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ABSTRACT
Entity alignment (EA) is a prerequisite for enlarging the coverage
of a unified knowledge graph. Previous EA approaches either re-
strain the performance due to inadequate information utilization
or need labor-intensive pre-processing to get external or reliable
information to perform the EA task. This paper proposes EASY,
an effective end-to-end EA framework, which is able to (i) remove
the labor-intensive pre-processing by fully discovering the name
information provided by the entities themselves; and (ii) jointly fuse
the features captured by the names of entities and the structural
information of the graph to improve the EA results. Specifically,
EASY first introduces NEAP, a highly effective name-based entity
alignment procedure, to obtain an initial alignment that has rea-
sonable accuracy and meanwhile does not require much memory
consumption or any complex training process. Then, EASY invokes
SRS, a novel structure-based refinement strategy, to iteratively cor-
rect the misaligned entities generated by NEAP to further enhance
the entity alignment. Extensive experiments demonstrate the supe-
riority of our proposed EASY with significant improvement against
13 existing state-of-the-art competitors.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; Semantic networks.
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1 INTRODUCTION
Knowledge graph (KG) is a widely used human-knowledge repre-
sentation, which consists of entities and their rich relationships. In-
creasingly, companies and institutions turn to construct knowledge
graphs (KGs) to facilitate various knowledge-driven applications,
such as question answering [4, 39] and recommendation systems
[53]. Despite the large scale of existing mainstream knowledge
graphs (e.g., Yago [22], Freebase [3], and DBpedia [1]), they are still
highly incomplete and thus restrict the quality of knowledge-driven
applications. Integrating knowledge graphs from different sources
provides an effective way to expand and enrich knowledge graphs.
Entity alignment (EA) [8], which aims to identify entities residing
at different KGs that actually refer to the same real-world objects,
is a prerequisite for knowledge graph integration.

Recently, embedding has become an increasingly powerful tool to
encode entities into low-dimensional vectors that are able to retain
their semantic information. To this end, various embedding-based
EA methods have emerged. Those approaches typically consist of
three steps: (i) specifying pre-aligned entities as seed alignment;
(ii) training an EA model guided by the seed alignment; and (iii)
aligning the remaining entities based on the well-trained EA model.
The majority of embedding-based EA approaches purely rely on
graph structure to align equivalent entities [8, 32, 34, 36]. The ex-
pressive power of the graph structure is closely relevant to the
graph isomorphism [10]. Nevertheless, real-life KGs are always
heterogeneous, which significantly limits the ability of the graph
structure in the task of entity alignment [52]. To further improve
the quality of entity alignment, other studies exploit auxiliary in-
formation, such as attributes [21, 40, 43], entity names [10, 49, 52],
descriptions [7, 38, 49, 54] and images [20].

Although the auxiliary information mentioned above has im-
proved the performance of EA, there is still a big room for im-
provement because of the following two challenges. (i) Labor-
intensive pre-processing. The pre-aligned seed annotations are
labor-intensive and/or require expert involvement. Besides, some
auxiliary information needs extra efforts to be applied in the EA
task, e.g., extracting each entity’s images or descriptions incurs ad-
ditional overhead. In addition, certain auxiliary information might
not be available at every entity (e.g., some entities do not have image
information), which further limits its usability. Last but not the least,
recent work [50] has also reported the challenge of using attribute
information due to a large percent of noise. (ii) Insufficient name
information discovery. Contrary to attributes, descriptions, and
image information, entity name is an important type of auxiliary
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information that does not require extra efforts to collect. Since ev-
ery entity has its own name, we would like to highlight that it is
easier and more effective to utilize entity names to facilitate EA, as
compared with other types of auxiliary information. Nonetheless,
existing methods [10, 21, 51, 55] lack in-depth exploration of the
rich semantic information captured by the entity names, and hence,
they restrict the accuracy of EA, as described in Example 1.1.

Example 1.1. Existing methods tend to utilize max-pooling or
average-pooling to generate embeddings via pre-trained language
models (e.g., fastText [2] and BERT [9]) to represent entities. Con-
cretely, each entity name can be treated as a series of tokens. For
each entity, max-pooling first assigns each token an embedding
with fixed-dimension. It then selects the maximal value in each
dimension among all the relevant embedded tokens to form a new
embedding representing the entity. We argue that this may destroy
the semantic information since most values inferior to the maxi-
mum are still useful but they are simply ignored in this strategy.
Similarly, average-pooling uses the average embedding of all the
tokens to represent the entity. However, it is well-known that cer-
tain tokens in an entity are more important than others. Take an
entity 𝑒1 called “Blues de Saint Louis” in a French KG (𝐾𝐺𝐹𝑅 ) as an
example. It can be split into the following four tokens, i.e., 𝐵𝑙𝑢𝑒𝑠 ,
𝑑𝑒 , 𝑆𝑎𝑖𝑛𝑡 , and 𝐿𝑜𝑢𝑖𝑠 . Here, the token “de” (a common preposition
in French) is less important and thus is negligible in 𝑒1.

To address these two challenges, we propose an end-to-end entity
alignment framework, termed as EASY. It consists of two compo-
nents: (i) a name-based entity alignment procedure called NEAP;
and (ii) a structure-based refinement strategy called SRS. First,
NEAP is presented to obtain the initial entity alignment based on
the semantic information captured by the names of entities. It first
characterizes entities by leveraging the local features of tokens and
then generates an initial EA according to the global features be-
tween the tokenized entities from two different KGs. Second, SRS
aims to refine the alignment by correcting the misaligned entities
caused by NEAP in an iterative manner. In each iteration, SRS first
uses a confident seeds generator based on a newly presented con-
cept of graph matching discrepancy to automatically generate seed
alignment to guide the entity representation leaning via a structure-
based EA model. The learned entity representations can be used to
compute the structural similarities between entities from different
KGs. Then, SRS adjusts the misaligned entities by considering both
the semantic similarity and structural similarity between entities.
We summarize the key contributions of this paper as follows:
• Flexible EA framework.We propose a novel end-to-end entity
alignment framework, i.e., EASY, which requires zero labor-
intensive pre-processing. To the best of our knowledge, it is
the first end-to-end framework that can be easily integrated
with any structure-based EA model.
• Lightweight EA Initialization. We present NEAP to align en-
tities by discovering both local and global features of entity
names. NEAP greatly reduces memory consumption without
sacrificing the expressive power of entities. It can achieve
desirable EA results without any complex training process.
• Confident EA Refinement.We propose SRS, a novel structure-
based refinement strategy, which learns the structural fea-
tures of entities by a confident seeds generator guided EA

model and absorbs the name features of entities captured
by NEAP. The fuse of both structural and name information
can improve the entity alignment produced by NEAP.
• Extensive experiments. We conduct comprehensive experi-
mental evaluation on cross-lingual EA tasks against state-
of-the-art approaches. Considerable experimental results
demonstrate the superiority of EASY.

Organization.The rest of the paper is organized as follows. Section
2 reviews the related work. Section 3 presents the technical details
of our proposed EASY. Section 4 reports the experimental results
and our findings. Finally, Section 5 concludes the paper.

2 RELATEDWORK
Entity alignment (EA) is one of the most fundamental tasks for
enlarging the coverage of a unified knowledge graph. Early tech-
niques exploit hand-crafted features [22], crowdsourcing [41, 58],
and OWL-based equivalence reasoning [14] to address entity align-
ment problems. However, those methods cannot effectively align
entities from heterogeneous KGs, which are very common in real
life since most KGs are independently created. Besides, they incur
expensive monetary costs for involving humans in EA.

Recently, embedding techniques have been proposed to convert
heterogeneous data into semantic vectors and have proven their
effectiveness in the EA task [8, 32, 36]. Techniques on embedding-
based EA are highly related to the graph structures of KGs. Accord-
ing to how the KG structures are captured, existing approaches can
be clustered into two categories, namely, Translational-based EA
andGNN-based EA. The first category [8, 19, 26, 28, 34, 35, 40, 56] in-
corporates the translational KG embedding models (such as TransE
[5] and its variants) to ensure the aligned entities to have relative
close embeddings in the semantic vector space. The second cate-
gory [6, 18, 23, 32, 36, 42, 44, 57] learns the entity embeddings by
aggregating the neighbors’ information of entities.

Many EA approaches purely rely on graph structures of KGs
guided by pre-aligned seeds [6, 8, 11, 18, 26, 28, 30, 32, 34–36, 56,
57]. However, Zeng et al. [52] revealed that most real-life KGs are
sparsewith limited structural information, and hence, the structural-
dominated methods cannot yield satisfactory alignment results in
real-life KGs. To overcome this limitation, some methods jointly
exploit the graph structure and the auxiliary information, such
as entity names [10, 21, 23–25, 33, 38, 45–49, 52, 54], descriptions
[7, 38, 49, 54], images [20], and entity attributes [16, 21, 33, 38, 40,
42, 43, 49, 50, 54]. The studies based on images, descriptions, or
attributes are either labor-intensive or error-prone and thus restrict
the scope of their applications. Though it is promising to use the
name information of entities, the existing studies may destroy the
semantic information captured by the name of each individual
entity as illustrated in Example 1.1.

Motivated by the limitations and challenges faced by existing
EA approaches, our EASY is designed to use name information of
entities in a much more effective manner when performing EA
task. It is worth mentioning that among all auxiliary-information-
based EA methods, the closest to the newly proposed EASY are
three unsupervised models that do not require any manually anno-
tated seed, i.e., EVA [20], MRAEA [23], and RREA [24]. Specifically,
EVA still requires labor-intensive images collection in advance for
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Figure 1: Illustration of our proposed EASY framework

generating pseudo seeds, while our work requires zero human in-
tervention and performs EA in an end-to-end process. MRAEA
and RREA treat the entity pairs that can be mutually translated
as pseudo seeds and accumulate the seeds in iterations. We will
demonstrate that the process of seed accumulation is error-prone
in the experiments to be presented in Section 4.4.1. However, our
EASY includes a novel confident seeds generator that enables more
accurate seeds generation automatically. Last but not the least, un-
like the above mentioned unsupervised models that aim to design
newly structure-based EA models, the purpose of EASY is to con-
struct a flexible EA framework that can be easily integrated with
any existing structure-based EA models. We will show that EASY
achieves the state-of-the-art EA results in the experiments to be
presented in Section 4.1.

3 EASY FRAMEWORK
In this section, we first present some preliminaries of our work,
including the formalization of EA and some background techniques;
we then describe our end-to-end EA framework called EASY in
detail. Figure 1 illustrates the EASY architecture, which includes
two components: a name-based entity alignment procedure (NEAP)
followed by a structure-based refinement strategy (SRS).

3.1 Preliminaries
Problem Statement. A knowledge graph (KG) can be denoted as
𝐺 = (E,R,T), where E is the set of entities, R is the set of rela-
tions with regard to entities, and T is the set of triples. Given two
entities 𝑒𝑖 , 𝑒 𝑗 ∈ E with a relation 𝑟 ∈ R flowing from 𝑒𝑖 to 𝑒 𝑗 , a
triple 𝑡 = (𝑒𝑖 , 𝑟 , 𝑒 𝑗 ) ∈ T represents the relationship between them.
The entity alignment task aims to find a 1-to-1 matching of entities
from a source KG𝐺𝑠 = (E𝑠 ,R𝑠 ,T𝑠 ) to a target KG𝐺𝑡 = (E𝑡 ,R𝑡 ,T𝑡 )
[37]. Formally, an entity alignment matrix 𝑷 = {0, 1} |E𝑠 |× |E𝑡 | ,
w.l.o.g. |E𝑠 | ≤ |E𝑡 |. Its element 𝑃𝑖𝑖′ is such that 𝑃𝑖𝑖′ = 1 iff 𝑒𝑖𝑠 ≡ 𝑒𝑖

′
𝑡 .

Here, 𝑒𝑖𝑠 ∈ E𝑠 , 𝑒𝑖
′
𝑡 ∈ E𝑡 , and ≡ means an equivalence relation.

Graph Matching. Generally, the structure-based entity alignment
method are highly relevant to the graph matching problem. Given
two KGs𝐺𝑠 and𝐺𝑡 , graph matching aims to find a correspondence
between their entities possessing similar neighborhood structures.
A generic formulation of the graph matching consists of finding

an optimal correspondence matrix by minimizing the difference
between distributions of two KGs, defined as:

𝑑𝑖𝑠 (𝐺𝑠 ,𝐺𝑡 ) = min
𝑷

(∑
𝑒𝑖𝑠 ,𝑒

𝑗
𝑠 ∈E𝑠

∑
𝑒𝑖
′
𝑡 ,𝑒

𝑗′
𝑡 ∈E𝑡

𝐷 (𝑐𝑠𝑖 𝑗 , 𝑐
𝑡
𝑖′ 𝑗 ′)𝑃𝑖𝑖′𝑃 𝑗 𝑗 ′

)
(1)

where 𝑪 = [𝑐𝑖 𝑗 ] ∈ {0, 1} |E |×|E | is the adjacency matrix of a KG𝐺 =

(E,R,T). For simplicity, we treat each KG as a unweighted graph,
that is, 𝑐𝑖 𝑗 = 1 iff ∃𝑟 ∈ R such that (𝑒𝑖 , 𝑟 , 𝑒 𝑗 ) ∈ T . 𝐷 (𝑐𝑠𝑖 𝑗 , 𝑐

𝑡
𝑖′ 𝑗 ′) =

|𝑐𝑠
𝑖 𝑗
− 𝑐𝑡

𝑖′ 𝑗 ′ | is an element-wise distance function. 𝑷 is the optimal
transport (w.r.t. entity alignment matrix) between two KGs, and its
element 𝑃𝑖𝑖′ represents whether 𝑒𝑖 ∈ E𝑠 and 𝑒𝑖′ ∈ E𝑡 are aligned.
Note that, to enforce the 1-to-1 matching, 𝑷 is defined to satisify
∀𝑒𝑖𝑠 ∈ E𝑠 ,

∑
𝑒𝑖
′
𝑡 ∈E𝑡

𝑃𝑖𝑖′ = 1, and ∀𝑒𝑖′𝑡 ∈ E𝑡 ,
∑
𝑒𝑖𝑠 ∈E𝑠 𝑃𝑖𝑖′ ≤ 1.

3.2 Name-based Entity Alignment Procedure
Aligning entities from KGs without labor-intensive pre-processing
is not trivial. In particular, it is challenging to propose an explicit
loss function to guide the learning without any pre-aligned seed
annotation. The rich semantic information contained in the names
of entities inspires us to employ the entity names for aligning
entities directly without any complex training process.

Recall that the name information has not been fully explored
in the existing EA approaches. To this end, we design a simple
but highly effective name-based entity alignment procedure (NEAP),
which considers both local features and global features when per-
forming the alignment. The local features of each entity refer to
characterize each entity with tokenized name information. The
global features aim to evaluate the semantic similarity between
entities from two KGs. Next, we give the formal definitions of local
features and global features, respectively.
Local Features. For each entity 𝑒𝑖 , its name can be character-
ized as a series of tokens. A token can be a word or a sub-word.
We denote the set of tokens corresponding to the name of 𝑒𝑖 as
𝑇𝑖 = {𝜏1, 𝜏2, ..., 𝜏 𝑗 , ..., 𝜏 |𝑇𝑖 |}, where 𝜏 𝑗 is the 𝑗-th token and |𝑇𝑖 | is
the number of tokens contained by the name of 𝑒𝑖 . As mentioned
earlier, every token plays a different role in representing the en-
tity’s name features. In order to describe the comprehensive local
features of each entity, we assign different weights to different
tokens for each entity. We use term frequency–inverse document
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frequency (TF-IDF) (denoted as 𝑤 ), a well-known statistical mea-
sure, to reflect how important a token 𝜏 is to entity 𝑒𝑖 . Formally,
𝑤𝜏,𝑇𝑖 =

count(𝜏)
|𝑇𝑖 | × log |E |

1+∑|E |
𝑗=1 𝐼 (𝜏,𝑇𝑗 )

, 𝐼
(
𝜏,𝑇𝑗

)
denotes whether 𝜏 is

contained in another entity 𝑒 𝑗 , i.e., 𝐼
(
𝜏,𝑇𝑗

)
= 1 when 𝜏 ∈ 𝑇𝑗 , oth-

erwise 𝐼
(
𝜏,𝑇𝑗

)
= 0. Specificially, count(𝜏)

|𝑇𝑖 | reflects the frequency of
𝜏 appearing in 𝑒𝑖 . The higher the frequency, the more important
the token. log |E |

1+∑|E |
𝑖=1 𝐼 (𝜏,𝑇𝑖 )

reflects the universality of a token. The

more common the token (that is, many entities have the token
in their names), the lower the importance. Thus, the collection
of local features of entities in a KG can be denoted as a matrix
𝑬 ∈ [0, 1] |E |×|𝑇 | . Take Figure 2 as an example. Given two entities
𝑒1
𝑠 in a 𝐾𝐺𝐹𝑅 and 𝑒1′

𝑡 in a 𝐾𝐺𝐸𝑁 , 𝑒1
𝑠 called “Blues de Saint Louis”

can be split into four tokens, i.e., Blues, de, Saint, Louis. Similarly,
𝑒1′
𝑡 named “St. Louis Blues” can be split into three tokens, i.e., St.,
Louis, Blues. The local features of 𝑒1

𝑠 and 𝑒1′
𝑡 stored in the matrix

𝑬𝒔 and 𝑬𝒔 are highlight in the red dotted frame, respectively. The
importance of each token is reflected by the color darkness. The
darker the color, the higher the importance.
Global Features. Local features allow us to characterize each en-
tity based on a list of tokens that appear in the name of the entity.
Thereafter, we are ready to construct global features that try to cap-
ture the semantic similarities between entities from𝐺𝑠 and entities
from 𝐺𝑡 . According to the problem statement in Section 3.1, each
entity in𝐺𝑠 has its equivalent entity in𝐺𝑡 . Besides, every entity can
be treated as a set of tokens. Therefore, we propose to estimate en-
tities’ semantic similarities by measuring the semantic similarities
between their relevant tokens. Specifically, we first represent tokens
collected from two KGs as semantic vectors in a unified embedding
space by a pre-trained language model, and then use certain sim-
ilarity measures (e.g., cosine similarity is employed in this work)
to quantify the similarity between tokens. Thus, the similarity be-
tween tokens from different KGs is denoted as𝑾𝒔,𝒕 ∈ [0, 1] |𝑇𝑠 |× |𝑇𝑡 | ,
where |𝑇𝑠 | and |𝑇𝑡 | represent the total number of tokens of 𝐺𝑠 and
𝐺𝑡 , respectively. Given two tokens 𝜏𝑖𝑠 ∈ 𝐺𝑠 and 𝜏

𝑗
𝑡 ∈ 𝐺𝑡 , the ele-

ment stored in the 𝑖-th row and the 𝑗-th column of the matrix𝑾𝒔,𝒕

indicates their similarity. As the objective of maintaining the global
features is to capture the similarities between tokens from two
KGs to facilitate the EA task, we develop to store the similarities
of pairs of tokens that are very similar but ignore the scores of
pairs of tokens that are different. To this end, we decide to sparsify
𝑾𝒔,𝒕 by only retaining the top-𝑘 correspondences, and reducing the
required memory footprint from 𝑂 ( |𝑇𝑠 | × |𝑇𝑡 |) to 𝑂 (𝑘 |𝑇𝑠 |), where
𝑘 is a small constant and 𝑘 ≪ |𝑇𝑠 |. In our work, we set 𝑘 = 1 as
it is found to be the optimal one via our experiments. Revisit our
example shown in Figure 2. Circular nodes represent the tokens,
and there are in total 12 (i.e., 4 × 3) token pairs. In𝑾𝒔,𝒕 , only the
similarity scores of 3 token pairs (those connected via dotted lines,
e.g, (“Saint”, “St.”)) are stored.

By considering both local and global features mentioned above,
we can construct the name-based entity similarity matrix 𝑴𝒍 be-
tween 𝐺𝑠 and 𝐺𝑡 via Equation (2):

𝑴𝒍 = 𝑆𝑖𝑛𝑘ℎ𝑜𝑟𝑛(�̂�𝒍 ) = 𝑆𝑖𝑛𝑘ℎ𝑜𝑟𝑛(𝑬𝒔𝑾𝒔,𝒕𝑬
T
𝒕 ) (2)

where 𝑬𝒔 ∈ [0, 1] |E𝑠 |× |𝑇𝑠 | , and 𝑬𝒕 ∈ [0, 1] |E𝑡 |× |𝑇𝑡 | . Sinkhorn [31] is
a normalization function used to get rectangular doubly-stochastic

Local features 

matrix Et

St. Louis 

Blues
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Louis

Saint
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Blues
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Figure 2: A toy example of NEAP

correspondence matrices fulfilling ∀𝑒𝑖𝑠 ∈ E𝑠 ,
∑
𝑒𝑖
′
𝑡 ∈E𝑡

𝑀𝑖𝑖′ = 1 and
∀𝑒𝑖′𝑡 ∈ E𝑡 ,

∑
𝑒𝑖𝑠 ∈E𝑠 𝑀𝑖𝑖′ ≤ 1.

Thereby, we can get the name-based entity alignment matrix
𝑷(0) between 𝐺𝑠 and 𝐺𝑡 derived from the similarity matrix 𝑴𝒍 . To
enforce the 1-to-1 mapping, each element 𝑃𝑖𝑖′ ∈ 𝑷(0) is given by:

𝑃𝑖𝑖′ =

{
1, 𝑖 ′ = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑀𝑖 )
0, 𝑖 ′ ≠ 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑀𝑖 )

(3)

Discussion. The proposed NEAP significantly saves memory foot-
print without sacrificing the expressive power of entities. It is
mainly attributed by the sparsity of 𝑴𝒍 , which is composed of
three matrices, including two matrices corresponding to entities’
local features (i.e., 𝑬𝒔 and 𝑬𝒕 ) and one matrix related to the global
features (i.e., 𝑾𝒔,𝒕 ). Specifically, we assign TF-IDF for obtaining
different importance of tokens to each entity. For each entity, only
a small number of tokens are associated with it. Thus, both 𝑬𝒔 and
𝑬𝒕 are sparse matrices in nature. Besides,𝑾𝒔,𝒕 is a sparse matrix
that only retains the similarities between the most similar tokens.
We will confirm the sparsity of the matrix 𝑴𝒍 in Section 4.3.3.

3.3 Structure-based Refinement Strategy
Name information can help EA task to a certain degree. How-
ever, name information from different KGs might not be perfectly
matched, especially in cross-lingual scenarios. In other words, mis-
alignment inevitably exists in the initial alignment generated by
NEAP. As highlighted by existing work [10, 36], the rich structural
information of the KG also contributes to EA task. Intuitively, we
expect to enhance the EA results by complementing the name in-
formation with structural information. A straightforward method
is to discover entity pairs based on the name information as pseudo
alignment seeds for training a structure-based EA model. Nonethe-
less, it is still challenging due to the presence of misaligned entity
pairs generated by NEAP based on the name information.

To correct themisaligned entities inNEAP, we present a structure-
based refinement strategy (SRS), which iteratively (i) provides a
novel confident seeds generator to generate pseudo seed alignment;
(ii) feeds the pseudo seeds into a structure-based EA model to learn
entity embeddings; and (iii) obtains the structure-based entity simi-
larities according to the learned embeddings and then mixes them
with the name-based entity similarities from NEAP for correcting
the misaligned entities. Next, we detail the three steps.
(i) Confident seeds generator. Under the assumption that each
entity of the source KG is equivalent to a unique entity of the target
KG, we expect graphs 𝐺𝑠 and 𝐺𝑡 to have similar graph structures.
Specifically, for each equivalent entity pair (𝑒𝑖𝑠 , 𝑒𝑖

′
𝑡 ) where 𝑒𝑖𝑠 ∈ 𝐺𝑠

and 𝑒𝑖′𝑡 ∈ 𝐺𝑡 , we expect the neighborhood of 𝑒𝑖𝑠 should be the same
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as that of 𝑒𝑖′𝑡 . Nevertheless, the structures of𝐺𝑠 and𝐺𝑡 might appear
differently due to the misaligned entities from NEAP and the het-
erogeneity between them. Apparently, the confidence of an entity
pair (𝑒𝑖𝑠 , 𝑒𝑖

′
𝑡 ) is highly related to their neighbors’ structural differ-

ence. We introduce graph matching discrepancy (GMD) to denote
the neighborhood difference between two entities. The smaller the
discrepancy between the neighborhoods of 𝑒𝑖𝑠 and 𝑒𝑖

′
𝑡 , the higher

the confidence that they form a correct alignment.
Inspired by confidence-based techniques [27, 34], we propose

to give each entity pair an approximate confidence and select the
entity pairs with high confidence as seeds. In view of this, we first
formulate GMD to represent the confidence of each entity pair and
then illustrate how to generate confident seeds using GMD.

Recall that the EA task considering the structure of KGs can be
abstracted as a graph matching problem. It aims to find the optimal
entity alignment matrix by minimizing the structural difference
between the source and the target KGs. Conversely, given a certain
entity alignment matrix 𝑷 , it is able to compute the structural
difference between two KGs. That is, derived from Equation (1),
we can quantify GMD 𝑑𝑖𝑖′ between every entity pair (𝑒𝑖𝑠 , 𝑒𝑖

′
𝑡 ) based

on the given entity alignment matrix 𝑷 . Formally, 𝑑𝑖𝑖′ (𝑪𝒔 , 𝑪𝒕 , 𝑷 ) =∑𝐾𝑖

𝑗

∑𝐾𝑖′
𝑗 ′ |𝑐

𝑠
𝑖 𝑗
− 𝑐𝑡

𝑖′ 𝑗 ′ |𝑃𝑖𝑖′𝑃 𝑗 𝑗 ′ , where 𝐾𝑖 and 𝐾𝑖′ denote the number

of neighbors of 𝑒𝑖𝑠 and that of 𝑒𝑖
′

𝑡 , respectively. However, it fails to
effectively reflect the impact of GMD on different entity pairs. We
use the following example to depict the drawback.

Example 3.1. Assume that there are two entity pairs, denoted
as 𝑝𝑎𝑖𝑟1 and 𝑝𝑎𝑖𝑟2. The entities in 𝑝𝑎𝑖𝑟1 are both connected with
many neighbors; while the entities in 𝑝𝑎𝑖𝑟2 are connected to less
than three other entities, i.e., they both are long-tail entities [11].
Only one edge difference exists between the neighborhood graph
structure of the two entities in both pairs. Obviously, GMD of 𝑝𝑎𝑖𝑟1
and that of 𝑝𝑎𝑖𝑟2 are both 1. The first pair 𝑝𝑎𝑖𝑟1 is likely to be a
correct alignment because of the small GMD. Nevertheless, the
second pair may not be correctly aligned, even though their GMD
is small too. This is because it’s much easier for long-tail entities
to have similar neighborhood structures, and unfortunately nearly
half of the entities in real-life KGs are long-tail [52]. In other words,
a small GMD, in the current form, is not necessarily a good indicator
to tell that the alignment of a pair of two long-tail entities is correct.

To tackle the drawback, we re-formulate the equation of GMD
as follows:

𝑑𝑖𝑖′ (𝑪𝒔 , 𝑪𝒕 , 𝑷 ) =
∑𝐾𝑖

𝑗

∑𝐾𝑖′
𝑗 ′ |𝑐

𝑠
𝑖 𝑗
− 𝑐𝑡

𝑖′ 𝑗 ′ |𝑃𝑖𝑖′𝑃 𝑗 𝑗 ′∑𝐾𝑖

𝑗
𝑐𝑠
𝑖 𝑗
𝑃𝑖𝑖′𝑃 𝑗 𝑗 ′ +

∑𝐾𝑖′
𝑗 ′ 𝑐

𝑡
𝑖′ 𝑗 ′ + 𝜖

(4)

where the denominator is used to bound 𝑑𝑖𝑖′ in the range of [0, 1];
and 𝜖 > 0 is used to prevent the denominator from being zero.

After acquiring GMD for all entity pairs based on Equation (4),
we have a collection of entity pairs, each of which has its confidence
(w.r.t. GMD) to describe its likelihood. We only consider entity pairs
with GMD no larger than a specified threshold 𝑑 as seeds. Here,
𝑑 denotes the average GMD of all entity pairs. We will justify the
setting of 𝑑 for pruning unreliable seeds in Section 4.4.2.
(ii) Structure-based EAmodel.Then, a structure-based EAmodel
takes in the seed alignment produced by our proposed seeds gener-
ator to learn entity embeddings and provide a basis for obtaining

Algorithm 1: Structure-based Refinement Strategy (SRS)
Input: two KGs 𝐺𝑠 and 𝐺𝑡 with their name-based similarity

matrix 𝑴𝒏 and entity matching matrix 𝑷(0)
Output: the final entity matching matrix 𝑷

1 𝑴𝒉 ←− 𝑴𝒏; 𝑷 ←− 𝑷(0)
2 𝑁𝑖𝑡 ←− the maximum number of iterations
3 foreach 𝑘 ∈ {1, 2, ..., 𝑁𝑖𝑡 } do
4 𝑪𝒔 , 𝑪𝒕 ←− adjacency matrices of 𝐺𝑠 ,𝐺𝑡
5 compute 𝑑𝑖𝑖′ (𝑪𝒔 , 𝑪𝒕 , 𝑷 ) for each entity pair via 𝑷
6 get entity pairs 𝑆𝑃 based on the confident seeds generator
7 𝑽𝒔 , 𝑽𝒕 ←− train the structure-based EA model
8 𝑴𝒔 ←− 𝑆𝑖𝑚(𝑽𝒔 , 𝑽𝒕 ); 𝑴𝒉 ←− 𝑴𝒔 + 𝛼𝑴𝒏

9 𝑷 ←− find an entity alignment matrix based on 𝑴𝒉

10 mitigate the structural difference between 𝐺𝑠 and 𝐺𝑡
11 return 𝑷

the subsequent structure-based entity similarities. As the structure-
based EA model has been extensively studied, we can adopt a state-
of-the-art model (e.g.,RREA [24] in our work) and learn the entity
embeddings according to the following loss function:

𝐿 =
∑
(𝑒𝑖𝑠 ,𝑒𝑖

′
𝑡 ) ∈𝑆𝑃

max
(
𝑑𝑖𝑠𝑡

(
𝑒𝑖𝑠 , 𝑒

𝑖′
𝑡

)
− 𝑑𝑖𝑠𝑡

(
𝑒𝑖
∗
𝑠 , 𝑒

𝑖′∗
𝑡

)
+ 𝜆, 0

)
(5)

where 𝑒𝑖∗𝑠 and 𝑒𝑖′∗𝑡 represent the negative pair of 𝑒𝑖𝑠 and 𝑒𝑖
′
𝑡 which

are generated by nearest neighbor sampling [34]. In the training
process, we adopt the same setting as RREA [24] to use Manhattan
distance to compute 𝑑𝑖𝑠𝑡 (·, ·). Note that, users have the flexibility
to apply any EA model in our proposed EASY framework.
(iii) Misaligned Entities Adjustment. Both structural and name
information are essential for entities. They characterize entities
from two different aspects. Intuitively, jointly utilizing structural
and name information is of great significance to facilitate the EA
task. Hence, we introduce a hybrid similarity matrix 𝑴ℎ that cap-
tures both structural and name information, defined as 𝑴ℎ =

𝑴𝒔 + 𝛼𝑴𝒏 , where 𝑴𝒔 denotes the structure-based entity similarity
matrix computed by the cosine similarity between the learned en-
tity embeddings𝑉𝑠 from𝐺𝑠 and𝑉𝑡 from𝐺𝑡 . 𝛼 is a hyper-parameter
controlling the contribution of the name information to 𝑴ℎ . 𝑴𝒏

represents the name-based entity similarity matrix. Inspired by
CEA [51], which claims that both semantic-level and string-level
name information can describe entities from different perspectives,
we set 𝑴𝒏 = 𝑴𝒍 + 𝑴𝒆 . Here, 𝑴𝒍 is the semantic-level similarity
matrix generated by NEAP, and 𝑴𝒆 is the string-level similarity
matrix computed by the Levenshtein distance between entities.
SRS. We are ready to introduce the details of SRS. Algorithm 1
presents its pseudo-code. It takes as inputs a name-based entity
similarity matrix 𝑴𝒏 and an entity alignment matrix 𝑷(0) . Dur-
ing the refinement process, we iteratively adjust the hybrid entity
similarity matrix 𝑴𝒉 and the entity alignment matrix 𝑷 with the
purpose of aligning entities more accurately. First of all, SRS initial-
izes𝑴𝒉 with𝑴𝒏 for capturing the name similarity between entities
from the two KGs. Also, it sets 𝑷 to the name-based entity align-
ment matrix 𝑷(0) (Line 1). Next, SRS calculates the graph matching
discrepancy, and uses confident seed generator to generate a set of
seed alignment 𝑆𝑃 (Lines 4-6). Then, it trains the structure-based

Session 3F: Applications 3  SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

781



Table 1: Statistics of the datasets used in experiments

Datasets #Entities #Rels. #Triples

DBP15KZH−EN
Chinese 66,469 2,830 153,929
English 98,125 2,317 237,674

DBP15KJA−EN
Japanese 65,744 2,043 164,373
English 95,680 2,096 233,319

DBP15KFR−EN
French 66,858 1,379 192,191
English 105,889 2,209 278,590

SRPRSEN−FR
English 15,000 221 36,508
French 15,000 177 33,532

SRPRSEN−DE
English 15,000 225 38,281
German 15,000 118 37,069

EA model with seed alignment 𝑆𝑃 , and obtains the embeddings
𝑽𝒔 and 𝑽𝒕 of entities E𝑠 and E𝑡 respectively (Line 7). Thereafter, a
structure-based similarity matrix𝑴𝒔 can be obtained by computing
the cosine similarities between 𝑽𝒔 and 𝑽𝒕 , denoted as 𝑆𝑖𝑚(𝑽𝒔 , 𝑽𝒕 ).
Then, SRS iteratively adjusts 𝑴𝒉 according to 𝑴𝒔 and 𝑴𝒏 (Line 8).
Besides, an entity alignment matrix 𝑷 is derived from the current
𝑴𝒉 by using Equation (3) (Line 9). Considering that similar graph
structures are conducive to entity alignment, SRS uses IKGC, a KG
completion method proposed in [52], to mitigate the structural dif-
ference between 𝐺𝑠 and 𝐺𝑡 based on the adjusted similarity matrix
𝑴𝒉 (Line 10). This refinement strategy lasts for 𝑁𝑖𝑡 rounds, and
returns the final entity matching matrix 𝑃 (Line 11).
Discussion. Existing EA methods, although also using iterative
learning strategy for enhancing the EA results, only rely on the
features that are fitted by the corresponding models to generate
pseudo seeds. The sole consideration of fitted features causes the
loss of actual information to a certain extent. Different from existing
ER methods, SRS generates seeds by incorporating the actual name
information with the structural features learned by the EA model.
Consequently, it is able to achieve higher accuracy, as to be verified
by our experimental study in Section 4.4.

4 EXPERIMENTS
Datasets.Weuse two frequently utilized and representative datasets
DBP15K [33] and SRPRS [11] for evaluation. DBP15K is the most
widely-adopted EA dataset, which is extracted from DBpedia and
consists of three settings, i.e., ZH-EN (Chinese-English), JA-EN
(Japanese-English), and FR-EN (French-English). Recent work [11,
37] points out that DBP15K contains much more high-degree enti-
ties than real-world KGs do. SRPRS, constructed by Guo et al. [11], is
a dedicated KG that is sampled from real-world KGs (i.e., DBpedia,
Wikidata, and YAGO) to simulate real-life distributions of entities
and their relationships. Table 1 lists the detailed statistics.
Evaluationmetric. Hits@N (𝑁 = 1, 10) andMean Reciprocal Rank
(MRR) are used as the evaluation metrics. We use cross-domain sim-
ilarity local scaling (CSLS) [17] to post-process the entity similarity
matrix 𝑴𝒉 , following the common practice adopted by lots of re-
late studies [20, 24, 36]. 𝐾 = 10 is a parameter used for defining
local neighbourhood of CSLS. In particular, Hits@1 represents the
accuracy of alignment results in the final entity alignment matrix
𝑷 (derived from the final hybrid similarity matrix 𝑴𝒉). Hits@10

denotes the proportion of correctly aligned entities in the top-10
ranks, which can be obtained from 𝑴𝒉 . MRR is the average of the
reciprocal ranks of the correctly aligned entities, where recipro-
cal rank reports the mean rank of the correct alignment derived
from 𝑴𝒉 . Note that, higher Hit@N and MRR indicate better EA
performance. Bold digits in tables come from the best EA method.
Implementation details. We conduct our proposed EASY1 with-
out using any annotated alignment seeds. In NEAP, the pre-trained
BERT is utilized to obtain token embeddings by default unless ex-
plicitly specified. We also employ fastText for further analyzing the
performance of our presented NEAP and SRS. (i) For getting the
BERT-based token embeddings, following Liu et al. [21], we first use
the pre-trained BERT-base-cased2 to obtain a sequence of hidden
states, each of which indicates a token’s embedding associated with
an entity name. Considering that a token may appear in different
entity names and thus contribute to multiple embeddings, we then
average all the embeddings to obtain a fixed length vector to repre-
sent the token. (ii) For getting the fastText-based token embeddings,
we concatenate the aligned word vectors3 [15] provided in different
languages in cross-lingual benchmarks for each token. In addition,
following many recent studies [21, 23, 24, 33, 43], we utilize Google
Translate to translate entity names to English before executing
NEAP for 𝐷𝐵𝑃15𝐾 dataset, which contains big linguistic barriers.
In contrast, since 𝑆𝑅𝑃𝑅𝑆 dataset has small barriers in linguistics,
we, following [52], directly use entity names without translation.
In SRS, we use RMSProp [12] as the gradient optimization algo-
rithm for the structure-based EA model (i.e., RREA by default), and
train the model for 30 epochs in each iteration. We set the learning
rate to 0.005, 𝑁𝑖𝑡 = 20 , 𝛼 = 0.2, and 𝜆 = 3. All experiments were
conducted on a personal computer with an Intel Core i9-10900K
CPU, an NVIDIA GeForce RTX3090 GPU, and 128GB memory. The
programs were all implemented in Python.
Competitors.We compare the performance of our proposed EASY
framework against 13 state-of-the-art EAmethods. The competitors
can be classified into two categories, i.e., graph-structure-dominated
EA methods and auxiliary-information-powered EA methods.

The former refers to the group that solely relies on structural
information for aligning entities, including (i) MTransE [8], which
learns the multilingual knowledge graph structure for EA according
to TransE (a well-known KG embedding model); (ii)MuGNN [6],
which learns alignment-oriented embeddings by a multi-channel
graph neural network; (iii) RSNs [11], which employs recurrent
neural networks to represent the sequence of entities and relations
for entity alignment; and (iv) BootEA [34], which refines the entity
alignment results by an iterative training process.

The latter incorporates the group that uses auxiliary informa-
tion to improve the performance of graph-structure-based EA ap-
proaches. In this group, three state-of-the-art unsupervised methods
are most relevant to our work, i.e., (i) EVA [20], the first work us-
ing images to collect pseudo seeds and learn entity alignment; (ii)
MRAEA [23], the unsupervised version that performs better than
its supervised version, which first generates a set of pseudo seeds
according to the Google Translate results and then learns cross-
lingual entity embeddings by considering the entity’s neighbors and
1The source code is available at https://github.com/ZJU-DBL/EASY
2https://github.com/huggingface/transformers
3https://fasttext.cc/docs/en/aligned-vectors.html
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Table 2: Overall results of EA with and without using auxiliary information (AI for short)

Methods DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN SRPRSEN−FR SRPRSEN−DE
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

w
/o

A
I MTransE 20.9 51.2 0.31 25.1 57.2 0.36 24.7 57.7 0.36 21.3 44.7 0.29 10.7 24.8 0.16

MuGNN 47.0 83.5 0.59 48.3 85.6 0.61 49.1 86.7 0.62 13.1 34.2 0.20 24.5 43.1 0.31
RSNs 58.0 81.1 0.66 57.4 79.9 0.65 61.2 84.1 0.69 35.0 63.6 0.44 48.4 72.9 0.57
BootEA 61.4 84.1 0.69 57.3 82.9 0.66 58.5 84.5 0.68 36.5 64.9 0.46 50.3 73.2 0.58

w
/A

I

JAPE 41.4 74.1 0.53 36.5 69.5 0.48 31.8 66.8 0.44 24.1 54.4 0.34 26.8 54.7 0.36
GCN-Align 43.4 76.2 0.55 42.7 76.2 0.54 41.1 77.2 0.53 29.6 59.2 0.40 42.8 66.2 0.51
DAT* 54.5 64.9 0.58 58.8 66.4 0.62 64.3 68.0 0.66 75.8 89.9 0.81 87.6 95.5 0.90
DGMC* 80.1 87.5 0.83 84.8 89.7 0.86 93.3 96.0 0.94 86.9 89.0 0.88 87.0 90.0 0.88
CEA 78.7 – – 86.3 – – 97.2 – – 96.2 – – 97.1 – –
EPEA* 88.5 95.3 0.91 92.4 96.9 0.94 95.5 98.6 0.97 – – – – – –
EVA◦* 75.2 89.5 0.80 73.7 89.0 0.79 73.1 90.9 0.79 – – – – – –
MRAEA◦* 77.8 83.2 – 88.9 92.7 – 95.0 97.0 – 81.6 92.4 0.86 84.7 93.6 0.88
RREA◦* 82.2 96.4 – 91.8 97.8 – 96.3 99.2 – 82.2 92.5 0.85 85.3 93.8 0.89
EASY (GCN-Align) 81.4 92.4 0.85 89.4 96.5 0.92 96.7 99.2 0.98 94.0 97.3 0.95 95.0 97.9 0.96
EASY (RREA) 89.8 97.9 0.93 94.3 99.0 0.96 98.0 99.8 0.99 96.5 98.9 0.97 97.4 99.2 0.98

1 The results of *-marked methods are obtained from their original papers. Underline indicates results from our re-implementation with their publicly available source code and
data. The rest are from [55], a recent experimental study of state-of-the-art EA approaches. “◦” denotes the unsupervised EA methods most relevant to our work.

its connected relations’ meta semantics; and (iii) RREA [24], which
adopts the unsupervised setting from MRAEA to generate a set of
pseudo seeds, and achieves the state-of-the-art performance in the
unsupervised settings according to a newly proposed GNN model.
To demonstrate that our newly proposed EASY even outperforms
some supervised models, we also implement six recent supervised
models in this group, including (i) JAPE [33], which exploits at-
tribute correlations for entity alignment, based on the assumption
that similar entities should have similar correlated attributes; (ii)
GCN-Align [42], which aligns entities by learning the entity embed-
dings from both the structural and attribute information of entities
via graph convolutional networks; (iii) DAT [52], which proposes a
degree-aware co-attention mechanism to dynamically fuse name
and structural signals for aligning entities in tail; (iv) DGMC [10],
which is aimed towards reaching a neighborhood consensus be-
tween aligned entities, and entity name information is harnessed
for initializing the model; (v) CEA [51], which formulates EA as a
stable matching problem built upon a distance measure combining
structural and entity name information at outcome level; and (vi)
EPEA [43], which first extracts attribute features of entity-pairs and
then propagates the features among the neighbors of entity pairs
for learning aligned entities.

4.1 Main Results
Table 2 summarizes the entity alignment performance of EASY and
its competitors on the two datasets. To demonstrate the flexibility
of EASY, we provide two variants, i.e, (i) EASY using the state-of-
the-art RREA as the structure-based EA model, denoted as EASY
(RREA); and (ii) EASY with a classical structure-based EA model
called GCN-Align, denoted as EASY (GCN-Align).

It is observed that EASY (RREA) outperforms the state-of-the-art
results on all datasets. Specifically, compared with the first group
that purely relies on graph structure, EASY brings about 28%-60% ab-
solute improvement in H@1 over the best baseline. The superiority
of EASY confirms that employing name information substantially

Table 3: The results of ablation

Methods SRPRSEN−FR SRPRSEN−DE
H@1 H@10 MRR H@1 H@10 MRR

EASY 96.5 98.9 0.97 97.4 99.2 0.98
EASY w/o NEAP 93.2 97.2 0.95 95.1 97.9 0.96
EASY w/o SRS 91.4 93.1 0.92 92.8 95.2 0.94
EASY w/o IL 95.5 98.1 0.96 97.0 99.1 0.98
EASY w/o CSLS 95.9 98.3 0.97 97.1 98.9 0.98
EASY w/o 𝑴𝒆 95.5 98.3 0.97 95.5 98.0 0.96

promotes the EA results. Compared with the second group with
auxiliary information involvement, EASY still gains about 2%-14%
absolute improvement in H@1 over the best baseline. It is con-
tributed by two reasons. First, EASY utilizes NEAP to discover the
name information of entities. It captures more accurate name fea-
tures for EA than other existing methods that also explore and
study entity names. The corresponding experimental results and
detailed analysis can be found in Section 4.3. Second, EASY includes
SRS, which effectively fuses the name information and structural
information to generate more reliable seeds than other iterative
strategies, and thus, it further enhances the EA results. We will com-
pare the performance of SRS and other existing iterative training
strategies in Section 4.4. Besides, as expected, integrating existing
EA models (including GCN-Align and RREA) into our framework
can bring about 8%-64% improvement in H@1, compared to the EA
results using GCN-Align and RREA alone.

4.2 Ablation Study
We conduct an ablation study on SRPRS dataset, which simulates
the real KGs’ distributions better than the DBP15K dataset. The
results are reported in Table 3. By replacing NEAP component with
a simple max-pooling strategy, the performance of EASY drops
by 3.3% and 2.3% on H@1 (EASY vs. EASY w/o NEAP) on EN-FR
dataset and EN-DE dataset, respectively. This shows that consid-
ering both local and global features of entities does capture more
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Table 4: Analysis of NEAP

Methods SRPRSEN−FR SRPRSEN−DE
H@1 H@10 MRR H@1 H@10 MRR

Levenshtein 84.2 89.4 0.86 85.9 92.1 0.88

fa
st
Te
xt Avg 58.1 66.8 0.61 62.6 77.6 0.68

CPM 81.7 86.8 0.84 82.8 87.5 0.85
NEAP w/o Sinkhorn 84.3 89.2 0.86 86.3 91.2 0.88
NEAP 88.3 89.7 0.89 89.7 92.4 0.91

BE
RT

Avg 81.5 85.5 0.83 80.4 85.0 0.82
NameBERT 86.1 90.5 0.88 86.9 92.0 0.89
NEAP w/o Sinkhorn 87.2 92.1 0.89 88.5 93.5 0.90
NEAP 91.4 93.1 0.92 92.8 95.2 0.94

Table 5: The sparsity analysis of NEAP

Methods SRPRSEN−FR SRPRSEN−DE
∥M𝑙 ∥0 |E𝑠 |/|E𝑡 | 𝑅𝑜𝑐𝑐 ∥M𝑙 ∥0 |E𝑠 |/|E𝑡 | 𝑅𝑜𝑐𝑐

NEAP w/ f. 3,353,516 15,000 1.5% 1,641,575 15,000 0.7%
NEAP w/ b. 625,907 15,000 0.3% 308,910 15,000 0.1%

semantic information for EA. By removing the entire SRS compo-
nent, EASY performs EA purely based on the name information
provided by NEAP. The results drop by 5.1% and 4.6% on H@1
(EASY vs. EASY w/o SRS) on EN-FR dataset and EN-DE dataset,
respectively. It verifies that iteratively combining both name and
structural information can correct the misaligned entities and thus
contributes to more accurate EA results. Iteration (IL) brings no
more than 1% absolute improvement. This is because NEAP and
SRS already allow our framework to capture fairly good alignment
in the first iteration round, leaving smaller room for further im-
provement. By removing CSLS, the results show minor drops. Since
CSLS is used to mitigate the hubness phenomenon in a dense space
[20, 37], it cannot substantially improve EASY due to the sparsity
of entities similarity computation. Besides, by replacing the entity
similarity matrix using both semantic-level and string-level name
information with that only involving semantic-level name informa-
tion, the results drop no more than 1.9% on H@1 (EASY vs. EASY
w/o 𝑴𝒆 ). It demonstrates that, although involving different levels
of name information can improve the EA results, only considering
semantic-level information can also achieve satisfactory results.

4.3 NEAP Analysis
In this section, we further investigate the performance of NEAP
by (i) using different pre-train language models to represent enti-
ties, and (ii) comparing NEAP with other name-based heuristics.
We directly apply NEAP to align entities without the subsequent
refinement strategy. All experiments in the following subsections
are conducted on the SRPRS dataset.

4.3.1 Pre-trained Language Models. We explore the performance
of NEAP by employing different pre-trained language models, i.e.,
fastText and BERT, with results reported in Table 4. The first ob-
servation is that BERT-based NEAP achieves the best EA results,
contributed by the characteristics of BERT. BERT uses a large-scale
corpus for accurately learning the semantic information of each
token, and it achieves state-of-the-art performance in many NLP

tasks. The second observation is that even using the relatively infe-
rior fastText model, NEAP still surpasses the majority of existing
methods whose performance is reported in Table 2. This confirms
the superiority of using NEAP in EA.

4.3.2 Name-basedHeuristics. Wealso compare our proposedNEAP
with five competitive name-based heuristics. Competitors repre-
sent entities in different ways, and derive the EA results according
to the similarity between entities’ names. Concretely, we use (i)
Levenshtein, a string-based metric to measure the character similar-
ity between two entities’ name; (ii) Avg, which represents entities
by averaging the corresponding token embeddings; and (iii) CPM
[29], which concatenates different types of power mean word em-
beddings. A recent work DAT uses CPM to initialize the entity
representations, and we use the settings reported in DAT to imple-
ment CPM; (iv) NameBERT [21], which applies the max-pooling
strategy in a pre-trained BERT to obtain entity representations; and
(v) NEAP w/o Sinkhorn, which obtains the name-based entity align-
ment directly without using the Sinkhorn process to optimize the
alignment. Again, the results are depicted in Table 4. First, NEAP
is observed to outperform all the competitors in all metrics. This
validates that characterizing entities with different weighted tokens
does capture more semantic features for EA. Second, even though
we remove the Sinkhorn in NEAP, it still performs better than most
of the existing heuristics. This further shows the superiority of
NEAP that is simple but highly effective.

4.3.3 Sparsity Analysis. We explore the sparsity of NEAP by com-
puting the memory footprint of the entity similarity matrix 𝑴𝒍 .
It is known to all, only non-zero elements in a sparse matrix take
up memory. We introduce a metric occupation ratio, denoted as
𝑅𝑜𝑐𝑐 , to quantify the memory footprint. 𝑅𝑜𝑐𝑐 is defined as ∥𝑴𝒍 ∥0

|E𝑠 |× |E𝑡 | .
Here, ∥𝑴𝒍 ∥0 represents the number of non-zero elements in 𝑴𝒍 ,
measuring the sparsity of this matrix [13]; |E𝑠 | × |E𝑡 | denotes the
maximum occupation of the similarity matrix, where all elements
are non-zero. We report the results by using fastText (f.) and BERT
(b.) respectively in Table 5. We observe that compared to the dense
similarity matrix where all elements are non-zero, 𝑅𝑜𝑐𝑐 is ∼ 0.1%
in the best case (i.e., using BERT for the EN-DE dataset) and no
more than 1.5% in the worse case (i.e., using fastText for the EN-FR
dataset). This demonstrates the high sparsity of NEAP.

4.4 SRS Analysis
4.4.1 Iterative Strategy Variants. Next, we justify the effectiveness
of our proposed SRS by comparing it with another four iterative
strategies4 that generate seeds in different ways, i.e., (i) DAT-I [52],
where seed alignment requires the similarity between two entities
in a seed to be the highest from both sides; (ii) MRAEA-I [23], a
bi-directional iterative strategy that selects newly-aligned seeds in
each iteration if and only if two entities from different KGs are mu-
tually nearest neighbors of each other; (iii) TH [56], which collects
entity pairs with similarity exceeding a given threshold as seeds in
each iteration; and (iv) MWGM [34], which ensures the similarity
within each selected seed alignment is above a given threshold and
meanwhile guarantees the 1-to-1 labeling. We replace SRSwith one
4Note that, in all iterative strategies, we apply the state-of-the-art structure-based EA
model RREA to learn entity representations for fair comparisons.
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Figure 3: Comparison results of iterative training strategies
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Figure 4: The results of threshold analysis

of the above mentioned strategies under our framework, and tune
the parameters according to their original papers. We utilize two
metrics to measure the performance of different iterative strategies,
i.e., IT-precision that is defined as the fraction of truly discovered
seeds (that match the ground truth) over the total number of the
generated seeds; and IT-recall that is defined as the fraction of truly
discovered seeds over the total number of real entity alignment.

We plot their performance in Figure 3. We first observe that,
in the first iteration, all the strategies achieve same precision and
recall. This is because, seeds are only produced by NEAP in this
iteration. As more iteration rounds are executed, IT-precision of
SRS and DAT-I is observed to increase the values while that of
other strategies drops. The reason is that, the initial seeds (w.r.t. the
first round) achieve very high IT-precision values. Simply utilizing
threshold or mutually nearest guarantee for seed generation is
error-prone, accumulating erroneous seeds during the iteration. On
the other hand, IT-recall of all the strategies is observed to increase
its value as more iterations are performed. The reason is that the
correct seeds generated in each round help train a reliable structure-
based EA model, which can help identify more accurate seeds at
the next iteration round. Last but not the least, it is observed that
our proposed SRS is able to achieve higher precision and recall than
other iterative strategies. This verifies that iteratively combining
both name information and structural information contributes to
more accurate alignment results. On the contrary, the existing
iterative methods rely on the features that are fitted by the models
to generate pseudo seeds and hence suffer from the loss of actual
information to a certain extent.

4.4.2 Threshold Justification. We analyze the justification of lever-
aging the threshold (i.e., averaged graph matching discrepancy,
denoted as 𝑑) for identifying the misaligned entities. Let correct
alignment rate (denoted as 𝑅𝑐𝑎) be the proportion of correct aligned
entities to the total number of alignments. We change 𝑅𝑐𝑎 from

0 to 100% by replacing the ground truth EA with misalignment
(i.e., random permutation). We introduce a new metric TH-F1-score
for evaluation. TH-F1-score is the harmonic mean between TH-
precision (𝑃 ) and TH-recall (𝑅), i.e., 2·𝑃 ·𝑅

𝑃+𝑅 . Here, 𝑃 is defined as the
fraction of truly discovered seeds (that match the ground truth)
over the total number of the retained seeds by using the threshold
𝑑 for filtering. 𝑅 is defined as the fraction of truly discovered seeds
over the total number of ground truth contained the current EA.

Figure 4 illustrates the performance of our graph matching dis-
crepancy on different 𝑅𝑐𝑎 . First, the averaged graph matching dis-
crepancy of (correctly) aligned entity pairs is always lower than
that of misaligned entity pairs. This shows the effectiveness of
using 𝑑 to distinguish the correctly aligned pairs and misaligned
pairs. Second, the averaged graph matching discrepancy of total
entity pairs decreases as 𝑅𝑐𝑎 increases. This is because the more
correct pairs, the smaller the graph matching discrepancy between
KGs. Besides, as expected, TH-F1-score grows when 𝑅𝑐𝑎 ascends,
since the fewer the misaligned pairs, the easier the filtering out the
correct pair via the threshold 𝑑 . Furthermore, we can observe that
when 𝑅𝑐𝑎 exceeds 60%, we can generate reliable seeds based on 𝑑
(i.e., TH-F1-score>70%). Since our NEAP ensures that 𝑅𝑐𝑎 exceeds
60% in the initial entity alignment, it verifies the effectiveness of
the threshold for selecting confident seeds in SRS.

5 CONCLUSIONS
In this paper, we explore an effective end-to-end EA framework
EASY. It first aligns entities based on entities’ name information
without any complex training process via our presented NEAP.
NEAP considers both global features and local features of entities’
names, and greatly saves memory cost without sacrificing the ex-
pressive power of entities. Then, we present a novel iterative strat-
egy SRS, which includes a novel concept of graph matching dis-
crepancy and a confident seeds auto-generator for the guidance
of fusing the features of both name and structural information to
correct the misaligned entities in NEAP, and thus improves the
EA results. Considerable experimental results on cross-lingual EA
benchmarks demonstrate the superiority of EASY. In our current
implementation, EASY does not consider attribute information (a
popular type of auxiliary information) as it is error-prone. In the
future, we would like to study the attribute information for EA.

ACKNOWLEDGMENTS
This work was supported by the NSFC under Grant No. 62025206
and 61972338. Lu Chen is the corresponding author of the work.

Session 3F: Applications 3  SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

785



REFERENCES
[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary G. Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. In ISWC.
722–735.

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. 2017.
Enriching Word Vectors with Subword Information. TACL 5 (2017), 135–146.

[3] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In SIGMOD. 1247–1250.

[4] Antoine Bordes, Sumit Chopra, and Jason Weston. 2014. Question Answering
with Subgraph Embeddings. In EMNLP. 615–620.

[5] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In NIPS. 2787–2795.

[6] Yixin Cao, Zhiyuan Liu, Chengjiang Li, Zhiyuan Liu, Juanzi Li, and Tat-Seng
Chua. 2019. Multi-Channel Graph Neural Network for Entity Alignment. In ACL.
1452–1461.

[7] Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven Skiena, and Carlo Zaniolo.
2018. Co-training Embeddings of Knowledge Graphs and Entity Descriptions for
Cross-lingual Entity Alignment. In IJCAI. 3998–4004.

[8] Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo Zaniolo. 2017. Multilingual
Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment. In IJCAI.
1511–1517.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT. 4171–4186.

[10] Matthias Fey, Jan Eric Lenssen, Christopher Morris, Jonathan Masci, and Nils M.
Kriege. 2020. Deep Graph Matching Consensus. In ICLR.

[11] Lingbing Guo, Zequn Sun, and Wei Hu. 2019. Learning to Exploit Long-term
Relational Dependencies in Knowledge Graphs. In ICML. 2505–2514.

[12] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. 2012. Neural networks
for machine learning lecture 6a overview of mini-batch gradient descent. (2012).

[13] Niall P. Hurley and Scott T. Rickard. 2009. Comparing measures of sparsity. IEEE
Trans. Inf. Theory 55, 10 (2009), 4723–4741.

[14] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. 2011. LogMap: Logic-Based
and Scalable Ontology Matching. In ISWC. 273–288.

[15] Armand Joulin, Piotr Bojanowski, Tomás Mikolov, Hervé Jégou, and Edouard
Grave. 2018. Loss in Translation: Learning Bilingual Word Mapping with a
Retrieval Criterion. In EMNLP. 2979–2984.

[16] Chao Kong, Ming Gao, Chen Xu, Yunbin Fu, Weining Qian, and Aoying Zhou.
2019. EnAli: entity alignment across multiple heterogeneous data sources. Fron-
tiers Comput. Sci. 13, 1 (2019), 157–169.

[17] Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer,
and Hervé Jégou. 2018. Word translation without parallel data. In ICLR.

[18] Chengjiang Li, Yixin Cao, Lei Hou, Jiaxin Shi, Juanzi Li, and Tat-Seng Chua. 2019.
Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and
Cross-graph Model. In EMNLP. 2723–2732.

[19] Xixun Lin, Hong Yang, Jia Wu, Chuan Zhou, and Bin Wang. 2019. Guiding
Cross-lingual Entity Alignment via Adversarial Knowledge Embedding. In ICDM.
429–438.

[20] Fangyu Liu, Muhao Chen, Dan Roth, and Nigel Collier. 2020. Visual Pivoting for
(Unsupervised) Entity Alignment. arXiv preprint arXiv:2009.13603 (2020).

[21] Zhiyuan Liu, Yixin Cao, Liangming Pan, Juanzi Li, and Tat-Seng Chua. 2020.
Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment.
In EMNLP. 6355–6364.

[22] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. 2015. YAGO3: A
Knowledge Base from Multilingual Wikipedias. In CIDR.

[23] Xin Mao, Wenting Wang, Huimin Xu, Man Lan, and Yuanbin Wu. 2020. MRAEA:
An Efficient and Robust Entity Alignment Approach for Cross-lingual Knowledge
Graph. InWSDM. 420–428.

[24] Xin Mao,WentingWang, Huimin Xu, YuanbinWu, andMan Lan. 2020. Relational
Reflection Entity Alignment. In CIKM. 1095–1104.

[25] Hao Nie, Xianpei Han, Le Sun, Chi Man Wong, Qiang Chen, Suhui Wu, and Wei
Zhang. 2020. Global Structure and Local Semantics-Preserved Embeddings for
Entity Alignment. In IJCAI. 3658–3664.

[26] Shichao Pei, Lu Yu, Robert Hoehndorf, and Xiangliang Zhang. 2019. Semi-
Supervised Entity Alignment via Knowledge Graph Embedding with Awareness
of Degree Difference. InWWW. 3130–3136.

[27] Shichao Pei, Lu Yu, Guoxian Yu, and Xiangliang Zhang. 2020. REA: Robust Cross-
lingual Entity Alignment Between Knowledge Graphs. In KDD. 2175–2184.

[28] Shichao Pei, Lu Yu, and Xiangliang Zhang. 2019. Improving Cross-lingual Entity
Alignment via Optimal Transport. In IJCAI. 3231–3237.

[29] Andreas Rücklé, Steffen Eger, Maxime Peyrard, and Iryna Gurevych. 2018. Con-
catenated power mean word embeddings as universal cross-lingual sentence

representations. arXiv preprint arXiv:1803.01400 (2018).
[30] Xiaofei Shi and Yanghua Xiao. 2019. Modeling Multi-mapping Relations for

Precise Cross-lingual Entity Alignment. In EMNLP. 813–822.
[31] Richard Sinkhorn and Paul Knopp. 1967. Concerning nonnegative matrices and

doubly stochastic matrices. Pacific J. Math. 21, 2 (1967), 343–348.
[32] Zequn Sun, Muhao Chen, Wei Hu, Chengming Wang, Jian Dai, and Wei Zhang.

2020. Knowledge Association with Hyperbolic Knowledge Graph Embeddings.
In EMNLP. 5704–5716.

[33] Zequn Sun, Wei Hu, and Chengkai Li. 2017. Cross-Lingual Entity Alignment via
Joint Attribute-Preserving Embedding. In ISWC. 628–644.

[34] Zequn Sun, Wei Hu, Qingheng Zhang, and Yuzhong Qu. 2018. Bootstrapping
Entity Alignment with Knowledge Graph Embedding. In IJCAI. 4396–4402.

[35] Zequn Sun, JiaCheng Huang, Wei Hu, Muhao Chen, Lingbing Guo, and Yuzhong
Qu. 2019. TransEdge: Translating Relation-Contextualized Embeddings for
Knowledge Graphs. In ISWC. 612–629.

[36] Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, and
Yuzhong Qu. 2020. Knowledge Graph Alignment Network with Gated Multi-Hop
Neighborhood Aggregation. In AAAI. 222–229.

[37] Zequn Sun, Qingheng Zhang, Wei Hu, ChengmingWang, Muhao Chen, Farahnaz
Akrami, and Chengkai Li. 2020. A Benchmarking Study of Embedding-based
Entity Alignment for Knowledge Graphs. PVLDB 13, 11 (2020), 2326–2340.

[38] Xiaobin Tang, Jing Zhang, Bo Chen, Yang Yang, Hong Chen, and Cuiping Li. 2020.
BERT-INT: A BERT-based Interaction Model For Knowledge Graph Alignment.
In IJCAI. 3174–3180.

[39] Peihao Tong, Qifan Zhang, and Junjie Yao. 2019. Leveraging Domain Context for
Question Answering Over Knowledge Graph. Data Sci. Eng. 4, 4 (2019), 323–335.

[40] Bayu Distiawan Trisedya, Jianzhong Qi, and Rui Zhang. 2019. Entity Alignment
between Knowledge Graphs Using Attribute Embeddings. In AAAI. 297–304.

[41] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[42] Zhichun Wang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. 2018. Cross-lingual
Knowledge Graph Alignment via Graph Convolutional Networks. In EMNLP.
349–357.

[43] Zhichun Wang, Jinjian Yang, and Xiaoju Ye. 2020. Knowledge Graph Alignment
with Entity-Pair Embedding. In EMNLP. 1672–1680.

[44] Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Rui Yan, and Dongyan Zhao.
2019. Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs.
In IJCAI. 5278–5284.

[45] Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, and Dongyan Zhao. 2019.
Jointly Learning Entity and Relation Representations for Entity Alignment. In
EMNLP. 240–249.

[46] Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, and Dongyan Zhao. 2020.
Neighborhood Matching Network for Entity Alignment. In ACL. 6477–6487.

[47] Kun Xu, Linfeng Song, Yansong Feng, Yan Song, and Dong Yu. 2020. Coordinated
Reasoning for Cross-Lingual Knowledge Graph Alignment. In AAAI. 9354–9361.

[48] Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, and Dong
Yu. 2019. Cross-lingual Knowledge Graph Alignment via Graph Matching Neural
Network. In ACL. 3156–3161.

[49] Hsiu-Wei Yang, Yanyan Zou, Peng Shi, Wei Lu, Jimmy Lin, and Xu Sun. 2019.
Aligning Cross-Lingual Entities with Multi-Aspect Information. In EMNLP. 4430–
4440.

[50] Kai Yang, Shaoqin Liu, Junfeng Zhao, Yasha Wang, and Bing Xie. 2020. COTSAE:
CO-Training of Structure and Attribute Embeddings for Entity Alignment. In
AAAI. 3025–3032.

[51] Weixin Zeng, Xiang Zhao, Jiuyang Tang, and Xuemin Lin. 2020. Collective Entity
Alignment via Adaptive Features. In ICDE. 1870–1873.

[52] Weixin Zeng, Xiang Zhao, Wei Wang, Jiuyang Tang, and Zhen Tan. 2020. Degree-
Aware Alignment for Entities in Tail. In SIGIR. 811–820.

[53] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative Knowledge Base Embedding for Recommender Systems. In
SIGKDD. 353–362.

[54] Qingheng Zhang, Zequn Sun, Wei Hu, Muhao Chen, Lingbing Guo, and Yuzhong
Qu. 2019. Multi-view Knowledge Graph Embedding for Entity Alignment. In
IJCAI. 5429–5435.

[55] Xiang Zhao, Weixin Zeng, Jiuyang Tang, Wei Wang, and Fabian M. Suchanek.
2020. An experimental study of state-of-the-art entity alignment approaches.
TKDE 10 (2020).

[56] Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2017. Iterative Entity
Alignment via Joint Knowledge Embeddings. In IJCAI. 4258–4264.

[57] Qiannan Zhu, Xiaofei Zhou, Jia Wu, Jianlong Tan, and Li Guo. 2019.
Neighborhood-Aware Attentional Representation for Multilingual Knowledge
Graphs. In IJCAI. 1943–1949.

[58] Yan Zhuang, Guoliang Li, Zhuojian Zhong, and Jianhua Feng. 2017. Hike: A
Hybrid Human-Machine Method for Entity Alignment in Large-Scale Knowledge
Bases. In CIKM. 1917–1926.

Session 3F: Applications 3  SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

786


	Make it easy: An effective end-to-end entity alignment framework
	Citation

	Abstract
	1 Introduction
	2 Related Work
	3 EASY Framework
	3.1 Preliminaries
	3.2 Name-based Entity Alignment Procedure
	3.3 Structure-based Refinement Strategy

	4 Experiments
	4.1 Main Results
	4.2 Ablation Study
	4.3 NEAP Analysis
	4.4 SRS Analysis

	5 Conclusions
	Acknowledgments
	References

