
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

6-2021 

Adaptive aggregation networks for class-incremental learning Adaptive aggregation networks for class-incremental learning 

Yaoyao LIU 
Max Plank Institute for Informatics 

Bernt SCHIELE 
Max Plank Institute for Informatics 

Qianru SUN 
Singapore Management University, qianrusun@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Artificial Intelligence and Robotics Commons, and the OS and Networks Commons 

Citation Citation 
LIU, Yaoyao; SCHIELE, Bernt; and SUN, Qianru. Adaptive aggregation networks for class-incremental 
learning. (2021). 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition: Virtual, June 
21-24: Proceedings. 2544-2553. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6119 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Adaptive Aggregation Networks for Class-Incremental Learning

Yaoyao Liu1 Bernt Schiele1 Qianru Sun2

1Max Planck Institute for Informatics, Saarland Informatics Campus
2School of Computing and Information Systems, Singapore Management University

{yaoyao.liu, schiele}@mpi-inf.mpg.de qianrusun@smu.edu.sg

Abstract

Class-Incremental Learning (CIL) aims to learn a classi-
fication model with the number of classes increasing phase-
by-phase. An inherent problem in CIL is the stability-
plasticity dilemma between the learning of old and new
classes, i.e., high-plasticity models easily forget old classes,
but high-stability models are weak to learn new classes.
We alleviate this issue by proposing a novel network ar-
chitecture called Adaptive Aggregation Networks (AANets)
in which we explicitly build two types of residual blocks at
each residual level (taking ResNet as the baseline architec-
ture): a stable block and a plastic block. We aggregate the
output feature maps from these two blocks and then feed the
results to the next-level blocks. We adapt the aggregation
weights in order to balance these two types of blocks, i.e.,
to balance stability and plasticity, dynamically. We conduct
extensive experiments on three CIL benchmarks: CIFAR-
100, ImageNet-Subset, and ImageNet, and show that many
existing CIL methods can be straightforwardly incorpo-
rated into the architecture of AANets to boost their perfor-
mances1.

1. Introduction
AI systems are expected to work in an incremental

manner when the amount of knowledge increases over
time. They should be capable of learning new concepts
while maintaining the ability to recognize previous ones.
However, deep-neural-network-based systems often suffer
from serious forgetting problems (called “catastrophic for-
getting”) when they are continuously updated using new
coming data. This is due to two facts: (i) the updates
can override the knowledge acquired from the previous
data [19, 27, 28, 33, 40], and (ii) the model can not replay
the entire previous data to regain the old knowledge.

To encourage solving these problems, [34] defined a

1Code: https://class-il.mpi-inf.mpg.de/

class-incremental learning (CIL) protocol for image clas-
sification where the training data of different classes grad-
ually come phase-by-phase. In each phase, the classifier is
re-trained on new class data, and then evaluated on the test
data of both old and new classes. To prevent trivial algo-
rithms such as storing all old data for replaying, there is a
strict memory budget due to which a tiny set of exemplars
of old classes can be saved in the memory. This memory
constraint causes a serious data imbalance problem between
old and new classes, and indirectly causes the main problem
of CIL – the stability-plasticity dilemma [29]. In particular,
higher plasticity results in the forgetting of old classes [27],
while higher stability weakens the model from learning the
data of new classes (that contain a large number of samples).
Existing CIL works try to balance stability and plasticity us-
ing data strategies. For example, as illustrated in Figure 1
(a) and (b), some early methods train their models on the
imbalanced dataset where there is only a small set of exem-
plars for old classes [23, 34], and recent methods include a
fine-tuning step using a balanced subset of exemplars sam-
pled from all classes [4, 11, 16]. However, these data strate-
gies are still limited in terms of effectiveness. For example,
when using the models trained after 25 phases, LUCIR [16]
and Mnemonics [25] “forget” the initial 50 classes by 30%
and 20%, respectively, on the ImageNet dataset [37].

In this paper, we address the stability-plasticity dilemma
by introducing a novel network architecture called Adaptive
Aggregation Networks (AANets). Taking the ResNet [14]
as an example of baseline architectures, we explicitly build
two residual blocks (at each residual level) in AANets: one
for maintaining the knowledge of old classes (i.e., the stabil-
ity) and the other for learning new classes (i.e., the plastic-
ity), as shown in Figure 1 (c). We achieve these by allowing
these two blocks to have different levels of learnability, i.e.,
less learnable parameters in the stable block but more in the
plastic one. We apply aggregation weights to the output fea-
ture maps of these blocks, sum them up, and pass the result
maps to the next residual level. In this way, we are able
to dynamically balance the usage of these blocks by updat-

https://class-il.mpi-inf.mpg.de/


ing their aggregation weights. To achieve auto-updating, we
take the weights as hyperparameters and optimize them in
an end-to-end manner [12, 25, 48].

Technically, the overall optimization of AANets is
bilevel. Level-1 is to learn the network parameters for two
types of residual blocks, and level-2 is to adapt their aggre-
gation weights. More specifically, level-1 is the standard
optimization of network parameters, for which we use all
the data available in the phase. Level-2 aims to balance the
usage of the two types of blocks, for which we optimize the
aggregation weights using a balanced subset (by downsam-
pling the data of new classes), as illustrated in Figure 1 (c).
We formulate these two levels in a bilevel optimization pro-
gram (BOP) [41] that solves two optimization problems al-
ternatively, i.e., update network parameters with aggrega-
tion weights fixed, and then switch. For evaluation, we con-
duct CIL experiments on three widely-used benchmarks,
CIFAR-100, ImageNet-Subset, and ImageNet. We find that
many existing CIL methods, e.g., iCaRL [34], LUCIR [16],
Mnemonics Training [25], and PODNet [11], can be di-
rectly incorporated in the architecture of AANets, yield-
ing consistent performance improvements. We observe that
a straightforward plug-in causes memory overheads, e.g.,
26% and 15% respectively for CIFAR-100 and ImageNet-
Subset. For a fair comparison, we conduct additional exper-
iments under the settings of zero overhead (e.g., by reducing
the number of old exemplars for training AANets), and vali-
date that our approach still achieves top performance across
all datasets.

Our contribution is three-fold: 1) a novel and generic
network architecture called AANets specially designed for
tackling the stability-plasticity dilemma in CIL tasks; 2) a
BOP-based formulation and an end-to-end training solution
for optimizing AANets; and 3) extensive experiments on
three CIL benchmarks by incorporating four baseline meth-
ods in the architecture of AANets.

2. Related Work

Incremental learning aims to learn efficient machine mod-
els from the data that gradually come in a sequence of train-
ing phases. Closely related topics are referred to as contin-
ual learning [10, 26] and lifelong learning [2, 7, 22]. Recent
incremental learning approaches are either task-based, i.e.,
all-class data come but are from a different dataset for each
new phase [5,6,8,17,23,35,40,54], or class-based i.e., each
phase has the data of a new set of classes coming from the
identical dataset [4, 16, 18, 25, 34, 48, 53]. The latter one
is typically called class-incremental learning (CIL), and our
work is based on this setting. Related methods mainly focus
on how to solve the problems of forgetting old data. Based
on their specific methods, they can be categorized into three
classes: regularization-based, replay-based, and parameter-
isolation-based [9, 30].

Regularization-based methods introduce regularization
terms in the loss function to consolidate previous knowl-
edge when learning new data. Li et al. [23] proposed the
regularization term of knowledge distillation [15]. Hou et
al. [16] introduced a series of new regularization terms such
as for less-forgetting constraint and inter-class separation to
mitigate the negative effects caused by the data imbalance
between old and new classes. Douillard et al. [11] proposed
an effective spatial- based distillation loss applied through-
out the model and also a representation comprising multiple
proxy vectors for each object class. Tao et al. [44] built the
framework with a topology-preserving loss to maintain the
topology in the feature space. Yu et al. [51] estimated the
drift of previous classes during the training of new classes.
Replay-based methods store a tiny subset of old data, and
replay the model on them (together with new class data) to
reduce the forgetting. Rebuffi et al. [34] picked the nearest
neighbors to the average sample per class to build this sub-
set. Liu et al. [25] parameterized the samples in the subset,
and then meta-optimized them automatically in an end-to-
end manner taking the representation ability of the whole
set as the meta-learning objective. Belouadah et al. [3] pro-
posed to leverage a second memory to store statistics of old
classes in rather compact formats.
Parameter-isolation-based methods are used in task-based
incremental learning (but not CIL). Related methods ded-
icate different model parameters for different incremental
phases, to prevent model forgetting (caused by parameter
overwritten). If no constraints on the size of the neural net-
work is given, one can grow new branches for new tasks
while freezing old branches. Rusu et al. [38] proposed “pro-
gressive networks” to integrate the desiderata of different
tasks directly into the networks. Abati et al. [1] equipped
each convolution layer with task-specific gating modules
that select specific filters to learn each new task. Ra-
jasegaran et al. [31] progressively chose the optimal paths
for the new task while encouraging to share parameters
across tasks. Xu et al. [49] searched for the best neural net-
work architecture for each coming task by leveraging rein-
forcement learning strategies. Our differences with these
methods include the following aspects. We focus on class-
incremental learning, and more importantly, our approach
does not continuously increase the network size. We val-
idate in the experiments that under a strict memory bud-
get, our approach can surpass many related methods and its
plug-in versions on these related methods can bring consis-
tent performance improvements.

Bilevel Optimization Program can be used to optimize hy-
perparameters of deep models. Technically, the network
parameters are updated at one level and the key hyperpa-
rameters are updated at another level [13,21,24,45,46,52].
Recently, a few bilevel-optimization-based approaches have
emerged for tackling incremental learning tasks. Wu et



train

in
iti
al
iz
e

old model

new model

train

initialize

(a) Conventional

old model

new model

(b) Balanced Fine-tuning (c) Adaptive Aggregation (Ours)

new data

old exemplars

fine-tunetrain
train

old model

plastic blocks

herding*

new model
stable blocks

initialize

old exemplars old exemplars

new data new exemplars

old exemplars

herding*

old exemplars

new data new exemplars

aggregation weights 1

aggregation weights 2

Figure 1. Conceptual illustrations of different CIL methods. (a) Conventional methods use all available data (which are imbalanced among
classes) to train the model [16,34] (b) Recent methods [4,11,16,25] follow this convention but add a fine-tuning step on a balanced subset
of all classes. (c) The proposed Adaptive Aggregation Networks (AANets) is a new architecture and it applies a different data strategy:
using all available data to update the parameters of plastic and stable blocks, and the balanced set of exemplars to adapt the aggregation
weights for these blocks. Our key lies in that adapted weights can balance the usage of the plastic and stable blocks, i.e., balance between
plasticity and stability. *: herding is the method to choose exemplars [47], and can be replaced by others, e.g., mnemonics training in [25].
We highlight that in the implementation of AANets, we strictly control the memory (i.e., the sizes of input data and residual blocks)
within the same budget as the other methods. Please refer to the details in the section of experiments.

al. [48] learned a bias correction layer for incremental learn-
ing models using a bilevel optimization framework. Ra-
jasegaran et al. [32] incrementally learned new tasks while
learning a generic model to retain the knowledge from all
tasks. Riemer et al. [36] learned network updates that are
well-aligned with previous phases, such as to avoid learning
towards any distracting directions. In our work, we apply
the bilevel optimization program to update the aggregation
weights in our AANets.

3. Adaptive Aggregation Networks (AANets)

Class-Incremental Learning (CIL) usually assumes (N+
1) learning phases in total, i.e., one initial phase and N in-
cremental phases during which the number of classes grad-
ually increases [11, 16, 18, 25]. In the initial phase, data
D0 is available to train the first model Θ0. There is a strict
memory budget in CIL systems, so after the phase, only a
small subset of D0 (exemplars denoted as E0) can be stored
in the memory and used as replay samples in later phases.
Specifically in the i-th (i ≥ 1) phase, we load the exem-
plars of old classes E0:i−1 = {E0, . . . , Ei−1} to train model
Θi together with new class data Di. Then, we evaluate the
trained model on the test data containing both old and new
classes. We repeat such training and evaluation through all
phases.

The key issue of CIL is that the models trained at new
phases easily “forget” old classes. To tackle this, we intro-
duce a novel architecture called AANets. AANets is based
on a ResNet-type architecture, and each of its residual lev-
els is composed of two types of residual blocks: a plastic
one to adapt to new class data and a stable one to main-
tain the knowledge learned from old classes. The details of

this architecture are elaborated in Section 3.1. The steps for
optimizing AANets are given in Section 3.2.

3.1. Architecture Details

In Figure 2, we provide an illustrative example of our
AANets with three residual levels. The inputs x[0] are the
images and the outputs x[3] are the features used to train
classifiers. Each of our residual “levels” consists of two par-
allel residual “blocks” (of the original ResNet [14]): the or-
ange one (called plastic block) will have its parameters fully
adapted to new class data, while the blue one (called stable
block) has its parameters partially fixed in order to maintain
the knowledge learned from old classes. After feeding the
inputs to Level 1, we obtain two sets of feature maps respec-
tively from two blocks, and aggregate them after applying
the aggregation weights α[1]. Then, we feed the resulted
maps to Level 2 and repeat the aggregation. We apply the
same steps for Level 3. Finally, we pool the resulted maps
obtained from Level 3 to train classifiers. Below we elab-
orate the details of this dual-branch design as well as the
steps for feature extraction and aggregation.
Stable and Plastic Blocks. We deploy a pair of stable and
plastic blocks at each residual level, aiming to balance be-
tween the plasticity, i.e., for learning new classes, and sta-
bility, i.e., for not forgetting the knowledge of old classes.
We achieve these two types of blocks by allowing different
levels of learnability, i.e., less learnable parameters in the
stable block but more in the plastic. We detail the operations
in the following. In any CIL phase, Let η and φ represent
the learnable parameters of plastic and stable blocks, re-
spectively. η contains all the convolutional weights, while φ
contains only the neuron-level scaling weights [43]. Specif-
ically, these scaling weights are applied on the model θbase



Level 1 Level 2 Level 3

Figure 2. An example architecture of AANets with three levels of residual blocks. At each level, we compute the feature maps from a
stable block (φ � θbase, blue) as well as a plastic block (η, orange), respectively, aggregate the maps with adapted weights, and feed the
result maps to the next level. The outputs of the final level are used to train classifiers. We highlight that this is a logical architecture of
AANets, and in real implementations, we strictly control the memory (i.e., the sizes of input data and residual blocks) within the
same budget as related works which deploy plain ResNets. Please refer to the details in the section of experiments.

obtained in the 0-th phase2. As a result, the number of learn-
able parameters φ is much less than that of η. For example,
when using 3 × 3 neurons in θbase, the number of learn-
able parameters φ is only 1

3×3 of the number of full network
parameters (while η has the full network parameters). We
further elaborate on these in the following paragraph.
Neuron-level Scaling Weights. For stable blocks, we learn
its neuron parameters in the 0-th phase and freeze them in
the otherN phases. In theseN phases, we apply a small set
of scaling weights φ at the neuron-level, i.e., each weight
for scaling one neuron in θbase. We aim to preserve the
structural pattern within the neuron and slowly adapt the
knowledge of the whole blocks to new class data. Specifi-
cally, we assume the q-th layer of θbase contains R neurons,
so we have R neuron weights as {Wq,r}Rr=1. For concise-
ness, we denote them as Wq . For Wq , we learn R scaling
weights denoted as φq Let Xq−1 and Xq be the input and
output feature maps of the q-th layer, respectively. We apply
φq to Wq as follows,

Xq = (Wq � φq)Xq−1, (1)

where � donates the element-wise multiplication. Assum-
ing there are Q layers in total, the overall scaling weights
can be denoted as φ = {φq}Qq=1.
Feature Extraction and Aggregation. We elaborate on
the process of feature extraction and aggregation across all
residual levels in the AANets, as illustrated in Figure 2. Let
F [k]
µ (·) denote the transformation function of the residual

block parameterized as µ at the Level k. Given a batch of
training images x[0], we feed them to AANets to compute
the feature maps at the k-th level (through the stable and
plastic blocks respectively) as follows,

x
[k]
φ = F [k]

φ�θbase
(x[k−1]); x[k]η = F [k]

η (x[k−1]). (2)

The transferability (of the knowledge learned from old
classes) is different at different levels of neural net-
works [50]. Therefore, it makes more sense to apply dif-
ferent aggregation weights for different levels of residual

2Related work [11,16,25] learned Θ0 in the 0-th phase using half of the
total classes. We follow the same way to train Θ0 and freeze it as θbase.

blocks. Let α[k]
φ and α[k]

η denote the aggregation weights of
the stable and plastic blocks, respectively, at the k-th level.
Then, the weighted sum of x[k]φ and x[k]η can be derived as
follows,

x[k] = α
[k]
φ · x

[k]
φ + α[k]

η · x[k]η . (3)

In our illustrative example in Figure 2, there are three pairs
of weights to learn at each phase. Hence, it becomes in-
creasingly challenging to choose these weights manually
if multiple phases are involved. In this paper, we propose
an learning strategy to automatically adapt these weights,
i.e., optimizing the weights for different blocks in different
phases, see details in Section 3.2.

3.2. Optimization Steps

In each incremental phase, we optimize two groups of
learnable parameters in AANets: (a) the neuron-level scal-
ing weights φ for the stable blocks and the convolutional
weights η on the plastic blocks; (b) the feature aggregation
weights α. The former is for network parameters and the
latter is for hyperparameters. In this paper, we formulate
the overall optimization process as a bilevel optimization
program (BOP) [13, 25].
The Formulation of BOP. In AANets, the network param-
eters [φ, η] are trained using the aggregation weights α as
hyperparameters. In turn, α can be updated when temporar-
ily fixing network parameters [φ, η]. In this way, the opti-
mality of [φ, η] imposes a constraint on α and vise versa.
Ideally, in the i-th phase, the CIL system aims to learn the
optimal αi and [φi, ηi] that minimize the classification loss
on all training samples seen so far, i.e., Di ∪ D0:i−1, so the
ideal BOP can be formulated as,

min
αi

L(αi, φ
∗
i , η

∗
i ;D0:i−1 ∪ Di) (4a)

s.t. [φ∗i , η
∗
i ] = arg min

[φi,ηi]

L(αi, φi, ηi;D0:i−1 ∪ Di), (4b)

where L(·) denotes the loss function, e.g., cross-entropy
loss. Please note that for the conciseness of the formula-
tion, we use φi to represent φi � θbase (same in the fol-



lowing equations). We call Problem 4a and Problem 4b the
upper-level and lower-level problems, respectively.
Data Strategy. To solve Problem 4, we need to use D0:i−1.
However, in the setting of CIL [11, 16, 34], we cannot ac-
cessD0:i−1 but only a small set of exemplars E0:i−1, e.g., 20
samples of each old class. Directly replacing D0:i−1 ∪ Di
with E0:i−1 ∪ Di in Problem 4 will lead to the forgetting
problem for the old classes. To alleviate this issue, we pro-
pose a new data strategy in which we use different training
data splits to learn different groups of parameters: 1) in the
upper-level problem, αi is used to balance the stable and
the plastic blocks, so we use the balanced subset to update
it, i.e., learning αi on E0:i−1∪Ei adaptively; 2) in the lower-
level problem, [φi, ηi] are the network parameters used for
feature extraction, so we leverage all the available data to
train them, i.e., base-training [φi, ηi] on E0:i−1 ∪Di. Based
on these, we can reformulate the ideal BOP in Problem 4 as
a solvable BOP as follows,

min
αi

L(αi, φ
∗
i , η

∗
i ; E0:i−1 ∪ Ei) (5a)

s.t. [φ∗i , η
∗
i ] = arg min

[φi,ηi]

L(αi, φi, ηi; E0:i−1 ∪ Di), (5b)

where Problem 5a is the upper-level problem and Prob-
lem 5b is the lower-level problem we are going to solve.
Updating Parameters. We solve Problem 5 by alterna-
tively updating two groups of parameters (αi and [φ, η])
across epochs, e.g., if αi is updated in the j-th epoch, then
[φ, η] will be updated in the (j + 1)-th epoch, until both of
them converge. Taking the i-th phase as an example, we ini-
tialize αi, φi, ηi with αi−1, φi−1, ηi−1, respectively. Please
note that φ0 is initialized with ones, following [42,43]; η0 is
initialized with θbase; and α0 is initialized with 0.5. Based
on our Data Strategy, we use all available data in the cur-
rent phase to solve the lower-level problem, i.e., training
[φi, ηi] as follows,

[φi, ηi]← [φi, ηi]− γ1∇[φi,ηi]L(αi, φi, ηi; E0:i−1 ∪ Di).
(6)

Then, we use a balanced exemplar set to solve the upper-
level problem, i.e., training αi as follows,

αi ← αi − γ2∇αiL(αi, φi, ηi; E0:i−1 ∪ Ei), (7)

where γ1 and γ2 are the lower-level and upper-level learning
rates, respectively.

3.3. Algorithm

In Algorithm 1, we summarize the overall training steps
of the proposed AANets in the i-th incremental learning
phase (where i ∈ [1, ..., N ]). Lines 1-4 show the pre-
processing including loading new data and old exemplars
(Line 1), initializing the two groups of learnable parame-
ters (Lines 2-3), and selecting the exemplars for new classes

Algorithm 1: AANets (in the i-th phase)
Input: New class data Di; old class exemplars

E0:i−1; old parameters αi−1, φi−1, ηi−1;
base model θbase.

Output: new parameters αi, φi, ηi; new class
exemplars Ei.

1 Get Di and load E0:i−1 from memory;
2 Initialize [φi, ηi] with [φi−1, ηi−1];
3 Initialize αi with αi−1;
4 Select exemplars Ei $ Di, e.g. by herding [16, 34]

or mnemonics training [25];
5 for epochs do
6 for mini-batches in E0:i−1 ∪ Di do
7 Train [φi, ηi] on E0:i−1 ∪ Di by Eq. 6;
8 end
9 for mini-batches in E0:i−1 ∪ Ei do

10 Learn αi on E0:i−1 ∪ Ei by Eq. 7;
11 end
12 end
13 Update exemplars Ei, e.g. by herding [16, 34] or

mnemonics training [25];
14 Replace E0:i−1 with E0:i−1 ∪ Ei in the memory.

(Line 4). Lines 5-12 optimize alternatively between the net-
work parameters and the Adaptive Aggregation weights. In
specific, Lines 6-8 and Lines 9-11 execute the training for
solving the upper-level and lower-level problems, respec-
tively. Lines 13-14 update the exemplars and save them to
the memory.

4. Experiments
We evaluate the proposed AANets on three CIL bench-

marks, i.e., CIFAR-100 [20], ImageNet-Subset [34] and Im-
ageNet [37]. We incorporate AANets into four baseline
methods and boost their model performances consistently
for all settings. Below we describe the datasets and im-
plementation details (Section 4.1), followed by the results
and analyses (Section 4.2) which include a detailed abla-
tion study, extensive comparisons to related methods, and
some visualization of the results.

4.1. Datasets and Implementation Details

Datasets. We conduct CIL experiments on two datasets,
CIFAR-100 [20] and ImageNet [37], following closely re-
lated work [11, 16, 25]. CIFAR-100 contains 60, 000 sam-
ples of 32 × 32 color images for 100 classes. There are
500 training and 100 test samples for each class. ImageNet
contains around 1.3 million samples of 224× 224 color im-
ages for 1000 classes. There are approximately 1, 300 train-
ing and 50 test samples for each class. ImageNet is used
in two CIL settings: one based on a subset of 100 classes



Row Ablation Setting
CIFAR-100 (acc.%) ImageNet-Subset (acc.%)

Memory FLOPs #Param N=5 10 25 Memory FLOPs #Param N=5 10 25

1 single-branch “all” [16] 7.64MB 70M 469K 63.17 60.14 57.54 330MB 1.82G 11.2M 70.84 68.32 61.44
2 “all” + “all” 9.43MB 140M 938K 64.49 61.89 58.87 372MB 3.64G 22.4M 69.72 66.69 63.29

3 “all” + “scaling” 9.66MB 140M 530K 66.74 65.29 63.50 378MB 3.64G 12.6M 72.55 69.22 67.60
4 “all” + “frozen” 9.43MB 140M 469K 65.62 64.05 63.67 372MB 3.64G 11.2M 71.71 69.87 67.92
5 “scaling” + “frozen” 9.66MB 140M 60K 64.71 63.65 62.89 378MB 3.64G 1.4M 73.01 71.65 70.30

6 w/o balanced E 9.66MB 140M 530K 65.91 64.70 63.08 378MB 3.64G 12.6M 70.30 69.92 66.89
7 w/o adapted α 9.66MB 140M 530K 65.89 64.49 62.89 378MB 3.64G 12.6M 70.31 68.71 66.34
8 strict memory budget 7.64MB 140M 530K 66.46 65.38 61.79 330MB 3.64G 12.6M 72.21 69.10 67.10

Table 1. Ablation study. The baseline (Row 1) is LUCIR [16]. “all”, “scaling”, and “frozen” denote three types of blocks and they have
different numbers of learnable parameters, e.g., “all” means all convolutional weights and biases are learnable. If we name them as A, B,
and C, we use A+B in the table to denote the setting of using A-type and B-type blocks respectively as plastic and stable blocks. See more
details in Section 4.2 Ablation settings. Adapted α are applied on Rows 3-8. “all”+“scaling” is the default setting of Rows 6-8. “#Param”
indicates the number of learnable parameters. “Memory” denotes the peak memory for storing the exemplars and the learnable & frozen
network parameters during the model training through all phases. Please refer to more results in the supplementary materials.

(ImageNet-Subset) and the other based on the full set of
1, 000 classes. The 100-class data for ImageNet-Subset are
sampled from ImageNet in the same way as [11, 16].

Architectures. Following the exact settings in [16, 25],
we deploy a 32-layer ResNet as the baseline architecture
(based on which we build the AANets) for CIFAR-100.
This ResNet consists of 1 initial convolution layer and 3
residual blocks (in a single branch). Each block has 10
convolution layers with 3 × 3 kernels. The number of fil-
ters starts from 16 and is doubled every next block. After
these 3 blocks, there is an average-pooling layer to com-
press the output feature maps to a feature embedding. To
build AANets, we convert these 3 blocks into three levels
of blocks and each level consists of a stable block and a
plastic block, referring to Section 3.1. Similarly, we build
AANets for ImageNet benchmarks but taking an 18-layer
ResNet [14] as the baseline architecture [16, 25]. Please
note that there is no architecture change applied to the clas-
sifiers, i.e., using the same FC layers as in [16, 25].

Hyperparameters and Configuration. The learning rates
γ1 and γ2 are initialized as 0.1 and 1 × 10−8, respectively.
We impose a constraint on each pair of αη and αφ to make
sure αη + αφ = 1. For fair comparison, our training hyper-
paramters are almost the same as in [11, 25]. Specifically,
on the CIFAR-100 (ImageNet), we train the model for 160
(90) epochs in each phase, and the learning rates are divided
by 10 after 80 (30) and then after 120 (60) epochs. We use
an SGD optimizer with the momentum 0.9 and the batch
size 128 to train the models in all settings.

Memory Budget. By default, we follow the same data
replay settings used in [11, 16, 25, 34], where each time
reserves 20 exemplars per old class. In our “strict mem-
ory budget” settings, we strictly control the memory budget
shared by the exemplars and the model parameters. For ex-
ample, if we incorporate AANets to LUCIR [16], we need

to reduce the number of exemplars to balance the additional
memory used by model parameters (as AANets take around
20% more parameters than plain ResNets). As a result, we
reduce the numbers of exemplars for AANets from 20 to 13,
16 and 19, respectively, for CIFAR-100, ImageNet-Subset,
and ImageNet, in the “strict memory budget” setting. For
example, on CIFAR-100, we use 530k additional parame-
ters, so we need to reduce 530kfloats×4bytes/float÷(32×
32× 3bytes/image)÷ 100classes ≈ 7images/class.
Benchmark Protocol. We follow the common protocol
used in [11, 16, 25]. Given a dataset, the model is trained
on half of the classes in the 0-th phase. Then, it learns the
remaining classes evenly in the subsequent N phases. For
N , there are three options as 5, 10, and 25, and the corre-
sponding settings are called “N -phase”. In each phase, the
model is evaluated on the test data for all seen classes. The
average accuracy (over all phases) is reported. For each set-
ting, we run the experiment three times and report averages
and 95% confidence intervals.

4.2. Results and Analyses

Table 1 summarizes the statistics and results in 8 abla-
tive settings. Table 2 presents the results of 4 state-of-the-
art methods w/ and w/o AANets as a plug-in architecture,
and the reported results from some other comparable work.
Figure 3 compares the activation maps (by Grad-CAM [39])
produced by different types of residual blocks and for the
classes seen in different phases. Figure 4 shows the changes
of values of αη and αφ across 10 incremental phases.
Ablation Settings. Table 1 shows the ablation study. By
differentiating the numbers of learnable parameters, we can
have 3 block types: 1) “all” for learning all the convolu-
tional weights and biases; 2) “scaling” for learning neuron-
level scaling weights [43] on the top of a frozen base model
θbase; and 3) “frozen” for using only θbase (always frozen).



Method
CIFAR-100 ImageNet-Subset ImageNet

N=5 10 25 5 10 25 5 10 25

LwF [23] 49.59 46.98 45.51 53.62 47.64 44.32 44.35 38.90 36.87
BiC [48] 59.36 54.20 50.00 70.07 64.96 57.73 62.65 58.72 53.47
TPCIL [44] 65.34 63.58 – 76.27 74.81 – 64.89 62.88 –

iCaRL [34] 57.12±0.50 52.66±0.89 48.22±0.76 65.44±0.35 59.88±0.83 52.97±1.02 51.50±0.43 46.89±0.35 43.14±0.67

w/ AANets (ours) 64.22±0.42 60.26±0.73 56.43±0.81 73.45±0.51 71.78±0.64 69.22±0.83 63.91±0.59 61.28±0.49 56.97±0.86

LUCIR [16] 63.17±0.87 60.14±0.73 57.54±0.43 70.84±0.69 68.32±0.81 61.44±0.91 64.45±0.32 61.57±0.23 56.56±0.36

w/ AANets (ours) 66.74±0.37 65.29±0.43 63.50±0.61 72.55±0.67 69.22±0.72 67.60±0.39 64.94±0.25 62.39±0.61 60.68±0.58

Mnemonics [25] 63.34±0.62 62.28±0.43 60.96±0.72 72.58±0.85 71.37±0.56 69.74±0.39 64.54±0.49 63.01±0.57 61.00±0.71

w/ AANets (ours) 67.59±0.34 65.66±0.61 63.35±0.72 72.91±0.53 71.93±0.37 70.70±0.45 65.23±0.62 63.60±0.71 61.53±0.29

PODNet-CNN [11] 64.83±1.11 63.19±1.31 60.72±1.54 75.54±0.29 74.33±1.05 68.31±2.77 66.95 64.13 59.17
w/ AANets (ours) 66.31±0.87 64.31±0.90 62.31±1.02 76.96±0.53 75.58±0.74 71.78±0.81 67.73±0.71 64.85±0.53 61.78±0.61

Table 2. Average incremental accuracies (%) of four state-of-the-art methods w/ and w/o our AANets as a plug-in architecture. In the
upper block, we present some comparable results reported in some other related works. Please note 1) [11] didn’t report the results for
N=25 on the ImageNet, and we produce the results using their public code; 2) [25] updated their results on arXiv (after fixing a bug in their
code), different from its conference version; 3) for “w/ AANets”, we use “all”+“scaling” blocks corresponding to Row 3 of Table 1; and
4) if applying “strict memory budget”, there is little performance drop. Corresponding results are given in Table 1 and Table S2 in
the supplementary materials.

In Table 1, the pattern of combining blocks is A+B where
A and B stands for the plastic and the stable blocks, respec-
tively. Rows 1 is the baseline method LUCIR [16]. Row 2
is a double-branch version for LUCIR without learning any
aggregation weights. Rows 3-5 are our AANets using dif-
ferent combinations of blocks. Row 6-8 use “all”+“scaling”
under an additional setting as follows. 1) Row 6 uses imbal-
anced data E0:i−1 ∪Di to train α adaptively. 2) Row 7 uses
fixed weights αη = αφ = 0.5 at each residual level. 3) Row
8 is under the “strict memory budget” setting, where we re-
duce the numbers of exemplars to 14 and 17 for CIFAR-100
and ImageNet-Subset, respectively.
Ablation Results. In Table 1, if comparing the sec-
ond block (ours) to the first block (single-branch and
double-branch baselines), it is obvious that using AANets
can clearly improve the model performance, e.g., “scal-
ing”+“frozen” gains an average of 4.8% over LUCIR for
the ImageNet-Subset, by optimizing 1.4M parameters dur-
ing CIL — only 12.6% of that in LUCIR. Among Rows 3-5,
we can see that for the ImageNet-Subset, models with the
fewest learnable parameters (“scaling”+“frozen”) work the
best. We think this is because we use shallower networks
for learning larger datasets (ResNet-32 for CIFAR-100;
ResNet-18 for ImageNet-Subset), following the Bench-
mark Protocol. In other words, θbase is quite well-trained
with the rich data of half ImageNet-Subset (50 classes in
the 0-th phase), and can offer high-quality features for later
phases. Comparing Row 6 to Row 3 shows the efficiency
of using a balanced subset to optimize α. Comparing Row
7 to Row 3 shows the superiority of learning α (which is
dynamic and optimal) over manually-choosing α.
About the Memory Usage. By comparing Row 3 to Row 1,

we can see that AANets can clearly improve the model per-
formance while introducing small overheads for the mem-
ory, e.g., 26% and 14.5% on the CIFAR-100 and ImageNet-
Subset, respectively. If comparing Row 8 to Row 3, we
find that though the numbers of exemplars are reduced (for
Row 8), the model performance of AANets has a very small
drop, e.g., only 0.3% for the 5-Phase CIL models of CIFAR-
100 and ImageNet-Subset. Therefore, we can conclude that
AANets can achieve rather satisfactory performance under
strict memory control — a desirable feature needed in class-
incremental learning systems.
Comparing to the State-of-the-Art. Table 2 shows that
taking our AANets as a plug-in architecture for 4 state-
of-the-art methods [11, 16, 25, 34] consistently improves
their model performances. E.g., for CIFAR-100, LUCIR
w/ AANets and Mnemonics w/ AANets respectively gains
4.9% and 3.3% improvements on average. From Table 2,
we can see that our approach of using AANets achieves
top performances in all settings. Interestingly, we find that
AANets can boost more performance for simpler baseline
methods, e.g., iCaRL. iCaRL w/ AANets achieves mostly
better results than those of LUCIR on three datasets, even
though the latter method deploys various regularization
techniques.
Visualizing Activation Maps. Figure 3 demonstrates
the activation maps visualized by Grad-CAM for the fi-
nal model (obtained after 5 phases) on ImageNet-Subset
(N=5). The visualized samples from left to right are picked
from the classes coming in the 0-th, 3-rd and 5-th phases, re-
spectively. For the 0-th phase samples, the model makes the
prediction according to foreground regions (right) detected
by the stable block and background regions (wrong) by the



37

49

4840

4811

4981

176

Classes seen in Phase 0

image AANets stable plastic

go
ld

fi
n

ch
go

ld
fi

n
ch

q
u

ai
l

4872
image AANets stable plastic

te
rr

ie
r

te
rr

ie
r

d
h

o
le

Classes seen in Phase 3

image AANets stable plastic

A
rc

ti
c 

fo
x

A
rc

ti
c 

fo
x

ca
n

 o
p

en
er

Classes seen in Phase 5

Figure 3. The activation maps using Grad-CAM [39] for the 5-th phase (the last phase) model on ImageNet-Subset (N=5). Samples are
selected from the classes coming in the 0-th phase (left), the 3-rd phase (middle), and the 5-th phase (right), respectively. Green tick (red
cross) means the discriminative features are activated on the object regions successfully (unsuccessfully). ᾱη = 0.428 and ᾱφ = 0.572.

0 2 4 6 8 10

#phases (Level 1)

-1

0

1

2

0 2 4 6 8 10

#phases (Level 2)

0 2 4 6 8 10

#phases (Level 3)

(a) CIFAR-100 (N=10)

0 2 4 6 8 10

#phases (Level 1)

0.2

0.4

0.6

0.8

0 2 4 6 8 10

#phases (Level 2)

0 2 4 6 8 10

#phases (Level 3)

(b) ImageNet-Subset (N=10)

0 2 4 6 8 10

#phases (Level 1)

0.2

0.4

0.6

0.8

0 2 4 6 8 10

#phases (Level 2)

0 2 4 6 8 10

#phases (Level 3)

(c) ImageNet (N=10)

Figure 4. The values of αη and αφ adapted for each residual level
and in each incremental phase. All curves are smoothed with a
rate of 0.8 for better visualization.

plastic block. This is because, through multiple phases of
full updates, the plastic block forgets the knowledge of these
old samples while the stable block successfully retains it.
This situation is reversed when using that model to recog-
nize the 5-th phase samples. The reason is that the stable
block is far less learnable than the plastic block, and may
fail to adapt to new data. For all shown samples, the model
extracts features as informative as possible in two blocks.
Then, it aggregates these features using the weights adapted

from the balanced dataset, and thus can make a good bal-
ance of the features to achieve the best prediction.
Aggregation Weights (αη and αφ). Figure 4 shows the
values of αη and αφ learned during training 10-phase mod-
els. Each row displays three plots for three residual levels
of AANets respectively. Comparing among columns, we
can see that Level 1 tends to get larger values of αφ, while
Level 3 tends to get larger values of αη . This can be in-
terpreted as lower-level residual blocks learn to stay stabler
which is intuitively correct in deep models. With respect
to the learning activity of CIL models, it is to continuously
transfer the learned knowledge to subsequent phases. The
features at different resolutions (levels in our case) have dif-
ferent transferabilities [50]. Level 1 encodes low-level fea-
tures that are more stable and shareable among all classes.
Level 3 nears the classifiers, and tends to be more plastic
such as to fast to adapt to new classes.

5. Conclusions
We introduce a novel network architecture AANets spe-

cially for CIL. Our main contribution lies in addressing
the issue of stability-plasticity dilemma in CIL by a sim-
ple modification on plain ResNets — applying two types of
residual blocks to respectively and specifically learn stabil-
ity and plasticity at each residual level, and then aggregating
them as a final representation. To achieve efficient aggrega-
tion, we adapt the level-specific and phase-specific weights
in an end-to-end manner. Our overall approach is generic
and can be easily incorporated into existing CIL methods to
boost their performance.

Acknowledgments. This research is supported by
A*STAR under its AME YIRG Grant (Project No.
A20E6c0101), the Singapore Ministry of Education (MOE)
Academic Research Fund (AcRF) Tier 1, Alibaba Innova-
tive Research (AIR) programme, Major Scientific Research
Project of Zhejiang Lab (No. 2019DB0ZX01), and Max
Planck Institute for Informatics.



References
[1] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone

Calderara, Rita Cucchiara, and Babak Ehteshami Bejnordi.
Conditional channel gated networks for task-aware continual
learning. In CVPR, pages 3931–3940, 2020. 2

[2] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.
Expert gate: Lifelong learning with a network of experts. In
CVPR, pages 3366–3375, 2017. 2

[3] Eden Belouadah and Adrian Popescu. Il2m: Class incremen-
tal learning with dual memory. In CVPR, pages 583–592,
2019. 2

[4] Francisco M. Castro, Manuel J. Marı́n-Jiménez, Nicolás
Guil, Cordelia Schmid, and Karteek Alahari. End-to-end in-
cremental learning. In ECCV, pages 241–257, 2018. 1, 2,
3

[5] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-
than, and Philip HS Torr. Riemannian walk for incremen-
tal learning: Understanding forgetting and intransigence. In
ECCV, pages 532–547, 2018. 2

[6] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with a-
gem. In ICLR, 2019. 2

[7] Zhiyuan Chen and Bing Liu. Lifelong machine learning.
Synthesis Lectures on Artificial Intelligence and Machine
Learning, 12(3):1–207, 2018. 2

[8] Guy Davidson and Michael C Mozer. Sequential mastery of
multiple visual tasks: Networks naturally learn to learn and
forget to forget. In CVPR, pages 9282–9293, 2020. 2

[9] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. Continual learning: A comparative study
on how to defy forgetting in classification tasks. arXiv,
1909.08383, 2019. 2

[10] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. A continual learning survey: Defying for-
getting in classification tasks. arXiv, 1909.08383, 2019. 2

[11] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas
Robert, and Eduardo Valle. Podnet: Pooled outputs distilla-
tion for small-tasks incremental learning. In ECCV, 2020. 1,
2, 3, 4, 5, 6, 7, 12, 13

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML, pages 1126–1135, 2017. 2

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NIPS, pages
2672–2680, 2014. 2, 4

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 1, 3, 6

[15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distill-
ing the knowledge in a neural network. arXiv, 1503.02531,
2015. 2

[16] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via

rebalancing. In CVPR, pages 831–839, 2019. 1, 2, 3, 4, 5, 6,
7, 11, 12, 13

[17] Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zheng-
wei Tao, Jinwen Ma, Dongyan Zhao, and Rui Yan. Overcom-
ing catastrophic forgetting for continual learning via model
adaptation. In ICLR, 2019. 2

[18] Xinting Hu, Kaihua Tang, Chunyan Miao, Xian-Sheng Hua,
and Hanwang Zhang. Distilling causal effect of data in class-
incremental learning. In CVPR, 2021. 2, 3

[19] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L.
Hayes, and Christopher Kanan. Measuring catastrophic for-
getting in neural networks. In AAAI, pages 3390–3398, 2018.
1

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 5

[21] Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao
Zheng, Tat-Seng Chua, and Bernt Schiele. Learning to
self-train for semi-supervised few-shot classification. In
NeurIPS, pages 10276–10286, 2019. 2

[22] Yingying Li, Xin Chen, and Na Li. Online optimal control
with linear dynamics and predictions: Algorithms and regret
analysis. In NeurIPS, pages 14858–14870, 2019. 2

[23] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 40(12):2935–2947, 2018. 1, 2, 7, 13

[24] Yaoyao Liu, Bernt Schiele, and Qianru Sun. An ensemble of
epoch-wise empirical bayes for few-shot learning. In ECCV,
pages 404–421, 2020. 2

[25] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and
Qianru Sun. Mnemonics training: Multi-class incremental
learning without forgetting. In CVPR, pages 12245–12254,
2020. 1, 2, 3, 4, 5, 6, 7, 12, 13

[26] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. In NIPS, pages
6467–6476, 2017. 2

[27] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of Learning and Motivation, vol-
ume 24, pages 109–165. Elsevier, 1989. 1

[28] K. McRae and P. Hetherington. Catastrophic interference is
eliminated in pre-trained networks. In CogSci, 1993. 1

[29] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin.
The stability-plasticity dilemma: Investigating the contin-
uum from catastrophic forgetting to age-limited learning ef-
fects. Frontiers in Psychology, 4:504, 2013. 1

[30] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania.
Gdumb: A simple approach that questions our progress in
continual learning. In ECCV, 2020. 2

[31] Jathushan Rajasegaran, Munawar Hayat, Salman H Khan,
Fahad Shahbaz Khan, and Ling Shao. Random path selec-
tion for continual learning. In NeurIPS, pages 12669–12679,
2019. 2

[32] Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, and Mubarak Shah. itaml: An incremen-
tal task-agnostic meta-learning approach. In CVPR, pages
13588–13597, 2020. 3, 11



[33] R. Ratcliff. Connectionist models of recognition memory:
Constraints imposed by learning and forgetting functions.
Psychological Review, 97:285–308, 1990. 1

[34] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. iCaRL: Incremental classi-
fier and representation learning. In CVPR, pages 5533–5542,
2017. 1, 2, 3, 5, 6, 7, 12, 13

[35] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,
Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn
without forgetting by maximizing transfer and minimizing
interference. In ICLR, 2019. 2

[36] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,
Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn
without forgetting by maximizing transfer and minimizing
interference. In ICLR, 2019. 3

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015. 1, 5

[38] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv, 1606.04671, 2016. 2

[39] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In CVPR, pages 618–626, 2017.
6, 8

[40] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. In NIPS,
pages 2990–2999, 2017. 1, 2

[41] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review
on bilevel optimization: From classical to evolutionary ap-
proaches and applications. IEEE Transactions on Evolution-
ary Computation, 22(2):276–295, 2018. 2

[42] Qianru Sun, Yaoyao Liu, Zhaozheng Chen, Tat-Seng Chua,
and Bernt Schiele. Meta-transfer learning through hard tasks.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020. 5

[43] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele.
Meta-transfer learning for few-shot learning. In CVPR, pages
403–412, 2019. 3, 5, 6

[44] Xiaoyu Tao, Xinyuan Chang, Xiaopeng Hong, Xing Wei,
and Yihong Gong. Topology-preserving class-incremental
learning. In ECCV, 2020. 2, 7

[45] Heinrich Von Stackelberg and Stackelberg Heinrich Von.
The theory of the market economy. Oxford University Press,
1952. 2

[46] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and
Alexei A. Efros. Dataset distillation. arXiv, 1811.10959,
2018. 2

[47] Max Welling. Herding dynamical weights to learn. In ICML,
pages 1121–1128, 2009. 3

[48] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-
cremental learning. In CVPR, pages 374–382, 2019. 2, 3, 7,
13

[49] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In
NeurIPS, pages 899–908, 2018. 2

[50] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How transferable are features in deep neural networks? In
NIPS, pages 3320–3328, 2014. 4, 8

[51] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz,
Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de
Weijer. Semantic drift compensation for class-incremental
learning. In CVPR, pages 6982–6991, 2020. 2

[52] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
Deepemd: Few-shot image classification with differentiable
earth mover’s distance and structured classifiers. In CVPR,
pages 12203–12213, 2020. 2

[53] Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan,
and Yinghui Xu. Few-shot incremental learning with contin-
ually evolved classifiers. In CVPR, 2021. 2

[54] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-
Tao Xia. Maintaining discrimination and fairness in class
incremental learning. In CVPR, pages 13208–13217, 2020.
2



Supplementary Materials

These supplementary materials include the results for
different CIL settings(§A), “strict memory budget” experi-
ments (§B), additional ablation results (§C), additional plots
(§D), more visualization results (§E), and the execution
steps of our source code with PyTorch (§F).

A. Results for Different CIL Settings.
We provide more results on the setting with the same

number of classes at all phases [32] in the second block
(“same # of cls”) of Table S1. For example, N=25 in-
dicates 100 classes evenly come in 25 phases, so 4 new
classes arrive in each phase (including the 0-th phase). Fur-
ther, in this table, each entry represents an accuracy of the
last phase (since all-phase accuracies are not comparable
to our original setting) averaged over 3 runs; and “update
θbase” means that θbase is updated as θbase ← φi � θbase
after each phase. All results are under “strict memory bud-
get” and “all”+“scaling” settings, so φi indicate the meta-
learned weights of SS operators. The results show that
1) “w/ AANets” performs best in all settings and brings
consistent improvements; and 2) “update θbase” is helpful
for CIFAR-100 but harmful for ImageNet-Subset.

Last-phase acc. (%)
CIFAR-100 ImageNet-Subset

N=5 10 25 5 10 25

LUCIR (50 cls in Phase 0) 54.3 50.3 48.4 60.0 57.1 49.3
w/ AANets 58.6 56.7 53.3 64.3 58.0 56.5

LUCIR (same # of cls) 52.1 44.9 40.6 60.3 52.5 53.3
w/ AANets, update θbase 54.3 47.4 42.4 61.4 52.5 48.2
w/ AANets 52.6 46.1 41.9 68.8 60.8 56.8

Table S1. Supplementary to Table 1. Last-phase accuracies (%)
for different class-incremental learning (CIL) settings.

B. Strict Memory Budget Experiments
In Table S2, we present the results of 4 state-of-the-

art methods w/ and w/o AANetss as a plug-in architec-
ture, under the “strict memory budget” setting which strictly
controls the total memory shared by the exemplars and
the model parameters. For example, if we incorporate
AANetss to LUCIR [16], we need to reduce the num-
ber of exemplars to balance the additional memory intro-
duced by AANetss (as AANetss take around 20% more
parameters than the plain ResNets used in LUCIR [16]).
As a result, we reduce the numbers of exemplars for
AANetss from 20 to 13, 16 and 19, respectively, for CIFAR-
100, ImageNet-Subset, and ImageNet, in the “strict mem-
ory budget” setting. For CIFAR-100, we use 530k ad-
ditional parameters, so we need to reduce 530kfloats ×
4bytes/float÷ (32× 32× 3bytes/image)÷ 100classes ≈

6.9images/class, and d6.9e = 7images/class. For
ImageNet-Subset, we use 12.6M additional parameters, so
we need to reduce 12.6Mfloats × 4bytes/float ÷ (224 ×
224 × 3bytes/image) ÷ 100classes ≈ 3.3images/class,
and d3.3e = 4images/class. For ImageNet, we use 12.6M
additional parameters, so we need to reduce 12.6Mfloats×
4bytes/float÷(224×224×3bytes/image)÷100classes ≈
0.3images/class, and d0.3e = 1image/class. From Ta-
ble S2, we can see that our approach of using AANetss still
achieves the top performances in all CIL settings even if the
“strict memory budget” is applied.

C. More Ablation Results
In Table S3, we supplement the ablation results obtained

in more settings. “4×” denotes that we use 4 same-type
blocks at each residual level. Comparing Row 7 to Row
2 (Row 5) shows the efficiency of using different types of
blocks for representing stability and plasticity.

D. Additional Plots
In Figures S2, we present the phase-wise accuracies ob-

tained on CIFAR-100, ImageNet-Subset and ImageNet, re-
spectively. “Upper Bound” shows the results of joint train-
ing with all previous data accessible in every phase. We
can observe that our method achieves the highest accuracies
in almost every phase of different settings. In Figures S3
and S4, we supplement the plots for the values of αη and
αφ learned on the CIFAR-100 and ImageNet-Subset (N=5,
25). All curves are smoothed with a rate of 0.8 for a better
visualization.

E. More Visualization Results
Figure S1 below shows the activation maps of a

“goldfinch” sample (seen in Phase 0) in different-phase
models (ImageNet-Subset, N=5). Notice that the plastic
block gradually loses its attention on this sample (i.e., for-
gets it), while the stable block retains it. AANets benefit
from its stable blocks.

Figure S1. Supplementary to Figure 3. The activation maps of a
“goldfinch” sample (seen in Phase 0) in different-phase models
(ImageNet-Subset; N=5).

F. Source Code in PyTorch
We provide our PyTorch code on https://class-il.mpi-

inf.mpg.de/. To run this repository, we kindly advise you
to install Python 3.6 and PyTorch 1.2.0 with Anaconda.

https://class-il.mpi-inf.mpg.de/
https://class-il.mpi-inf.mpg.de/


Method
CIFAR-100 ImageNet-Subset ImageNet

N=5 10 25 5 10 25 5 10 25

iCaRL [34] 57.12±0.50 52.66±0.89 48.22±0.76 65.44±0.35 59.88±0.83 52.97±1.02 51.50±0.43 46.89±0.35 43.14±0.67

w/ AANetss (ours) 63.91±0.52 57.65±0.81 52.10±0.87 71.37±0.57 66.34±0.61 61.87±1.01 63.65±1.02 61.14±0.59 55.91±0.95

64.22±0.42 60.26±0.73 56.43±0.81 73.45±0.51 71.78±0.64 69.22±0.83 63.91±0.59 61.28±0.49 56.97±0.86

LUCIR [16] 63.17±0.87 60.14±0.73 57.54±0.43 70.84±0.69 68.32±0.81 61.44±0.91 64.45±0.32 61.57±0.23 56.56±0.36

w/ AANetss (ours) 66.46±0.45 65.38±0.53 61.79±0.51 72.21±0.87 69.10±0.90 67.10±0.54 64.83±0.50 62.34±0.65 60.49±0.78

66.74±0.37 65.29±0.43 63.50±0.61 72.55±0.67 69.22±0.72 67.60±0.39 64.94±0.25 62.39±0.61 60.68±0.58

Mnemonics [25] 63.34±0.62 62.28±0.43 60.96±0.72 72.58±0.85 71.37±0.56 69.74±0.39 64.54±0.49 63.01±0.57 61.00±0.71

w/ AANetss (ours) 66.12±0.00 65.10±0.00 61.83±0.00 72.88±0.00 71.50±0.00 70.49±0.00 65.21±0.76 63.36±0.67 61.37±0.80

67.59±0.34 65.66±0.61 63.35±0.72 72.91±0.53 71.93±0.37 70.70±0.45 65.23±0.62 63.60±0.71 61.53±0.29

PODNet-CNN [11] 64.83±1.11 63.19±1.31 60.72±1.54 75.54±0.29 74.33±1.05 68.31±2.77 66.95 64.13 59.17
w/ AANetss (ours) 66.36±1.02 64.31±1.13 61.80±1.24 76.63±0.35 75.00±0.78 71.43±1.51 67.80±0.87 64.80±0.60 61.01±0.97

66.31±0.87 64.31±0.90 62.31±1.02 76.96±0.53 75.58±0.74 71.78±0.81 67.73±0.71 64.85±0.53 61.78±0.61

Table S2. Supplementary to Table 2. Using “strict memory budget” setting. Average incremental accuracies (%) of four state-of-the-art
methods w/ and w/o our AANetss as a plug-in architecture. The red lines are the corresponding results in Table 2 of the main paper.

Row Ablation Setting
CIFAR-100 (acc.%) ImageNet-Subset (acc.%)

Memory FLOPs #Param N=5 10 25 Memory FLOPs #Param N=5 10 25

1 single-branch “all” [16] 7.64MB 70M 469K 63.17 60.14 57.54 330MB 1.82G 11.2M 70.84 68.32 61.44
2 “all” + “all” 9.43MB 140M 938K 64.49 61.89 58.87 372MB 3.64G 22.4M 69.72 66.69 63.29
3 4× “all” 13.01MB 280M 1.9M 65.13 64.08 59.40 456MB 7.28G 44.8M 70.12 67.31 64.00

4 single-branch “scaling” 7.64MB 70M 60K 62.48 61.53 60.17 334MB 1.82G 1.4M 71.29 68.88 66.75
5 “scaling” + “scaling” 9.43MB 140M 120K 65.13 64.08 62.50 382MB 3.64G 2.8M 71.71 71.07 66.69
6 4× “scaling” 13.01MB 240M 280K 66.00 64.67 63.16 478MB 3.64G 5.6M 72.01 71.23 67.12

7 “all” + “scaling” 9.66MB 140M 530K 66.74 65.29 63.50 378MB 3.64G 12.6M 72.55 69.22 67.60
8 “all” + “frozen” 9.43MB 140M 469K 65.62 64.05 63.67 372MB 3.64G 11.2M 71.71 69.87 67.92
9 “scaling” + “frozen” 9.66MB 140M 60K 64.71 63.65 62.89 378MB 3.64G 1.4M 73.01 71.65 70.30

Table S3. Supplementary to Table 1. More ablation study. “4×” denotes that we use 4 same-type blocks at each residual level.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#phase (N=25)

UpperBound AANets (ours) PODNet Mnemonics LUCIR BiC iCaRL LwF

(a) CIFAR-100 (100 classes). In the 0-th phase, θbase is trained on 50 classes, the remaining classes are given evenly in the subsequent phases.

(b) ImageNet-Subset (100 classes). In the 0-th phase, θbase is trained on 50 classes, the remaining classes are given evenly in the subsequent phases.

(c) ImageNet (1000 classes). In the 0-th phase, θbase on is trained on 500 classes, the remaining classes are given evenly in the subsequent phases.

Figure S2. Supplementary to Table 2.Phase-wise accuracies (%). Light-color ribbons are visualized to show the 95% confidence intervals.
Comparing methods: Upper Bound (the results of joint training with all previous data accessible in each phase); PODNet (2020) [11];
Mnemonics (2020) [25]; LUCIR (2019) [16]; BiC (2019) [48]; iCaRL (2017) [34]; and LwF (2016) [23].



0 2 4
#phases (Level 1)

-0.5

0

0.5

1

1.5

0 2 4
#phases (Level 2)

0 2 4
#phases (Level 3)

(a) CIFAR-100, N=5

0 5 10 15 20
#phases (Level 1)

-2

-1

0

1

2

3

0 5 10 15 20
#phases (Level 2)

0 5 10 15 20
#phases (Level 3)

(b) CIFAR-100, N=25

Figure S3. Supplementary to Figure 4. The changes of values for αη and αφ on CIFAR-100.

0 2 4
#phases (Level 1)

0.2

0.4

0.6

0.8

0 2 4
#phases (Level 2)

0 2 4
#phases (Level 3)

(a) ImageNet-Subset, N=5

0 5 10 15 20
#phases (Level 1)

0

0.5

1

0 5 10 15 20
#phases (Level 2)

0 5 10 15 20
#phases (Level 3)

(b) ImageNet-Subset, N=25

Figure S4. Supplementary to Figure 4. The changes of values for αη and αφ on ImageNet-Subset.


	Adaptive aggregation networks for class-incremental learning
	Citation

	tmp.1632918161.pdf.iRAwy

