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ABSTRACT

An Outstanding Fact (OF) is an attribute that makes a target en-
tity stand out from its peers. The mining of OFs has important
applications, especially in Computational Journalism, such as news
promotion, fact-checking, and news story finding. However, exist-
ing approaches to OF mining: (i) disregard the context in which
the target entity appears, hence may report facts irrelevant to that
context; and (ii) require relational data, which are often unavailable
or incomplete in many application domains.

In this paper, we introduce the novel problem of miningContext-
aware Outstanding Facts (COFs) for a target entity under a given
context specified by a context entity. We propose FMiner, a context-
aware mining framework that leverages knowledge graphs (KGs)
for COF mining. FMiner generates COFs in two steps. First, it
discovers top-𝑘 relevant relationships between the target and the
context entity from a KG. We propose novel optimizations and
pruning techniques to expedite this operation, as this process is
very expensive on large KGs due to its exponential complexity.
Second, for each derived relationship, we find the attributes of
the target entity that distinguish it from peer entities that have
the same relationship with the context entity, yielding the top-
𝑙 COFs. As such, the mining process is modeled as a top-(𝑘, 𝑙)
search problem. Context-awareness is ensured by relying on the
relevant relationships with the context entity to derive peer entities
for COF extraction. Consequently, FMiner can effectively navigate
the search to obtain context-aware OFs by incorporating a context
entity. We conduct extensive experiments, including a user study,
to validate the efficiency and the effectiveness of FMiner.
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1 INTRODUCTION

Automatic Outstanding Fact (OF) mining is important in a wide
range of application domains, including news story discovery [2, 6],
fact-checking [10, 11] and recommendation [36]. An OF is a true
statement to the effect that an attribute of a target entity stands out
in comparison to a group of peer entities. For instance, the news
media often usesOFs as news lead to draft news stories, or to attract
readers: “Kamala Harris is the first woman to serve as vice president” .
This statement reveals an OF about the gender (attribute) of Harris
(target entity) over all people (peer entities) who have served as
United States vice president.

Existing approaches [3, 12, 23, 29, 30, 35] mainly focus on quanti-
fying the strikingness of OFs and extracting the top ones. Whereas,
these approaches are deficient when it comes to mining context-
aware OFs in a cross-domain setting. Besides, most conventional
approaches [3, 12, 23, 29] require the availability of relational data
on the entities under consideration. Such data are often unavailable;
even when available, they only cover basic information, lacking the
richness necessary to discover OFs in context, since their acquisi-
tion, processing, and maintenance incurs prohibitive costs. A recent
approach [35]mitigates this issue by leveraging open KGs. However,
like conventional approaches, [35] does not support context-aware
OFmining. This can cause inconvenience when searching forOFs in
a certain context. For example, given the news of Kamala Harris be-
coming vice president, the previous mentioned OF serves as a good
fit. Nevertheless, existing approaches may generate an OF: “Kamala

Harris is one of the only 0.15% Indian Americans educated at Howard

University”. This would be an interesting OF in a context focusing
on Harris’s education. However, in a political context involving
Harris and her predecessors in office, such an education-related OF
is less relevant, and may even cause disorientation.

In this paper, we propose a novel framework, FMiner, for discov-
ering Context-aware Outstanding Facts (COFs) for a target entity
under a context specified by a context entity. The specification of
a context entity allows users to guide the mining process, so as to
derive the desired COFs. This feature is crucial for fact-checkers
and fact-finders like journalists. In a two-step process, FMiner
generates the top-𝑙 COFs based on the top-𝑘 relevant relationships
anchored at the context entity. In the first step, we discover the
top-𝑘 relevant relationships between the target and the context
entity, and also extract peer entities having the same relationships
to the context entity. In the second step, we discover the attributes
that distinguish the target from its peer entities in each relationship.
The context-awareness of the resulting COFs follows from the use
of peer entities with respect to relationships that are relevant to
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the context entity. Following up on the previous example, Harris
is the target entity and her predecessor in office, Mike Pence, the
context entity. In the first step, FMiner generates a pattern (i.e.,
relationship) as in Expression 1. Then, by matching the pattern to
the KG, we collect peer entities as all people who have been US
vice presidents.

𝐻𝑢𝑚𝑎𝑛
position held
−−−−−−−−−−→ 𝑉𝑖𝑐𝑒 𝑃𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡

position held
←−−−−−−−−−− 𝑃𝑒𝑛𝑐𝑒 (1)

In the second step, the gender of Harris is extracted as the OF based
on an existing strikingness measure [30, 35]. We only consider path
patterns, rather than general graph patterns, because path patterns
translate easily and intuitively to natural language claims.

The proposed COF mining workflow generates two chief techni-
cal challenges: First, we need to discover patterns that represent
context-relevant relationships between the target and the context
entity. For example, another pattern for Harris and Pence is shown
in Expression 2.

𝐻𝑢𝑚𝑎𝑛
speak
−−−−→ 𝐸𝑛𝑔𝑙𝑖𝑠ℎ

speak
←−−−− 𝑃𝑒𝑛𝑐𝑒 (2)

This relationship would lead to a set of peer entities consisting of
all people speaking English. Consequently, both the relationship
and the produced OFs are less relevant. Hence, we need to properly
evaluate the patterns in terms of their relevance to the input context
entity. Second, the number of different paths and patterns between
two entities can be prohibitively large, as today’s KGs often con-
tain hundreds of millions of edges. Enumerating and evaluating
all the patterns is of exponential complexity. In many application
scenarios, such as online news feeds and live commentary, it would
be unacceptable to spend hours or even minutes for COF mining.

To confront the challenges mentioned above, we devise a novel
ranking model that quantifies the context-relevance of a path pat-
tern. The intuition behind our technique is that a pattern is relevant
only if the entities appearing in the corresponding matching in-
stances are strongly related to the context entity. For example, a
person speaking the same language (English) as Pence is less rele-
vant to Pence, as compared with a person who has also been vice
president. We measure the relatedness of two entities, hence the
relevance of the associated patterns, via the proximity of corre-
sponding nodes in the KG. Furthermore, to accelerate search, we
adopt a bi-directional search paradigm to enumerate paths and pat-
terns. In addition, we develop several novel optimizations to prune
unqualified patterns and avoid redundant computation by reusing
intermediate results. Thereafter, to extract COFs for the target en-
tity among the collected peer entities, we adopt the strikingness
measure from existing works [3, 18, 30, 35], which is already proven
to be effective. We summarize our contributions as follows.
• We formalize the problem of mining Context-aware Out-
standing Facts (COFs) from an open KG. To the best of our
knowledge, this is the first work to study the mining of
context-aware OFs from KGs, a task with important applica-
tions in Computational Journalism.
• We propose FMiner, a COF mining framework that discov-
ers OFs by considering the path patterns between a target
and a context entity, employing a novel relevance model to
identify relevant patterns and a search algorithm with novel
optimizations to mine OFs in real-time.

• In extensive experiments, including a user study, on queries
from real-world news content, we demonstrate that FMiner
discovers attention-seizing COFs from a large open KG with
over a half billion edges in less than a second in most cases.

Organization. In Section 2, we formalize the COFmining problem
and present the ranking model. Subsequently, we introduce the
FMiner algorithmwith novel optimizations in Section 3.We present
the experimental evaluations in Section 4 and discuss related work
in Section 5. Lastly, we conclude our work in Section 6. All proofs
are in supplementary materials.

2 PROBLEM DEFINITION

This section starts out with some preliminaries (Section 2.1). Next,
we introduce a rankingmodel for discovering relevant path patterns
(Section 2.2), and the strikingness measure for OFs (Section 2.3).
Lastly, we formalize the top-(𝑘, 𝑙) COF problem (Section 2.4).

2.1 Preliminaries

Let G(V, E,M) denote a knowledge graph (KG), whereV and E
represent the sets of entity nodes and edges, respectively. We use 𝑣
and 𝑒 to denote an instance node and an edge, s.t. 𝑣 ∈ V and 𝑒 ∈
E. Their types, or, equivalently, labels, are denoted by 𝑉𝑣 and 𝐸𝑒 ,
respectively.M defines amap function on instance nodes and edges:
M(𝑣) = 𝑣 , where 𝑣 ∈ {𝑣,𝑉𝑣} is called a node variable, andM(𝑒) =
𝐸𝑒 . We may simply use G(V, E) or G to refer to the KG. Given a
target entity 𝑡 and a context entity 𝑐 , we assume their corresponding
nodes in the KG are known; such knowledge can be gained using
the query service of the KG (e.g., Wikidata Query Service1 and
Freebase Search API2) or by adopting existing entity linking tools
[22]. In the following, we first give the formal definitions of path
pattern andmatching instance. Then, we introduce context-anchored
pattern and context-aware peer entity.

Definition 1 (Path Pattern). A path pattern refers to an ordered

sequence of node variables and edge types. Let 𝑃 (𝑣0, 𝐸0, 𝑣1, . . . , ˜𝑣ℓ−1,
𝐸ℓ−1, 𝑣ℓ ), or 𝑃 (𝑣0, 𝑣ℓ ) for short, to denote an ℓ-hop path pattern. 𝐸𝑖

represents the type of the 𝑖𝑡ℎ edge where 𝑖 ∈ {0, . . . , ℓ − 1}.

Definition 2 (Matching Instance). A matching instance to a

path pattern 𝑃 (𝑣0, 𝑣ℓ ) is a path instance in G(V, E,M), referred to
as 𝑝 (𝑣0, 𝑒0, 𝑣1, . . . , 𝑣ℓ−1, 𝑒ℓ−1, 𝑣ℓ ) or 𝑝 (𝑣0, 𝑣ℓ ), such that the following

conditions are satisfied simultaneously (i.e. 𝑝 is isomorphic to 𝑃 ).

(1) ∀𝑖 ∈ {0, . . . , ℓ},M(𝑣𝑖 ) = 𝑣𝑖 , where 𝑣𝑖 is either the instance

node itself 𝑣𝑖 or its type 𝑉𝑖 ;

(2) ∀𝑖 ∈ {0, . . . , ℓ − 1},M(𝑒𝑖 ) = 𝐸𝑖 .

We use 𝑝 ⊲ 𝑃 to denote that 𝑝 is a matching instance of 𝑃 .

Given a pair of target and context nodes ⟨𝑡, 𝑐⟩, we first identify a
path instance 𝑝 (𝑡, 𝑐) connecting 𝑡 and 𝑐 in the KG. Then, we derive a
context-anchored pattern 𝑃 which has 𝑝 (𝑡, 𝑐) as a matching instance
and ends at the context node 𝑐 at the same time (Definition 3). The
context-anchored pattern further leads to context-aware peer entities
(Definition 4).

Definition 3 (Context-anchored Pattern). Given the target

𝑡 and the context 𝑐 , a path pattern 𝑃 (𝑣0, 𝑣ℓ ) is called context-anchored
1https://query.wikidata.org/
2https://developers.google.com/freebase/v1/search-overview
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pattern, if and only if 𝑣ℓ = 𝑐 and ∃𝑝 (𝑡, 𝑐) ⊲ 𝑃 (𝑣0, 𝑣ℓ ). In particular, we

denote a context-anchored pattern as 𝑃 (𝑣0, 𝑣ℓ = 𝑐) or simply 𝑃 (𝑣0, 𝑐).

Definition 4 (Context-aware Peer Entity). Given a pair 𝑡

and 𝑐 , and a context-anchored pattern 𝑃 (𝑣0, 𝑣ℓ = 𝑐), we define 𝑣0 as
a context-aware peer entity of 𝑡 if 𝑝 (𝑣0, 𝑐) ⊲ 𝑃 (𝑣0, 𝑣ℓ = 𝑐).

Several benefits arise from admitting a context node 𝑐 and confin-
ing the search to context-anchored patterns. First, this confinement
helps us find context-aware peer entities (Definition 4), which are
essential to context-aware OF mining: such entities connect to the
context node 𝑐 with the same relationship as the target entity 𝑡 .
In effect, we can compare the attributes of 𝑡 with those of its peer
entities under the same context, and extract the OFs for 𝑡 . Sec-
ond, this design choice allows for users to effectively guide the
search process by merely specifying the context entity. Existing
approaches mainly output OFs ranked by their strikingness scores,
overlooking the relevance factor. Third, this design choice is ele-
gant and easy to deploy in many different application scenarios.
For example, apart from requiring users to specify queries, FMiner
can be used to automatically process the streams of news feed or
tweets, extract entities from text content, and pair such content
with a relevant and attention-seizing COFs discovered from an open
KG. This task would otherwise require extensive human efforts.
Example 1 illustrates the above definitions.

Example 1. Given a path instance 𝑝(Harris, VicePresident, Pence),

two context-anchored patterns can be derived: 𝑃1(Human, VicePresi-

dent, Pence) and 𝑃2(Human, Position, Pence). Note that for simplicity,

we have omitted the edge 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐻𝑒𝑙𝑑 . 𝑝 is a matching instance of

both 𝑃1 and 𝑃2. In particular, 𝑃2 has turned VicePresident into its

node type Position. On the other hand, 𝑃3(Human, Position, Human)

is not a valid context-anchored pattern because it does not end at the

context node 𝑐 . As a consequence, the matching instances of 𝑃3 can
deviate a lot from the context, leading to irrelevant OFs.

2.2 Pattern Relevance Model

A context-anchored pattern, may still produce irrelevant peer enti-
ties and OFs. For example, Expression 2 in Section 1 is a context-
anchored pattern. Nevertheless, the resulting peer entities are all
people speaking the same language (i.e. English) as Pence. These
people are only weakly related to Pence. This is because “English”
(matching Language type) is a shortcut node with a high degree
in the KG. The path connections via such shortcut nodes can be
weak since they express less informative relationships [1, 16]. This
observation inspires us to incorporate node proximity [20, 28, 31],
to rank the relevance of context-anchored patterns. The intuition is
that a pattern is relevant if its matching instances are relevant, and a
matching instance is relevant to the extent that the matching entity
nodes in the instance have high proximity scores to the context
node. Thus, we ground our relevance ranking of patterns on the
following node proximity measure.

Definition 5. (Node Proximity Measure). A node proximity mea-

sure 𝑆 (𝑣,𝑢) returns a score that reflects the proximity of 𝑢 to 𝑣 in

G(V, E), normalized so that

∑
𝑢∈V 𝑆 (𝑣,𝑢) = 1.

We may instantiate a node proximity measure by many popular
approaches, such as Personalized PageRank (PPR) [13], SimRank

[15] or even weighted-shortest-path scores [1, 14]. In our implemen-
tation, we have opted for PPR, as it is widely used and there exist
efficient algorithms, e.g., [8, 19, 26]. Moreover, PPR takes into consid-
eration the structural relevance between two nodes, which makes
it more robust than weighted-shortest-path scores, as mentioned
in [19]. Note that node proximity measure is a plug-in component
of FMiner. It is possible and easy to use any different measures in
FMiner without the need to change the search algorithm. Next, we
present the definitions of path relevance score and matching node

sets, which lay the basis for pattern relevance model.

Definition 6 (Path Relevance Score). Given the context node

𝑐 , the path relevance score of 𝑝 (𝑣0, 𝑣ℓ ) is defined as
𝑃𝑅(𝑝) = min

𝑖∈{0,...,ℓ }
𝛽−𝑖 · 𝑆 (𝑐, 𝑣𝑖 ),

where 𝛽 is a length decay factor.

Definition 6 is based on two aspects. First, as long as there is
an irrelevant node within a path, i.e., with low proximity score,
then the whole path connecting via that node immediately makes a
weak relationship. Second, a decay factor 𝛽 is used to progressively
penalize paths along their length, as the associated OFs are bound
to be less interesting with long and complex relationships.

Definition 7 (Matching Node Set). Given a context-aware

path pattern 𝑃 (𝑣0, 𝑣ℓ = 𝑐), we denote 𝑁𝑖 as the matching node set of

𝑣𝑖 where 𝑖 ∈ {0, . . . , ℓ}, s.t. ∀𝑢 ∈ 𝑁𝑖 there exists a matching instance

𝑝 (𝑣0, 𝑐) of 𝑃 with 𝑢 substituting for the 𝑖𝑡ℎ node variable 𝑣𝑖 within 𝑃 .

In particular, 𝑁ℓ = {𝑐} and 𝑁0 corresponds to the set of all context-
aware peer entities. The proximity of 𝑁𝑖 to 𝑐 is defined as the average

node proximity of {𝑢 ∈ 𝑁𝑖 } to 𝑐 by 𝑆 (𝑐, 𝑁𝑖 ) = 1
|𝑁𝑖 |

∑
𝑢∈𝑁𝑖

𝑆 (𝑐,𝑢).

Based on the matching node sets and their proximity to the con-
text node, we next formalize pattern relevance model for a context-
anchored pattern regarding ⟨𝑡, 𝑐⟩.

Definition 8 (Pattern Relevance Model). Given a context-

anchored pattern 𝑃 (𝑣0, 𝑣ℓ = 𝑐), and a length decay factor 𝛽 , the rele-

vance score of 𝑃 (𝑣0, 𝑣ℓ = 𝑐) is defined asR(𝑃) = min{𝐻𝑅(𝑃),𝑉𝑅(𝑃)}
where 𝐻𝑅(𝑃) and 𝑉𝑅(𝑃) are defined as follows:
• Horizontal Relevance (HR):
𝐻𝑅(𝑃) = max

𝑝
𝑃𝑅(𝑝), where 𝑝 ⊲ 𝑃 starts from 𝑡 and ends at 𝑐 ;

• Vertical Relevance (VR):
𝑉𝑅(𝑃) = min

𝑖∈{0,...,ℓ }
𝛽−𝑖 · 𝑆 (𝑐, 𝑁𝑖 ), where 𝑁𝑖 is the matching

node set for 𝑣𝑖 of 𝑃 , and 𝛽 is the same as in Definition 6.

With Definition 8, the relevance of a context-anchored pattern
𝑃 is evaluated in two aspects: (i) in terms of HR, it invokes at least
one relevant matching instance 𝑝 (𝑡, 𝑐) that strongly connects the
target node 𝑡 to the context node 𝑐 , and (ii) in terms of VR, its
matching instances should be relevant on average, as measured
by the proximity of its matching node sets, 𝑁𝑖 to 𝑐 . We use the
same decay factor 𝛽 as in Definition 6 to progressively penalize
long matching instances. The min function ensures that every node
variable associated with 𝑃 is relevant, similar to Definition 6. We
illustrate these concepts with an example below.

Example 2. In Figure 1, a path pattern 𝑃 (Human, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, Pence)

is obtained given 𝑡=Harris and 𝑐=Pence. We have three matching node
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Human
positionHeld

Position Mike Pence

Mike Pence

United States 
senator

Vice President of 
the United States

Joe Biden

Kamala Harris

𝑵𝟎 𝑵𝟏 𝑵𝟐

𝑽𝟎 𝑽𝟏 𝒄
𝑬𝟎 𝑬𝟏

Horizontal 
Relevance

Vertical 
Relevance

positionHeld

Hillary Clinton
Barack Obama
Chuck Grassley

Figure 1: An example for definitions on relevance.

sets 𝑁0, 𝑁1 and 𝑁2 as depicted in Figure 1. Taking 𝑁1 as an example,

its proximity to Pence is calculated as:

𝑆 (𝑃𝑒𝑛𝑐𝑒, 𝑁1) =
1
2
[𝑆 (𝑃𝑒𝑛𝑐𝑒,𝑉 𝑖𝑐𝑒𝑃𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡) + 𝑆 (𝑃𝑒𝑛𝑐𝑒, 𝑠𝑒𝑛𝑎𝑡𝑜𝑟 )] .

The HR score is taken as the maximum PR (in red box), which is

further calculated as the minimum among: 𝑆 (𝑃𝑒𝑛𝑐𝑒, 𝐻𝑎𝑟𝑟𝑖𝑠), 𝛽−1 ·
𝑆 (𝑃𝑒𝑛𝑐𝑒,𝑉 𝑖𝑐𝑒𝑃𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡) and 𝛽−2 · 𝑆 (𝑃𝑒𝑛𝑐𝑒, 𝑃𝑒𝑛𝑐𝑒). The VR score is

calculated as the minimum among: 𝑆 (𝑃𝑒𝑛𝑐𝑒, 𝑁0), 𝛽−1 · 𝑆 (𝑃𝑒𝑛𝑐𝑒, 𝑁1)
and 𝛽−2 · 𝑆 (𝑃𝑒𝑛𝑐𝑒, 𝑁2).

2.3 Strikingness Measure

Given a context-anchored pattern, we can derive the context-aware
peer entities. Furthermore, we extract OFs that distinguish the
target entity from its peer entities. In this section, we present the
definitions of candidate OF and strikingness measure for the OF
extraction.

Definition 9 (Candidate OF). A candidate OF is defined as a

quadruple 𝑄 = (𝑡,A,X, 𝑃 (𝑣0, 𝑣ℓ = 𝑐)) with |𝑁0 | ≥ 𝑤 , where the

symbol meanings are listed as follows.

• 𝑡, 𝑐 : The target and context nodes in G(V, E).
• A: An attribute of 𝑡 .

• X: The value for attribute A of 𝑡 .

• 𝑃 (𝑣0, 𝑣ℓ = 𝑐): An ℓ-hop context-anchored pattern, which de-

scribes the relationship under consideration.

• 𝑤 : A significance threshold to ensure that the number of peer

entities is large enough for an interesting OF.

A candidate OF comprises an attribute-value pair of the target
entity 𝑡 , which is striking if it makes the target stand out compared
to its peer entities. To identify an OF, we need to rank the attribute-
value pairs of the target against its peer entities according to a
strikingness measure. We adopt a strikingness measure from [30,
35], which identifies outstanding attribute-value pairs utilizing
statistics on the attribute-value frequency distribution. Given a
candidate OF𝑄 = (𝑡,A,X, 𝑃 (𝑣0, 𝑣ℓ = 𝑐)), 𝐹 (A,X′, 𝑁0) denotes the
frequency (percentage) of a value X′ among its peer entities in
𝑁0, i.e., the matching node set of 𝑣0.

Definition 10 (Strikingness Measure). The strikingness score
of a candidate OF 𝑄 (𝑡,A,X, 𝑃 (𝑣0, 𝑣ℓ = 𝑐)) is measured as below:

I(𝑄) =
∑
X′∈X

𝐹 (A,X′, 𝑁0),

where X = {X′ |𝐹 (A,X′, 𝑁0) > 𝐹 (A,X, 𝑁0)}.

Table 1: An example to illustrate the calculation of the strik-

ingness score for Figure 1.

Attribute Value Entity Frequency
Gender Female Kamala Harris 0.4Gender Female Hillary Clinton
Gender Male Joe Biden

0.6Gender Male Barack Obama
Gender Male Chuck Grassley

By Definition 10, a fact is more striking if its value for the at-
tributeA of the target entity 𝑡 is rarer, i.e. has lower frequency, than
most others. While alternative strikingness measures [3, 18, 25, 35]
exist and could be used with our design. We have adopted an ex-
isting measure that has been shown to be effective in finding OFs.
Example 3 provides a toy example for the strikingness scoring.

Example 3. From Figure 1, a candidate OF is 𝑄 = (Harris, gender,

Female, 𝑃 (Human, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, Pence)). In Table 1, the valueMale for
attribute gender has a strictly higher frequency than Female. Thus,
I(𝑄) sums to 0.6, as there are no other values to be considered.

2.4 The COF Mining Problem

We formalize the mining process as the top-(𝑘, 𝑙) COF problem
in Definition 11. The context-awareness of a COF is achieved by
ensuring the relevance of context-aware peer entities as well as their
relationships, i.e., context-anchored patterns, associated with the
context entity.

Definition 11 (Top-(k,l) COF Problem). Given the target and

context ⟨𝑡, 𝑐⟩, and G(V, E), we find the top-𝑙 COFs with the highest

strikingness scores from the top-𝑘 relevant context-anchored patterns.

To solve the top-(𝑘, 𝑙) COF problem, the processing divides into
two steps. In the first step, we find the top-𝑘 relevant context-
anchored patterns ranked by R(·) in Definition 8. In the second
step, we extract the top-𝑙 COFs from the collected 𝑘 patterns. The
major challenge lies in the first step, as the second step can be based
on existing well-developed approaches [30, 35]. In the first step,
in order to identify context-anchored patterns, we need to first
conduct path enumeration to find connecting paths between the
target and the context nodes. Then, for each connecting path, we
need to enumerate all possible patterns, and for each enumerated
pattern, we further find all its matching instances in the graph for
calculating the relevance score. Every procedure involved here is of
exponential complexity. Even worse, the scale of today’s open KGs
renders the problem more difficult. To mitigate the efficiency issue,
we propose optimizations to quickly prune unpromising patterns
and avoid any redundant computation to speed up the search. As a
result, we reduce the search time from more than tens of seconds
to sub-seconds on average over hundreds of queries, running on a
KG with more than a half billion edges. Before moving on, we refer
readers to Table 2 for the frequently used notations.

3 ALGORITHMS AND OPTIMIZATIONS

In this section, we first introduce the baseline algorithm. Then, we
present several optimizations that speed up the processing.

3.1 Overview and Baseline Algorithm

Given ⟨𝑡, 𝑐⟩, the baseline algorithm runs in two steps to produce
the top-(𝑘, 𝑙) COFs. In the first step, we traverse the graph with a
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Table 2: Frequently Used Notations.

Notation Meaning
G(V, E,M) The Knowledge Graph (KG).

�̃� A node variable, instantiated to either a node or a node type.
𝑉 , 𝐸 Node type and edge type.
⟨𝑡, 𝑐 ⟩ A pair of the target node and the context node.

𝑃 (𝑣0, 𝑣ℓ ) An ℓ-hop path pattern from 𝑣0 to 𝑣ℓ
𝑝 (𝑣0, 𝑣ℓ ) An ℓ-hop path or matching instance from 𝑣0 to 𝑣ℓ .
𝑆 (𝑣,𝑢) Node proximity measure of 𝑢 to 𝑣.
𝑁𝑖 The matching node set w.r.t. 𝑣𝑖 of a pattern.

𝑆 (𝑐, 𝑁𝑖 ) Proximity of a matching node set 𝑁𝑖 w.r.t. 𝑐 .
R(𝑃 ) Relevance score of a context-anchored pattern 𝑃 .
R𝑘 The 𝑘𝑡ℎ largest pattern relevance score.

𝑃𝑅 (𝑝) The path relevance score of p.
𝐻𝑅 (𝑃 ),𝑉𝑅 (𝑃 ) Horizontal and Vertical relevance scores of pattern 𝑃 .

𝑄 A candidate COF.
𝑤 The significance threshold of peer entity number.

bi-directional Breadth-First Search (bi-BFS) to find path instances
𝑝 (𝑡, 𝑐) connecting 𝑡 and 𝑐 . For each 𝑝 (𝑡, 𝑐), we enumerate the pos-
sible patterns 𝑃 (𝑣0, 𝑐) where 𝑝 ⊲ 𝑃 and then evaluate the rele-
vance score R(𝑃). The bi-BFS includes a forward-BFS from 𝑡 and
a backward-BFS from 𝑐 . The first step terminates after collecting
the exact top-𝑘 context-anchored patterns. In the second step, we
extract top-𝑙 COFs with the existing approach [30, 35] from the
collected patterns. In this section, we focus on the first step.

The details are shown in Algorithm 1. The first step corresponds
to line 1 to 19. During search, we keep two priority queues, i.e.,
𝑞𝑓 and 𝑞𝑏 for forward-BFS and backward-BFS, respectively. The
priority queues pop out the path instance with the highest 𝑃𝑅
score. Specifically, at line 7, we enumerate a prefix path 𝑝 (𝑡, 𝑣𝑖 ), and
check if it can be concatenated with some postfix path 𝑝 (𝑣𝑖 , 𝑐) to
form a complete path 𝑝 (𝑡, 𝑐). The postfix path 𝑝 (𝑣𝑖 , 𝑐) was obtained
during backward-BFS traversal. Once a complete path is found, it is
passed to the pattern evaluation procedure, introduced shortly, for
pattern relevance score calculation. After the pattern evaluation,
we enumerate new path instances from 𝑝 (𝑡, 𝑣𝑖 ) by appending to 𝑝
the out-neighbors of 𝑣𝑖 . A path 𝑝 can be inserted into the priority
queue 𝑞𝑓 only if its relevance score 𝑃𝑅(𝑝) is larger than the 𝑘𝑡ℎ
score of the collected patterns, denoted by R𝑘 . The same procedure
is done for backward-BFS, but expands with the reversed directions
of edges. The bi-BFS paradigm effectively speeds up the search by
cutting down the complexity from𝑂 (𝑑ℓ ) of uni-direction expansion
to 𝑂 (𝑑

ℓ
2 ), where 𝑑 is the average degree and ℓ is the path length.

The correctness of the algorithm is guaranteed by Theorem 1, which
can be implied from Lemma 1.

Lemma 1 (Monotonicity of PR scores). The path instances

enumerated during forward-BFS and backward-BFS produce non-

increasing 𝑃𝑅 scores.

Theorem 1 (Correctness). Algorithm 1 correctly returns the

top-𝑘 relevant context-anchored patterns.

The pattern evaluation procedure consumes a complete path
𝑝 (𝑡, 𝑐) = 𝑝 (𝑡, 𝑣𝑖 ) + 𝑝 (𝑣𝑖 , 𝑐), then enumerates all possible context-
anchored patterns, and finally calculate the relevance score of each
pattern by extracting all the matching node sets. The pattern enu-
meration maps each node 𝑣𝑖 of 𝑝 (𝑡, 𝑐) to either the node type 𝑉𝑖 or
itself 𝑣𝑖 . Hence, there are 2ℓ−2 patterns for an ℓ-node path. Note that
𝑡 should always be mapped to its type and 𝑐 remains an instance
node. Given a pattern 𝑃 (𝑣0, 𝑐), the extraction of matching node
sets starts backtrack reversely from 𝑐 in a Depth First Search (DFS)

Algorithm 1: FMiner
Input: ⟨𝑡, 𝑐 ⟩, G(V, E) , and 𝛽 .
Output: Top-(𝑘, 𝑙) COFs.

1 NodeProximityCalculation(G, 𝑐);
2 Initialize a fwd-queue 𝑞𝑓 and a bwd-queue 𝑞𝑏 ;
3 𝑞𝑓 .push(𝑝 (𝑡, 𝑡 ));
4 𝑞𝑏 .push(𝑝 (𝑐, 𝑐));
5 while 𝑞𝑓 not empty or 𝑞𝑏 not empty do

6 if 𝑞𝑓 not empty then

7 𝑝 (𝑡, 𝑣𝑖 ) ← 𝑞𝑓 .pop();
8 foreach visited 𝑝 (𝑣𝑖 , 𝑐) from bwd-BFS do

9 patternEvaluation(𝑝 (𝑡, 𝑣𝑖 ), 𝑝 (𝑣𝑖 , 𝑐));
10 foreach 𝑣𝑖+1 ∈ 𝑂𝑢𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑣𝑖 ) do
11 if 𝑃𝑅 (𝑝 (𝑡, 𝑣𝑖+1)) > R𝑘 then

12 𝑞𝑓 .𝑝𝑢𝑠ℎ (𝑝 (𝑡, 𝑣𝑖+1)) ;
13 if 𝑞𝑏 not empty then

14 𝑝 (𝑣𝑗 , 𝑐) ← 𝑞𝑏 .pop();
15 foreach visited 𝑝 (𝑡, 𝑣𝑗 ) from fwd-BFS do

16 patternEvaluation(𝑝 (𝑡, 𝑣𝑗 ), 𝑝 (𝑣𝑗 , 𝑐));
17 foreach 𝑣𝑗−1 ∈ 𝐼𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑣𝑗 ) do
18 if 𝑃𝑅 (𝑝 (𝑣𝑗−1, 𝑐)) > R𝑘 then

19 𝑞𝑏 .𝑝𝑢𝑠ℎ (𝑝 (𝑣𝑗−1, 𝑐)) ;
20 top-𝑙 COFs← COFExtraction(top-𝑘 relevant patterns);
21 return Top-(𝑘, 𝑙) COFs;

manner, so as to recover every matching instance. Due to the space
limit, we refer readers to supplementary materials for details.

The pattern evaluation procedure, unfortunately, turns out to be
a bottleneck, due to the inherent exponential complexity. In the next
section, we introduce optimizations that accelerate this procedure
while retrieving the exact top-𝑘 context-anchored patterns.
Discussion. There are many keyword search approaches [1, 14, 16]
that involve graph traversal and path enumeration processes. How-
ever, our scenario differs in two aspects, rendering their technique
not applicable. First, the keyword search approaches aim at finding
a concise subtree, with one path from each keyword cluster (i.e., all
nodes containing one keyword) to the root. Therefore, their tech-
niques and optimizations mainly focus on quickly discovering the
optimal answer subtree. To speed up the process, they build indexes
[14], such as keyword-node lists and node-keyword map, to maintain
shortest paths between keywords and nodes. Whereas, in our case,
there are only two nodes under consideration. Those indexes do
not bring any benefit since we need not consider the combinations
of paths from different keyword clusters. Second, keyword search
approaches only favor the shortest path between any two nodes
[14]. Nonetheless, we need to evaluate the patterns derived from
all connecting paths for top-𝑘 relevant pattern search.

3.2 Optimizations

In this section, we present three major optimizations for accelerat-
ing the top-𝑘 pattern search step. First, we propose an upper bound
𝑁𝑖 on |𝑁𝑖 |. 𝑁𝑖 is used during the extraction of matching node sets.
Once the number of the collected matching nodes for 𝑣𝑖 exceeds 𝑁𝑖 ,
the corresponding pattern can be safely pruned. Second, we avoid
redundant processing during pattern evaluation by reusing the in-
termediate results. Moreover, we introduce the pattern subsumption

relation (Definition 12), which further helps early terminate the
evaluation for unpromising patterns. Third, the algorithm mainly
relies on the 𝑘𝑡ℎ pattern relevance score, i.e. R𝑘 , for pruning. There-
fore, we enhance the R𝑘 by changing Algorithm 1 to a two-pass
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algorithm. We delay the expansion via high-degree nodes until
the second pass. This is based on the observation that high-degree
nodes often result in a large number of patterns, of which many
have low relevance scores. The details are introduced as follows.
Upper bound 𝑁𝑖 of |𝑁𝑖 |. Given a path pattern, we aim to early
terminate the pattern evaluation procedure for patterns guaranteed
to fall under R𝑘 . According to Definition 8, in order to obtain a
pattern 𝑃 (𝑣0, 𝑣ℓ = 𝑐) with a score no smaller than R𝑘 , Equation 3
must hold for every matching node set 𝑁𝑖 of 𝑃 .

∀𝑖 ∈ {0, . . . , ℓ},R𝑘 ≤ 𝛽−𝑖 · 𝑆 (𝑐, 𝑁𝑖 ) = 𝛽−𝑖 ·
∑
𝑛∈𝑁𝑖

𝑆 (𝑐, 𝑛)
|𝑁𝑖 |

(3)

where R𝑘 denotes the 𝑘𝑡ℎ pattern score and 𝛽 is the length decay
factor. A direct transformation of Equation 3 leads to an upper
bound of |𝑁𝑖 | as |𝑁𝑖 | ≤ 𝛽−𝑖 ·

∑
𝑛∈𝑁𝑖

𝑆 (𝑐,𝑛)
R𝑘 . However, the numerator∑

𝑛∈𝑁𝑖
𝑆 (𝑐, 𝑛) is unknown until the exact 𝑁𝑖 is found, which is the

expensive part we want to avoid. Note that
∑
𝑛∈𝑁𝑖

𝑆 (𝑐, 𝑛) can be
bounded by

∑
𝑢∈𝑈𝑖

𝑆 (𝑐,𝑢) for any super set𝑈𝑖 of 𝑁𝑖 . For instance, a
trivial and useless bound can be obtained by setting𝑈𝑖 = V . Thus,
to derive a tight bound with cheap computational costs, we propose
a double-type constrained upper bound of

∑
𝑛∈𝑁𝑖

𝑆 (𝑐, 𝑛). Specifically,
we introduce a super set 𝑈𝑖 of 𝑁𝑖 such that ∀𝑢 ∈ 𝑈𝑖 must have
(i) the same type as 𝑉𝑖 (w.r.t. to nodes in 𝑁𝑖 ) and (ii) at least one
out-going edge with type 𝐸𝑖 , given the pattern 𝑃 (𝑣0, 𝑣ℓ = 𝑐) being
evaluated. Note that the collection of𝑈𝑖 is easy and does not involve
any expensive graph traversal or join operations. Moreover, the
double-type constraint greatly reduces the possible size of 𝑈𝑖 , i.e.,
|𝑈𝑖 | ≪ |V|, leading to a much tighter upper bound with effective
pruning power. This is formalized in Theorem 2. Note that the
upper bound only applies to node types of a pattern.

Theorem 2. Given a path pattern 𝑃 (𝑣0, 𝑣ℓ = 𝑐), the size of 𝑁𝑖 (i.e.

|𝑁𝑖 |) w.r.t. 𝑉𝑖 is bounded by 𝑁𝑖 , defined as below:

𝑁𝑖 = 𝛽−𝑖 ·
∑
𝑢∈𝑈𝑖

𝑆 (𝑐,𝑢)
R𝑘

,

where𝑈𝑖 = {𝑢 |M(𝑢) = 𝑉𝑖 ∧𝐸𝑖 ∈ 𝑜𝑢𝑡𝑇𝑦𝑝𝑒 (𝑢)}, 𝑜𝑢𝑡𝑇𝑦𝑝𝑒 (𝑢) denotes
the set of types of edges going out of 𝑢, R𝑘 is the 𝑘𝑡ℎ pattern score,

and 𝛽 is the length decay factor.

To incorporate this optimization into the pattern evaluation
procedure, we calculate the 𝑁𝑖 before extracting the matching node
sets. Then, during the matching processes, once 𝑁𝑖 is modified s.t.
|𝑁𝑖 | > 𝑁𝑖 , we can immediately terminate the processing.
Avoiding redundant processing. If two patterns share a common
prefix pattern, then the matching instances for that prefix pattern
can be extracted once and reused for the second pattern. Motivated
by this observation, we can keep a dynamic map, called Dmap,
which records the set of matching instances for each processed
prefix pattern ending at some node 𝑣𝑖 , i.e., 𝑃 (𝑣0, 𝑣𝑖 ). The Dmap is
defined as below:

𝐷𝑚𝑎𝑝 [𝑃 (𝑣0, 𝑣𝑖 )] ↦→ {𝑁0, . . . , 𝑁𝑖 }.

Given Dmap, every time the matching process hits a visited prefix
pattern 𝑃 (𝑣0, 𝑣𝑖 ), we can avoid repeatedly extracting the matching
node sets of 𝑃 by reusing the kept intermediate results in Dmap.

Furthermore, Dmap can be combined with the first optimiza-
tion using 𝑁𝑖 to avoid redundant processing of patterns that are
guaranteed to exceed 𝑁𝑖 for some 𝑁𝑖 and thus fail below R𝑘 . Be-
fore introducing the details, we first present the definition of the
pattern subsumption relation and Corollary 1.

Definition 12 (Pattern subsumption). Pattern 𝑃1 (𝑣0, 𝑣ℓ = 𝑣ℓ )
subsumes 𝑃2 (𝑢0, ˜𝑢𝑚 = 𝑢𝑚), denoted by 𝑃1 ⊒ 𝑃2, if and only if two

conditions are satisfied: (1) ℓ ≥ 𝑚; (2) ∀𝑖 ∈ {0, . . . ,𝑚}, if 𝑢𝑖 = 𝑈𝑖 (a

type), then 𝑣𝑖 = 𝑢𝑖 , or if 𝑢𝑖 = 𝑢𝑖 (an instance node), thenM(𝑢𝑖 ) = 𝑣𝑖 .

Corollary 1. If 𝑃1 (𝑣0, 𝑣ℓ = 𝑣ℓ ) ⊒ 𝑃2 (𝑢0, ˜𝑢𝑚 = 𝑢𝑚), then ∀𝑖 ∈
{0, . . . ,𝑚}, 𝑁𝑣𝑖 ⊇ 𝑁𝑢𝑖 .

Based on Corollary 1, if a prefix pattern 𝑃 (𝑣0, 𝑣𝑖 ) has a matching
node set 𝑁 𝑗 exceeding 𝑁 𝑗 ( 𝑗 < 𝑖), then any pattern that subsumes
𝑃 can be safely pruned. This is because they share the same 𝑁𝑖 and
a pattern subsuming 𝑃 contains at least 𝑁𝑖 for 𝑣𝑖 . We can extend
Dmap to record a failure flag for a prefix pattern 𝑃 (𝑣0, 𝑣𝑖 ), i.e.,
𝐷𝑚𝑎𝑝 [𝑃 (𝑣0, 𝑣𝑖 )] = 𝐹𝐴𝐼𝐿, if 𝑃 (𝑣0, 𝑣𝑖 ) results in |𝑁 𝑗 | > 𝑁 𝑗 , ∃ 𝑗 < 𝑖 .

Enhancing the 𝑘𝑡ℎ score (R𝑘 ) for pruning. The algorithm relies
on the R𝑘 to prune paths (line 11 and 18 in Algorithm 1) as well as
derive a tight bound 𝑁𝑖 of matching node sets. An insight is that
a high-degree node can lead to many patterns being enumerated,
evaluated, and finally inserted into the top-𝑘 result heap. There can
be many of these patterns that tend to be less relevant, because
the connection via a high-degree node can be weak. Consequently,
those patterns will be later replaced by other more relevant ones.
The downside is that the R𝑘 generated from them is relatively low
and does not provide a good pruning power. Motivated by this,
we propose to defer the traversing through the high-degree nodes
until the processing of other nodes finishes. More specifically, we
classify all nodes whose degree is larger than a threshold 𝑟 as high-
degree nodes. The original Algorithm 1 is changed to a two-pass
algorithm. In the first pass, it processes all nodes with degree no
more than 𝑟 . Meanwhile, any path hitting a node with degree larger
than 𝑟 is kept separately without further expansion. In the second
pass, we resume the expansion and processing of all paths hitting
high-degree nodes. To guarantee the correctness, the prefix (resp.
postfix) paths generated in the second pass are also concatenated
with those postfix (reps. prefix) paths from the first pass. In the
experiment section, we show that the optimizations introduced in
this section have effectively helped reduce the search time from
tens of seconds to sub-seconds given a pair of target and context
entities on a KG with more than a half billion edges.

4 EXPERIMENTS

In this section, we verify the efficiency and effectiveness of FMiner
in Section 4.1 and Section 4.2, respectively.
Knowledge Graph and Query Pairs. We use Wikidata KG [5]
with 39.9M nodes and 592.8M edges. We randomly collect 200 query
pairs of co-occurring target and context entities from a public news
corpus 3. We refer readers to the supplementary materials for in-
formation of the running platform and the implementation details.

3https://cs.nyu.edu/~kcho/DMQA/
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Figure 2: Vary top-𝑘 values. There are three time components of the algorithm: Traversal Time (TR), Pattern Evaluation Time

(PE) and COF Extraction Time (CE). Note that Total = TR + PE + CE. Time is measured in millisecond.

4.1 Efficiency Study

Algorithms to Compare. To our best knowledge, there are no
existing studies for COF mining. A closely related one, Maverick
[35], only finds OFs for one entity at a time without considering
any context. Maverick and FMiner have different query formats
and objectives. In addition, according to our experiments, Maverick
can only support small KGs reported in their paper [35] and cannot
terminate in reasonable time for Wikidata KG used in our paper.
Thus, we focus on studying the efficiency of FMiner and its variants
with the proposed optimizations, as listed below.

• Baseline: Algorithm 1 without any optimizations.
• FMiner-bd: The algorithm that only uses 𝑁𝑖 for pruning.
• FMiner-Dmap: The algorithm that only uses Dmap for avoid-
ing redundant processing of prefix patterns. This version does
not combine 𝑁𝑖 with Dmap.
• FMiner-hn: The algorithm that only delays the processing of
high-degree nodes.
• FMiner: The ultimate version integrating all optimizations.

Parameters to Study. There are three parameters to be studied
for efficiency. First, the top-𝑘 value for obtaining 𝑘 patterns. We set
𝑘 = 10 by default. The corresponding experiment result is reported
in Figure 2. Second, the top-𝑙 value for extracting 𝑙 COFs from the
collected patterns. We set 𝑙 = 10 by default. The result is reported
in Table 3. Third, we vary the degree threshold 𝑟 which is used for
delaying the processing of high-degree nodes. We set 𝑟 = 10000
by default. We report the result in Figure 3. When studying one
parameter, the others are set to the default values. In all experi-
ments, we do not include the time profiling for node proximity score
calculation since we adopt PPR (Personalized PageRank) with the
existing approach [8]. The time for proximity score computation is
negligible. All reported running time are in millisecond and averaged

across all queries. We set time limit to 180 seconds (3 minutes). If
such a limit is reached, we return whatever is collected. In addition,
we set 𝛽 = e by default. The significance threshold𝑤 (Definition 9)
is set to 20. A large𝑤 can lead to missing of interesting groups of
peer entities. For instance, the number of peer entities comprising
all the US presidents is only 46 (at the time the paper was writ-
ten). Note that we only consider paths with fewer than four nodes
since longer paths can only lead to complex patterns, which is less
meaningful and can hardly be understood by users.
Result and analysis. In Figure 2, we vary top-𝑘 with four different
values, 5, 10, 15 and 20. In each sub-figure, we show time compo-
nents including Traversal time (TR) for expanding and enumerating

paths, Pattern Evaluation time (PE) for evaluating pattern relevance,
and Total time. The COF Extraction time (CE) is the same for all
versions of algorithms (COF extraction starts after top-𝑘 patterns
are collected), which is separately reported in Table 3. Note that
Total time = TR + PE + CE.

From the results shown in Figure 2, FMiner with all optimiza-
tions has reduced the search time to sub-second. Whereas, solely
applying any individual optimization cannot achieve the same ef-
ficiency result. Specifically, simply delaying high-degree nodes
(FMiner-hn) does not help much. Although it helps to discover
more relevant patterns in an early stage, there is no effective prun-
ing utilizing the improved 𝑘𝑡ℎ score. The other two optimizations
improved the efficiency from different aspects, i.e., by pruning
(FMiner-bd) and avoiding redundant processing (FMiner-Dmap).
The ultimate version (FMiner) achieved the best performance by
combining all optimizations. FMiner-hn improved the 𝑘𝑡ℎ score
which further strengthens FMiner-bd by allowing for a tighter
bound 𝑁𝑖 . Moreover, FMiner-bd is further combined with FMiner-
Dmap so that the evaluation of patterns failing 𝑁𝑖 is terminated
quickly. The traversal process is not a bottleneck due to the effec-
tiveness of bi-BFS paradigm. As the top-𝑘 value increases, the time
cost slightly increases because a larger 𝑘 leads to a lower 𝑘𝑡ℎ score.
Hence, it can weaken the pruning power of the optimizations. The
result of varying top-𝑙 for COF extraction is reported in Table 3.

Table 3: Vary top-𝑙 for COF extraction.

top-𝑙 top-5 top-10 top-15 top-20
CE time (ms) 12.459 12.774 13.389 14.467

Table 4: Degree distribution.

node degree ≥ 100 ≥ 1000 ≥ 10, 000 ≥ 10, 000
node number 617,941 14,787 1,087 63

In Figure 3, we have investigated the influence of degree thresh-
old 𝑟 by varying it from 1,000 to 100,000. Only FMiner (the ultimate
version) and FMiner-hn (delaying high-degree node) are affected
by different 𝑟 and thus plotted. The Baseline is also shown for com-
parison. The node-degree distribution, as in Table 4, corresponds
to a power law distribution. As the degree threshold 𝑟 increases,
𝑟 becomes less sensitive since only very few nodes are affected
(there are totally 39M nodes). The best result is achieved by setting
𝑟 = 10000. Smaller 𝑟 has caused the running time to increase. This
is because smaller 𝑟 delays too many nodes, some of which may
result in very relevant patterns. Consequently, good 𝑘𝑡ℎ scores may
be missed in the first pass of the algorithm. In addition, raising the
degree threshold to 100,000 slightly increases the running time by
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Figure 3: Vary degree threshold. Note that Total = TR + PE + CE. Time is measured in millisecond.
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Figure 4: Relevance Study.
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Figure 5: Strikingness Study.

around a hundred milliseconds. This indicates larger 𝑟 can lead to
more high-degree nodes being processed in the first pass of the al-
gorithm. This makes the derived 𝑘𝑡ℎ score less effective for pruning.
However, this effect is not as strong as decreasing the threshold.
Our results suggest a larger 𝑟 is preferred since such choice does not
affect running time in a sensitive way, and can effectively accelerate
the search process.

4.2 Effectiveness Study

In this section, we conduct a user study to validate two aspects of
FMiner: (i) the resulting COFs are relevant regarding the context
entity; (ii) the resulting COFs are interesting facts regarding the
target entity. We compare our results with the OFs produced by
Maverick [35] which discovers exceptional facts from KGs without
considering any context. However, the search space of Maverick
is intractable given the size of Wikidata, we thus use Maverick to
discover all path patterns from the target entity. The results from
both methods are indeed interesting, but with different relevance
regarding a given context.

In the user study, we collect 10 pairs of entities that are well-
known and relevant to each other. For each entity pair, we fix one
entity as the target, the other as the context. Note that Maverick
and FMiner adopt the same strikingness measure in Definition 10.
We use the top OFs from each approach. Only the resulting two

OFs (in random order) are presented to participants per user study

case. Then, two questions are asked: (1) Which fact is more relevant

regarding the [context entity]? (2) Which fact sounds more interesting

or striking regarding the [target entity]? For each of the two questions,

we ask participants to select one out of three choices: Fact 1, Fact
2 and Neither.We convert OFs into natural languages for ease of
understanding of the participants. We have collected the results
from 20 students who are unaware of our research. Two output
samples are shown in Table 5 for discussion. The full details of all
user study cases are shown and further discussed in supplementary
materials, including the used entity pairs, the strikingness scores
and the discovered patterns of each study case.

In the relevance study (Figure 4), the results verify that FMiner
can consistently outperform Maverick in retrieving relevant facts.
FMiner extractsCOFs from peer entities with relevant relationships
to the context entity. For instance, in Table 5, the peer entities
retrieved by FMiner consist of all the first ladies of the US including
Hillary Clinton (Case 1). In contrast, Maverick focuses on finding
global optimal OFs with highest striking scores while ignoring the
context. In the strikingness study (Figure 5), the results validate
that while achieving context-awareness, FMiner can still produce
competitive OFs as compared with Maverick. Maverick tend to
produce OFs with a large number of peer entities, which can render
a fact more striking. For example, in Case 7 (Table 5), although the
two approaches obtained a very similar fact (i.e. Taylor Swift plays
Banjo), the OF statement by Maverick tend to sound more striking.
This is because Maverick considers the peer entities of all actors
(190470 recorded in the KG), whereas FMiner only considers those
with the same music genre as Lady Gaga (220 recorded). However,
the OF produced by FMiner is more suitable to be embedded into
the context specified by Lady Gaga.

In sum, FMiner can produce striking and context-aware OFs.
Such OFs have important applications especially in news and social
media, where the contents often have a clear context involving
real-world entities.

5 RELATEDWORK

In this section, we discuss two closely related research areas.
Outlier Detection and Outlying Aspect Detection. Although
similar, these two tasks have very different objectives. Outlier detec-
tion [9, 21, 24, 27] aims at finding an object that is different from ob-
jects in a cluster, whereas outlying aspect detection [3, 12, 23, 29, 35]
is to find the most interesting attribute (i.e. the outlying aspect)
of a given object compared with a set of peer objects. There is a
thorough discussion on the differences of the two tasks in [4, 25, 35].
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Table 5: Sample Facts.

Entity Pair Maverick FMiner
Case 1: 𝑡=Michelle Obama,
𝑐=Hillary Clinton

Among all people who have family name Robinson, Michelle
also has Obama as her family name.

Among the first ladies of the US, Michelle is the only one who has been Dean in
any university.

Case 7: 𝑡=Taylor Swift,
𝑐=Lady Gaga

Among all actors, Taylor is one of a few banjoists. Among people with the same music genre as Lady Gaga, Taylor is the only one
whose instrument includes banjo.

Both the attributes and the set of peer entities need to be mined and
extracted from the dataset for outlying aspects detection. Thus, our
work is more close to outlying aspect detection. However, most of
the existing approaches [3, 12, 23, 29] of outlying aspect detection
focus on relational data and assume a single table as pointed out by
[35]. Maverick [35] is a recent work that proposes an approach for
mining exceptional facts on knowledge graphs. In this paper, we
adopt the same strikingness measure proposed in [30, 35] due to its
proved effectiveness. There are several alternative ones [3, 18, 25] to
choose from. Nonetheless, there are few outlying aspect detection
methods aimed at mining context-aware OFs where the context is
specified by an entity. Thus, they are not applicable to our scenario.
EntityRelationshipDiscovery onGraphs.One popularmethod
of relationship discovery is keyword search on graphs, to mention a
few [1, 14, 16, 17, 33, 34]. These methods return concise subgraphs
that connect multiple input keywords. However, these approaches
do not consider any patterns which are required for generating OF.
In addition, [32] proposes to find tree patterns and output table
answers. Furthermore, REX [7] proposes to find path patterns that
connect two entities. It focuses on combining the path patterns
to form a graph pattern that explains the relationship between
the entity pair. Neither of the two works [7, 32] consider context
relevance ranking, peer entity finding nor OF extraction.

6 CONCLUSION

We proposed FMiner, a novel framework that automatically mines
context-aware outstanding facts (COFs) from open KGs, given a
target entity and a context entity. The resulting COFs can serve as
lead to interesting news materials and aid tasks like fact-checking
and news promotion. We proposed several optimizations to speed
up the search processes. Through extensive experiments, we vali-
dated the advantages of our approach in terms of both efficiency
and effectiveness.
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APPENDIX: SUPPLEMENTARY MATERIALS

A DETAILS OF ALGORITHMS

In this section, we introduce the details of the pattern evaluation
procedure (Algorithm 2) and the matching node set extraction
procedure (Algorithm 3).

Algorithm 2: Pattern Evaluation
Input: A prefix path 𝑝 (𝑣0 = 𝑡, 𝑣𝑖 ) and a postfix path 𝑝 (𝑣𝑖 , 𝑣ℓ = 𝑐) .
Output: Patterns with relevance scores.

1 Procedure patternEvaluation(𝑝 (𝑣0 = 𝑡, 𝑣𝑖 ), 𝑝 (𝑣𝑖 , 𝑣ℓ = 𝑐))
2 𝑝 (𝑡, 𝑐) = 𝑝 (𝑣0, 𝑣𝑖 ) + 𝑝 (𝑣𝑖 , 𝑣ℓ ) ;
3 Enumerate all possible 𝑃 (𝑣0, 𝑣ℓ = 𝑐) , s.t., 𝑝 (𝑡, 𝑐) ⊲ 𝑃 (𝑣0, 𝑣ℓ = 𝑐) ;
4 foreach 𝑃 (𝑣0, 𝑐) do
5 if matchingNodeSetExtraction(𝑃 (𝑣0, 𝑣ℓ = 𝑐)) then
6 Insert 𝑃 (𝑣0, 𝑣ℓ = 𝑐) into top-𝑘 pattern heap;

In Algorithm 2, the pattern evaluation procedure takes as input
a prefix path 𝑝1 (𝑣0 = 𝑡, 𝑣𝑖 ) and a postfix path 𝑝2 (𝑣𝑖 , 𝑣ℓ = 𝑐). By
concatenating the two paths, we derive a complete connecting
path 𝑝 (𝑡, 𝑐) (line 2). Then, all possible patterns are enumerated by
turning the instance nodes of 𝑝 to either types or the node itself
(line 3). Subsequently, every pattern is passed to the matching node
set extraction procedure for obtaining the matching node sets (line
5). The matching node sets are further used to calculate the 𝑉𝑅
score of the pattern.

Algorithm 3: Matching Node Set Extraction with Dmap
Input: 𝑃 (𝑣0, 𝑣ℓ = 𝑐) , G(V, E) .
Output: {𝑁0, . . . , 𝑁ℓ } modified in place.

1 Procedure matchingNodeSetExtraction(𝑃 (𝑣0, 𝑣ℓ ))
2 if ℓ == 0 then
3 𝑁0 .add(𝑣ℓ );
4 return true;
5 if 𝐷𝑚𝑎𝑝 contains 𝑃 (𝑣0, 𝑣ℓ ) then
6 {𝑁 ′0, . . . , 𝑁 ′𝑖 } ← 𝐷𝑚𝑎𝑝 [𝑃 (𝑣0, 𝑣ℓ ) ];
7 foreach 𝑁 ′𝑗 ∈ {𝑁 ′0, . . . , 𝑁 ′𝑖 } do
8 𝑁 𝑗 ← 𝑁 𝑗 ∪ 𝑁 ′𝑗 ;
9 return true;

10 hasMatch← false;
11 foreach 𝑣ℓ−1 ∈ 𝐼𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑣ℓ ) do
12 if M(𝑒 (𝑣ℓ−1, 𝑣ℓ ))! = 𝐸ℓ−1 orM(𝑣ℓ−1)! = ˜𝑣ℓ−1 then
13 continue;
14 if matchingNodeSetExtraction(𝑃 (𝑣0, 𝑣ℓ−1)) then
15 hasMatch = true;
16 if hasMatch then

17 𝑁ℓ .𝑎𝑑𝑑 (𝑣ℓ ) ;
18 𝐷𝑚𝑎𝑝 [𝑃 (𝑣0, 𝑣ℓ ) ] ← {𝑁0, . . . , 𝑁𝑖 };
19 return hasMatch;

Algorithm 3 shows the matching node set extraction integrated
with Dmap optimization. The procedure starts from the context
node 𝑐 by following the reversed direction of the pattern 𝑃 (𝑣0, 𝑣ℓ =
𝑐). We search the graph in a DFSmanner, recursively. Once reaching
a node 𝑣0 matching 𝑣0 (line 2-3), a matching instance is found. The
process returns true and inserts the nodes along the matching
instance into the corresponding matching node set (line 3 and 17).
The Dmap is integrated such that it stores any found matching
node sets (line 18) and reuses the intermediate results (line 5-9) to
avoid redundant processes.

B PROOFS

Lemma 1. We only need to show that given any path 𝑝 ′ ex-
panded from path 𝑝 , 𝑃𝑅(𝑝 ′) ≤ 𝑃𝑅(𝑝). For forward-BFS, suppose
𝑝 ′(𝑣0, 𝑣𝑖+1) is expanded from 𝑝 ′(𝑣0, 𝑣𝑖 ), then we have 𝑃𝑅(𝑝 ′) =
min{𝑃𝑅(𝑝), 𝛽−(𝑖+1) ·𝑆 (𝑐, 𝑣𝑖+1)}. From this, we can obtain that 𝑃𝑅(𝑝 ′)
≤ 𝑃𝑅(𝑝). For backward-BFS, suppose 𝑝 ′(𝑣𝑖−1, 𝑣ℓ ) is expanded from
𝑝 ′(𝑣𝑖 , 𝑣ℓ ), then we have 𝑃𝑅(𝑝 ′) = min{𝛽−1 ·𝑆 (𝑐, 𝑣𝑖+1), 𝛽−1 ·𝑃𝑅(𝑝)}.
Hence, 𝑃𝑅(𝑝 ′) ≤ 𝛽−1 · 𝑃𝑅(𝑝) ≤ 𝑃𝑅(𝑝). In sum, we have 𝑃𝑅(𝑝 ′) ≤
𝑃𝑅(𝑝) for both forward-BFS and backward-BFS. Thus, the 𝑃𝑅 scores
of expanded paths are non-increasing. □

Theorem 1. We only need to show that every pattern 𝑃 derived
from a path 𝑝 by the algorithm must have R(𝑃) ≤ 𝑃𝑅(𝑝). Thus, the
algorithm can correctly terminates without the need to consider
the paths whose 𝑃𝑅 scores are smaller than R𝑘 . We prove this by
contradiction. Suppose 𝑃 is derived from 𝑝 ′ for the first time and
R(𝑃) > 𝑃𝑅(𝑝 ′). However, from Definition 6, we know that R(𝑃) ≤
𝐻𝑅(𝑃) where𝐻𝑅(𝑃) = max{𝑃𝑅(𝑝)},∀𝑝 ⊲𝑃 . This means there must
exist a 𝑝 s.t. 𝑃𝑅(𝑝) > 𝑃𝑅(𝑝 ′). Otherwise, R(𝑃) ≤ 𝐻𝑅(𝑃) = 𝑃𝑅(𝑝 ′).
Since 𝑃𝑅(𝑝) > 𝑃𝑅(𝑝 ′), based on Lemma 1, 𝑝 must be enumerated
before 𝑝 ′ and is used for deriving 𝑃 . This contradicts the assumption
that 𝑝 ′ is used to derive 𝑃 for the first time. This concludes the
proof. □

Theorem 2. The proof can be obtained from the construction of
the upper bound 𝑁𝑖 . We refer readers to Section 3.2. □

Corollary 1. Based onDefinition 12, we know that if 𝑃1 (𝑣0, 𝑣ℓ =
𝑣ℓ ) ⊒ 𝑃2 (𝑢0, ˜𝑢𝑚 = 𝑢𝑚), then 𝑝 ⊲𝑃1,∀𝑝 ⊲𝑃2. Therefore, any matching
node set of 𝑃2 is a subset of that of 𝑃1. □

C PLATFORM AND IMPLEMENTATION

All programs are run on a single machine with CentOS 7.0 and
Intel(R) Xeon(R) Platinum 8170 CPU @ 2.1GHz. It has 1TB RAM.
All algorithms are implemented using C++ 11, with -O3 flag turned
on for compilation.

D DETAILS OF USER STUDY

In this section, we introduce the details of user study and give
more discussions on the results. The entity pairs used in the user
study are shown in Table 6. These pairs are well-known so that the
participants know about the entities. The entities are also relevant
to each other within a pair so that it makes sense to extract a
context-aware OF for that entity pair.

Table 6: Entity Pairs used for User Study.

Case No. Target Entity Context Entity
1 Michelle Obama Hillary Clinton
2 Akon Michael Jackson
3 Steve Jobs Bill Gates
4 Lionel Messi Neymar
5 Donald Trump Joe Biden
6 Barack Obama Donald Trump
7 Taylor Swift Lady Gaga
8 Apple Inc. Microsoft
9 Jason Statham Vin Diesel
10 Lebron James Michael Jordan
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Table 7: Detailed output. (A,X,I, |𝑁0 |) denotes the attribute, value, strikingness score, and the number of context-aware peer

entities. NL is short for Natural Language. We use 𝐸−1 to denote a right-to-left edge direction.

Maverick FMiner
Case 1 ⟨Michelle Obama, Hillary Clinton⟩

Path Pattern 𝑃 (Human, 𝑓 𝑎𝑚𝑖𝑙𝑦𝑁𝑎𝑚𝑒 , Robinson) 𝑃 (Human, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐻𝑒𝑙𝑑 , FirstLadyOfUS, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐻𝑒𝑙𝑑−1 , Hillary Clinton)
(A, X, I, |𝑁0 |) (𝑓 𝑎𝑚𝑖𝑙𝑦𝑁𝑎𝑚𝑒 , Obama, 0.999519, 2086) (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐻𝑒𝑙𝑑 , Dean, 0.948276, 58)

NL Among all people who have family name Robinson, Michelle is the only
that also has Obama as her family name.

Among the first ladies of the US, Michelle is the only one who has been Dean in any
university.

Case 2 ⟨Akon,Michael Jackson ⟩
Path Pattern 𝑃 (Human, 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, actor) 𝑃 (Human, 𝑔𝑒𝑛𝑟𝑒 , MusicGenre, 𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒𝑑𝐵𝑦−1 , Michael Jackson)
(A, X, I, |𝑁0 |) (𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, philanthropist, 0.999616, 190470) (𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑂𝑓𝐶𝑖𝑡𝑖𝑧𝑒𝑛𝑠ℎ𝑖𝑝 , Senegal, 0.996012, 7812)

NL Among all actors, Akon is one of a few philanthropists. Among people whose music genre is influenced by Michael Jackson, Akon is the only
Senegalese-American.

Case 3 ⟨Steve Jobs, Bill Gates ⟩
Path Pattern 𝑃 (Human, 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, engineer) 𝑃 (Human, 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, inventor, 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛−1 , Bill Gates)
(A, X, I, |𝑁0 |) (𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, executive producer, 0.999475, 28622) (𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, executive producer, 0.995956, 5193)

NL Among all engineers, Steve Jobs is one of a few executive producers. Among all inventors, Steve Jobs is the only executive producer.

Case 4 ⟨Lionel Messi, Neymar ⟩
Path Pattern 𝑃 (Human, 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝐼𝑛, 2008 Summer Olympics) 𝑃 (Human,𝑚𝑒𝑚𝑏𝑒𝑟𝑂𝑓 , F.C. Barcelona,𝑚𝑒𝑚𝑏𝑒𝑟𝑂𝑓 −1 , Neymar)
(A, X, I, |𝑁0 |) (𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝐼𝑛, 2019 Copa América, 0.999203, 10391) (𝑚𝑒𝑚𝑏𝑒𝑟𝑂𝑓 , Argentina national football team, 0.986425, 1547)

NL Among all participants of 2008 Summer Olympics, Messi is one of a few
who also participate in 2019 Copa América.

Among all team members of F.C. Barcelona, Messi is one of a few that also play in
Argentina national football team.

Case 5 ⟨Donald Trump, Joe Biden ⟩
Path Pattern 𝑃 (Human, 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, politician) 𝑃 (Human, 𝑎𝑤𝑎𝑟𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 , Medal, 𝑎𝑤𝑎𝑟𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑−1 , Joe Biden)
(A, X, I, |𝑁0 |) (𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, game show host, 0.999978, 462240) (𝑎𝑤𝑎𝑟𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 , WWE Hall of Fame, 0.966346, 623)

NL Among all politicians, Trump is one of a few game show hosts. Among all people receiving some same medal as Joe Biden, Trump is the only one who
has received the award of WWE Hall of Fame.

Case 6 ⟨Barack Obama, Donald Trump⟩
Path Pattern 𝑃 (Human,𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, politician) 𝑃 (Human, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐻𝑒𝑙𝑑 , USPresident, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐻𝑒𝑙𝑑−1 , Donald Trump)
(A, X, I, |𝑁0 |) (𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, Community Organizer, 0.999948, 462240) (𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 , Indonesian, 0.977273, 46)

NL Among all politicians, Obama is one of a few community organizers. Among all the presidents of US, Obama is the only one who can speak Indonesian.

Case 7 ⟨Taylor Swift, Lady Gaga⟩
Path Pattern 𝑃 (Human, 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, actor) 𝑃 (Human,𝐺𝑒𝑛𝑟𝑒 , MusicGenre,𝐺𝑒𝑛𝑟𝑒−1 , Lady Gaga)
(A, X, I, |𝑁0 |) (𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, banjoist, 0.999685, 190470) (𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 , banjo, 0.994737, 220)

NL Among all actors, Taylor is one of a few banjoists. Among people with the same music genre as Lady Gaga, Taylor is the only one whose
instrument includes banjo.

Case 8 ⟨Apple Inc.,Microsoft ⟩
Path Pattern 𝑃 (Business, 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦, Industry, 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦−1 , GOG.com) 𝑃 (Business, 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦, software industry, 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦−1 , Microsoft)
(A, X, I, |𝑁0 |) (𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦, consumer electronics, 0.999206, 3778) (𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦, consumer electronics, 0.956522, 92)

NL Among all businesses that share a same industry as GOG.com, Apple
Inc. is one of a few that belong to the consumer electronics industry.

Among all businesses that fall in software industry, Apple Inc. is one of few that also
belong to the consumer electronics industry.

Case 9 ⟨Jason Statham, Vin Diesel ⟩
Path Pattern 𝑃 (Human, 𝑐𝑎𝑠𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑂𝑓 , Film,𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 , Universal Pictures) 𝑃 (Human, 𝑔𝑒𝑛𝑟𝑒 , action movie, 𝑔𝑒𝑛𝑟𝑒−1 , Vin Diesel)
(A, X, I, |𝑁0 |) (𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛, competitive diver, 0.987717, 13523) (𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦, kickboxer, 0.960000, 50)

NL Among all people starring in any films of Universal Pictures, Jason
Statham is the only competitive diver.

Among all people whose movie genre is action movie, Jason Statham is the only
kickboxer.

Case 10 ⟨LeBron James,Michael Jordan ⟩
Path Pattern 𝑃 (Human, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑦𝑒𝑑𝑂𝑛𝑇𝑒𝑎𝑚, BasketballPosition, 𝑠𝑝𝑜𝑟𝑡 ,

basketball)
𝑃 (Human, 𝑎𝑤𝑎𝑟𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 , NBA RookieOfTheYearAward, 𝑎𝑤𝑎𝑟𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑−1 ,
Michael Jordan)

(A, X, I, |𝑁0 |) (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑦𝑒𝑑𝑂𝑛𝑇𝑒𝑎𝑚, point forward, 0.999752, 20191) (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑦𝑒𝑑𝑂𝑛𝑇𝑒𝑎𝑚, point forward, 0.985915, 71)
NL Among all people playing in some basketball team, Lebron James is one

of few who play point forward.
Among all people who won the NBA Rookie of the year award as Michael Jordan,
Lebron James is one of few who play point forward.

In Table 7, we show all details of output facts used in the user
study. Note that only the fact descriptions are shown to participates
so that participants are not overwhelmed. The target and context
entities are only mentioned in the questions associated with each
user study case. From the details shown in Table 7, Maverick is
capable of findingOFs with higher strikingness scores than FMiner.
The strikingness measure favorsOFs that are generated from a large
number of peer entities, which can result in higher strikingness
scores. This can make the OFs sound more striking on one hand,
e.g. Case 2 and 7 where Maverick outperforms FMiner in Figure 5.
On the other hand, it sometimes can lead to less meaningful OFs,
e.g. Case 1 and 6 where FMiner performs better.

From the results, the peer entities generated by FMiner do not
have a large cardinality as Maverick. FMiner effectively confines
the OF extraction to the relevant context, though losing some strik-
ingness scores. There are some very interesting results, such as
Case 1 where FMiner finds all first ladies of US, Case 6 where
FMiner identifies all the US presidents, and Case 9 where FMiner
navigates to the action movie genre that is very relevant to the two
involved actors.

We note that FMiner relies on the accuracy and completeness
of the underlying KG. Fortunately, Wikidata is rapidly growing and
its content is covering more and more entities as well as topics.
This makes COF finding from such a KG even more attractive.
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