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Abstract

Traffic signal control has achieved significant suc-
cess with the development of reinforcement learn-
ing. However, existing works mainly focus on in-
tersections with normal lanes with fixed outgoing
directions. It is noticed that some intersections ac-
tually implement dynamic lanes, in addition to nor-
mal lanes, to adjust the outgoing directions dynam-
ically. Existing methods fail to coordinate the con-
trol of traffic signal and that of dynamic lanes ef-
fectively. In addition, they lack proper structures
and learning algorithms to make full use of traffic
flow prediction, which is essential to set the proper
directions for dynamic lanes. Motivated by the in-
effectiveness of existing approaches when control-
ling the traffic signal and dynamic lanes simultane-
ously, we propose a new method, namely MT-GAD,
in this paper. It uses a group attention structure to
reduce the number of required parameters and to
achieve a better generalizability, and uses multi-
timescale model training to learn proper strategy
that could best control both the traffic signal and the
dynamic lanes. The experiments on real datasets
demonstrate that MT-GAD outperforms existing
approaches significantly.

1 Introduction
Traffic congestion has become a hot button issue in major
cities all round the world. Traffic signals and traffic lanes are
two common approaches adopted to help control traffic flows
and improve traffic safety. The former refers to signalling
devices positioned mainly at road intersections to regulate the
traffic flow; and the latter partitions a road into lanes with
each used by a single line of vehicles to control and guide the
movements of vehicles and to reduce traffic conflicts.

Most traffic signals are controlled by simple timers, which
are simple yet effective for busy areas with consistent or pre-
dictable volume of traffic. However, they may force drivers
to stop unnecessarily when no traffic is present in areas where
traffic is unpredictable or sporadic. Recently, intelligent traf-
fic lights have been widely exploited, which are expected to

be able to detect cars and change the traffic lights accordingly
to better manage the traffic flows.

Among many efforts to equip the traffic signals with in-
telligence, control algorithms using reinforcement learning
have achieved good results, such as IntelliLight [Wei et al.,
2018] and FRAP [Zheng et al., 2019]. They use the cur-
rent traffic status of an intersection as the state, select a
practicable combination of the traffic signals as the action,
and consider data such as queue length and vehicle travel
time as the value. With deep reinforcement learning, these
methods have achieved better results than traditional meth-
ods. However, they do not capture the characteristics of
traffic data well. They either simply use state observa-
tion, without considering the symmetric structure of inter-
section; or consider only part of data but are not able to
capture global information, which makes them not general-
izable to different situations. Although there are algorithms
on improving the generalizability, such as [Zang et al., 2020;
Zheng et al., 2019], their structures are not well-designed
and suffer from slow convergence speed. Consequently, low
model learning efficiency or poor generalizability stop them
from learning good traffic signal control strategies or being
employed at intersections with different traffic flows.

In terms of traffic lanes, we focus on dynamic lanes (a.k.a.
variable lanes), a special type of traffic lanes that could
change the direction of the lanes dynamically, mainly dur-
ing peak hours, to improve traffic flow. The lane labelled 2
in Figure 1 is a typical dynamic lane. We want to highlight
that the dynamic lanes focused in this work refer to the lanes
whose directions could be changed between go straight and
turn left (or turn right), but not the reversible lanes whose
directions could be reversed.

Dynamic lanes have achieved big success in many cities.
For example, Shanghai set 7 dynamic lanes in 2005, with all
making positive impact at various locations. Take the one on
Tianyaoqiao Road as an example. It helps to reduce the av-
erage number of traffic light cycles that left-turning vehicles
have to wait during rush hours by 50%.

Controlling of traffic signal has been well-studied, but not
that of dynamic lanes. We would like to highlight that these
two problems have very different characteristics. First, traffic
signal controlling algorithms typically only consider the cur-
rent volume of traffic flow, as the change of traffic signal is
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Figure 1: A dynamic lane with direction

expected to have an immediate impact on the traffic flow. On
the other hand, the change of the directions of dynamic lanes
does affect the traffic, but the immediate results might not be
positive. However, it will generate positive results which ac-
tually take some time. In other words, an algorithm control-
ling traffic signal cares more about immediate impacts while
that of dynamic lanes focuses on non-immediate results. Sec-
ond, the change of traffic signal has a much higher frequency,
as compared with that of dynamic lanes. We actually cele-
brate their differences in this paper as they provide opportu-
nities to develop a controlling system that could coordinate
the change of traffic signal and that of dynamic lanes for a
better controlling of traffic flow.

In order to enable the coordination of the above two con-
trolling tasks, we propose a novel algorithm named Multi-
Timescale Group Attention Dynamic lane traffic signal con-
trol (MT-GAD). To the best of our knowledge, this is the first
attempt to study the traffic signal control with dynamic lanes.
Our main contributions are listed below.

• We propose MT-GAD as the first solution to coordinate
the control of traffic signal and that of dynamic lanes to
better control the overall traffic flows.

• We adopt group attention to achieve better traffic signal
control results and enhance the model’s generalizability.

• We design a multi-timescale learning method to enable
the learning of signal control and that of lane control
simultaneously.

• We perform an experimental study based on real data to
demonstrate the superior performance of our model.

2 Related Work
In this section, we review existing works on traffic control
with dynamic lanes and traffic signal control.
Traffic control with dynamic lanes. Controlling traffic lanes
to ease traffic congestion is common. Dynamic lanes, as an
example, are used in many major cities, especially in China,
to improve traffic efficiency in rush hour. [Li et al., 2009]
proposes a pre-signal control method based on a fictitious
stop line to control dynamic lanes. [Zhou et al., 2019] pro-
poses a traffic priority method as a solution. [Yao et al., 2018;
Li et al., 2013] propose an optimization model which mini-
mizes the total delay.
Traffic signal control. For traffic signal control, the fixed-
timer which switches traffic signal phase with pre-defined
time interval is simple and easy, but can’t make use of real
time traffic flows. SOTL [Cools et al., 2013] switches traf-
fic signals based on vehicle numbers of approaching lanes.

Recently, many traffic signal control methods with deep re-
inforcement learning have been proposed. [Li et al., 2016]
uses stacked auto-encoders to approximate rewards based on
queue lengths. [Gao et al., 2017] uses CNN to approximate
value function. [Wei et al., 2018] uses deep reinforcement
learning to solve the problem. [Zheng et al., 2019] consid-
ers the signal phase competition. [Zang et al., 2020] uses
MAML to learn a model with better training speed. [Kim and
Jeong, 2020] learns a policy with predicted future traffic flow.
[Zhang et al., 2020] tries to control traffic signals when only
part of vehicles can be detected. [Rizzo et al., 2019] uses
time critic policy gradient methods to handle congestion sce-
narios. [Oroojlooy et al., 2020] uses two attention model to
handle different road number intersections and traffic signal
phases. Although all the above works and our study presented
in this paper focus on single intersection, there are also many
works analyzing traffic signal control with multiple intersec-
tions. [Wei et al., 2019a] proposes to use pressures as the re-
ward to perform better coordination. [Wei et al., 2019b] uses
attention to learn different weights between neighbors. [Zhu
et al., 2021] learns polices which only based on local observa-
tions by meta-learning. [Yu et al., 2020] uses communication
and action rectification to learn multi-agent policies.
Discussion. To our best knowledge, the control of traffic sig-
nal and that of dynamic lanes are considered as two indepen-
dent tasks in the literature. However, they are interrelated. An
effective learning model that could perform the two tasks si-
multaneously is expected to offer a better control of the traffic
flow and that’s the focus of this paper.

3 Problem Definition and Preliminaries
Following existing problem definitions on traffic signal con-
trol [Zheng et al., 2019; Wei et al., 2019b], we adjust the def-
initions to introduce the traffic signal control problem with
dynamic lanes.

Traffic flow refers to the number of vehicles passing
through a road within a time unit. Given one intersection,
without loss of generality, we assume that there are four
approaching roads with each having three outgoing direc-
tions, excluding rarely appeared U-turns. We differentiate ap-
proaching roads by their positions relative to the intersection,
i.e., North, South, East, and West, and use {S,L,R} to name
outgoing directions corresponding to go Straight, turn Left,
and turn Right respectively. Consequently, there are in total
4× 3 = 12 directional traffic flows, as defined below.
Definition 1. A directional traffic flow (DTF) at an inter-
section is denoted as FX,Y , where X ∈ {N,S,E,W} and
Y ∈ {S,L,R}.

Traffic signals are employed to regulate the traffic flow at
busy intersections. A signal will be set for every DTF to con-
trol vehicles’ movements, e.g., a green light signals that it’s
safe to pass through the intersection and a red light stops all
the vehicles. For road safety, the routes of DTFs receiving the
green signal shouldn’t cross each other. Note that DTF FX,Y

with Y = R (i.e., the outgoing direction is to turn right) will
never cross any other DTFs and it usually receives green sig-
nal all the time. For other eight DTFs, there are eight non-
conflict phases, with each enabling two DTFs. We plot non-
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Figure 2: DTFs example and all non-conflict phases following right-
handed driving

conflict phases and three DTFs in Figure 2 for illustration,
FS,S and FN,L conflict with each other, while FS,L in blue
conflicts with neither one.

Definition 2. A traffic signal phase at time step t, denoted
as Pt, sets every DTF FX,Y (Y 6= R) one signal sigX,Y ∈
{red, green} such that i) FX,Y s with corresponding signal
being green do not cross each; and ii) the number of DTFs
with signal being green is maximized. In addition, when a
different phase is selected in time step t + 1, i.e. Pt 6= Pt+1,
a short all-red phase Pred is used to clear vehicles going
through the intersection.

For approaching roads, each normal lane has one fixed out-
going direction, usually painted on the road; dynamic lanes
could change their outgoing directions dynamically. In this
paper, we set {S,L} as the only available directions for the
dynamic lane, which are most common outgoing directions in
countries using right-handed traffic (RHT). We also assume a
dynamic lane has only one outgoing direction at any time,
which is consistent with the real setting used in China.

Definition 3. The outgoing direction of a dynamic lane lo-
cated on road X at time step t is denoted as V X

t ∈ {S,L}.
For safety purpose, when a dynamic lane changes its direc-
tion, Vred is added to stop the entering of dynamic lane for
several time steps.

According to the above definitions, we formalize the prob-
lem to be studied in this paper as follows. We assume that
there is only one dynamic lane at an intersection, which is
most common in the real world for intersections with four-
lane roads.

Problem 1. Dynamic lane traffic signal control. At each time
step t, given observation ot of traffic conditions at the inter-
section, an agent should find an optimal policy to decide Pt+1

and Vt+1 such that the reward r (to be formalized next) is
maximized.

4 Method Framework
In this section, we will first explain the reinforcement learn-
ing environment setting, and then detail the proposed algo-
rithm MT-GAD.

4.1 Reinforcement Learning Environment Setting
Traffic signal control can be defined as a Markov Deci-
sion Process (MDP), which could be solved using rein-
forcement learning methods. MDP is defined by 5-tuple
(S,A,P,R, γ), corresponding to state space S , action space
A, state transition probability P , reward functionR, and dis-
count factor γ.

We adopt Deep Q-Learning (DQN) [Mnih et al., 2015] as
the reinforcement learning structure. With given state obser-
vation st and action a = {Pt, Vt} at time step t, DQN approx-
imates the state-action functionQ(st, a; θ). DQN updates the
network θ using the loss function defined in Eq. (1).

L = Q(st, a; θ)− (ra + γmaxa′ Q(sa,t+1, a
′; θ′)) (1)

The state, the action, and the reward considered in this
work are presented in the following.
State. The state for every DTF FX,Y is described by fol-
lowing five pieces of information. 1) wX,Y , the number of
vehicles currently waiting in FX,Y ; 2) qX,Y , the number of
vehicles in DTF trying to pass the intersection, i.e., consid-
ering the vehicles in FX,Y approaching the intersection and
vehicles in wX,Y ; 3) sigX,Y , the current signal received by
FX,Y ; 4) tX,Y , the time passed since the current signal has
been set; and 5) pX,Y , the predicted number of approach-
ing vehicles in a predefined tp time steps. In addition to the
above observations related to DTFs, there are two additional
pieces of information, the traffic signal phase P and dynamic
lane direction V . Here, we use a simple LSTM to estimate
pX,Y , which could be replaced with any modern method to
get a higher accuracy. As to be reported in the experiments,
our method is not sensitive to the accuracy, once it is above
certain threshold.
Action. The action here is to set two signals, including AP

and AV . AP selects a traffic signal phase for the next time
step; AV selects the direction for the dynamic lane. As there
are 8 legal traffic signal phases and 2 directions for dynamic
lanes, there are in total 16 different actions.
Reward. There are many available reward metrics that could
be used as the performance metrics. However, many of them
are based on vehicle’s movement, which might not be directly
available. Consequently, we use average queue length of ev-
ery approaching lane between two time steps as the reward.

We now propose our method MT-GAD, whose structure is
illustrated in Figure 3.

4.2 Traffic Flow Information Extraction
State information such as qX,Y and wX,Y is based on DTFs,
so the first step of MT-GAD is to extract flow information to
describe a state accurately. As stated previously, traffic signal
control focuses more on the current flow and its impact is
expected to be immediate and last only a few minutes; while
dynamic lane control aims at improving the traffic condition
in the near future and one setup could last multiple hours.
Consequently, they take in different information as inputs.

To better consider corresponding features and avoid learn-
ing from unimportant information, we input qX,Y , wX,Y ,
sigX,Y , and tX,Y to traffic signal controller and input qX,Y

and pX,Y to dynamic lane controller. Thereafter, we use two
fully-connected layers to generate traffic signal control em-
bedding hPFX,Y

and dynamic lane control embedding hVFX,Y
.

We want to highlight that we purposely design our embed-
dings hPFX,Y

and hVFX,Y
to be based on every DTF, in order

to remove the impact of different input order of DTFs. As
there are eight DTFs, this step is trained eight times using
one input, one per DTF.
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Figure 3: MT-GAD Structure. It consists of three main steps, traffic flow information extraction extracts corresponding information for traffic
signal control and dynamic lane control; action embedding generation with group attention combines different information by attention and
prior knowledge weighting; and multi-timescale training trains the two controllers with different timescales simultaneously.

4.3 Action Embedding Generation
After generating hPFX,Y

and hVFX,Y
, we extract embeddings

for every action based on hPFX,Y
and hVFX,Y

. Attention mech-
anism [Vaswani et al., 2017] provides a good solution to make
input order of DTF states irrelevant. Attention takes query Q
to combine key-value pairs 〈K,V 〉 to an output based on Q.

Attention allows us to combine DTFs together based on
their importance. However, attention also introduces a large
number of parameters which slow down the training process
significantly and increase the risk of overfitting the model.
Because action embedding contains all input information, it’s
common to set hidden size of action embedding larger than
hFi

, and the biggest parameter matrix is WQ. Consequently,
we propose to calculate the attention without using WQ.

We notice that attention has many parameters as it doesn’t
fully utilize the characteristics of traffic flows and control
actions. Take the top left phase in Figure 2 as an exam-
ple. Information related to DTFs FW,L and FE,L is signif-
icantly more important than the information of other DTFs.
Accordingly, we group DTFs based on their impacts on the
current control phase. When calculating the k-th phase P k,
we split DTFs into two groups based on their signals received
in P k, where group Gg contains DTFs receiving green sig-
nal, and group Gr for DTFs receiving red signal. For ex-
ample, the top-left phase in Figure 2 has FW,L and FE,L

in Gg , and other DTFs in Gr. Because the DTFs in the
same group share the same impact on P k, we use attention
to generate one embedding for every group, with all-one vec-
tor I as Q and hPFX,Y

as K and V . Then, we use prede-
fined weights wg and wr to calculate the weighted average
HPk of embeddings, i.e., HPk = wgAPk

g + wrAPk

r , where
APk

i = Attention(I,GPk

i , GPk

i ), (i ∈ g, r).
For a dynamic lane, it controls two different directions with

opposite impacts on its controlling. Considering one out-
going direction Y ∈ {S,L} as the selected direction, we
use FX,Y to represent the selected DTF Fsel. Accordingly,
FX,Y ′ with Y ′ = {S,L}\Y indicates the opposite DTF Fopp.
We further introduce the coordinate DTF Fcor to represent
the DTF that has the chance to receive green signal together
with Fsel. For example, given a dynamic lane VE = L,
we have Fsel = FE,L, Fopp = FE,S , and Fcor = FW,L.
We strongly believe that Fcor, as compared with other DTFs,
is more important for the controlling of the dynamic lanes.

Consequently, we extract these three DTFs (i.e., Fsel, Fopp,
and Fcor) individually but consider the other five DTFs as a
group, represented by an attention. We apply the same idea to
traffic signal control to calculate the weighted average HVk .

GVk = {hVFj
|Fj /∈ {FVk

sel , F
Vk
opp, F

Vk
cor}}

AVk = Attention(I,GVk , GVk)

HVk = wselhVk

Fsel
+ wopphVk

Fopp
+ wcorhVk

Fcor
+ wVkAVk

Finally, we concatenate HPk and HVk with current phase
embedding that goes through one fully-connected layer, , i.e.,
EPk = σ(W (HPK ⊕ Embedding(P )) + b), and the same as
EVk . Then, we use the Dueling DQN structure to calculate
QP and QV based on EP and EV separately.

4.4 Multi-Timescale Training
The differences between traffic signal control and dynamic
lane control affect not only the extraction of relevant infor-
mation, but also the learning process. A multi-timescale rein-
forcement learning method that is able to capture both close
time information and future information is preferred.

To overcome the challenge of multi-timescale learning, we
propose to focus on the discount factor γ for the MDP en-
vironment. When γ is small (e.g., γ = 0.8), the environ-
ment considers short-term reward, which fits traffic signal
control. Meanwhile, a small γ allows the learning algorithm
to ignore the reward achieved by successful direction changes
of dynamic lanes, as γVred is expected to be so small that
is almost negligible (e.g., 0.830 ≈ 0.001 based on our pa-
rameter setups). On the other hand, when γ is large (e.g.,
γ = 0.95), the reward achieved by dynamic lane control be-
comes dominant. In other words, the control of traffic signal
and that of dynamic lane use γ of different scales. When
calculating QP (st, at; θ) for traffic signal control, we use
small γ (e.g., 0.8); when calculating dynamic lane control
QV (st, at; θ), we use bigger γ (e.g., 0.95). We then cal-
culate the Q value for combined action aij = 〈Pi, Vj〉 as
Q(st, aij ; θ) = QP (st, Pi; θ)/2 +QV (st, Vj ; θ)/2.

Instead of using the standard loss function defined in
Eq. (1), we consider the one defined in Eq. (2) to take into
account the difference between γP and γV .

L = Q(st, aij ; θ)−
(
0.5 · γP ·maxP ′

i
Q(saij ,t+1, P

′
i ; θ
′)

+ 0.5 · γV ·maxV ′
j
Q(saij ,t+1, V

′
j ; θ
′) + raij ,t

)
(2)
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5 Experiments
5.1 Experiment Settings
Our experimental study is based on a modified version of
CityFlow [Zhang et al., 2019] to support dynamic lanes.
In addition to traffic signal control available in original
CityFlow, we further implement dynamic lane controller.

In our experimental study, we focus on a single intersec-
tion with one dynamic lane, which is a common setup used in
many existing works [Li et al., 2009; Zhou et al., 2019]. Ev-
ery road has 3 lanes, with 1 turn-left lane, and 2 go-straight
lanes. We want to highlight that our model considers input
with respective to the directions of the DTFs, so the number
of lanes is actually irrelevant. As stated before, we assume
there is only one road with a dynamic lane, and the road with
a dynamic lane VX ∈ {L, S} replaces one of the two go-
straight lanes it has with the dynamic lane. We set Pred = 5s,
Vred = 300s, and the time interval for agent to make action
is 10s. The predict length of traffic flows tp = 600s.

We run the experimental study using a personal com-
puter with AMD ThreadRipper 2950X CPU, 2080 Ti GPU,
and 128GB memory. All methods are trained with 240,000
frames.
Datasets. Existing datasets available for traffic signal con-
trol problem (e.g., [Zheng et al., 2019]) only contain traffics
in 3600 seconds, which is too short to evaluate the impact
of dynamic lane changes. Consequently, we develop two
datasets based on real taxi trajectories in Porto and Shang-
hai to simulate the traffic within one whole day. Porto (PT)
dataset [Moreira-Matias et al., 2015] contains close to 1 mil-
lion trajectories generated by 438 taxis from 1 July 2013 to
20 March 2014. Shanghai (SH) dataset contains 11,861,593
trajectories generated by 13,767 taxis in the whole month of
April, 2015. We use map-matching [Song et al., 2012] to
convert GPS points to trajectories. To overcome the high vari-
ance caused by small amount of taxis compared with real traf-
fic, we ignore the day of trajectories to make data dense, and
balance the average vehicle number to simulate high-volume
and low-volume traffic flows. To benchmark the average vol-
ume, we refer to the data collected by the Los Angeles gov-
ernment [Alcazar, 2020] and we find that the most busy inter-
sections, such as Angeles Vista Boulevard and Slauson Av-
enue intersection, have over 44, 000 vehicles passed in a day,
i.e. 0.51 vehicle per second on average. Consequently, we
use this in our setting to simulate high-demand situation, and
reduce the flow by 50% to simulate low-volume traffic.

A dynamic lane should be implemented at intersections
satisfying following two rules, rule 1) they have large num-
bers of samples to guarantee they are busy; and rule 2) the
directions of their flows do change. We select two intersec-
tions randomly from each dataset based on these two rules,
denoted as SH1, SH2, PT1, and PT2, and another two in-
tersections SH3 and PT3 that not fully satisfy two rules to
showcase that our algorithm is also able to learn effective sig-
nal control methods when there is no need for dynamic lane.
We simulate two different flow volumes for every intersec-
tion, denoted by subscriptions low and high, e.g., SH1low and
SH1high refer to SH1 with low volume and high volume re-
spectively.

Compared methods. To evaluate the efficiency of MT-
GAD, we implement the following methods as the main
competitors, including FixedTime and SOTL [Cools et
al., 2013], two representatives of traditional methods, and
PressLight [Wei et al., 2019a], CoLight [Wei et al., 2019b]
and FRAP [Zheng et al., 2019], three representatives of rein-
forcement learning (RL) approaches. Due to space limitation,
we skip their details that have been presented in related work.
We also extend these methods to control dynamic lanes, ex-
cept FixedTime, which is unable to control dynamic lanes.
For SOTL, it changes the direction of a dynamic lane when
the vehicle number on corresponding DTFs is unbalanced; for
RL based algorithms, we extend their action space from 8 to
16. Last but not the least, we include a variant of MT-GAD,
labelled as MT-GAD-w/o-DL, that controls only traffic sig-
nal by fixing the dynamic lane to one direction (e.g., AV

t = S
all the time).
Evaluation metrics. We use vehicles’ average delayD as the
main performance metric. D refers to the difference between
the real travel time Treal spent by a vehicle from entering the
intersection until passing through the intersection and the ex-
pected travel time Texp, which is the ratio of the route length
to the speed limit [Wei et al., 2019c], i.e., D = Treal − Texp.
As controlling algorithms do not affect Texp, this metric is the
same as vehicle’s average travel time.

5.2 Evaluate Results
Overall performance. The overall performance is reported
in Table 1. In general, reinforcement learning algorithms per-
form better than traditional algorithms, because they can learn
detailed strategies. When traffic flow is low, the differences
among RL algorithms are rather minor, because it’s easier to
learn a good strategy in low traffic and the room for further
improvement is very limited. When traffic volume becomes
higher, our model is able to consistently outperform all the
competitors by a significant margin. When we compare a
method with its variance that implements dynamic lane con-
troller, it is observed that dynamic lane is able to improve the
traffic only in some cases. This is because they all only com-
bine traffic signal control and dynamic lane control via a sim-
ple strategy, without considering the unique features of the
two controlling tasks. On the other hand, MT-GAD outper-
forms MT-GAD w/o DL consistently when the traffic volume
is high.
Generalizability. Due to space limitation, we only report
the result under SH dataset. We train the models based on
SH1high, and then deploy them directly to other datasets, in-
cluding SH2high, SH3high and SH1rotate that rotates all traf-
fic flows and the dynamic lane of SH1high in clockwise by 90
degree, e.g., VW → VN , FW,S → FN,S , etc. Table 2 reports
the results, with % indicating the ratio of D to D′. Here, D
refers to the performance a model could achieve if the training
and testing are for the same intersection, and D′ refers to the
performance achieved based on the model trained on top of
SH1high. MT-GAT* is a variant of MT-GAD which replaces
the group attention with standard attention. Obviously, MT-
GAD demonstrates a superior generalizability, significantly
better than other models. MT-GAT* is observed to perform
well in some situations but perform badly in others. This is
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Datasets PT1high PT1low PT2high PT2low PT3high PT3low
Dynamic Lane w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

Tr
ad

.

A
lg

o. FixedTime 1753.8 - 98.8 - 3024.9 - 638.3 - 1810.7 - 104.3 -
SOTL 879.1 477.7 66.2 59.6 2018.5 2118.2 203.2 218.1 780.3 294.7 63.1 58.0

R
L

A
lg

o.

PressLight 208.9 2433.8 32.6 40.0 769.1 2787.5 61.0 97.8 456.5 865.0 43.6 47.9
CoLight 127.4 992.1 24.5 28.3 948.5 2306.6 59.6 73.0 635.2 247.5 33.4 33.1
FRAP 165.1 209.1 20.4 23.5 814.3 1032.6 55.3 61.5 526.7 179.8 30.2 23.5

MT-GAD 105.0 104.9 20.8 23.4 715.6 706.6 48.6 49.9 87.2 95.2 22.6 24.3
Datasets SH1high SH1low SH2high SH2low SH3high SH3low

Dynamic Lane w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

Tr
ad

.

A
lg

o. FixedTime 3499.6 - 1031.7 - 2340.8 - 722.1 - 4551.9 - 1058.8 -
SOTL 2220.6 2182.2 225.5 195.4 1393.8 1221.8 86.0 84.6 3238.2 3237.2 210.8 209.8

R
L

A
lg

o.

PressLight 114.9 1544.8 33.4 43.5 252.8 402.2 45.1 50.1 45.7 120.3 28.3 34.3
CoLight 194.5 488.2 25.1 36.8 217.4 69.4 31.8 32.4 42.3 42.5 16.8 19.3
FRAP 196.1 133.6 21.8 23.3 62.1 65.1 27.2 30.5 37.0 39.6 14.4 16.6

MT-GAD 89.8 70.1 27.5 20.4 64.1 56.1 24.5 26.2 37.6 32.8 16.2 16.1

Table 1: The overall vehicle’s average delay D in seconds of MT-GAD and its competitors.

Dataset SH2high SH3high SH1rotate

PressLight 3335.6 (8%) 899.0 (5%) 4269.5 (3%)
CoLight 2881.2 (8%) 373.2 (11%) 2510.2 (8%)
FRAP 510.4 (12%) 108.8 (54%) 1814.6 (71%)

MT-GAD * 1388.4 (4%) 85.2 (39%) 3312.2 (3%)
MT-GAD 53.2 (106%) 40.3 (81%) 70.0 (100%)

Table 2: Models’ D in seconds with training dataset SH1high and
different test datasets.

because the large number of parameters could easily overfit
the model. With group attention, our model achieves the best
generalizability consistently.
Multi-timescale training evaluation. To demonstrate the ef-
fectiveness of our Multi-timescale training, we report the val-
ues of two parameters, DV and #D.C. in Table 3. DV is the
delay of vehicles driving on L or S directions of a dynamic
lane, for example, for VW ∈ {L, S}, only vehicles in DTFs
FW,L and FW,S are considered. #D.C. is the average num-
ber of direction changes the dynamic lane experiences during
the experiment. With the environment setting, the maximum
#D.C. is 80. Because of the space limitation, we only report
their values under SH1high and PT1high, while we do make
similar observations in other intersections. Note that DV is
also relevant to the traffic signal control efficiency. Here MT-
GAD-0.8 and MT-GAD-0.95 refer to two variants of MT-
GAD that fix γ to 0.8 and 0.95 respectively, that means, we
consider the traffic signal control and dynamic lane control
using same timescale, either short (0.8) or long (0.95). We
can find that existing RL methods fail to learn an effective
strategy to control dynamic lanes, as they either never change
the lane direction (i.e., #D.C. = 0) or keep changing the di-
rection in some datasets. MT-GAD performs much better,
but not MT-GAD-0.8 or MT-GAD-0.95. The latter two fail
to learn direction change strategy in PT1high. Although they
do change dynamic lane directions, their DV is much longer
than that of MT-GAD, because with wrong timescale input,
an agent can’t learn strategies effectively.
The impact of traffic flow prediction. We adopt LSTM to
predict the traffic flow. However, our model is not sensitive

Dataset SH1high PT1high

Metric DV # D.C. DV # D.C.
PressLight-DL 34.160 58.2 397.457 26.4
CoLight-DL 108.727 26.8 266.474 18.8
FRAP-DL 15.149 0.0 47.787 12.8

MT-GAD-0.8 15.807 17.8 35.746 33.6
MT-GAD-0.95 19.503 22.0 42.618 35.2

MT-GAD 14.372 20.2 33.830 18.7

Table 3: Delay of the dynamic lane (DV ) in seconds and the number
of direction changes (# D.C.).

to the prediction accuracy, as long as it reaches a minimum
expectation. We conduct a simulated traffic predictor S , with
the accuracy a ∈ (0, 1] as an input. S takes real traffic pre-
diction pt from dataset, and calculates the output prediction
p′t as p′t = rpt, with r ∼ N

(
0, (1− a)−2

)
. We observe that

once a reaches 0.4, its impact on the model performance is
not significant.

6 Conclusion
In this paper, we explore the traffic signal control problem
with dynamic lanes. To the best of our knowledge, it’s the
first attempt to control dynamic lane and traffic signal to-
gether. We propose MT-GAD as a solution, that uses group
attention to improve learning speed and generalizability, and
adopts multi-timescale learning to find optimal strategies for
both traffic signal control and dynamic lane control. Exten-
sive experiments demonstrate that our method outperforms
the state-of-the-art methods, with better generalizability. In
the near future, we plan to explore other related directions,
such as control of traffic signal and reversible lanes.
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