL

Figure 9: Overall execution time for the three applications
with different implementations. We carefully tune all the
systems and only report the best performance.

message passing mechanism for a distributed setting. Although all

the message-passing functions are disabled in our evaluation, the

materialization overhead between consecutive iterations is signifi-

cant. ForkGraph handles the operations of FPP queries using fast

implementations of sequential algorithms, which incurs minimal

overhead in synchronization and atomic operations. As a result,

ForkGraph delivers three orders of magnitude speedups over Gem-

ini, especially on road graphs with high diameters.

Third, although GraphIt optimizes a single query’s cache usage,

it shows higher contention with more threads enabled. Except for

solving PPR, GraphIt shows a slowdown when 𝑡 = 1. The reason

is that the graph-traversal based queries in BC and LL benefit the

cache optimization provided in GraphIt, while the high LLC misses

due to uncoordinated memory accesses is too high to be covered by

the performance gain when leveraging the inter-query parallelism

in GraphIt (𝑡 = 1). Compared with GraphIt, ForkGraph aims to

optimize the performance in the inter-query parallelism setting

and achieves up to 197× speedups over the best of GraphIt under
different schemes. ForkGraph slightly outperforms GraphIt (𝑡 = 10)

on social networks by 1.3× on solving BC because GraphIt (𝑡 = 10)

generates more efficient direction-optimized traversals by searching

through a much larger space of optimizations. On data sets that do

not rely on direction optimization, ForkGraph achieves more than

100× speedups over both GraphIt (𝑡 = 10) and GraphIt (𝑡 = 1).

As an example that details the actual execution time, Table 3A

shows the execution times of the four systems on solving NCP. We

can observe that it takes Ligra (𝑡 = 10) 11.5 hours to process the

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1216

Table 3: Execution time and memory consumption of NCP
on different data sets using the four systems.

A. Execution time (minutes)
Or Wk Lj Pt Tw

Ligra (𝑡 = 10) 0.7 10.1 23.5 28.9 692.0

Ligra (𝑡 = 1) 0.7 8.1 19.8 17.8 243.3

Gemini (𝑡 = 10) 0.7 4.2 7.2 13.2 230.8

Gemini (𝑡 = 1) 0.7 2.5 4.5 8.9 187.4

GraphIt (𝑡 = 10) 0.6 3.5 7.1 11.2 198.8

GraphIt (𝑡 = 1) 0.5 2.4 5.4 9.3 181.9

ForkGraph 0.4 0.6 0.7 2.3 11.7

B. Memory consumption (GB)
Or Wk Lj Pt Tw

Ligra 7.9 17.2 39.7 70.3 148.0

Gemini 16.1 19.9 35.0 103.2 130.8

GraphIt 17.1 20.0 37.3 103.9 149.8

ForkGraph 12.7 23.8 39.1 98.6 152.1

PPRs on the Tw graph, while ForkGraph only needs 12 minutes.

Thus, ForkGraph is more practical for many graph applications.

Table 3B shows the memory usages of the four systems. Basically,

most of the memory is spent on storing the execution results of

FPP queries, and ForkGraph consumes 5 − 19% more memory than

other GPSs, mainly caused by buffers.

6.3 Cache Efficiency and Work Efficiency
Finding (2): ForkGraph shows up to a factor of 100× reduction of

the number of LLC misses. First, the buffered execution is cache-

efficient and it reduces the LLC misses of ForkGraph even with the

same amount of work as other GPSs. Second, the work efficient

design of FPP queries processing further reduces the amount of

total LLC accesses.

Figure 10 shows the profiling of cache performance and the num-

ber of edges processed of different GPSs. We present the amount

of work as the number of edges processed during processing. For

brevity, we show the profiling of LL and NCP applications on two

representative graphs for each.We observe similar findings on other

graphs. With the buffered execution model and work-efficient op-

timizations, ForkGraph significantly reduces the total LLC misses

and work compared to others. Figure 10a shows that ForkGraph

reduces the number of LLC misses by up to a factor of 100×, com-

pared to other GPSs’ execution with 𝑡 = 1, and by up to a factor of

60× over others’ execution with 𝑡 = 10.

We also count the number of edges processed in executing se-

quential algorithms on the same data sets. We find that ForkGraph

only processes 10.4 − 16.7× more edges than the sequential algo-

rithm (Dijkstra’s algorithm) on BC and LL and 5.2− 9.4×more than

the sequential algorithm on NCP.

The significant reduction of LLC misses mainly comes from two

optimizations: 1) the LLC-sized partition helps to guarantee that

operations are limited within LLC during intra-partition process-

ing and 2) the total reduction of workloads as ForkGraph can be

theoretically proved to be work-efficient. As shown in Figure 10b,

ForkGraph significantly reduces the number of edges processed

on road networks due to work-efficient yielding and scheduling,

which is also the reason for significant speedups over the other

GPSs. Although ForkGraph shows a similar amount of work as

Gemini and GraphIt on Lj and Tw, it only incurs fewer than 1/10

LL on Ca LL on Us NCP on Lj NCP on Tw

10
7

10
9

10
11

#
L
L
C
m
i
s
s
e
s

Ligra (𝑡 = 10) Ligra (𝑡 = 1) Gemini (𝑡 = 10) Gemini (𝑡 = 1)

GraphIt (𝑡 = 10) GraphIt (𝑡 = 1) ForkGraph Sequential

(a) Number of LLC misses.

LL on Ca LL on Us NCP on Lj NCP on Tw

10
8

10
10

10
12

#
e
d
g
e
s
p
r
o
c
e
s
s
e
d

(b) Number of edges processed.
Figure 10: Profiling results of the number of LLCmisses and
the number of edges processed per FPP query on four GPSs,
solving two applications on four graphs.

LL on Ca LL on Us NCP on Lj NCP on Tw

0

50

100

150

200

0.48 0.14

S
p
e
e
d
u
p

+buffer +consolidation +priority scheduling +yielding

Figure 11: Speedups achieved by applying different opti-
mizations cumulatively to the Ligra baseline.

of the LLC misses as others, delivering near an order of magnitude

speedup over them.

6.4 Effects of Individual Techniques
Finding (3): The proposed techniques accumulatively improve the

performance of ForkGraph.

We evaluate the performance impacts of major design rationales

in ForkGraph, including buffered execution, query-centric oper-

ation consolidation, priority-based scheduling, and yielding. We

cumulatively enable each of those optimizations one by one on the

baseline Ligra (𝑡 = 10) to study the advantages of individual design

decisions. For brevity, we show LL and NCP on four graphs again.

Figure 11 shows the performance improvement. We have the

following observations. First, we enable the buffered execution

model and sequential execution of FPP queries, denoted as +buffer.

+buffer achieves 25× speedups on solving LL on road networks

because it benefits from the good locality. Also, we observe that

applying the buffered execution model brings negative performance

improvements in solving NCP. The reason is that we only finish

the processing of a PPR query in the partition when it converges,

which brings extra workload when dealing with an excessive num-

ber of revisits. Second, we enable the atomic-free processing by

query-centric operation consolidation, denoted as +consolidation.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1217

It begins to show significant speedups by both reducing the over-

head of atomic operations and the memory overhead caused by

expanding superfluous operations to neighbor partitions. Next, we

enable the optimizations of priority-based scheduling and yielding,

respectively. These two optimizations holistically improve the per-

formance over +consolidation by further 1.3 − 16.2×. The yielding
optimization generally provides more significant speedups than

others as it cuts off the work directly during the processing, while

the priority-based scheduling reduces workloads indirectly.

Impacts of parameter tuning in inter-partition scheduling.
We further evaluate the performance impacts of the priority-based

scheduling and yielding. We only show the results for BC with 100

SSSPs on Us graph for brevity.

Table 4A shows the impact of different priority functors. We

make the following observations. First, it is inefficient to schedule

the partition with most operations to process (“Max #operations”),

even though it is more cache efficient intuitively. As a result, it is

even slower than the baseline by picking an arbitrary non-empty

buffer to process in each step (“Random”). Second, the performance

of the default FIFO scheduling is slightly better than a random

scheduling. Third, compared to other priority functors, adopting

the “Shortest” priority functor from the corresponding sequential

algorithms delivers several times speedups over others.

Table 4B shows the performance of ForkGraph using different

yielding thresholds based on the number of edges processed. We

define 𝜇 to be the number of edges in the partition divided by the

total number of queries, which is the theoretical threshold (see the

proof in the appendix of the complete version [36]). We change the

threshold value of the heuristics at the basis of 𝜇. We can observe

that the execution of applying threshold 𝜇 results in an execution

time near the fastest but not necessarily the fastest. It is because that

the threshold is obtained based on the theoretical upper bound of

the number of revisits; however, the number of revisits is far below

the bound in practice, which makes a larger threshold perform well.

As there can be thousands of queries in our experiments for NCP

applications on large graphs, we use a larger threshold, 100𝜇, for

these cases.

Table 4C shows the impact of yielding heuristics based on the

value updated. We adopt the Δ = 50, 000 used in [59] for the same

data set Us and also test the execution instances with the thresh-

old varied. We present the execution times of ForkGraph with the

threshold setting varied from 0.25Δ to 4Δ for brevity. We have the

observations as follows. First, when the threshold is large, Fork-

Graph spends more time as there are more redundant operations

abandoned in each partition. Second, when the threshold is small,

ForkGraph aggressively yields the processing in a partition and re-

sults in a high number of revisits. We choose the thresholds directly

adopted from the Δ-stepping algorithm [39, 59] in our experiments.

6.5 Other Results
Due to the space limit, we summarize some experimental results as

follows. The reader is referred to the details in the appendix of the

complete version [36].

Memory stall distribution. As more than 34% of the execution

time of other GPSs is spent on memory stalls, the time spent in

Table 4: Performance of ForkGraph under different priority-
based scheduling methods and yielding parameters, solving
BC on Us.

A. Impacts of priority-based scheduling (yielding enabled).
Priority functor Random Max #operations FIFO Shortest
Execution time (s) 504.3 749.9 491.3 168.8

B. Impacts of yielding heuristic 1: on the number of edges processed
(priority-based scheduling enabled).

Threshold 0.25𝜇 0.5𝜇 𝜇 2𝝁 4𝜇 No Yielding

Execution time (s) 450.9 412.4 325.6 238.6 248.3 1945.8

C. Impacts of yielding heuristic 2: on the operations’ values updated
(priority-based scheduling enabled).

Threshold 0.25Δ 0.5Δ 𝚫 2Δ 4Δ No Yielding

Execution time (s) 420.6 297.0 168.8 172.1 239.8 1945.8

ForkGraph is only less than 20% of the total execution time. Fork-

Graph’s design limits the operations to graph partitions in the

LLC and thus reduces the percentage of the costly DRAM accesses,

which is shown as the low memory stall distribution.

Scalability.We evaluate the scalability of ForkGraph in the num-

bers of threads and queries. First, ForkGraph can achieve 7 − 8×
speedups when scaling up from one to ten cores (with hyper-

threading disabled) for most of the graphs. Second, ForkGraph

shows the capability to remain at a high throughput with process-

ing growing numbers of FPP queries.

Effects of Partition and Cache Size. We empirically study the

effects of graph partitioning methods, partition sizes, and cache

sizes. First, ForkGraph on METIS partition shows up to 14.1× and

4.2× speedups over a random partition and Gemini’s lightweight

partition [66], respectively, when executing LL and BC on different

graphs. ForkGraph on METIS partition shows 1.1 − 3.6× speedups

over other partitioning methods when executing NCP on different

web and social networks. Second, our results show that using LLC-

size partitions achieves the best performance for most cases. This

is because the intra-partition processing can cause heavy cache

thrashing if the partition size is larger than the LLC size. Further,

if we divide the graph into small partitions, there can be a large

number of partitions to schedule, which incurs a high overhead.

7 RELATEDWORK
Graph processing onmulti-core architectures. There has been
substantial works on efficient parallel graph systems and frame-

works over the past years, including [19, 35, 37, 62, 66] among

many others. Ligra [45], Galois [40], as the representative shared-

memory graph processing frameworks. These frameworks are de-

signed with abstractions for users to conduct graph computations

while leveraging hardware properties such as memory locality and

multi-cores efficiently. GraphIt [62] is a DSL for graph processing,

which generates parallel implementations of graph applications.

GraphIt integrates a scheduling language to ease the exploration of

the complicated tradeoff space. We refer the reader to [38, 54] for

excellent surveys of this growing literature.

Zhang et al. [62] and Lakhotia et al. [31] propose to improve

the cache utilization by breaking the graph into segments that

fit in the LLC. In this way, random accesses at each partition are

limited in the cache, avoiding costly memory accesses. Similarly,

ForkGraph also partitions graphs into LLC-size partitions. Unlike

their approaches, ForkGraph designs a buffered execution model to

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1218

specifically optimize processing queries simultaneously to enable

the work-efficient and cache-efficient FPP processing.

Other related works in graph processing systems. Yan et al.

propose Blogel [55], a block-centric, distributed graph processing

framework. Both ForkGraph and Bogel consider a partition of a

graph as a computing block (instead of a vertex or an edge). The

block-centric computing model proposed by Bogel helps decrease

the number of iterations compared to a vertex-centric algorithm

and also reduces the number of messages transmitted through the

network in the distributed setting. ForkGraph is different from

Blogel since Blogel is distributed, and ForkGraph is in-memory.

Besides, Blogel executes one query at a time, while ForkGraph

focuses on the efficiency of inter-query parallelism among multiple

FPP queries.

In addition, Zhao et al. propose GraphM [63], a storage system

that efficiently handles consolidated, out-of-core concurrent graph

queries. GraphM divides the graph into partitions and sets the

highest priority to the partition with the most jobs. However, as

shown in Table 4, this approach is inefficient for FPP queries because

GraphM’s scheduling is designed for the out-of-core, BSP model,

but not work-efficient for in-memory execution.

Processing multiple graph queries simultaneously. Zhang et

al. [61] propose CGraph, one of the the state-of-the-art disk-based

graph processing systems that handle multiple queries simultane-

ously. CGraph efficiently amortizes the high disk access cost when

processing multiple queries simultaneously by a subgraph-based

scheduling algorithm. Differently, ForkGraph targets cache-efficient

FPP queries processing in memory. While CGraph processes all

queries in every iterations, ForkGraph only processes a subset of

FPP queries in the partition-level granularity, leveraging work-

efficient sequential executions. Hauck et al. [24] motivate the ex-

perimental studies of processing concurrent queries based on the

multi-user setups in classic relational enterprise database environ-

ments or web-scale environments. They study the inter- and intra-

parallelism of handling different types of graph queries by assign-

ing different threads to different instances of Galios [40]. However,

executing multiple instances contains inevitable contentions of the

system resources, including memory and threads. The authors pro-

vide an in-depth discussion of the limitation of GPSs in handling

multiple queries but do not come out with a suitable solution.

MS-BFS [50] and iBFS [34] are proposed to accelerate multiple

BFS queries using multi-core CPUs and GPUs (Graphics Processing

Units), respectively. Instead of visiting vertices individually for each

BFS, both work leverage joint frontier queue and bitwise operations

for multiple BFS queries. However, the techniques specifically serve

only BFS queries, losing the generalities.

Buffering accesses to index structures. The access buffering

model proposed in this work is inspired by Zhou and Ross’s work [64,

65] on buffering accesses to tree-structured indexes, e.g., B
+
-tree [9],

and many other related buffering techniques [20, 25, 43, 48]. The

buffering techniques are mainly used for avoiding cache thrashing

between query accesses by processing buffered lookups at index

nodes. Besides, He et al. [25] develop a cache-oblivious design on

buffering accesses. Those previous works inspire our buffer exe-

cution model. However, the previous studies work on a relatively

simpler problem on tree accesses, which always go from the root

to leaf nodes. In FPPs, the access pattern is more irregular. A query

could start randomly from any vertex and expand to different neigh-

bors, and the access can be repeated, unlike the accesses on trees.

Therefore, this work develops novel intra- and inter-partition mech-

anisms to improve the work and cache efficiency.

Other related topics fromrelational databases.The cache-aware
techniques in ForkGraph have been greatly inspired by the substan-

tial studies from relational databases. Particularly, Harizopoulos et

al. propose Qpipe [22], an relational query engine that exploits over-

lap across concurrent queries at runtime. Qpipe buffers data pages

brought by queries and reuses them for other submitted queries.

Moreover, systems like Dora [41], H-Store [28], and many other

works partition the data logically or physically to enable concur-

rent transactions execution in parallel on partitioned data, which

share the similar spirit of ForkGraph on LLC-sized graph partitions.

The logging solution proposed by Johnson et al. [27] aggregates

requests from threads to reduce the contention among them by

making the requests independent from the number of threads. This

is similar to the consolidation process of ForkGraph.

However, the techniques proposed in previous studies cannot

be directly applied in this work since these studies are in relational

databases and this work focuses on graph processing. Particularly,

this work has the following differences. First, the order of opera-

tions in Qpipe and other works in relational databases does not

affect the work efficiency, while the order of graph query operations

affect the work efficiency. Second, compared with the consolidation

techniques proposed by Johnson et al. [27], ForkGraph not only

reduces the contention but also leverages the algorithmic proper-

ties such as priority and yielding in graph algorithms to reduce

redundant computation.

8 CONCLUSIONS
As graph applications emerge, we observe a common and costly

fork-processing pattern (FPP) that launches many independent

queries from different source vertices on the same graph. Our pro-

filing studies demonstrate that existing parallel graph systems suf-

fer from severe cache thrashing due to irregular graph structures

and many parallel queries in FPP. Thus, we propose ForkGraph,

a cache-efficient graph processing system for processing FPPs on

in-memory graph data. Specifically, ForkGraph embraces a cache-

efficient buffer execution model to handle operations of many FPP

queries. Moreover, we develop effective intra- and inter-partition

mechanisms to improve work efficiency. Our evaluations on real-

world graphs show that ForkGraph significantly outperforms state-

of-the-art graph processing systems (including Ligra, Gemini, and

GraphIt) by two orders of magnitude speedups.

ACKNOWLEDGMENTS
This project is supported by the grant “Asian Institute of Digital

Finance” awarded by National Research Foundation, Singapore

and administered by the Infocomm Media Development Authority

under its Smart Systems Strategic Research Programme in 2020. Any

opinions, findings and conclusions or recommendations expressed

in this material are those of the author(s) and do not reflect the

views of National Research Foundation, Singapore.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1219

REFERENCES
[1] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In SIGMOD
(2013). 349–360.

[2] Morteza Alamgir and Ulrike Von Luxburg. 2010. Multi-agent random walks for

local clustering on graphs. In ICDM (2010). IEEE, 18–27.
[3] Baruch Awerbuch and Tom Leighton. 1994. Improved approximation algorithms

for the multi-commodity flow problem and local competitive routing in dynamic

networks. In STOC (1994). 487–496.
[4] David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner.

2011. 10th DIMACS Implementation Challenge-Graph Partitioning and Graph

Clustering.

[5] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing

breadth-first search. In SC (2012). 1–10.
[6] Scott Beamer, Krste Asanovic, and David Patterson. 2015. Locality exists in graph

processing: Workload characterization on an ivy bridge server. In IISWC (2015).
56–65.

[7] Guy E Blelloch, Yan Gu, Yihan Sun, and Kanat Tangwongsan. 2016. Parallel

shortest paths using radius stepping. In SPAA (2016). 443–454.
[8] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of

mathematical sociology 25, 2 (2001), 163–177.

[9] Douglas Comer. 1979. Ubiquitous B-tree. 11, 2 (1979).

[10] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix

collection. ACM Trans. Math. Software 38, 1 (2011), 1–25.
[11] Camil Demetrescu, Andrew V Goldberg, and David Johnson. 2008. 9th DIMACS

implementation challenge–Shortest Paths (2006). (2008).

[12] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A framework

for parallel graph algorithms using work-efficient bucketing. In SPAA (2017).
293–304.

[13] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2018. Theoretically efficient

parallel graph algorithms can be fast and scalable. In SPAA (2018). 393–404.
[14] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E Blelloch, and Julian Shun. 2020.

The Graph Based Benchmark Suite (GBBS). In GRADES & NDA (2020). 1–8.
[15] Edsger W Dijkstra et al. 1959. A note on two problems in connexion with graphs.

Numerische mathematik 1, 1 (1959), 269–271.

[16] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2006. Ant colony optimiza-

tion. IEEE computational intelligence magazine 1, 4 (2006), 28–39.
[17] Santo Fortunato and Darko Hric. 2016. Community detection in networks: A

user guide. Physics reports 659 (2016), 1–44.
[18] Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David Bader. 2020.

Traversing large graphs on GPUs with unified memory. Proceedings of the VLDB
Endowment 13, 7 (2020), 1119–1133.

[19] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. Powergraph: Distributed graph-parallel computation on natural graphs. In

OSDI (2012). 17–30.
[20] Goetz Graefe and Harumi Kuno. 2011. Modern B-tree techniques. In ICDE (2011).

IEEE, 1370–1373.

[21] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In SIGKDD (2016). 855–864.
[22] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. 2005.

Qpipe: A simultaneously pipelined relational query engine. In SIGMOD (2005).
383–394.

[23] MuhammadAmber Hassaan,Martin Burtscher, and Keshav Pingali. 2011. Ordered

vs. unordered: a comparison of parallelism and work-efficiency in irregular

algorithms. Acm Sigplan Notices 46, 8 (2011), 3–12.
[24] Matthias Hauck, Marcus Paradies, and Holger Fröning. 2017. Can Modern Graph

Processing Engines Run Concurrent Queries Efficiently?. In GRADES (2017). 1–6.
[25] Bingsheng He and Qiong Luo. 2008. Cache-Oblivious Databases: Limitations and

Opportunities. ACM Trans. Database Syst. 33, 2, Article 8 (June 2008), 42 pages.
https://doi.org/10.1145/1366102.1366105

[26] Fuad Jamour, Spiros Skiadopoulos, and Panos Kalnis. 2017. Parallel algorithm

for incremental betweenness centrality on large graphs. IEEE Transactions on
Parallel and Distributed Systems 29, 3 (2017), 659–672.

[27] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-

tasia Ailamaki. 2010. Aether: a scalable approach to logging. Proceedings of the
VLDB Endowment 3, 1-2 (2010), 681–692.

[28] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander

Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden, Michael Stonebraker,

Yang Zhang, et al. 2008. H-store: a high-performance, distributed main memory

transaction processing system. Proceedings of the VLDB Endowment 1, 2 (2008),
1496–1499.

[29] George Karypis and Vipin Kumar. 1998. Multilevelk-way partitioning scheme

for irregular graphs. Journal of Parallel and Distributed computing 48, 1 (1998),

96–129.

[30] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is

Twitter, a social network or a news media?. InWWW (2010). 591–600.

[31] Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Viktor Prasanna. 2019. GPOP:

A cache and memory-efficient framework for graph processing over partitions.

In PPoPP (2019). 393–394.
[32] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[33] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.

Community structure in large networks: Natural cluster sizes and the absence of

large well-defined clusters. Internet Mathematics 6, 1 (2009), 29–123.
[34] Hang Liu, H Howie Huang, and Yang Hu. 2016. ibfs: Concurrent breadth-first

search on gpus. In SIGMOD (2016). ACM, 403–416.

[35] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,

and Joseph Hellerstein. 2010. GraphLab: A New Framework for Parallel Machine

Learning. In UAI (2010). 340–349.
[36] Shengliang Lu, Shixuan Sun, Johns Paul, Yuchen Li, and Bingsheng

He. 2021. Cache-Efficient Fork-Processing Patterns on Large Graphs.

arXiv:2103.14915 [cs.DB]

[37] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-

Scale Graph Processing. In SIGMOD (2010). 135–146.
[38] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a

vertex: a survey of vertex-centric frameworks for large-scale distributed graph

processing. Comput. Surveys 48, 2 (2015), 1–39.
[39] Ulrich Meyer and Peter Sanders. 2003. Δ-stepping: a parallelizable shortest path

algorithm. Journal of Algorithms 49, 1 (2003), 114–152.
[40] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight

infrastructure for graph analytics. In SOSP (2013). 456–471.
[41] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Ailamaki.

2010. Data-oriented transaction execution. Proceedings of the VLDB Endowment
3, ARTICLE (2010).

[42] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In SIGKDD (2014). 701–710.
[43] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2016. A hybrid b+-tree as

solution for in-memory indexing on cpu-gpu heterogeneous computing platforms.

In SIGMOD (2016). 1523–1538.
[44] Julian Shun. 2020. Practical parallel hypergraph algorithms. In PPoPP (2020).

232–249.

[45] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing

framework for shared memory. In ACM Sigplan Notices, Vol. 48. ACM, 135–146.

[46] Julian Shun, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Aapo Kyrola,

Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012. Brief announcement:

the problem based benchmark suite. In SPAA (2012). 68–70.
[47] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W Ma-

honey. 2016. Parallel Local Graph Clustering. Proceedings of the VLDB Endowment
9, 12 (2016).

[48] Tomáš Skopal, David Hoksza, and Jaroslav Pokornỳ. 2007. Construction of

tree-based indexes for level-contiguous buffering support. In DASFAA (2007).
361–373.

[49] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal
on computing 1, 2 (1972), 146–160.

[50] Manuel Then, Moritz Kaufmann, Fernando Chirigati, Tuan-Anh Hoang-Vu, Kien

Pham, Alfons Kemper, Thomas Neumann, and Huy T Vo. 2014. The more the mer-

rier: Efficient multi-source graph traversal. Proceedings of the VLDB Endowment
8, 4 (2014), 449–460.

[51] Di Wang, Kimon Fountoulakis, Monika Henzinger, Michael W. Mahoney, and

Satish Rao. 2017. Capacity Releasing Diffusion for Speed and Locality. In ICML
(2017). JMLR.org, 3598–3607.

[52] Joseph Wang and D Eppstein. 2001. Fast approximation of centrality. In SODA
(2001). 228–229.

[53] HaoWei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup graph processing

by graph ordering. In SIGMOD (2016). ACM, 1813–1828.

[54] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. 2017. Big Graph

Analytics Platforms. Found. Trends Databases 7, 1–2 (2017), 1–195.
[55] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-centric

framework for distributed computation on real-world graphs. Proceedings of the
VLDB Endowment 7, 14 (2014), 1981–1992.

[56] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-

nities based on ground-truth. Knowledge and Information Systems 42, 1 (2015),
181–213.

[57] Jin Y Yen. 1970. An algorithm for finding shortest routes from all source nodes to

a given destination in general networks. Quart. Appl. Math. 27, 4 (1970), 526–530.
[58] Jin Y Yen. 1971. Finding the k shortest loopless paths in a network. management

Science 17, 11 (1971), 712–716.
[59] Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib

Kamil, Saman Amarasinghe, and Julian Shun. 2020. Optimizing Ordered Graph

Algorithms with GraphIt. In CGO (2020). 158–170.
[60] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and

Matei Zaharia. 2017. Making caches work for graph analytics. In (Big Data (2017).
IEEE, 293–302.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1220

https://doi.org/10.1145/1366102.1366105
http://snap.stanford.edu/data
https://arxiv.org/abs/2103.14915

[61] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Ligang He, Bingsheng He, and Haikun Liu.

2018. CGraph: A correlations-aware approach for efficient concurrent iterative

graph processing. In ATC (2018). 441–452.
[62] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,

and Saman Amarasinghe. 2018. Graphit: A high-performance graph dsl. OOPSLA
(2018) 2 (2018), 121.

[63] Jin Zhao, Yu Zhang, Xiaofei Liao, Ligang He, Bingsheng He, Hai Jin, Haikun

Liu, and Yicheng Chen. 2019. GraphM: an efficient storage system for high

throughput of concurrent graph processing. In SC (2019). ACM, 3.

[64] Jingren Zhou and Kenneth A Ross. 2003. Buffering accesses to memory-resident

index structures. Proceedings of the VLDB Endowment (2003).
[65] Jingren Zhou and Kenneth A Ross. 2004. Buffering databse operations for en-

hanced instruction cache performance. In SIGMOD (2004). 191–202.
[66] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:

A computation-centric distributed graph processing system. In OSDI (2016). 301–
316.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1221

	Cache-efficient fork-processing patterns on large graphs
	Citation

	Abstract
	1 Introduction
	2 Preliminaries and Motivations
	2.1 Preliminaries
	2.2 Motivation

	3 System Overview
	3.1 System Architecture
	3.2 Overall Execution Flow

	4 Intra-Partition Processing
	4.1 Sequential vs. Parallel Execution
	4.2 Query-centric Operation Consolidation

	5 Inter-Partition Scheduling
	5.1 Heuristic-Based Yielding
	5.2 Priority-Based Scheduling

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Overall Performance Comparison
	6.3 Cache Efficiency and Work Efficiency
	6.4 Effects of Individual Techniques
	6.5 Other Results

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 47.74, 78.78 Width 253.02 Height 86.88 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 47.7389 78.7804 253.0163 86.8848

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 14
 0
 1

 1

 HistoryList_V1
 qi2base

