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Abstract. The sequences of user check-ins form semantic trajectories
that represent the movement of users through time, along with the types
of POIs visited. Extracting patterns in semantic trajectories can be
widely used in applications such as route planning and trip recommen-
dation. Existing studies focus on the entire time duration of the data,
which may miss some temporally significant patterns. In addition, they
require thresholds to define the interestingness of the patterns. Motivated
by the above, we study a new problem of finding top-k semantic trajec-
tory patterns w.r.t. a given time period and categories by considering
the spatial closeness of POIs. Specifically, we propose a novel algorithm,
EC2M that converts the problem from POI-based to cluster-based pat-
tern search and progressively consider pattern sequences with efficient
pruning strategies at different steps. Two hashmap structures are pro-
posed to validate the spatial closeness of the trajectories that constitute
temporally relevant patterns. Experimental results on real-life trajectory
data verify both the efficiency and effectiveness of our method.

Keywords: Pattern search · Trajectory queries · Semantic-temporal.

1 Introduction
Recommendation systems utilize data analysis techniques to identify items that
match the user’s preferences and interests. According to Verified Market Re-
search, global recommendation system market is projected to reach $15.46B by
2026 from $1.12B in 2018 [1]. In this paper, we focus on finding top-k seman-
tic trajectory patterns which is related to a type of recommendation particularly
useful for entertainment and travel. A typical use case is that Alice, who is going
to visit New York City for the first time during Easter holiday, wants to spend
quality time at museum, park, and shops. She does not have time to study NYC
before her trip. Instead, she relies on the wisdom of the crowd and wants to
follow the popular routes people took to visit museum/park/shops last Easter.

Popular location-based services such as Foursquare, Gowalla, and Yelp al-
low users to upload and update the description of Points-of-interests (POIs)
and hence lots of POIs are associated with semantic information such as cate-
gories. Accordingly, the sequence of check-ins of a specific user over time forms
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Fig. 1: A running example of five trajectories with their corresponding check-in
sequences and timestamps

a semantic trajectory, which represents the movement of that user at different
timestamps. To support Alice’s query, we focus only on the part of the trajecto-
ries during last Easter where the visited POIs belong to museum, and/or park,
and/or shops. Ideally, such trajectories of many other users should constitute the
most popular routes taken during Easter by users who share similar interests as
Alice. Since there can be many spatially close-by POIs of the same category
(e.g., shops), the popular routes are expected to include the trajectories that go
through close-by POIs of the same category. We study the problem of finding
such top-k popular routes, in other words, top-k semantic trajectory patterns.

Although there are existing studies on semantic trajectory pattern min-
ing [18, 5] and top-k frequent pattern mining [9], they suffer from at least one of
the following drawbacks. (i) Finding a threshold that defines the interestingness
of a pattern is difficult. Existing studies [18, 5] measure the interestingness of a
pattern based on the number of trajectories that exhibit that pattern, namely
support, and rely on users to specify a minimum support. Hence, the search re-
sults highly depend on users’ knowledge on the support number of certain pat-
terns, and an improper value may run the risk of missing interesting patterns.
(ii) Not considering time may miss interesting patterns. Existing studies [18,
5] mine the patterns from the entire trajectory time duration. However, it is
well-known that the activities people perform and the places people visit vary
at different times. Although these mining algorithms can be applied over the
sub-trajectories w.r.t. the given time period, their efficiency suffer greatly when
we consider a set of different category sequences. (more details in Section 6).
Moreover, the other drawbacks still apply even their work is extended for time
dimension. (iii) Lack of spatial closeness consideration. The study [9] can only
be applied over semantic trajectory sequences by ignoring the spatial closeness
between trajectories.

Motivated by the above and to complement existing studies, we propose
a new problem of finding top-k semantic trajectory patterns for a given set of
categories ψ and time period P . Informally, the query finds k semantic trajectory
patterns, where each pattern is represented by a sequence of POI clusters of
given categories. A POI cluster in the pattern consists of the POIs of the same
category and are spatially close (e.g., shops that are close-by) to overcome the
third drawback. The consideration of P addresses the first drawback. The rank
of the pattern considers both the number of query categories appearing in the
pattern and the number of trajectories that cover the pattern. Thus, we avoid
the necessity of specifying any threshold and overcome the second drawback.



Time Period-based Top-k Semantic Trajectory Pattern Query 3

To illustrate the patterns of interest, we plot an example in Figure 1 with
six trajectories. Existing work [9] will return the most frequent pattern con-
taining two categories cs1 = 〈attraction → restaurant〉 with a support of all
six trajectories. If the time period is set to P = 〈5 : 15〉, the support of cs1
changes to T2, T3, T4, T5, T6. However, since these trajectories are spatially far-
away, such a sequence is not able to suggest any practical route that the user
could follow. If we consider the spatial closeness of matching categories, pattern
s1 = 〈PCattraction1 → PCrestaurant2 〉 shown with black line ellipse containing
trajectories (T3, T5, T6) is a frequent route to take w.r.t. P .

To find such top-k semantic trajectory patterns, we have to address two chal-
lenges. First, how to assign close-by trajectories into the same pattern efficiently
and represent the pattern in an informative way? Second, how to accelerate the
finding of top-k patterns without enumerating all the subsets of given categories,
where we can check as few candidates as possible and prune unpromising pat-
terns at an early stage. In order to address the above challenges, we make the
following contributions:

– We address the drawbacks of existing studies that interesting semantic pat-
terns may get missed by proposing the novel Time Period-based Top-k Se-
mantic Pattern query, which considers a given time period of interest and a
set of categories as input and returns top-k patterns w.r.t. the constraints.

– We propose the algorithm EC2M that converts the problem from POIs to a
cluster-based pattern search problem to limit the search space significantly.
We apply a progressive search strategy from shorter to longer patterns to
guarantee the return of top-k patterns. We present a hashmap-based data
structure, namely Enclosing Cluster Cooccurrence Map for efficient prun-
ing at different steps and another structure namely Neighbors Bitmap for
validating the spatial closeness of trajectories within given time period.

– We conduct extensive experiments to evaluate the efficiency of our query
processing algorithm over two real-world datasets and case studies to demon-
strate the effectiveness of our top-k semantic trajectory patterns.

2 Problem Formulation
Let S be a set of semantic categories (e.g., restaurant, park), and O be a set of
POIs, where each o ∈ O is a pair (o.loc, o.cat) of a location o.loc and a category
o.cat ∈ S. Let D be a database of trajectories, where a trajectory T ∈ D is
represented as a finite sequence of pairs of a POI and a timestamp (oi, ti). Here,
timestamp ti corresponds to the time when the POI oi was visited by T .

A POI cluster (PC ) is formed by a set of POIs that belong to the same
category and meanwhile are located close to each other. A semantic trajectory
pattern (pattern in short) is a sequence of such POI clusters where each
trajectory in the pattern visits at least one POI in every PC of the sequence.

Example 1. Three close-by POIs with the category ‘restaurant’ (blue dots) in
Figure 1 form a POI cluster PC1 bounded by a blue ellipse. Note that POIs of
the same category inside the black dotted ellipse are not a part of PC1 because
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they are located far away. Three close-by ‘attraction’ POIs (red triangles) also
form a POI cluster PC2 bounded by a red ellipse. Since trajectories T3, T5, T6
visit at least a POI in PC1 followed by another POI in PC2, these trajectories
form a pattern s = 〈PCattraction1 → PCrestaurant2 〉.

The closeness relationship for clustering depends on the intended application.
We use DBSCAN [8] to guarantee the spatial proximity among POIs in a PC ,
while our problem and approaches are orthogonal to the choice of clustering
technique. To find patterns during a specific time period P , we only need to
consider the sub-trajectories where the corresponding timestamps are within P .
Now, we are ready to formally define the trajectory coverage of a pattern.

Definition 1. Trajectory coverage: Given a time period P and a threshold
∆t, a trajectory T covers a pattern s = 〈PCcat11 , . . . , PCcatii 〉 with the category
sequence 〈cat1, · · · , cati〉 if the following conditions are satisfied: (i) there is a
subsequence of POIs in T , denoted as T ′ = (o1, o2, . . . , oi), such that ∀oi ∈ T ′,
oi.cat = cati; (ii) the timestamps of all POIs in T ′ are within P ; and (iii) for
any POI oj ∈ T ′ with j < i, the time gap between oj and its subsequent POI
oj+1 is always bounded by ∆t, i.e., (tj+1 − tj) ≤ ∆t always holds.

Here, the parameter ∆t is used to find the patterns where the consecutive
POI visits happened within a reasonable time gap (e.g., by setting ∆t = 24
hours). Note that, if a trajectory contains multiple sub-trajectories with the
same category sequence, that trajectory covers the pattern only once, but all
those unique sub-trajectories are used to form the clusters of the pattern.

Example 2. Given a query with P = 〈5, 15〉, a pattern s = 〈PCattraction1 →
PCrestaurant2 〉 located in the solid black ellipse, and ∆t = 10, trajectories T3, T5,
and T6 cover s (Figure 1). Although T1 contains POIs belonging to the given
categories, its corresponding timestamps are not within P . Hence, it is worth
noting that the POIs that belong only to T1 are not included in the pattern’s
POI clusters (shown as the black line ellipses).

When a pattern w.r.t. a time period is covered by many trajectories, it ac-
tually implies a “popular” route taken by users when visiting those categories
within that time period. Now we introduce a measure of the popularity of a
pattern that considers both the number of trajectories covering the pattern, and
its semantic importance to a user query.

Definition 2. Popularity measure: Given a set of categories ψ, a pattern s
where ∀cati ∈ s, cati ∈ ψ, and the trajectories covering s w.r.t. P and ∆t (by
Definition 1), the popularity of s, denoted as Sr(s, ψ), is computed by Equa-
tion (1).

Sr(s, ψ) = α
|Ds

P |
|DP |

+ (1− α)× |s|
|ψ|

(1)

Here, Ds
P is the set of trajectories covering s, DP is the set of trajectories

containing at least one POI of any category in ψ, |s| is the number of categories
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with at least one trajectory covering s, and α ∈ [0, 1] is used to set the prefer-

ence over one component to the other. The second component |s||ψ| (denoted as

‘category sub-score’) quantifies the matching between the categories of s and ψ.
Although there are many ways to combine two components in a scoring function,
weighted summation is the most common in many spatial-keyword studies [7,
10]. Now we introduce our Time Period-based Top-k Semantic Pattern query.

Definition 3. Time period-based Top-k Semantic Pattern (TkSP): Given
a trajectory database D, a time period P , a time threshold ∆t, and categories
of interest ψ, the TkSP query is to find k highest scoring patterns w.r.t. P and
ψ (by Definition 2).

Example 3. A TkSP query is given with k = 1, P = 〈5, 15〉, ∆t = 10, and ψ =
〈restaurant, attraction〉. We find six candidate patterns s1 = 〈PCattraction1 〉 :
{T3, T5, T6}, s2 = 〈PCrestaurant2 〉 : {T3, T5, T6}, s3 = 〈PCattraction3 〉 : {T2, T4},
s4 = 〈PCrestaurant4 〉 : {T2, T4}, s5 = 〈PCattraction1 → PCrestaurant2 〉 : {T3, T5, T6},
and s6 = 〈PCattraction3 → PCrestaurant4 〉 : {T2, T4}. Their scores for α = 0.5
are calculated as, Sr(s1, ψ) = Sr(s2, ψ) = 0.5 · 35 + 0.5 · 12 = 0.55, Sr(s3, ψ) =
Sr(s4, ψ) = 0.5 · 25 + 0.5 · 12 = 0.45, Sr(s5, ψ) = 0.5 · 35 + 0.5 · 22 = 0.8, Sr(s6, ψ) =
0.5 · 2

5 + 0.5 · 2
2 = 0.7. Pattern s5 that contains both query keywords and 3

trajectories is returned as the result with the highest score.

3 Baseline Method

Since existing approaches do not directly answer TkSP query, we tailor the
state-of-the-art Top-k sequential pattern mining (TkS) [9], denoted as TkS* ,
for our baseline. It follows a retrieval-and-refinement framework. It first retrieves
the POIs of trajectories satisfying ψ and P , with trajectories indexed by their
timestamps using a B+-tree [6]. It then applies TkS* to find the top-k patterns
from these sub-trajectories. We use ‘trajectory’ instead of ‘sub-trajectory’ in
the following for simplicity. One may think of enumerating all permutations of
query categories and finding the trajectories covering a permutation as a pattern.
However, trajectories covering spatially distant patterns with the same category
sequence need to be distinguished (Section 2). Different from TkS, TkSP expects
multiple patterns corresponding to a category sequence and hence TkS is tailored
to compute their popularity scores independently.
Generation of top-k patterns. TkS* first generates the POI clusters from
the retrieved POIs. Similar to TkS, we use a vertical bitmap representation to
find trajectories covering a specific POI and create a cooccurrence map to find
subsequent POIs visited within ∆t timestamps for a specfic POI. If a trajectory
contains a POI in the POI cluster, the position that POI of that trajectory in
the bitmap is set to 1, otherwise 0. These POI clusters are the 1-length patterns,
which are the current candidate patterns. The candidates are maintained in
descending order of their popularity scores. In each iteration, if the popularity
score of the head pattern hp (i.e., the candidate with the highest score) is larger
than that of a current result, the result set is updated accordingly with hp.
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Since a pattern can be extended by adding a POI cluster of a new category,
the popularity score of any longer pattern can increase. Hence, we check what
could be the ‘potential’ score by extending hp. As an extended pattern from hp
can have at most the same trajectories as hp and at most |ψ| categories, the
potential score is calculated by putting these maximum values in Equation (1).
If this potential score is larger than that of the k-th pattern in the current result
set, we extend hp using the POI cooccurrence map w.r.t. ∆t constraint and
the cluster validity (Section 4.1). If the extended patterns of hp have potential
popularity scores that are greater than k-th pattern in the current result set,
these patterns are added as candidates. Once all candidates are checked, the
result set of k patterns is returned.

TkS* is simple but suffers from several major drawbacks: (i) Generating
the POI clusters is expensive. (ii) The candidates cannot be pruned if a longer
pattern with potential score higher than the current results can be generated
from them. As a result, a huge number of candidates need to be checked and the
actual trajectories covering those patterns need to be verified in each iteration.

4 Our approach
To overcome the drawbacks of the baseline, we propose a novel algorithm based
on an Enclosing Cluster Cooccurrence Map, namely EC2M, that takes advantage
of the closeness relations of POI clusters and a progressive search technique. We
start by presenting some high level key concepts of the algorithm.
1) POI to cluster conversion. It is well-known that POIs (e.g., restaurants)
do not change their locations often. Hence, we include this pre-processing step
where all POIs in the dataset are clustered based on the category and spatial
closeness, but without considering the exact trajectories passing through them.
We denote these clusters as the ‘enclosing clusters’. In Figure 1, the green ellipse
shows an enclosing cluster corresponding to category ‘attraction’.
2) Pruning search space by pattern length. For simplicity, we refer to the
number of POI-clusters in a pattern as its ‘length’. The following key concept
can significantly prune the search space – The maximum length of a pattern
for any given query is |ψ|. The reason is: the popularity score of pattern s
is determined by two sub-scores, where one depends on the number of covering
trajectories and the other on its number of categories. Adding a new cluster to
s whose category already exists in s does not increase its number of categories.
Moreover, for any pattern s′ extended from s, the trajectories that cover s′ will
always cover s. Therefore, extending a pattern from a given pattern s by adding
a new cluster whose category already exists in s, the popularity score does not
increase. Therefore, we only need to consider the patterns up to length l = |ψ|.
3) Upper bound score. To enable the filtering of unpromising candidates, we
introduce the enclosing cluster cooccurrence map. This map has each enclosing
cluster as the keys and the list of its covering trajectories w.r.t. ∆t and P as
values. It is created only when we need to search for patterns greater than 1-
length (explained later). The maximum number of the covering trajectories for a
pattern is the number of trajectories that are common in all ‘enclosing clusters’
of that pattern, which can be readily obtained from the map. Such upper bound
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Fig. 2: Enclosing cluster information
can be loose if we consider a specific time period. Therefore, we split the time
dimension into multiple bins of fixed duration and organize the cooccurrence map
accordingly as shown in Figure 2c. If a trajectory spans two or more consecutive
time bins, we store it in all the corresponding bins.
4) Pattern extension and progressive search. If a pattern s is extended to
s′ by adding a category that is not in s, s′ may have a higher popularity score
than s as its category sub-score increases. Thus, we cannot prune any candidate
s without checking all its potential extensions that might outscore it.

Therefore, we progressively search patterns from length l = 1 to length l =
|ψ|. For each length, we find top-k patterns up to that length. Hence, for pattern
s with length i currently under consideration, it will be guaranteed that all
the shorter patterns that s might outscore, have been already considered. We
also compute the maximum possible score that can be obtained by extending
current s using the enclosing cluster co-occurance map. Only when that score
is greater than the current results, we consider the possible patterns of length
i+ 1 extended from s (also obtained from the map). This step guarantees that
any longer pattern that might outscore a shorter pattern will not be missed.

If the pattern under consideration cannot be pruned based on enclosing clus-
ter based upper bound, we need to find the covering trajectories on the fly
to refine its actual POI clusters. All clusters in a pattern need to be checked
against the ‘valid cluster connectivity’ using the covering sub-trajectories.
The cluster validation is presented in more details next.

4.1 Cluster validity check
All patterns that are passed to the cluster validity check contain POIs grouped by
the enclosing cluster information. However, as the enclosing clusters are formed
without considering the exact trajectories actually passing through their POIs,
it is possible that some POIs in an enclosing cluster are not part of the actual
pattern. The following example illustrate one such scenario.
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Example 4. Figure 2a shows a pattern s generated based on the enclosing clus-
ters EC1 and EC2. Enclosing clusters are generated based on all POIs w.r.t.
spatial closeness. We use DBSCAN clustering w.r.t. the parameters: minPts
and ε, where at least minPts POIs have to be within ε distance from any POI
of the same cluster to form a cluster. EC1 contains five ‘attraction’ and EC2

contains eight ‘restaurant ’ POIs. Assume the pattern is covered by trajectories
T1, T2, T3, and T4. The attraction POIs of the four trajectories form a cluster,
but T4’s restaurant POI cannot form a cluster with the restaurant POIs of other
trajectories. This is because none of the restaurant POIs in T1, T2, T3 is within
ε from the restaurant POI in T4. Hence, there are actually two patterns (split
from EC1 and EC2), where one pattern s1 is covered by T1, T2, and T3, and the
other pattern s2 is covered only by T4.

Although the number of POIs in an enclosing cluster is much smaller than
the total number of POIs, we still need to compute the distances of every pairs of
POIs if we re-cluster them. To overcome this limitation, we store a bitmap rep-
resentation of neighbors for each POI w.r.t. its enclosing cluster. Such structure
eliminates the need for spatial distance computation for every pair. Furthermore,
the POIs are compared with only the near-by POIs that potentially could form a
cluster. Figure 2b shows the neighbor bitmaps for each POI in EC2. The length
of each POI’s bitmap equals to the size of the enclosing cluster, e.g., eight in this
example. A bit position is assigned to each POI in the cluster. If two POIs are
within ε distance, then the corresponding bit is 1. For example, the bit sequence
01000000 associated with POI r1 indicates only r2 is located within ε to it.

4.2 Algorithm

The pseudo code of the TkSP query processing algorithm is presented in Algo-
rithm 1. In this approach, the trajectories are indexed by a B+-tree. A max-
priority queue PQ is maintained to keep track of the candidate patterns, where
the key is their upper bound popularity score. Result set R keeps k patterns with
the highest popularity scores found so far (Line 1.1). At first, the set of enclos-
ing clusters is obtained by retrieving trajectories that pass through at least one
query category within P using tree. Since each enclosing cluster is a pattern of
length 1 (Line 1.2), they are enqueued to PQ. An enclosing cluster co-occurrence
map is created w.r.t. P and the query categories ψ by considering time bins that
intersect with P . This map is created only when we need to search for longer
patterns, i.e., when |ψ| > 1 (Lines 1.3-1.4). The map contains the enclosing
clusters as keys, and the list of trajectory IDs as values.

The candidate patterns are progressively considered from length j = 1 to
length j = |ψ| (Line 1.5). For a length j under consideration, another priority
queue NQ stores the patterns that may need to be extended to length (j + 1)
in next iteration. For a candidate pattern cand dequeued from PQ, we perform
two actions. First, we compare its upper bound score with the current k-th
best score. Note, when R has less than k results, getMinScore(R) returns 0.
If cand has a higher score, we extract all the trajectories that cover cand, and
further validate the pattern via the function validateClusters (Lines 1.9-1.11).
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Algorithm 1: Time Period-based Top-k Semantic Pattern query

Input: B+-tree tree, time period P , time constraint ∆t, query categories ψ, k
Output: set of k patterns R

1.1 R← ∅, PQ← an empty priority queue
1.2 Enqueue(PQ, enclosing clusters satisfying constraints(tree, ψ, P ))
1.3 if |ψ| > 1 then
1.4 ccMap← generate co-occuring cluster map(ψ, P , ∆t)
1.5 for j ← 1 to |ψ| do
1.6 NQ← ∅
1.7 while PQ is not empty do
1.8 cand← dequeue(PQ)
1.9 if getScore(cand) > getMinScore(R) then

1.10 List← getTrajectoryList(cand)
1.11 validateClusters(List, j, R)

1.12 if getMaxScore(cand) > getMinScore(R) then
1.13 Enqueue(NQ, extendP (cand, ccMap))

1.14 PQ← NQ

1.15 return R

The pseudo-code for cluster validation step is presented in Algorithm 2 and will
be explained later. Second, we estimate the maximum possible popularity score
of any longer pattern that can be extended from cand. If this estimated score
is greater than the current k-th best score, we generate the extensions of cand
of length j + 1 using the co-occurrence map, and enqueue them to NQ (Lines
1.12-1.13). At the end of the iteration corresponding to a length j, we replace
PQ with NQ for the next length j + 1 (Line 1.14). Finally, we return result set
R with k most popular patterns (Line 1.15).

Cluster validation algorithm. The function validateClusters validates a can-
didate pattern, with its pseudo-code presented in Algorithm 2. As mentioned in
Section 3, the candidate patterns are generated from enclosing clusters that do
not consider the exact trajectories passing through them, hence the validation
procedure is necessary to find the actual patterns with valid POI clusters. Here,
two hashmaps MAPP and MAPind are created from the input list of trajectories
LT (Line 2.1). MAPP has each POI as a key and the list of trajectories passing
through that POI as the value. A trajectory ID in LT and the order of a POI
visit is a key (as a tuple) in MAPind and the list of POIs visited by that tra-
jectory at the corresponding order of visit are the value. A first-come-first-serve
queue QT is maintained for the set of trajectories that needs to be considered.
QT is initialized with LT (Line 2.2). For the trajectory set dequeued from QT ,
we find the first POI visited by each trajectory using MAPind, and store these
POIs in LP . We use the neightbors bitmap information (Section 4.1) to obtain
the actual POI clusters C formed by the POIs in LP (Line 2.4).

For each cluster c ∈ C, we obtain the trajectories covering c using MAPP
(Line 2.6), and store them in list LT ′. Note, LT ′ ⊆ LT . To facilitate pruning of
an unpromising candidate at this stage, we compute an upper bound popularity
score using c, where the number of covering trajectories is set to |LT ′| (as any
extended pattern will not have more covering trajectories) and the number of
categories is set to l (the maximum categories in a pattern of length l). If this
score is lower than the k-th best score, we can safely terminate the examination
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Algorithm 2: validateClusters()
Input: list of trajectories LT , length l, current result set R

2.1 MAPP ← createPOIMap(LT ); MAPind ← createIndexMap(LT )
2.2 QT ← getIDs(LT )
2.3 while QT is not empty do
2.4 LP ← getPOIs(QT .poll(),MAPind, 1); C ← clusterPOIs(LP )
2.5 foreach cluster c ∈ C do
2.6 LT ′ ← getTrajectory(c,MAPP )

2.7 if getScore(l, |LT ′|) > getMinScore(R) then
2.8 p← Initialize with cluster c; Update R if the length of p equals l
2.9 for j ← 2 to l do

2.10 NLP ← getPOIs(LT ′,MAPind, j)
2.11 CN ← clusterPOIs(NLP )
2.12 if |CN | = 1 then
2.13 p.add(c′ ∈ CN); Update R if the length of p equals l
2.14 else
2.15 foreach cluster c′ ∈ CN do
2.16 NLT ′ ← LT ′ ∩ getTrajectory(c′,MAPP )

2.17 if |LT ′| = |NLT ′| then
2.18 p.add(c′); Update R if the length of p equals l
2.19 else
2.20 QT .add(NLT

′)

2.21 if ∀c′ ∈ CN not extends p then
2.22 break

of c. Otherwise, we initialize a pattern p with c. If l = 1, we update R accordingly
(Line 2.8). For l > 1, we extend p by checking the POIs visited subsequently
until its length reaches l. We use parameter j to indicate the visiting order of
POIs to be evaluated next (Line 2.9).

We scan each trajectory in LT ′ to retrieve the j-th visited POIs using
MAPind and store these POIs in NLP (Line 2.10). The neightbors bitmap is
used to obtain the actual POI clusters formed by the POIs in NLP , and the
resulting clusters are stored in CN (Line 2.11). If CN has only one cluster c′

(i.e., the POIs visited next are all contained in one POI cluster), we can ex-
tend the current pattern p by appending c′. If the length of p becomes l and
it’s score is higher than the k-th best score, R is updated (Lines 2.12-2.13). If
there are multiple clusters in CN , it indicates that there are multiple options
in terms of the next POI cluster to visit from the current p, and we have to
explore each c′ ∈ CN . For c′ ∈ CN , we obtain the list of trajectories in LT ′ that
also visit a POI in c′ in its j-th place, and store them in NLT ′ (Line 2.16). If
|NLT ′| = |LT ′|, c′ is added to p and we check if R needs to be updated (Lines
2.17-2.18).

Otherwise, we add NLT ′ to QT as a candidate pattern (Lines 2.19-2.20). If
no cluster in CN could extend p, we stop the validation of the current c (Lines
2.21-2.22).

5 Experimental evaluation
In this section, we compare our proposed algorithm with the baseline through
an experimental evaluation using real datasets. All algorithms are implemented
in Java. Experiments were ran on a 24 core Intel Xeon E5-2630 2.3 GHz us-
ing 256GB RAM, and 1TB 6G SAS 7.2Krpm SFF (2.5-inch) SC Midline disk
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Description Foursquare Yelp
# of POIs 61,856 209,393
# of check-ins 573,012 8,016,526
# of users 2,293 1,968,703
# of categories 247 21

Table 1: Database statistics

Parameter Dataset Values
Time period
P

Foursquare 2, 4, 6, 8, 11 (month)
Yelp 3, 6, 9, 12, 15 (year)

Preference α Both 0.1, 0.3, 0.5, 0.7, 0.9
# of categories |S| Both 1, 2, 3, 4

Table 2: Experimental parameters

drives running Red Hat Enterprise Linux Server release 7.5. We test the follow-
ing methods to answer TkSP queries on real-life datasets: (1) TkS* , a tailored
Top-k Sequential Pattern Mining [9] on top of a B+-tree index as baseline (in-
troduced in Section 3); (2) EC2M , a Time Period-based Top-k Semantic Pattern
query processing algorithm on top of B+-tree index using the enclosing clusters
cooccurrence map (introduced in Section 4).
Datasets. Foursquare [17] dataset includes check-in data collected from 04 April
2012 to 16 February 2013 in Tokyo, Japan. Yelp dataset includes check-in data
between 12 October 2004 and 13 Dec 2019. Each trajectory in the dataset is a
sequence of POIs with the corresponding timestamps and semantic categories.
Table 1 shows statistics on Foursquare and Yelp datasets.
Evaluation and Parameterization. We compared the runtime of all methods
by varying the query input parameters as shown in Table 2, where the values
in bold represent the default values. For all experiments, a single parameter is
varied while other parameters are set to their default values.
Clustering. We evaluated varying parameter combinations for minPts and
ε to cluster POIs w.r.t. the category using DBSCAN [8] algorithm and chose
the following values for our experiment by considering the number of obtained
clusters: minPts = 3 and ε = 100 meters.

5.1 Efficiency Study

We conduct experiments to evaluate the efficiency of our proposed algorithm
against the baseline. We study the impact of each parameter by running 100
queries and report the average query execution time when varying parameters.
The results over Foursquare and Yelp datasets are shown in Figures 3 and 4
respectively. The performance for multiple runs is shown in boxplots, where the
bounding box shows the first and third quartiles; the whiskers show the range,
up to 1.5 times of the interquartile range; and the outliers are shown as separate
points. The average values are shown as connecting lines.
Effect of the number of categories. Figures 3a and 4a show the efficiency
studies for varying |ψ| over Foursquare and Yelp datasets, respectively. The ex-
ecution time gap between the algorithms is small for |ψ| = 1 since there is no
need to generate longer patterns. EC2M outperforms TkS* in all cases by us-
ing the bitmap-based POI neighbors information to cluster POIs of the same
category. As we add more categories to the query, the benefit of enclosing clus-
ter cooccurrence map becomes more significant. The performance gap between
TkS* and EC2M is larger for Yelp than Foursquare dataset. The reason is, Yelp
contains more POIs and less categories than Foursquare, which results in more
POIs in the POI clusters of Yelp than Foursquare dataset. Hence, the clustering
step in the query processing over Yelp dataset greatly benefits from using the
bitmap-based POI neighbors information.
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Fig. 3: Efficiency studies on Foursquare dataset
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Fig. 4: Efficiency studies on Yelp dataset

Effect of α. Figures 3b and 4b show the performance for varying α over
Foursquare and Yelp. The performance gap between two algorithms is not big
for smaller values of α in Foursquare. The reason is that Foursquare contains
only 2,293 trajectories. As we check the query result for those values of α, the
result mostly contains patterns of 1-length. The scores of extended patterns are
still lower than the k-th best result. The execution time of the baseline declines
for values of α that are higher than 0.5. The reason is that the increase of the
k-th best score allows the skip of more shorter patterns, leading to less candidate
check. In contrast, Yelp has 1,968,703 trajectories and a small value of α can
still contribute significantly to the popularity score.

Effect of time period. As we increase time period P , the runtime increases
substantially for the baseline in Foursquare dataset, as shown in Figure 3c. In
contrast, the query execution time gradually increases w.r.t. varying time periods
for Yelp dataset. The reason is that time periods for Foursquare dataset are in
the unit of months while time periods for Yelp dataset are in the unit of years
(Figure 4c). The number of trajectories covering a certain pattern significantly
differs w.r.t. the short time periods. As we expand the time period of interest
to a longer time span, eventually we find almost all the trajectories covering a
given pattern and the number of new candidate trajectories starts decreasing.

Enclosing clusters cooccurrence map. We obtain 777,018 and 1,513,218 en-
closing clusters w.r.t. our clustering settings for Foursquare and Yelp datasets, re-
spectively. Furthermore, we split trajectories covering each cooccurrence into dif-
ferent time bins to see the correlation between time bin size and the co-ocurrrence
map size. The sizes of enclosing cluster cooccurrence maps for Foursquare dataset
are 25MB, 22MB, 20MB for time bins of 1-day, 1-month, and 1-year, respectively.
The sizes of enclosing cluster cooccurrence maps for Yelp dataset are 54MB,
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Fig. 6: Clustering time

79MB, 48MB for time bins of 7-day, 3-month, and 1-year, respectively. The size
increases for 3-month time bin, likely due to the larger number of covering tra-
jectories that span two consecutive time bins.

Figures 5a and 5b depict the query execution time of EC2M for varying time
periods over Foursquare and Yelp, respectively, by using three different time
bins of enclosing cluster cooccurrence maps. Overall, queries over Foursquare
dataset run slightly faster on time bins of 1-month for all different time periods.
Bigger time bins perform better for large P s, while queries for short time periods
perform slightly faster using small time bins. Queries over Yelp dataset consider
different time periods of interest, starting from 3 years to 15 years. For larger P s,
the enclosing cluster cooccurrence map on 1-year time bins shows better query
performance. However, queries using 1-week time bins perform slightly better for
time periods up to 9 years. Here, non-uniform check-in distribution and sparsity
in a user’s trajectory result in better performance even we use smaller time bins.
Cluster computation. Our algorithm uses a bitmap representation for cluster-
ing close-by POIs. Figures 6a and 6b show the clustering time by running queries
for varying number of categories over Foursquare and Yelp datasets, respec-
tively. Since Yelp dataset contains larger clusters, the query performance over
Yelp dataset saves significantly more time in the POI clustering than Foursquare
dataset. The cluster connectivity check in the pattern greatly benefits from the
bitmap-based clustering algorithm as the length of the pattern increases.

5.2 Case study

Last, we conduct a case study by presenting the difference between traditional
pattern mining over category sequences and semantic trajectory pattern mining
proposed in this paper. Table 3 shows top-5 frequent semantic sequences in
Foursquare dataset of length 2. The support values depict the number of people
(out of 2,293) whose trajectories cover the corresponding pattern. Next, we run
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Semantic sequence

Subway→Train Station: 1479

Train Station→Subway: 1452

Train Station→Japanese Restaurant: 1381

Train Station→Ramen/Noodle House: 1366

Japanese Restaurant→Train Station: 1294

Table 3: Top-5 frequent category
sequence over Foursquare

Semantic trajectory pattern

Train station→Electronics Store: 465

Electronics Store→Train Station: 377

Train Station: 1517

Train Station→Hobby Shop: 296

Train station→Electronics Store: 295

Table 4: Top-5 popular semantic
trajectory patterns over Foursquare
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Fig. 7: Case Study on the Foursquare dataset

our query to find the top-5 semantic trajectory patterns of up to 2-length, which
considers the spatial closeness among covering trajectories. The result shown in
Table 4 contains 1-length pattern at the third result. The rank is computed by
both the number of trajectories and the number of categories.

Typical patterns (e.g. Subway → Train Station) created by people’s daily
movement can outweigh the potential patterns of interest. Thus, to guide a user
to make a better planning based on the interest of places to visit, we accept a
set of categories as a user input. Here, we choose the following keywords: Train
Station, Hobby Shop, Electronics Store to further explore the region where that
pattern is mostly observed. We find two patterns s1 = { Electronics Store →
Hobby Shop → Train Station } and s2 = { Train Station → Hobby Shop →
Electronics Store } shown in Figures 7b and 7c, respectively. Pattern s1 is covered
by 36 trajectories for the whole database timespan while pattern s1 is covered
by 37 trajectories.

Next, we show the frequency of those two patterns w.r.t. the given time
intervals. Since Foursquare contains 11-month check-in data, we split data into
one-month intervals and show the changes in the frequency of each pattern w.r.t
the given month. From the results presented in Figure 7a, we find the pattern
frequencies do change, depending on the time interval of interest which can also
contribute to the overall ranking of specific pattern in the result set.

6 Related work

In this section, we review the studies closely related to our work, including (i)
semantic trajectory pattern mining, and (ii) top-k sequential pattern mining.

Semantic trajectory pattern mining. A semantic pattern defined in [18]
is the closest to the pattern we consider in this paper. Specifically, a pattern
is defined as a sequence of areas in [18], with each area containing places that
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are spatially close-by and belong to the same category. A top-down pattern dis-
covery technique called Splitter was proposed. It first generates spatially coarse
patterns via a tailored PrefixSpan [12], and then clusters trajectories for each
coarse pattern by a variant of the mean shift algorithm. Thus, Splitter works on
each category sequence independently, while our work considers different cate-
gory sequences that can be formed by the given set of categories. Choi et. al. [5]
find all regional areas where a semantic pattern is expected to be locally frequent
in each area. Trajectories that contain each semantic pattern are clustered by
a tailored DBSCAN. The sub-trajectories covering the pattern form a dense
cluster of routes. However, the corresponding categories of the sub-trajectories
that cover a pattern are not necessarily spatially clustered w.r.t. the category.
In contrast, the pattern in our work consists of POI clusters where POIs in a
cluster reside spatially close-by and belong to the same category. In addition,
the above techniques consider the whole time period in a database and require
an input of the minimum support threshold to mine semantic patterns, which
is a challenging task for most users. Even if these techniques can be extended
by considering sub-trajectories w.r.t. a specific time period, the semantic trajec-
tory patterns found for a given category sequence are not necessarily to be same
patterns in our problem setting.
Top-k sequential pattern mining. Many studies have been proposed to mine
sequential patterns in transactional databases. Majority of them require spec-
ifying a threshold for the minimum number of transactions that need to be
contained in a frequent pattern. The performance of the mining algorithms can
degrade substantially if the support threshold is set to a smaller value, while the
patterns of interest can be overlooked by a larger threshold. Top-k sequential pat-
tern mining algorithms [14, 9, 13] have been proposed to find the k most frequent
patterns without requiring to specify the threshold. However, these techniques
do not consider the spatial property of the trajectories contained in the result
pattern. Thus, the trajectories that cover a specific pattern might be scattered
over the search space. In contrast, we aim to find semantic patterns where the
trajectories that contain each result pattern are spatially close-by. Moreover,
none of the existing work supports a query input for categories of interest.
Other related work. Our query is also loosely related to top-k spatial keyword
query and collective spatial keyword query. A traditional top-k spatial-keyword
query has been studied extensively in the literature [7, 15, 19]. It returns k most
similar objects w.r.t. a query location and keywords by considering both spatial
and textual similarities. One variant is a collective spatial keyword query [3, 11,
2, 4, 16] which aims to fulfil a user request by considering multiple objects collec-
tively instead of a single object. However, none of the methods is applicable in
our case as we do not require the result to be close to a query location. Instead,
we aim at supporting users who prefer the past travel experience of other users
over the proximity between the places to be visited and the query location.
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Zheng is supported by the Ministry of Education, Singapore, under its AcRF
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7 Conclusion

In this paper, we studied the problem of finding top-k semantic trajectory pat-
tern w.r.t. a set of query categories and a time period of interest. We formally
defined the problem and proposed algorithms and data structures that improve
the efficiency of the query processing. Experimental study on real-life datasets
shows the efficiency of our approach.
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