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ABSTRACT

Link prediction is a fundamental task for graph analysis and the
topic has been studied extensively for static or dynamic graphs.
Essentially, the link prediction is formulated as a binary classifi-
cation problem about two nodes. However, for temporal graphs,
links (or interactions) among node sets appear in sequential orders.
And the orders may lead to interesting applications. While a binary
link prediction formulation fails to handle such an order-sensitive
case. In this paper, we focus on such an interaction order prediction
(IOP) problem among a given node set on temporal graphs. For
the technical aspect, we develop a graph neural network model
named Temporal ATtention network (TAT), which utilizes the fine-
grained time information on temporal graphs by encoding contin-
uous real-valued timestamps as vectors. For each transformation
layer of the model, we devise an attention mechanism to aggre-
gate neighborhoods’ information based on their representations
and time encodings attached to their specific edges. We also pro-
pose a novel training scheme to address the permutation-sensitive
property of the IOP problem. Experiments on several real-world
temporal graphs reveal that TAT outperforms some state-of-the-art
graph neural networks by 55% on average under the AUC metric.
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1 INTRODUCTION

Graphs are ubiquitous data structure in a wide range of real-world
applications, including social networks [43], trading networks [12],
molecule structures [47], and recommendation systems [10]. A key
task in graph analysis is link prediction, which has been extensively
studied in the literature [20, 49, 50]. Most prior works study the
binary classification problem of predicting the existence of future
links/interactions between node pairs [49, 50]. However, many real-
world graphs are highly dynamic and the edges are associated with
timestamps, indicating the order of their occurrences. The binary
formulation overlooks the sequential order when considering edges
among node sets with more than two nodes. While this sequential
order information is ubiquitous in time-critical scenarios, such as
social interaction networks [40], financial transactions [25], and
many others.

The IOP Problem. In this work, we focus on the interaction
order prediction (IOP) among a given node set on temporal graphs.
Given a node set s on a temporal graph 𝐺 , we predict the order of
edges’ occurrence between nodes in s by learning from the histori-
cal interaction order on 𝐺 . The IOP problem enable fine-grained
analyses on temporal graphs. For example, the order of information
propagation is important for rumor control as it enables proactive
propagation route analysis and authorities may then take early
actions with minimum interventions to mitigate undesired conse-
quences [5, 6]. Another example is the sequential recommendation
system (SRS), which recommends items in order based on a user’s
sequential interaction patterns with previous items [30, 39]. SRS
predicts the interaction order between a user and a set of items,
which can be modeled as an instance of the IOP problem. Unlike
the link prediction which focuses on determining the existence of
future edges, the above applications necessitate accurate predic-
tions of interaction orders among specific node sets, motivating the
IOD problem. In this paper, we focus on interaction orders among
size-3 node sets, i.e., temporal triangles, which have been identified
as critical patterns in temporal graph analyses [1, 27, 38].

Technical Challenges. Built on the success of graph neural
networks (GNNs) for many graph analysis tasks, including node
classification [15], link prediction [49], and graph classification [14],
we aim to apply GNNs to address the focused problem. However,
there are several gaps to employ existing GNN methods for the IOP
problem. Firstly, most previous GNN models take static graphs as
inputs and learn time-irrelevant representations [2, 7, 15, 35, 37]. Re-
cently, several graph learning models tailored for temporal graphs
have emerged [4, 26, 28, 33, 44]. These works mainly rely on GNNs

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1884

https://doi.org/10.1145/3447548.3467341
https://doi.org/10.1145/3447548.3467341


and recurrent architectures (e.g., LSTM, GRU) [25, 26, 33], or at-
tention modules [28] to capture the temporal information. While
these architectures lack precise processing of real-valued times-
tamps, mostly utilizing their chronological order information. Sec-
ondly,most GNN models consider a single edge between two nodes,
while there may exist multiple edges with different timestamps
between two nodes in a temporal graph. In IOP, it is both critical
and challenging to consider multiple edges and their fine-grained
temporal pattern to learn comprehensive representations. Thirdly,
IOD requires to take a node sequence s as the input for labeling the
interaction order pattern among nodes in s. The sequential input
imposes a unique permutation-variant property: the prediction la-
bels for two different node sequences of the same node set should
be different but indicate the same underlying interaction order.
In contrast, existing GNNs focus on permutation-invariant tasks,
e.g., graph classification [14]. How to learn a consistent prediction
model which is compatible with different permutation sequences
of the same node set has not been studied in prior GNN works.

Solution.To address the gaps, we propose theTemporalATtention
network (TAT) model by integrating time encodings with the graph
attention mechanism. For the first gap, we discretize continuous
timestamps and encode these timestamps as 𝑑-dimensional vectors
to capture the time information. For the second gap, we employ
the attention mechanism to compute aggregation weights for all
temporal interactions between each node pair. All these temporal
interactions are treated using an identical attention computation
layer. Concretely, at each transformation layer, we concatenate time
encodings with node’s representations from the former layer for
computing attention scores. For the third gap, we devise a novel
permutation-aware training scheme. Given a node sequence s and
its training label 𝑙 , we randomly permute s to s̄. The correct in-
teraction order for s̄ should correspond with that for s under a
permutation. Hence s and s̄ will be jointly optimized under TAT to
preserve the permutation-variant property. However, optimizing
the model for s and s̄ jointly may lead to a stability issue, since the
optimization target for learning the permutation relationship be-
tween s and s̄ is computed by the model itself and requires frequent
update of model parameters. Such a training characteristic leads
to oscillation of the optimization target, and hence oscillation of
the gradients. Inspired by the deep Q-learning [22], we devise a
double-model trick to address the stability issue.

We summarize our contributions as follows: (1) We formulate the
interaction order prediction problem on temporal graphs, which is
a largely ignored sequential prediction problem in previous graph
learning literature; (2) We propose the TAT model which inte-
grates time encodings with the attention mechanism to extract
fine-grained temporal representations. Besides, we devise a novel
training scheme to preserve the intrinsic permutation-variant prop-
erty of the problem; (3) We conduct extensive experiments on sev-
eral real-world temporal graph datasets. The results reveal that
the proposed model outperforms several state-of-the-art GNNs by
55% for AUC and 54% for ACC on average. We conduct detailed
ablation analyses to demonstrate the contributions of individual
components. The implementation of the TAT model is released 1.

1https://github.com/xiawenwen49/TAT-code

2 RELATEDWORKS

In this section, we present related works on non-temporal GNNs
and temporal GNNs.

2.1 Non-temporal GNNs

GNNs have achieved great success for many graph analysis prob-
lems recently. Some pioneering works integrate the convolution
operation in traditional Euclidean data space (e.g., images, audios)
with non-Euclidean graph-structured data based on graph spec-
tral theory [2, 7]. Subsequently, several seminal variants are pro-
posed to improve GNN’s performance or address their limitations
in practical scenarios, including GCN [15], GraphSAGE [13], GAT
[35] and many others. These GNN models fall into two board cat-
egories: spectral methods and spatial methods. Spectral methods
operate in the spectral domain of graph signals and devise learnable
graph spectral filters. In contrast, spatial methods focus on utilizing
graph topology for information aggregation where the aggregation
weights are learned [42]. Both spectral and spatial methods can be
generalized under the message-passing framework in which each
node aggregates messages from its neighbors and transforms to a
new representation utilizing aggregated messages and learnable
transformation units [45, 46]. However, most of these models only
work on static graphs or dynamic graphs while ignoring tempo-
ral information, e.g., considering edge/node addition or deletion
sequentially, but without timestamps [13].

2.2 Temporal GNNs

Recently many works devised for learning on temporal or dynamic
graphs have surged. These models capture topological and tempo-
ral information by miscellaneous approaches, including temporal
random walks [23], recurrent neural networks [26, 48], attention
modules [29, 44], temporal convolutions [51] and temporal point
processes [32]. Despite their diverse approaches, we can roughly
categorize them as discrete temporal graph models (DTG) and con-
tinuous temporal graphsmodels (CTG), according to their treatment
for graphs. DTG models discretize a temporal graph into multiple
snapshots. Then static methods are applied to each snapshot, or
each snapshot will be encoded and connected by RNNs [21, 25],
attention modules [29], or convolutions [8, 48, 51]. CTG models
directly utilize continuous-time information on temporal graphs.
We will discuss several representative CTG models in detail. Jodie
utilizes RNNs and attention modules to predict node embedding
trajectories for bipartite user-item graphs [16]. Dyrep utilizes RNNs
and the point process framework to learn time-varying node rep-
resentations [33]. TGN uses RNNs and memory blocks to update
representations of the source and destination node each time a new
edge appears [26]. StemGNN adopts Graph Fourier transform, dis-
crete Fourier transform, and convolution operations in one layer for
time-series forecasting [3]. Among these works, the most relevant
work with ours is the TGAT [44], which utilizes the self-attention
to aggregate information from temporal edges, as with our works.
While there are some key differences between our work and the
TGAT. Firstly, the computation of TGAT is restricted by chronolog-
ical orders, hence temporal edges not following these orders are
ignored. In our model, all temporal edges observed will be consid-
ered in the forward computation, to capture more comprehensive
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temporal patterns. Secondly, TGAT computes a time-varying repre-
sentation for each node. Hence, one node’s representation may be
recomputed many times. While we compute a base representation
for each node and concatenate time encodings with the base repre-
sentation to obtain time-related ones. This leads to more efficient
forward computations.

3 THE TAT MODEL

In this section, we first formalize the interaction order prediction
(IOP) problem. Subsequently, we present the TAT model for IOP.

3.1 Problem Formulation

We first present the definition of the temporal graph, then formalize
the IOP problem. As discussed in section 1, we focus on interactions
among triple node sets in this paper.

Definition 3.1 (Temporal graph). Let 𝐺 = (𝑉 , 𝐸,𝑇 ) denotes a
temporal graph, where 𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑛} represents the node
set and 𝐸 denotes the edge set. Let 𝑇 = {𝑇𝑖 𝑗 }, 𝑖, 𝑗 ∈ [1, 𝑛], denotes
the timestamps attached on all edges where 𝑇𝑖 𝑗 = {𝑡1, 𝑡2, · · · , 𝑡𝑙 }
denotes the 𝑙 real-valued interaction timestamps between node 𝑖
and 𝑗 . Further, we define 𝑇𝑖 𝑗 = ∅ if (𝑖, 𝑗) ∉ 𝐸 and 𝑇𝑖𝑖 = {0} for all
𝑖 ∈ [1, 𝑛]. In other words, we add self-loops in 𝐸 and there exist
at least one timestamp in 𝑇𝑖 𝑗 if (𝑖, 𝑗) ∈ 𝐸. Note that all timestamps
in 𝑇 have been observed at the current moment. We regard 𝐺
as an undirected graph. Besides, nodes may be attached with 𝑑-
dimensional feature vectors and we denote the feature matrix as
𝐹 ∈ R𝑛×𝑑 if it exists.

Definition 3.2 (Interaction Order Prediction (IOP)). For a given
temporal graph𝐺 and a node set s = {𝑛𝑖 , 𝑛 𝑗 , 𝑛𝑘 }, we aim to predict
in which order temporal interactions will form among these three
nodes in the impending future, leveraging the observed interaction
history 𝑇 and the graph topology.

Concretely, to provide meaningful predictions, numbering these
nodes becomes necessary. In other words, we need to list the node
set as a node sequence s = [𝑛𝑖 , 𝑛 𝑗 , 𝑛𝑘 ]. We consider the earliest
unseen/future edge between two pairs in s for prediction, i.e., there
are at most three node-pairs which we predict the order of their
occurrence: (s1, s2), (s1, s3), (s2, s3). One can see there exist six pos-
sible orders among three node pairs. Hence we formulate the IOP
as a six-class classification problem. The model takes tuple (𝐺, s) as
input and outputs a six-dimensional prediction vector. We encode
these six orders in Figure 2. Note that the subscript 𝑖 ∈ {1, 2, 3} of s
denotes the i-th node in the given sequence s, while the subscript
𝑖 of 𝑛 indicates the specific node 𝑛𝑖 in 𝑉 .

3.2 Model Framework

We illustrate the framework of the model in Figure 1. The method
mainly consists of three components: (1) Initial node feature con-
struction; (2) Time encoder; (3) TAT transformation layer.
• Initial features: Since wemay not obtain node features in𝐺
(i.e., 𝐹 may not exist), we propose to carefully construct initial
features for each node to represent their spatial properties.
• Time encoder: We encode a continuous timestamp as a
𝑘 dimensional vector to utilize the time information in a

fine-grained manner. The time vector will be integrated with
each layer’s representation in layer transformation.
• TAT transformation layer: We construct the TAT model
by stacking several TAT transformation layers to aggregate
localized neighbors’ information.

3.3 Feature Construction

In IOP, the correct class is indexed based on the order of node-pairs.
While these nodes are identified by their positions in the sequence s.
Hence the model should differentiate nodes with different positions
in s and other nodes not in s. Therefore, we propose to encode the
role of each node on the graph with a role vector r.
Role encoding. For nodes not in s, we encode them with zero
vectors. While for nodes in s, we encode each of them using a
3-dimensional one-hot vector e𝑘 , i.e.,

r𝑖 =
{0, 𝑛𝑖 ∉ s
e𝑘 , 𝑛𝑖 = s𝑘

, ∀𝑛𝑖 ∈ 𝑉 (1)

Besides, we also construct feature vectors to represent each
nodes’ spatial location information in the graph. Recently, several
works have proposed to construct spatial features and concatenate
these features with original node features before feeding node fea-
tures into GNNmodels [18, 50]. The construction of spatial features
could provably improve the identification power of conventional
message-passing GNN models. Therefore, to indicate each nodes’
relative spatial location information regarding nodes in s as anchors,
we propose to utilize the following spatial encoding for each node.
Spatial encoding. Spatial encoding reflects the relative spatial in-
formation of other nodes if given s. In this paper, we adopt the
shortest path encoding as the indicator of spatial information of
nodes lying in a proximal region of s [18]. The shortest path encod-
ing for node 𝑢 given node set s can be formalized in Eq (2).

𝜁 (𝑢 |s) = ENCODE({𝜁 (𝑢 |𝑣) |𝑣 ∈ s})

𝜁 (𝑢 |𝑣) = Argmin𝑘 {(𝐴𝑘 )𝑢𝑣 > 0}
(2)

𝐴 denotes the adjacency matrix. The ENCODE function encodes
these lengths with a 𝐾-dimensional vector, where 𝐾 is the hop
of local subgraphs. For example, if a node 𝑛𝑖 has shortest lengths
𝜁 (𝑛𝑖 |s) = {1, 1, 2}, then the shortest path encoding vector 𝑥sp (𝑛𝑖 )
should be [0, 2, 1, 0]. 𝑥sp (𝑛𝑖 ) means there exist two nodes in s which
have shortest path length 1 with node 𝑛𝑖 and one node which has
shortest path length 2 with node 𝑛𝑖 . In this paper, we focus on 3-hop
local subgraphs, hence we set the vector length to 4. We denote the
shortest path encoding node feature matrix as 𝑋sp, i.e., 𝑥sp (𝑛𝑖 ) is
the 𝑛𝑖 -th row of 𝑋sp.

Note that the choice of the spatial encoding can be flexible. We
adopt the shortest path encoder for computational efficiency and
effectiveness. One may use other schemes like the Random Walk
Landing Probabilities (RWLP) [18]. The RWLP represents the prob-
ability of being reached from a specific node with a hop constraint.
If the root node is determined as node 𝑛𝑖 , the landing probability
vector given hop 𝑘 can be represented as 𝑝 (𝑘) in Eq (3).

p(𝑘) = 𝑒𝑖 �̃�𝑘 (3)

where 𝑒𝑖 is the one-hot vector and �̃� = 𝐴𝐷−1 is the random walk
normalized Laplacian matrix. 𝐷 is the degree matrix. We denote
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Figure 2: Possible interaction orders for the IOP. 𝑠1, 𝑠2, 𝑠3 in-
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s. For all patterns, we have 𝑡1 < 𝑡2 < 𝑡3, and the red numbers

represent class indexes.

the spatial RWLP feature matrix as 𝑋rw, which can be constructed
as in Eq (4).

𝑋rw = [p(0) , p(1) , · · · , p(𝐾) ] (4)
where𝐾 is the hop number. For multiple nodes in s, we can compute
the 𝑋rw regarding each node in s as the root node 𝑛𝑖 and sum these
𝑋rw up to obtain the final feature matrix. We will compare the
performance of different spatial encoding features in section 6.2.
Note that if the original node featurematrix 𝐹 exists, we concatenate
𝑋 and 𝐹 as model input.

3.4 Time Encoder

In this subsection, we describe the time encoding scheme in detail,
which captures the fine-grained temporal information of historical
interactions. We formalize the time encoder as a function Φ : R→
R𝑑 which maps a continuous time 𝑡 to a 𝑑-dimensional vector,
where 𝑑 is a hyperparameter.

We adopt the idea of position encoding in Transformer [34] to
encode the continuous time in our approach. Position encoding
originally encodes discrete positions of each words in a sentence
and is computed as in Eq (5).

pe𝑝𝑜𝑠,2𝑖 = sin( 𝑝𝑜𝑠
𝐿2𝑖/𝑑 ), pe𝑝𝑜𝑠,2𝑖+1 = cos( 𝑝𝑜𝑠

𝐿2𝑖/𝑑 ) (5)

where pe ∈ RL×𝑑 is the position encoding matrix, 𝐿 is the prede-
termined number of discrete positions, and 𝑑 is the even encoding
dimension. 𝑖 ranges from 0 to 𝑑/2 − 1. Each discrete position 𝑝𝑜𝑠 in
[0, 𝐿 − 1] is represented by the 𝑝𝑜𝑠-th row of pe. While timestamps

on temporal graphs are continuous real numbers. Therefore, we
discrete the continuous time to integers and these integers are re-
garded as position indexes. The discretization interval is adaptively
computed according to the observed timestamps in 𝑇 . Concretely,
we adopt the following uniform discretization,

Φ(𝑡) = [pe ⌊𝑡/Δ⌋,0, pe ⌊𝑡/Δ⌋,1, · · · , pe ⌊𝑡/Δ⌋,𝑑−1] (6)

where Δ is the discretization interval. By default, we set Δ as the
mean time interval of two chronologically consecutive timestamps
in 𝑇 for a specific dataset.

One may use a more straightforward approach to encode the con-
tinuous timestamps without discretization, e.g., using the harmonic

encoder recently proposed in [44].

Φ(𝑡) =
√

2
𝑑
[cos(𝜔1𝑡), sin(𝜔1𝑡), · · · , cos(𝜔𝑑/2𝑡), sin(𝜔𝑑/2𝑡)] (7)

where 𝜔1, 𝜔2, · · · , 𝜔𝑑/2 are learnable time encoder parameters. The
harmonic encoder obtains more flexibility by inducing additional
learnable encoder parameters. While learnable parameters also
raise model complexity. We will compare the performance of the
empty time encoder (zeros vectors), the uniform discretization time
encoder, and the harmonic encoder in section 6.2.

3.5 TAT Layer

The proposed TAT model stacks several transformation layers to
obtain the final output. In this subsection, we present the trans-
formation details within one message-passing layer of our model.
On a high level, the output representation of each node within one
layer is obtained by its neighbors’ representations from the former
layer and the temporal interactions information between the node
and its neighbors.

More specifically, we adopt the attention mechanism to compute
each interaction’s weight for aggregating neighborhood informa-
tion. The transformation framework is illustrated in Figure 1. For a
temporal interaction with timestamp 𝑡𝑘 between source node 𝑛 𝑗
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and target node 𝑛𝑖 , we compute the attention score from node 𝑗 to
node 𝑖 in layer 𝑙 using Eq (8).

score𝑖, 𝑗,𝑡𝑘 = 𝛼𝑇
𝑙
[(𝑊𝑙,1 [ℎ𝑙−1

𝑖 ∥Φ(0)])∥(𝑊𝑙,2 [ℎ
𝑙−1
𝑗 ∥Φ(𝑡𝑘 )])] (8)

ℎ𝑙−1
𝑖

represents node 𝑛𝑖 ’s representation from layer 𝑙 − 1 and Φ(𝑡𝑘 )
is the time encoding of time 𝑡𝑘 . For source node 𝑛𝑖 , we always con-
catenate ℎ𝑙−1

𝑖
with Φ(0) to highlight the time encoding information

of Φ(𝑡𝑘 ). While 𝛼𝑙 ,𝑊𝑙,1, and𝑊𝑙,2 are learnable parameters. If there
exist multiple interactions between 𝑛𝑖 and 𝑛 𝑗 (this is common in
practical datasets), we will flatten all these temporal edges and com-
pute multiple scores, as shown in the middle of Figure 1. Note that
in the aggregation process of a TAT layer, all interactions observed
will be considered, instead of just chronological paths, which is a
fundamental difference with TGAT in [44].

Once attention scores of all temporal interactions are computed,
aggregation attention weights between node 𝑛𝑖 and all of its (flat-
tened) neighbors can be obtained using Eq (9).

att𝑖, 𝑗,𝑡𝑘 =
exp{score𝑖, 𝑗,𝑡𝑘 }∑

𝑛∈{𝑁 (𝑖)∪{𝑖 }}
∑
𝑡 ∈𝑇𝑖𝑛 exp{score𝑖,𝑛,𝑡 }

(9)

After the computation of attentionweights for all temporal edges,
the output representation of node 𝑛𝑖 for layer 𝑙 can be computed as
follows:

ℎ𝑙𝑖 =
∑

𝑛∈{𝑁 (𝑖)∪{𝑖 }

∑
𝑡 ∈𝑇𝑖𝑛

att𝑖,𝑛,𝑡𝑊𝑙,3 [ℎ𝑙−1
𝑛 ∥Φ(𝑡)] (10)

where𝑊𝑙,3 is another learnable parameter matrix. Note that we
concatenate each node’s hidden representation with time encoding
in each layer of the proposed TAT model for attention computation,
instead of only in the first input layer. Hence the model could utilize
temporal information in each message-passing layer to aggregate
intermediate representations.

3.6 Output Layer

After obtaining node representations of the final layer, we concate-
nate representations of nodes in the sequence s for final prediction,
as illustrated in Figure 1. The merging and prediction layer is for-
malized as Eq (11).

out = Softmax(Linear( [ℎ𝐾𝑠1 ∥ℎ
𝐾
𝑠2 ∥ℎ

𝐾
𝑠3 ])) (11)

Note that the concatenation order of ℎ𝐾 must strictly follows the
node order in s.

4 TRAINING FRAMEWORK

In this section, we present a novel training framework of the TAT
model, which is illustrated in Figure 3.We first discuss the permutation-

sensitive property then present training objectives.
Permutation-sensitive property. One can see that the model
takes a tuple (𝐺, s) as input and is trained with the corresponding
label 𝑦. If we permute s to s̄ and feed the permuted tuple (𝐺, s̄) into
model, the ideal label should also be changed correspondingly. In
other words, for different sequences with an identical node set, we
expect the model to output different labels but infer an identical
interaction order. For example, as illustrated in Figure 3, if s =

[𝑛𝑖 , 𝑛 𝑗 , 𝑛𝑘 ] and 𝑦 = 0, the interaction order between {𝑛𝑖 , 𝑛 𝑗 , 𝑛𝑘 }
should be (𝑛𝑖 , 𝑛 𝑗 ), (𝑛𝑖 , 𝑛𝑘 ), (𝑛 𝑗 , 𝑛𝑘 ). While if s̄ = [𝑛𝑘 , 𝑛𝑖 , 𝑛 𝑗 ], then
𝑦 = 4 indicates the same underlying order, according to Figure 2.

Training objectives. To handle the permutation-sensitive prop-
erty, we propose the permutation-aware training scheme, which
explicitly instructs the model to capture this permutation relation-
ship by constructing the permutation loss.

Lossperm = ∥ 𝑓𝑝 (𝑀 (𝐺, s̄), s, 𝑦) −𝑀 (𝐺, s)∥2 (12)

In Eq (12), s̄ denotes a random permutation of s and𝑀 (𝐺, s) is the
output prediction vector. 𝑓𝑝 operates on model’s prediction vec-
tor, which permutes the prediction vector to align with 𝑀 (𝐺, s).
We can predetermine 𝑓𝑝 since the number of permutations is finite.
However, computing the permutation target vector 𝑓𝑝 (𝑀 (𝐺, s̄), s, 𝑦)
using the original model𝑀 directly introduces unstability in train-
ing, since the model is updated after each minibatch, introducing
large variance for the permutation loss target𝑀 (𝐺, s̄). Hence, we
propose to utilize a copy 𝑀target of the original model 𝑀 to com-
pute the permutation target vector.𝑀target is periodically updated
following𝑀 . The periodical copy scheme is motivated by the dou-
ble Q-networks adopted in DQN [22], which aims to optimize the
Bellman equation loss [31], as shown in Eq (13).

Lossbellman = (𝑄 (𝑠𝑡 , 𝑎𝑡 ) − (𝑟𝑡 +max
𝑎∈𝐴

𝑄 (𝑠𝑡+1, 𝑎)))2 (13)

in which the target value 𝑟𝑡 +max𝑎∈𝐴𝑄 (𝑠𝑡+1, 𝑎) is computed using
a copy 𝑄copy of the current model 𝑄 . We confront an analogous
scenario in the computation of permutation loss, in which the
permutation target vector 𝑓𝑝 (𝑀 (𝐺, s̄), s, 𝑦) requires the training
model𝑀 itself. Hence after utilizing a copy𝑀target of𝑀 , we amend
the permutation loss as follows:

Lossperm = ∥ 𝑓𝑝 (𝑀target (𝐺, s̄), s, 𝑦) −𝑀 (𝐺, s)∥2 (14)

The final optimization objective consists of three aspects, i.e., the
cross-entropy, the permutation loss, and the regularization term,
as shown in Eq (15).

Loss = LossCR + 𝛾Lossperm + 𝜆Lossreg (15)

where LossCR = CrossEntropy(e𝑦, 𝑀 (𝐺, s)) and we choose 𝐿reg as
∥𝜃 ∥2, the L2 norm of original model’s parameters. In practice, we
add the Lossperm after several epochs, with details in the Appendix.

5 EXPERIMENTAL SETUP

In this section, we present the experimental setup, including datasets,
preprocessing, baselines, and model implementation details.

5.1 Datasets and Preprocessing

We use the following temporal graph datasets. We regard temporal
edges as undirected for all datasets.
• COLLEGEMSG. This dataset collects private message com-
munications of an online social community at the University
of California, Irvine [24]. Each temporal edge (𝑛𝑖 , 𝑛 𝑗 , 𝑡) rep-
resents a user 𝑛𝑖 sends a message to 𝑛 𝑗 at time 𝑡 .
• EMAIL-EU. This dataset collects emails between members
of a European research institution [17]. Each temporal edge
(𝑛𝑖 , 𝑛 𝑗 , 𝑡) represents an email sent from 𝑛𝑖 to 𝑛 𝑗 at time 𝑡 .
• FBWALL This dataset contains all of the wall posts from the
Facebook New Orleans network [36]. Each temporal edge
(𝑛𝑖 , 𝑛 𝑗 , 𝑡) records that a user 𝑛 𝑗 posted on 𝑛𝑖 ’s wall with
timestamp 𝑡 .
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Figure 3: Training framework for the TAT model. For each

training sample, we construct a corresponding permuted

sample and compute its prediction using the target model.

The prediction of𝑀target will be permuted to align with the

prediciton of𝑀 to compute the permutation loss.

Table 1: Statistics of temporal graph datasets used in our ex-

periments. # Triads denotes the number of observed tempo-

ral triangles.

Dataset |𝑉 | |𝐸 | |𝑇 | # Triads
COLLEGEMSG 1899 13838 59835 14319
EMAIL-EU 986 16064 332334 105461
FBWALL 45813 183412 855542 122852
SMS-A 44430 53866 548182 16401

• SMS-A. This dataset collects interactions of a short message
service (SMS) from a mobile phone operator [41]. Each tem-
poral edge (𝑛𝑖 , 𝑛 𝑗 , 𝑡) means a user 𝑛𝑖 sent a short message
to user 𝑛 𝑗 at time 𝑡 .

The statistics of these datasets are listed in Table 1. We collect all
triangle node sets on these temporal graphs to construct the se-
quence set S and determine the corresponding label set 𝑌 according
to the earliest timestamp between each node pair.

Next, we present the preprocessing details, which mainly consist
of two steps: subgraph extraction and timestamp elimination.
Subgraph extraction: One can see that for a message-passing
GNN model with 𝐾 layers, obtaining the output layer’s representa-
tion of a specific node requires its 𝐾-hop neighbors’ information.
As one layer aggregates 1-hop neighbors’ information, for each
training sequence s, we extract a 𝐾-hop subgraph around nodes
in s, where 𝐾 is the number of layers for our proposed model and
other baselines.
Timestamp elimination: Further, if we denote the earliest in-
teraction time among nodes in s on graph 𝐺 as 𝑡max, we remove
all temporal interactions with timestamps larger than 𝑡max on the
subgraph around s, since we aim to predict the future interaction
order among nodes in s. All temporal interactions occurring after
𝑡max should be invisible during model training. Then we minus all
timestamps using the largest timestamp to represent relative values.
Finally, we regard the combination of each processed subgraph, s,
and label 𝑦 as one data case. Once we collected all data cases, we
sort these data cases according to 𝑡max in ascending order. We use

the first 70% cases as the train set and split the rest equally as the
validation set and the test set.

5.2 Baselines

We compare our model with the following GNN models.

• GCN [15]. GCN adopts the normalized graph Laplacian ma-
trix as the aggregation operator and transforms each node’s
representation with a shared parameter matrix.
• GAT [35]. GAT utilizes the attention mechanism to compute
attention weights for each edge and aggregates neighbors’
representations based on these attention weights.
• GraphSAGE [13]. GraphSAGE inductively aggregates each
node’s neighborhood features and then concatenates each
node’s feature with the aggregated feature to perform trans-
formations.
• TAGCN [9]. TAGCN designs multiple topology-adaptive fil-
ters operating on the vertex domain in each layer. Each filter
is a polynomial of the normalized graph Laplacian matrix
with learnable coefficients.
• DE-GNN [18]. DE-GNN theoretically strengthens the dis-
tinguish power of general message-passing GNN models by
adding spatial features for each node before feeding node
features into GNN models.
• TGAT [44]. TGAT computes time-related representations for
nodes given timestamps. The information flow follows the
chronological order strictly.

For all baselines, we concatenate the representations of nodes in s
in order from the final layer and adopt a 1-layer fully-connected
network with a Softmax layer for prediction, as indicated in Eq (11).

5.3 Metrics & Implementation Details

We adopt three metrics to evaluate all approaches. (1) Accuracy
(ACC), whichmeasures the native prediction accuracy for all classes.
(2) Top-2Accuracy (ACC@2), which considers top-2 high-probability
classes, i.e., if the model gives the label class the highest or the
2nd-highest probability, ACC@2 will count. We adopt this metric
considering that the ACC may be inadequate for this multi-class
prediction problem. (3) Area Under the Receiver Operating Char-
acteristic Curve (AUC), which measures the area under curve for
each class. We adopt the one-vs-rest manner to compute the AUC
and average the results of all classes [11]. For all these metrics, a
higher value indicates a better performance.

For the proposed TAT model and all other baselines, we adopt a
2-layer structure, as reported in most works [9, 13, 15, 35]. We set
the number of hidden units to 128. For attention models including
our TAT, GAT, and TGAT, we set the number of attention heads
to 4. For DE-GNN, we choose the spatial features as the shortest
path length and choose the base GNN model as the TAGCN, as
reported in their original paper [18]. For our TAT model, we set
the time encoding dimension to 64 by default and the maximum
encoding index to 3e4. We set 𝛾 to 1𝑒 − 1, 𝜆 to 1𝑒 − 4 by default. We
set the time discretization interval Δ as the mean time interval of
all consecutive timestamps for each dataset. Besides, we will study
the effects of several important hyperparameters in section 6.4.
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Table 2: The prediction performance comparison of different methods. For the Input column, R denotes the role encoding, S

denotes the spatial encoding, and T denotes the time encoding. The best and the second-best results are highlighted in bold

and underlined font respectively. We denote the TAT model with (without) the permutation loss by TAT (TAT-perm).

Methods Input COLLEGEMSG EMAIL-EU FBWALL SMS-A
ACC ACC@2 AUC ACC ACC@2 AUC ACC ACC@2 AUC ACC ACC@2 AUC

GCN R&S 0.349 0.632 0.766 0.280 0.519 0.665 0.288 0.559 0.700 0.238 0.451 0.602
GAT R&S 0.347 0.645 0.765 0.274 0.518 0.665 0.270 0.548 0.685 0.227 0.430 0.207

GraphSAGE R&S 0.338 0.633 0.757 0.276 0.514 0.677 0.301 0.566 0.701 0.231 0.435 0.582
TAGCN R&S 0.349 0.649 0.764 0.290 0.529 0.676 0.279 0.546 0.688 0.250 0.473 0.617
DE-GNN R&S 0.337 0.643 0.762 0.289 0.529 0.676 0.314 0.589 0.715 0.244 0.459 0.601
TGAT R&T 0.277 0.543 0.680 0.197 0.385 0.545 0.247 0.490 0.659 0.170 0.330 0.510

TAT-perm R&S&T 0.406 0.755 0.811 0.400 0.711 0.792 0.496 0.737 0.807 0.474 0.781 0.822
TAT R&S&T 0.440 0.763 0.825 0.456 0.769 0.810 0.569 0.785 0.845 0.508 0.771 0.825

6 RESULTS

In this section, we discuss the experimental results. We first present
the prediction performance comparison. Then we conduct the abla-
tion study to analyze the effects of different modules in the proposed
model. Further, we study the effects of several important hyperpa-
rameters. Finally, we visualize the attention heads to shed some
light into the learned model.

6.1 Prediction Performance

The prediction results are presented in Table 2. We highlight the
best and the second-best results in each column in bold and under-
lined font respectively. We also compare the performance of our
proposed TAT model with permutation-aware optimization to its
variant without this component, denoted by TAT and TAT-perm
respectively. We can see that GCN, GAT, GraphSAGE, and other
GNN models designed for static graphs achieve similar prediction
performance across three temporal graphs. While TGAT performs
relatively unsatisfactorily. We analyze that TGAT only aggregates
information along chronological paths, which may be unsuitable for
the IOP problem. We observe that the TAT performs consistently
better than other baselines. Compared with the second-best model,
TAT improves the ACC by 26.1%, 57.2%, 81.2% 103.2%, and improves
the ACC@2 by 17.6%, 45.4%, 33.3% 65.1%, on CollegeMsg, Email-
EU, Facebook-Wall, and SMS-A dataset. We can further obtain the
following observations from prediction results: (1) Comparing TAT-
perm with TAT, we can see that the permutation-aware training
scheme improves the prediction performance, achieving about 8.4%,
14.0%, 14.7%, 7.2% improvement of the ACC on four datasets. (2)
Further, compared with TGAT, TAT achieves better prediction per-
formance, which may reveal that considering all temporal edges is
more suitable than just considering chronological paths.

6.2 Ablation Study

To gain a better understanding of different components in the TAT
model, including distinct time encoders, spatial features, and the
attention mechanism, we present ablation experiments as follows.
Time encoders. We compare the performance of TAT with the
empty time encoder, the uniform discretization time encoder, and
the harmonic time encoder. The results on four datasets are shown
in Figure 4(a). Empty time encoder performs the worst on all

datasets since it ignores all temporal information. Concretely, the
empty encoder performs 10%, 24.8%, 22.6%, 34.6% worse than the
uniform encoder for the AUC on four datasets. The worse perfor-
mance indicates that historical temporal information is critical for
reasonable predictions. For the harmonic time encoder, the encoder
parameters are learned on the fly. However, the results suggest that
the adopted uniform discretization time encoder achieves about
4.8%, 28.8%, 18.7%, 25.7% better than the harmonic encoder for
the AUC metric on four datasets. The results reveal that the har-
monic encoder may be more difficult to be learned for appropriate
temporal representations. While encoding temporal information
adopting the uniform discretization may be more straightforward
and suitable for the IOP problem.
Spatial features.We compare the performance of TATwith shortest-
path encoding features and with random walk landing probability
features. The performance results on three datasets are shown in
Figure 4(b). Figure 4(b) reveals that both spatial features offer simi-
lar performance. SP slightly outperforms RW by 1.5%, 2.4%, 0.4%,
1.4% for the AUC metric on four datasets. We adopt the SP as the
default spatial feature in the TAT for computational efficiency and
convenience as stated in section 3.3.
Attentions. We also compare the performance of TAT between
with and without the attention mechanism. For TAT without at-
tention, we replace the learnable attention weight 𝛼𝑙 in Eq (8) with
constants as in the GCN model. The performance results on three
datasets are shown in Figure 4(c). We can see the attention mecha-
nism is critical for better predictions. TAT model with the attention
mechanism surpasses its counterpart without the mechanism by
about 6.2%, 9.2%, 6.6%, 3.9% for the AUCmetric on four datasets. The
performance comparison in Figure 4(c) reveals that different tem-
poral interactions should be treated differently when aggregating
node hidden representations.

6.3 Attention Analysis

To have a better understanding of learned patterns of the TAT, we
analyze the learned attention weights in this subsection. We train
the TAT model on the COLLEGEMSG dataset and all hyperparame-
ters are set as in section 5.3.

We adopt the learned model parameters to compute the atten-
tion scores for timestamp indexes from 0 to 10000 for visualization.
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Figure 4: Effects of different components of TAT model.
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Figure 5: Visualization of learned attention heads.

Table 3: The hyperparameters.

Hyperparameter Description Values
layers Number of model layers 1, 2, 3, 4
𝑑 Time encoding dimension 32, 64, 128, 256
𝛾 Weight of Lossperm 1e-2, 1e-1, 1, 10

Table 4: Effects of different hyperparameters.

layers 𝑑 𝛾

value AUC value AUC value AUC
1 0.810 32 0.800 1e-2 0.807
2 0.825 64 0.825 1e-1 0.825
3 0.813 128 0.810 1 0.83

4 0.813 256 0.801 10 0.793

These attention scores are computed using Eq (8). The linear trans-
formation matrix and the attention vector are loaded using the
first layer’s parameter of the trained model for visualization. We
plot the scores of two heads in Figure 5. We can see that while
each attention head reveals slightly different patterns, all of them
decrease w.r.t time indexes. These figures reveal that the learned
model pays less attention to temporal interactions chronologically
far from the current observation time. Other attention heads reflect
analogous patterns and we put them in the Appendix.

6.4 Hyperparameter Analysis

In this subsection, we study the sensitivity of several important
hyperparameters. We list the information of these hyperparameters
in Table 3. We conduct experiments on the COLLEGEMSG dataset
and fix other hyperparameters to their default values.
Model layer. It controls how many hops of neighbors’ information
one model can aggregate. The experimental results in Table 4 reveal
that too many layers (i.e., three or four layers) may degrade the

prediction performance. As indicated in [19], too many layers may
degrade the performance of general message-passing GNNs, which
coincides with experimental results in Table 4. However, much few
layers (i.e., 1 layer) may also result in unsatisfactory performance.
We suggest that one-hop neighbors may not provide sufficient spa-
tial and interaction information for this prediction problem. Proper
layers of stacking is important for an acceptable performance of
our TAT model.
Time encoding dimension 𝑑 . It controls the resolution of time
encodings. From Eq (5), we can see that for each dimension in [0, 𝑑−
1], the changing angular velocity of two consecutive time encodings
is 1

𝐿2𝑖/𝑑 . A larger dimension 𝑑 leads to a larger angular velocity,
which means the value of each dimension changes more steeply
as the time index changes. In other words, two consecutive time
encodings are more distinguishable. However, a larger dimension
also results in larger parameter complexity. From the results in
Table 4, we can see that the effect of time encoding dimension is
analogous with that of the number of layers. Extreme values (small
or large) lead to unsatisfactory performance.
Permutation loss weight 𝛾 . It determines the importance of per-
mutation optimization objective in section 4. From Figure 4, we
can see that the prediction performance is positively correlated
with 𝛾 in the range of [1e-2, 1], which reveals that the proposed
permutation optimization scheme is effective to promote the TAT’s
prediction performance. However, as the permutation objective is
computed by the target model, which may induce considerable bias
if the weight 𝛾 is too large. For example, we can see from Table 4
that setting 𝛾 to a large value 10 degrades the performance. While
setting 𝛾 to 1e-1 or 1 performs better than that of 1e-2 or 10. Hence
we set the default value to 1e-1, considering the balance between
prediction performance and bias.

7 CONCLUSIONS

In this paper, we consider forecasting the order of future interac-
tions among specific node sets based on historical temporal interac-
tions and local graph topologies. The proposed TAT model utilizes
time encodings to capture fine-grained time information and the
attention mechanism to aggregate neighbor’s information based on
their temporal interactions. From the experimental results, we con-
clude that time information is critical for an accurate prediction of
interaction orders. The permutation-aware optimization improves
the TAT model’s prediction performance further. Visualizations of
learned attention heads suggest that the model tends to pay more
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attention to recent interactions when making decisions. Further-
more, the problem studied in this paper suggests that training GNN
models and learning graph representations related to a predeter-
mined node or edge set deserve more research efforts. In the future,
we aim to verify the TAT model’s scalability for larger node sets,
e.g., 4-node set, which has more edges and much more orders than
the 3-node set case, and of course, much more complexity.
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A ALGORITHMIC PIPELINE

The overall training pipeline for the TAT model is shown in Al-
gorithm 1. Note that in algorithm 1, we add the permutation loss

Algorithm 1 The training pipeline for proposed TAT model.

Input: Graph 𝐺 = (𝑉 , 𝐸,𝑇 ), sequence set S = {s(1) , s(2) , · · · },
labels Y = {𝑦 (1) , 𝑦 (2) , · · · }, 𝜆, 𝛾 , 𝑒th, 𝑒total, 𝑒update.
Initialization: Initialize 𝜃 in𝑀 and 𝜃target ← 𝜃 in𝑀target.
for 𝑖 = 0, 1, 2, · · · , 𝑒total do
for minibatch (𝑆,𝑌 ) do
𝑌 = 𝑀 (𝐺, 𝑆)
if 𝑖 > 𝑒th then

Permute all s ∈ 𝑆 as 𝑆 , compute ˆ̄𝑌 = 𝑀target (𝐺, 𝑆)
Compute Loss = CrossEntropy(𝑌,𝑌 ) + 𝛾 ∥ 𝑓𝑝 ( ˆ̄𝑌, 𝑆, 𝑌 ) −
𝑌 ∥2 + 𝜆∥𝜃 ∥2

else

Compute Loss = CrossEntropy(𝑌,𝑌 ) + 𝜆∥𝜃 ∥2
end if

Compute gradients 𝜕Loss
𝜕𝜃

and update 𝜃 with one step
end for

if 𝑖 mod 𝑒update == 0 then

𝜃target ← 𝜃

end if

end for

after several training epochs, instead of adding it from the scratch.
We observe from empirical studies that, adding the permutation
loss after several epochs leads to better performance, compared

with adding it from the beginning. We analyze the reason may be
that after several epochs of training, the model has learned rela-
tively meaningful parameters for the prediction problem. Hence
the permutation loss computed by the target model could provide
meaningful targets and gradients instructing the model to capture
the permutation relationship.

B VISUALIZATION OF OTHER ATTENTION

HEADS
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Figure 6: Visualization of learned attention heads.

In Eq (8), we replace the representation ℎ𝑖 and ℎ 𝑗 with zero
vectors, and replace the Φ(𝑡𝑘 ) with time encodings of time indexes
from 0 to 10000 for visualization, as stated in section 6.3. Figure 6
visualizes the rest two attention heads of the learned TAT model’s
first layer. These patters reflect subtle differences with each other,
but resemble others in a large picture. All attention heads together
reveal that the model learned to focus on more recent interactions.
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