
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2021

SGUARD: Towards fixing vulnerable smart contracts automatically SGUARD: Towards fixing vulnerable smart contracts automatically

Tai D. NGUYEN
Singapore Management University, dtnguyen.2019@smu.edu.sg

Long H. PHAM
Singapore Management University, hlpham@smu.edu.sg

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
NGUYEN, Tai D.; PHAM, Long H.; and SUN, Jun. SGUARD: Towards fixing vulnerable smart contracts
automatically. (2021). 2021 42nd IEEE Symposium on Security and Privacy: Virtual, May 23-27:
Proceedings. 1215-1229.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6115

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

SGUARD: Towards Fixing Vulnerable Smart
Contracts Automatically

Tai D. Nguyen, Long H. Pham, Jun Sun
dtnguyen.2019@smu.edu.sg, {longph1989, sunjunhqq}@gmail.com

Singapore Management University, Singapore

Abstract—Smart contracts are distributed, self-enforcing pro-
grams executing on top of blockchain networks. They have
the potential to revolutionize many industries such as financial
institutes and supply chains. However, smart contracts are
subject to code-based vulnerabilities, which casts a shadow on
its applications. As smart contracts are unpatchable (due to the
immutability of blockchain), it is essential that smart contracts
are guaranteed to be free of vulnerabilities. Unfortunately, smart
contract languages such as Solidity are Turing-complete, which
implies that verifying them statically is infeasible. Thus, alterna-
tive approaches must be developed to provide the guarantee.
In this work, we develop an approach which automatically
transforms smart contracts so that they are provably free of
4 common kinds of vulnerabilities. The key idea is to apply run-
time verification in an efficient and provably correct manner.
Experiment results with 5000 smart contracts show that our
approach incurs minor run-time overhead in terms of time (i.e.,
14.79%) and gas (i.e., 0.79%).

I. INTRODUCTION

Blockchain is a public list of records which are linked
together. Thanks to the underlying cryptography mechanism,
the records in the blockchain can resist against modification.
Ethereum is a platform which allows programmers to write
distributed, self-enforcing programs (a.k.a smart contracts)
executing on top of the blockchain network. Smart con-
tracts, once deployed on the blockchain network, become
an unchangeable commitment between the involving parties.
Because of that, they have the potential to revolutionize
many industries such as financial institutes and supply chains.
However, like traditional programs, smart contracts are subject
to code-based vulnerabilities, which may cause huge financial
loss and hinder its applications. The problem is even worse
considering that smart contracts are unpatchable once they are
deployed on the network. In other words, it is essential that
smart contracts are guaranteed to be free of vulnerabilities
before they are deployed.

In recent years, researchers have proposed multiple ap-
proaches to ensure smart contracts are vulnerability-free.
These approaches can be roughly classified into two groups,
i.e., verification and testing. However, existing efforts do not
provide the required guarantee. Verification of smart contracts
is often infeasible since smart contracts are written in Turing-
complete programming languages (such as Solidity which is
the most popular smart contract language), whereas it is known
that testing (of smart contracts or otherwise) only shows the
presence not the absence of vulnerabilities.

In this work, we propose an approach and a tool, called
SGUARD, which automatically fixes potentially vulnerable
smart contracts. SGUARD is inspired by program fixing tech-
niques for traditional programs such as C or Java, and yet
are designed specifically for smart contracts. First, SGUARD
is designed to guarantee the correctness of the fixes. Existing
program fixing approaches (e.g., GenFrog [1], PAR [2], Sap-
fix [3]) often suffer from the problem of weak specifications,
i.e., a test suite is taken as the correctness specification. A fix
driven by such a weak correctness criteria may over-fit the
given test suites and does not provide correctness guarantee
in all cases. Furthermore, fixes for smart contracts may suffer
from not only time overhead but also gas overhead (i.e., extra
fees for running the additional code) and SGUARD is designed
to minimize the run-time overhead in terms of time and gas
introduced by the fixes.

Given a smart contract, at the high level, SGUARD works in
two steps. In the first step, SGUARD first collects a finite set
of symbolic execution traces of the smart contract and then
performs static analysis on the collected traces to identify po-
tential vulnerabilities. As of now, SGUARD supports 4 types of
common vulnerabilities. Note that our static analysis engine is
built from scratch as extending existing static analysis engines
for smart contracts (e.g., Securify [4] and Ethainter [5]) for
our purpose is infeasible. For instance, their sets of semantic
rules are incomplete and sometimes produce conflicting results
(i.e. a contract both complies and violates a security rule).
In addition, they perform abstract interpretation locally (i.e.,
context/path-insensitive analysis) and thus suffer from many
false positives. A contract fixed based on the analysis results
from these tools may introduce unnecessary overhead.

In the second step, SGUARD applies a specific fixing pattern
for each type of vulnerability on the source code to guarantee
that the smart contract is free of those vulnerabilities. Our
approach is proved to be sound and complete on termination
for the vulnerabilities that SGUARD supports.

To summarize, our contribution in this work is as follows.
• We propose an approach to fix 4 types of vulnerabilities

in smart contracts automatically.
• We prove that our approach is sound and complete for

the considered vulnerabilities.
• We implement our approach as a self-contained tool,

which is then evaluated with 5000 smart contracts. The
experiment results show that SGUARD fixes 1605 smart
contracts. Furthermore, the fixes incur minor run-time

ar
X

iv
:2

10
1.

01
91

7v
1

 [
cs

.C
R

]
 6

 J
an

 2
02

1

overhead in terms of time (i.e., 14.79% on average) and
gas (i.e., 0.79%).

The remainder of the paper is organized as follows. In
Section II, we provide some background about smart contracts
and illustrate how our approach works through examples. The
problem is then defined formally in Section III. In Section IV,
we present the details of our approach. The experiment results
are presented in Section V. We discuss related work in
Section VI and conclude in Section VII.

II. BACKGROUND AND OVERVIEW

In this section, we introduce relevant background on smart
contracts and illustrate how our approach addresses the prob-
lem of smart contract vulnerabilities through examples.

A. Smart Contract

The concept of smart contracts came into being with
Ethereum [6], i.e., a digital currency platform with the ca-
pability of executing programmable code. It is subsequently
supported by platforms such as RSK [7] and Hyperledger [8].
In this work, we focus on Ethereum smart contracts as it
remains the most popular smart contracts platform.

Intuitively speaking, an Ethereum smart contract imple-
ments a set of rules for managing digital assets in Ethereum
accounts. In the Ethereum platform, there are two type of
accounts, i.e., externally owned accounts (EOAs) and contract
accounts. Both types of accounts have a 256-bit unique address
and a balance which represents the amount of Ether (a.k.a.
Ethereum currency unit) in the account. Contract accounts
are the ones which are associated with smart contracts that
can be used to perform certain predefined tasks. A smart
contract is similar to a class in object-oriented programming
languages such as Java or C#. It contains persistent data
such as storage variables and functions that can modify these
variables (including a constructor which initializes them).
Functions that are declared public can be invoked from other
accounts (either EOAs or other contract accounts) through
transactions, i.e., a sequence of function invocations.

The Etherum platform supports multiple programming lan-
guages for smart contracts programming. Currently, the most
popular one is Solidity, i.e., a Turing-complete programming
language. For instance, Figure 1(a) shows a public function
in a contract named SmartMesh written in Solidity. Once
invoked, the function transfers certain amount of tokens from
an account (at address from) to another account (at address
to). A Solidity contract is compiled into Ethereum bytecode.
With the bytecode, a transaction is then executed by the
Ethereum Virtual Machine (EVM) on miners’ machines. In
its essence, EVM is a stack-based machine. Its details can be
referred to in Section III-A.

Solidity programs have a number of language features which
are specific to smart contracts and are often associated with
vulnerabilities. For instance, a public function marked with
keyword payable is allowed to receive Ether when it is
invoked. The amount of Ether received is represented in the
value of variable msg.value. That is, if an account invokes a

payable function of a contract and sets the value of msg.value
greater than 0, Ether is transferred from the invoking account
to the invoked account. Besides that, Ether can also be sent
to other contracts using function send() or transfer() which
are globally defined. Note that in such a case, a specific no-
name function, called the fallback function, is executed if it is
defined in the receiving contract. Note that a fallback function
is meant to be a safety valve when a non-existing function is
called upon the contract, although it seems to be a source of
problems instead. Furthermore, to prevent the harmful exploit
of the network such as running infinite loops, each bytecode
instruction (called opcode) is associated with a running cost
called gas, which is paid from the caller’s account.

B. Vulnerabilities

Just like traditional programs, smart contracts are subject
to code-based vulnerabilities. A variety of vulnerabilities have
been identified in real-world smart contracts, some of which
have been exploited by attackers and have caused significant
financial losses (e.g., [9], [10]). In the following, we introduce
two kinds of vulnerabilities through examples.

Example II.1. One category of vulnerabilities is arithmetic
vulnerability, e.g., overflow. For instance, in April 2018, an
attacker exploited an integer overflow bug in a smart contract
named SmartMesh and stole a massive amount of tokens
(i.e., digital currency). The same bug affected 9 tradable tokens
at that time and was named as ProxyOverflow. Figure 1(a)
shows the (simplified) function transferProxy in the
SmartMesh contract which contains the bug. The function is
designed for transferring tokens from one account to another,
while paying certain fee to the sender (see lines 6 and 7). The
developer was apparently aware of potential overflow and in-
troduced relevant checks at lines 2, 4 and 5. Unfortunately, one
subtle bug is missed by the checks. That is, if fee+value is
0 (due to overflow) and balances[from]=0, the attacker
is able to bypass the check at line 2 and subsequently increase
the balance of msg.sender and to (see lines 6 and 7) by
an amount more than balances[from]. During the attack,
this bug was exploited to create tokens out of air. This example
highlights that manually-written checks could be error-prone.

Example II.2. Reentrancy vulnerability is arguably the most
infamous vulnerability for smart contracts. It happens when a
smart contract C invokes a function of another contract D and
subsequently a call back (e.g., through the fallback function
in contract D) to contract C is made while it is in an incon-
sistent state, e.g., the balance of contract C is not updated.
Figure 2(a) shows a part of a smart contract named MasBurn
which contains a cross-function reentrancy vulnerability.
MasBurn implements a Midas protocol token, i.e., a tradable
ERC20 token. It allows token holders to burn their owned
tokens by sending tokens to a specific BURN_ADDRESS, as
shown at line 17. The total amount of burned tokens within
one week can not exceed weeklyLimit (see line 16), which
is a variable that limits the amount of tokens to be burned
weekly. However, the problem is that the returned value of

1 function transferProxy(address from, address to, uint
value, uint fee) public {

2 if (balances[from] < fee + value) revert();
3 uint nonce = nonces[from];
4 if (balances[to] + value < balances[to]) revert();
5 if (balances[msg.sender] + fee < balances[msg.sender

]) revert();
6 balances[to] += value;
7 balances[msg.sender] += fee;
8 balances[from] -= value + fee;
9 nonces[from] = nonce + 1;

10 }

1 function transferProxy(address from, address to, uint
value, uint fee) public {

2 if (balances[from] < add_uint256(fee, value)) revert
();

3 uint nonce = nonces[from];
4 if (add_uint256(balances[to], value) < balances[to])

revert();
5 if (add_uint256(balances[msg.sender], fee) < balances

[msg.sender]) revert();
6 balances[to] = add_uint256(balances[to], value);
7 balances[msg.sender] = add_uint256(balances[msg.

sender], fee);
8 balances[from] = sub_uint256(balances[from],

add_uint256(_value, fee))
9 nonces[from] = nonce + 1;

10 }

(a) Before (b) After

Fig. 1: CVE-2018-10376 patched by SGUARD

the function getThisWeekBurnAmountLeft (see line 16)
has a data dependency on variable numOfBurns, and would
be wrongly calculated in the case of a reentrancy call at
line 17. That is, if the fallback function of the contract
at BURN_ADDRESS contains a call back to the function
burn, the function getThisWeekBurnAmountLeft is
called with an outdated value of numOfBurns. As a result,
the amount of burned tokens would exceed what is allowed.
Although no Ether is lost (or created from air) in such an
attack, the (implicit) specification of MasBurn is violated in
such a scenario. This example also shows the difficulty in
handling reentrancy vulnerability, i.e., whether a reentrancy is
a vulnerability may depend on the specification of the contract.

C. Patching Smart Contracts

In the following, we illustrate how SGUARD patches smart
contracts through the two examples mentioned above. The
technical details are presented in Section IV. We remark that
SGUARD identifies vulnerabilities based on bytecode while
patches them based on the corresponding source code. This
is because analysis based on the bytecode is more precise
than analysis based on the source code (as the former is not
affected by bugs or optimizations in the Solidity compiler),
whereas patching at the source code is transparent to the users.

Example II.3. The result of patching the function shown in
Figure 1(a) using SGUARD is shown in Figure 1(b). Almost
all arithmetic operations (in statements or expressions) are
replaced with function calls that perform the corresponding
operations safely (i.e., with proper checks for arithmetic over-
flow or underflow). This effectively prevents the vulnerability
as the function reverts immediately if fee+value overflows
at line 2. Note that the addition at line 9 is not patched as the
variable nonces is not deemed critical itself or is depended
on by some critical variables.

One might argue that some of the modifications are not
necessary, e.g., the one at line 4. This is true for this smart
contract, if the goal is to prevent this particular vulnerability. In
general, whether a modification is necessary or not can only
be answered when the specification of the smart contract is
present. SGUARD does not require the specification from the

user as that would limit its applicability in practice. SGUARD
thus always conservatively assumes all arithmetic overflow
that may lead to vulnerability are problematic. Although
this patch is not minimal, we guarantee that the patched
transferProxy is free of arithmetic vulnerability.

Example II.4. The result of applying SGUARD to the contract
shown in Figure 2(a) is shown in Figure 2(b). SGUARD
identifies line 17 as an external call, which is critical as an
external call invokes a function of another contract which
might be under the control of an attacker. SGUARD sys-
tematically identifies variables that the external call at line
17 depends on (either through control dependency or data
dependency). Afterwards, SGUARD patches these variables
and operations accordingly. In particular, this external call
has control dependency on the if-statement at line 5 and is
followed by a storage update (++numOfBurns at line 18).
• The subtractions at lines 4, 5, 6, 12 are replaced with calls

of function sub_uint256, which checks underflow.
• The additions at lines 6, 18 are replaced with calls of

function add_uint256 to avoid overflow.
• Function burn is patched to prevent reentrancy. That

is, we introduce the modifier nonReentrant at line
15. This modifier is derived from OpenZeppelin [11], a
library for secure smart contract development.

The resultant smart contract is free of arithmetic vulnerability
and reentrancy vulnerability.

III. PROBLEM DEFINITION

In the following, we first present the semantics for Solidity
smart contracts, and then define our problem.

A. Concrete Semantics

A smart contract S can be viewed as a finite state machine
S = (V ar, init,N, i, E) where V ar is a set of variables;
init is the initial valuation of the variables; N is a finite set
of control locations; i ∈ N is the initial control location,
i.e., the start of the contract; and E ⊆ N × C × N is a
set of labeled edges, each of which is of the form (n, c, n′)
where c is an opcode. There are a total of 78 opcodes in

1 function getThisWeekBurnedAmount() public view returns(
uint) {

2 uint thisWeekStartTime = getThisWeekStartTime();
3 uint total = 0;
4 for (uint i = numOfBurns; i >= 1; i--) {
5 if (burnTimestampArr[i - 1] < thisWeekStartTime)

break;
6 total += burnAmountArr[i - 1];
7 }
8 return total;
9 }

10
11 function getThisWeekBurnAmountLeft() public view

returns(uint) {
12 return weeklyLimit - getThisWeekBurnedAmount();
13 }
14
15 function burn(uint amount) external payable {
16 require(amount <= getThisWeekBurnAmountLeft());
17 require(IERC20(tokenAddress).transferFrom(msg.sender,

BURN_ADDRESS, amount));
18 ++numOfBurns;
19 }

1 function getThisWeekBurnedAmount() public view returns(
uint) {

2 uint thisWeekStartTime = getThisWeekStartTime();
3 uint total = 0;
4 for (uint i = numOfBurns; i >= 1; (i = sub_uint256(i,

1))) {
5 if (burnTimestampArr[sub_uint256(i, 1)] <

thisWeekStartTime) break;
6 total = add_uint256(total, burnAmountArr[

sub_uint256(i, 1)]);
7 }
8 return total;
9 }

10
11 function getThisWeekBurnAmountLeft() public view

returns(uint) {
12 return sub_uint256(weeklyLimit,

getThisWeekBurnedAmount());
13 }
14
15 function burn(uint amount) external payable

nonReentrant {
16 require(amount <= getThisWeekBurnAmountLeft());
17 require(IERC20(tokenAddress).transferFrom(msg.sender,

BURN_ADDRESS, amount));
18 (numOfBurns = add_uint256(numOfBurns, 1));
19 }

(a) Before (b) After

Fig. 2: MasBurn patched by SGUARD

Solidity (as of version 0.5.3), as summarized in Table I. Note
that each opcode is statically assigned with a unique program
counter, i.e., each opcode can be uniquely identified based on
the program counter.

Note that V ar includes stack variables, memory variables,
and storage variables. Stack variables are mostly used to store
primitive values and memory variables are used to store array-
like values (declared explicitly with keyword memory). Both
stack and memory variables are volatile, i.e., they are cleared
after each transaction. In contrast, storage variables are non-
volatile, i.e., they are persistent on the blockchain. Together,
the variables’ values identify the state of the smart contract at a
specific point of time. At the Solidity source code level, stack
and memory variables can be considered as local variables in
a specific function; and storage variables can be considered as
contract-level variables.

A concrete trace of the smart contract is an alternating
sequence of states and opcodes 〈s0, op0, s1, op1, · · · 〉 such that
each state si is of the form (pci, Si,Mi, Ri) where pci ∈ N is
the program counter; Si is the valuation of the stack variables;
Mi is the valuation of the memory variables; and Ri is the
valuation of the storage variables. Note that the initial state
s0 is (0, S0,M0, R0) where S0, M0 and R0 are the initial
valuation of the variables defined by init. Furthermore, for all
i, (pci+1, Si+1,Mi+1, Ri+1) is the result of executing opcode
opi given the state (pci, Si,Mi, Ri) according to the semantic
of opi. The semantics of opcodes are shown in Figure 3 in
form of execution rules, each of which is associated with a
specific opcode. Each rule is composed of multiple conditions
above the line and a state change below the line. The state
change is read from left to right, i.e., the state on the left
changes to the state on the right if the conditions above the
line are satisfied. Note that this formal semantics is based on

Rule Opcodes
STOP SELFDESTRUCT, REVERT, INVALID, RETURN, STOP
POP POP
UNARY-op NOT, ISZERO, CALLDATALOAD, EXTCODESIZE,

BLOCKHASH, BALANCE, EXTCODEHASH
BINARY-op ADD, MUL, SUB, DIV, SDIV, MOD, SMOD, EXP,

SIGNEXTEND, LT, GT, SLT, SGT, EQ, AND, OR, XOR,
BYTE, SHL, SHR, SAR

TERNARY-op ADDMOD, MULMOD, CALLDATACOPY, CODECOPY,
RETURNDATACOPY

MLOAD MLOAD
SHA3 SHA3
MSTORE MSTORE, MSTORE8
SLOAD SLOAD
SSTORE SSTORE
DUP-I DUP1· · · DUP16
SWAP-I SWAP1· · · SWAP16
JUMPI-T/JUMPI-F JUMPI
JUMP JUMP
CALL STATICCALL, CALL, CALLCODE, CREATE, CREATE2,

DELEGATECALL, SELFDESTRUCT

TABLE I: The opcodes according to each rule

the recent effort on formalizing Etherum [12].
Most of the rules are self-explanatory and thus we skip the

details and refer the readers to [12]. It is worth mentioning
how external calls are abstracted in our semantic model. Given
an external function call (i.e., opcode CALL), the execution
temporarily switches to an execution of the invoked contract.
The result of the external call, abstracted as res, is pushed to
the stack.

B. Symbolic Semantics

In order to define our problem, we must define the kinds
of vulnerabilities that we focus on. Intuitively, we say that
a smart contract suffers from certain vulnerability if there
exists an execution of the smart contract that satisfies certain
constraints. In the following, we extend the concrete traces to

(pc, S,M,R) �
STOP

S1, x = S.pop()

(pc, S,M,R) (pc+ 1, S1,M,R)
POP

S1, x = S.pop() z = op(x) S2 = S1.push(z)

(pc, S,M,R) (pc+ 1, S2,M,R)
UNARY-OP

S1, x = S.pop() S2, y = S1.pop()
z = op(x, y) S3 = S2.push(z)

(pc, S,M,R, pc) (pc+ 1, S3,M,R, pc+ 1)
BINARY-OP

S1, x = S.pop() S2, y = S1.pop() S3,m = S2.pop()
z = op(x, y,m) S4 = S3.push(z)

(pc, S,M,R) (pc+ 1, S4,M,R)
TERNARY-OP

S1, p = S.pop() v = M [p] S2 = S1.push(v)

(pc, S,M,R) (pc+ 1, S2,M,R)
MLOAD

S1, p = S.pop() S2, v = S1.pop() M1 = M [p← v]

(pc, S,M,R) (pc+ 1, S2,M1, R)
MSTORE

S1, p = S.pop() v = R[p] S2 = S1.push(v)

(pc, S,M,R) (pc+ 1, S2,M,R)
SLOAD

S1, p = S.pop() S2, v = S1.pop() R1 = R[p← v]

(pc, S,M,R) (pc+ 1, S2,M,R1)
SSTORE

v = S.get(i) S1 = S.push(v)

(pc, S,M,R) (pc+ 1, S1,M,R)
DUP-I

v0 = S.get(0) vi = S.get(i) S1 = S[0← vi] S2 = S1[i← v0]

(pc, S,M,R) (pc+ 1, S2,M,R)
SWAP-I

S1, lbl = S.pop() S2, c = S1.pop() c 6= 0

(pc, S,M,R) (lbl, S2,M,R)
JUMPI-T

S1, lbl = S.pop() S2, c = S1.pop() c = 0

(pc, S,M,R) (pc+ 1, S2,M,R)
JUMPI-F

S1, lbl = S.pop()

(pc, S,M,R) (lbl, S1,M,R)
JUMP

res = call() S1 = S.push(res)

(pc, S,M,R) (pc+ 1, S1,M,R)
CALL

S1, p = S.pop() S2, n = S1.pop() v = sha3(M [p, p+ n]) S3 = S2.push(v)

(pc, S,M,R) (pc+ 1, S3,M,R)
SHA3

Fig. 3: Operational semantics of Ethereum opcodes. pop, push, and get are self-explanatory stack operations. m[p ← v]
denote an operations which returns the same stack/mapping as m except that the value of position/key p is changed to v.
Rule UNARY-OP (BINARY-OP, TERNARY-OP) applies to all unary (binary, ternary) operations; rule DUP-I, applies to all
duplicate operations; and rule SWAP-I applies to all swap operations.

define symbolic traces of a smart contract so that we can define
whether a symbolic trace suffers from certain vulnerability.

To define symbolic traces, we first extend the concrete
values to symbolic values. Formally, a symbolic value has the
form of op(operand0, · · · , operandn) where op is an opcode
and operand0, · · · , operandn are the operands. Each operand
may be a concrete value (e.g., an integer number or an address)
or a symbolic value. Note that if all operands of an opcode are
concrete values, the symbolic value is a concrete value as well,
i.e., the result of applying op to the concrete operands. For
instance, ADD(5,6) is 11. Otherwise, the value is symbolic.
One exception is that if op is MLOAD or SLOAD, the result
is symbolic even if the operands are concrete, as it is not
trivial to maintain the concrete content of the memory or
storage. For instance, loading a value from address 0x00 from
the storage results in the symbolic value SLOAD(0x00) and
increasing the value at storage address 0x00 by 6 results in
a symbolic value ADD(SLOAD(0x00),0x06). For another
instance, the result of symbolically executing SHA3(n,p)
is SHA3(MLOAD(n,p)), i.e., the SHA3 hash of the value
located from address n to n+ p in the memory.

With the above, a symbolic trace is an alternating sequence
of states and opcodes 〈s0, op0, s1, op1, · · · 〉 such that each
state si is of the form (pci, S

s
i ,M

s
i , R

s
i) where pci is the

program counter; Ss
i , Ms

i and Rs
i are the valuations of stack,

memory and storage respectively. Note that Ss
i , Ms

i and Rs
i

may hold symbolic values as well as concrete ones. For all
i, (pci+1, S

s
i+1,M

s
i+1, R

s
i+1) is the result of executing opcode

opi symbolically given the state (pci, S
s
i ,M

s
i , R

s
i).

A symbolic execution engine is one which systematically
generate the symbolic traces of a smart contract. Note that
different from concrete execution, a symbolic execution would
generate two traces given an if-statement, one visits the then-
branch and the other visits the else-branch. Furthermore, in the
case of an external call (i.e., CALL), instead of switching the
current execution context to another smart contract, we can
simply use a symbolic value to represent the returned value
of the external call.

C. Problem Definition

Intuitively, a vulnerability occurs when there are depen-
dencies from certain critical instructions (e.g., CALL and
DELEGATECALL) to a set of specific instructions (e.g., ADD,
SUB and SSTORE). Therefore, to define our problem, we
first define (control and data) dependency, based on which
we define the vulnerabilities.

Definition 1 (Control dependency). An opcode opj is said to
be control-dependent on opi if there exists an execution from
opi to opj such that opj post-dominates all opk in the path
from opi to opj (excluding opi) but does not post-dominates
opi. An opcode opj is said to post-dominate an opcode opi if
all traces starting from opi must go through opj .

function transfer(address _to, uint _value) public {
if (_value <= 0) revert();
if (balances[msg.sender] < _value) revert();
if (balances[_to] + _value < balances[_to]) revert();
balances[msg.sender] = balances[msg.sender] - _value;
balances[_to] = balances[_to] + _value;

}

𝐺𝑇!(_value,0)

𝐼𝑆𝑍𝐸𝑅𝑂"(LT(SLOAD(balances[msg.sender]),_value))

𝑆𝑇𝑂𝑃𝐼𝑆𝑍𝐸𝑅𝑂'(LT(ADD(SLOAD(balances[_to]),_value),SLOAD(balances[_to])))

𝑆𝑆𝑇𝑂𝑅𝐸((balances[msg.sender],SUB(SLOAD(balances[msg.sender]),_value))

𝑆𝑆𝑇𝑂𝑅𝐸)(balances[_to],ADD(SLOAD(balances[_to]),_value))

𝑆𝑇𝐴𝑅𝑇

False
True

True

True

False

False

Fig. 4: An example of control and data dependency

Variable Symbolic Value
to CALLDATALOAD(0x04)
value CALLDATALOAD(0x24)
balances[msg.sender] SHA3(MLOAD(0x00,0x40))
balances[to] SHA3(MLOAD(0x00,0x40))

TABLE II: Variables and their symbolic values of Figure 4

Figure 4 illustrates an example of control dependency.
The source code is shown on the top and the corresponding
control flow graph is shown on the bottom. All variables
and their symbolic values are summarized in Table II. The
source code presents secure steps to transfer _value tokens
from msg.sender account to _to account. There are 3
then-branches followed by 2 storage updates. According to
the definition, both SSTORE3 and SSTORE4 are control-
dependent on ISZERO1, ISZERO2 and GT0.

Definition 2 (Data dependency). An opcode opj is said to be
data-dependent on opi if there exists a trace which executes
opi and subsequently opj such that W (opi) ∩ R(opj) 6= ∅
where R(opj) is a set of locations read by opj ; W (opi) is a
set of locations written by opi.

Figure 4 also illustrates an example of data dependency.
Opcode ISZERO1 and ISZERO2 are data-dependent on
SSTORE3 and SSTORE4. It has 2 traces, i.e., one trace loads
data from storage address SHA3(MLOAD(0x00,0x40))
which is written by SSTORE1 and SSTORE2 in another trace.

We say an opcode opj is dependent on opcode opi if opj
is control or data dependent on opi or opj is dependent on
an opcode opk such that opk is dependent on opi.

Vulnerabilities In the following, we define the 4 kinds of
vulnerabilities that we focus on, i.e., intra-function and cross-
function reentrancy, dangerous tx.origin and arithmetic over-
flow. We remark that while we can certainly detect more
kinds of vulnerabilities, it is not always clear how to fix
them, i.e., it may not be feasible to know the intended
behavior. For example, in the case of fixing an accessible

1 uint numWithdraw = 0;
2 function withdraw() external {
3 uint256 amount = balances[msg.sender];
4 balances[msg.sender] = 0;
5 (bool ret,) = msg.sender.call.value(amount)("");
6 require(ret);
7 numWithdraw ++;
8 }

Fig. 5: A non-reentrant case captured by NW

1 function transfer(address to, uint amount) external {
2 if (balances[msg.sender] >= amount) {
3 balances[to] += amount;
4 balances[msg.sender] -= amount;
5 }
6 }
7
8 function withdraw() external nonReentrant {
9 uint256 amount = balances[msg.sender];

10 (bool ret,) = msg.sender.call.value(amount)("");
11 require(ret);
12 balances[msg.sender] = 0;
13 }

Fig. 6: An example of cross-function reentrancy vulnerability

selfdestruct vulnerability (i.e., a smart contract suffers from
this vulnerability if it may be destructed by anyone [5]), we
would not know for sure who should have the privilege to
access selfdestruct.

Let C be a set of critical opcodes which contains CALL,
CALLCODE, DELEGATECALL, SELFDESTRUCT, CREATE
and CREATE2, i.e., the set of all opcode associated with exter-
nal calls except STATICCALL. The reason that STATICCALL
is excluded from C is that STATICCALL can not update
storage variables of the called smart contract and thus is
considered to be safe.

Definition 3 (Intra-function reentrancy vulnerability). A sym-
bolic trace suffers from intra-function reentrancy vulnerability
if it executes an opcode opc ∈ C and subsequently executes
an opcode ops in the same function such that ops is SSTORE,
and opc depends on ops.

A smart contract suffers from intra-function reentrancy
vulnerability if and only if at least one of its symbolic traces
suffers from intra-function reentrancy vulnerability. The above
definition is inspired from the no writes after call (NW)
property [4]. It is however more accurate than NW, as it avoids
violations of NW which are not considered as reentrancy vul-
nerability. For instance, the function shown in Figure 5 violates
NW, although it is not subject to reentrancy vulnerability.
It is because the external call msg.sender.call has no
dependency on numWithdraw. In other words, there does
not exist a dependency from opc to ops.

Definition 4 (Cross-function reentrancy vulnerability). A sym-
bolic trace tr suffers from cross-function reentrancy vulner-
ability if it executes an opcode ops where ops is SSTORE
and there exists a symbolic trace tr′ subject to intra-function
reentrancy vulnerability such that the opcode opc of tr′

1 function sendTo(address receiver, uint amount) public {
2 require(tx.origin == owner);
3 receiver.transfer(amount);
4 }

Fig. 7: An example of dangerous tx.origin vulnerability

depends on ops, and they belong to different functions.

A smart contract suffers from cross-function reentrancy
vulnerability if and only if at least one of its symbolic
traces suffers from cross-function reentrancy vulnerability.
This vulnerability differs from intra-function reentrancy as the
attacker launches an attack through two different functions,
which makes it harder to detect. Figure 6 shows an exam-
ple of cross-function reentrancy. The developer is apparently
aware of intra-function reentrancy and thus add the modifier
nonReentrant to the function withdraw for preventing
reentrancy. However, reentrancy is still possible through func-
tion transfer, in which case the attacker is able to double
his Ether. That is, the attacker receives Ether at line 10 and
illegally transfers it to another account at line 3. Although
cross-function reentrancy vulnerabilities were described in
Sereum [13] and Consensys [14], our work is the first work
to define it formally.

Definition 5 (Dangerous tx.origin vulnerability). A symbolic
trace suffers from dangerous tx.origin vulnerability if it ex-
ecutes an opcode opc ∈ C which depends on an opcode
ORIGIN.

A smart contract suffers from dangerous tx.origin vulner-
ability if and only if at least one of its symbolic traces
suffer from dangerous tx.origin vulnerability. This vulnera-
bility happens due to an incorrect usage of the global vari-
able tx.origin to authorize an user. An attack happens
when a user U sends a transaction to a malicious contract
A, which intentionally forwards this transaction to a con-
tract B that relies on a vulnerable authorization check (e.g.,
require(tx.origin == owner)). Since tx.origin
returns the address of U , contract A successfully impersonates
U . Figure 7 presents an example suffering from dangerous
tx.orgin vulnerability, i.e., a malicious contract may imper-
sonate the owner to withdraw all Ethers.

Definition 6 (Arithmetic vulnerability). A symbolic trace
suffers from arithmetic vulnerability if it executes an opcode
opc in C and opc depends on an opcode opa which is ADD,
SUB, MUL or DIV.

A smart contract suffers from arithmetic vulnerability
if and only if at least one of its symbolic traces suffer
from arithmetic vulnerability. Intuitively, this vulnerability
occurs when an external call data-depends on an arithmetic
operation (e.g., addition, subtraction, or multiplication). For
instance, the example in the Figure 2 is vulnerable due
to the presence of data dependency between the external
call at line 17 and the expression weeklyLimit -

getThisWeekBurnedAmount() at line 12. Arithmetic
vulnerabilities are the target of multiple tools designed for
vulnerability detection. In general, arithmetic vulnerability
detection using static analysis often results in high false
positive. Therefore, tools such as Securify [4] and Ethainter [5]
do not support this vulnerability in spite of its importance.
In the above definition, we focus on only critical arithmetic
operations to reduce false positives. That is, an arithmetic
operation is not considered critical as long as the smart
contract does not spread its wrong computation to other smart
contracts through external calls. For instance, wrong ERC20
token transfer (e.g., CVE-2018-10376) is not critical because
it can be reverted by the contract’s admin, whereas wrong
Ether transfer is irreversible.

Problem definition Our problem is then defined as follows.
Given a smart contract S, construct a smart contract T such
that T satisfies the following.

• Soundness: T is free of any of the above vulnerabilities.
• Preciseness: For every symbolic trace tr of S, if tr does

not suffer from any of the vulnerabilities, there exists a
symbolic trace tr′ in T which, given the same inputs,
produces the same outputs and states.

• Efficiency: T ’s execution speed and gas consumption are
minimally different from those of S.

Note that the first two are about the correctness of construc-
tion, whereas the last one is about the performance in terms
of computation and gas overhead.

IV. DETAILED APPROACH

In this section, we present the details of our approach.
The key challenge is to precisely identify where vulner-
abilities might arise and fix them accordingly. Note that
precisely identifying control/data-dependency is a prerequi-
site for precisely identifying vulnerabilities. One approach
to identify vulnerabilities is through static analysis based on
over-approximation. For instance, multiple existing tools (e.g.,
Securify [4] and Ethainter [5]) over-approximate Etherum
semantics using rewriting rules and leverage rewriting systems
such as Datalog to identify vulnerabilities through critical
pattern matching. While useful (and typically efficient) in
detecting vulnerabilities, such approaches are not ideal for
our purpose for multiple reasons. First, there are often many
false alarms as they perform abstract interpretation locally (i.e.,
context/path-insensitive analysis). In our setting, once a vul-
nerability is identified, we fix it by introducing additional run-
time checks. False alarms thus translate to runtime overhead
in terms of both time and gas. Second, existing approaches are
often incomplete, i.e., not all dependencies are captured. For
instance, Securify ignores data dependency through storage
variables, i.e., the dependency due to SSTORE(c,b) is lost
if c is not a constant, whereas Ethainter ignores control
dependency completely. Thirdly, rewriting systems such as
Datalog may terminate without any result, in which case the
analysis result may not be sound. Therefore, in our work, we

Algorithm 1: sGuard

1 establish a bound for each loop;
2 enumerate symbolic traces Tr;
3 foreach trace tr in Tr do
4 let dp← dependency(tr);
5 fixReentrancy(tr, dp);
6 fixTxOriginAndArithemic(tr, dp);

propose an algorithm which covers all dependencies with high
precision and always terminates with the correct result.

The details of our algorithm is shown in Algorithm 1.
From a high-level point of view, it works as follows. First,
symbolic traces are systematically enumerated, up to certain
threshold number of iterations for each loop. Second, each
symbolic trace is checked to see whether it is subject to
certain vulnerability according to our definitions. Lastly, the
corresponding source code of the vulnerability is identified
based on the AST and fixed. In the following, we present
details of each step one-by-one.

A. Enumerating Symbolic Traces

Note that our definitions of vulnerabilities are based on sym-
bolic traces. Thus, in this first step, we set out to collect a set
of symbolic traces Tr. As defined in Section III-B, a symbolic
trace is a sequence of the form 〈s0, op0, · · · , sn, opn, sn+1〉.
In the following, we focus on symbolic traces that are maxi-
mum, i.e., the last opcode opn is either REVERT, INVALID,
SELFDESTRUCT, RETURN, or STOP.

Systematically generating the maximum symbolic traces is
straightforward in the absence of loops, i.e., we simply apply
the symbolic semantic rules iteratively until it terminates. In
the presence of loops, however, as the condition to exit the loop
is often symbolic, this procedure would not terminate. This is a
well-known problem for symbolic execution and the remedy
is typically to bound the number of iterations heuristically.
Such an approach however does not work in our setting, since
we must identify all data/control dependency to identify all
potential vulnerabilities. In the following, we establish a bound
on the number of iterations on the loops which we prove is
sufficient for identifying the vulnerabilities that we focus on.

Given a smart contract S = (V ar, init,N, i, E), a loop
is in general a strongly connected component in S. Thanks
to structural programming, we can always identify the loop
heads, i.e., the control location where a while-loop starts or a
recursive function is invoked. In the following, we associate
each location n ∈ N with a bound, denoted as bound(n). If n
is a loop head, bound(n) intuitively means how many times n
has to be visited in at least one of symbolic traces we collect.
If n is not part of any strongly connected component, we have
bound(n) = 1. Otherwise, bound(n) is defined as follows.

• If (n, opn, n′) ∈ E and n′ is the loop head, bound(n) = 0
if opn is not an assignment; otherwise bound(n) = 1.

• If (n, opn, n
′) ∈ E, n′ is not the loop head and there is

no m such that (n, opn,m) ∈ E, i.e., n is not branching,

function transfer(
uint x, uint y,
uint z, uint m, uint n

) {
while (x < 100) {
x = y + 1;
if (y < 100) {
y = z + 1;
if (z < 100) {
z = m + 1;

} else {
m = n + 1;

}
} else {
n = x + 1;

}
}
msg.sender.send(x);

}

x < 100

x = y + 1

y < 100

y = z + 1

z < 100

z = m + 1 m = n + 1

n = x + 1

msg.sender.send(x)

P1

P2

P3

Fig. 8: An example on how the bound(n) is computed

bound(n) = bound(n′) if opn is not an assignment;
otherwise bound(n) = bound(n′) + 1.

• If (n, opn,m0) ∈ E and (n, opn,m1) ∈ E, i.e., n is
branching, bound(n) = bound(m1) + bound(m2).

Intuitively, the bound of a loop head is computed based on
the number of branching statements and assignment statements
inside the loop. That is, the bound of a loop head n can be
computed by traversing the CFG in the reverse order, i.e.,
from the exiting nodes of the loop to n. Every execution path
maintains a bound, which equals to the number of assignment
statements in that path. If two execution paths meet at a
branching statement then the new bound is set to the sum of
their bounds. In our implementation, the bounds for every node
n ∈ N are statically computed using a fixed-point algorithm,
with a complexity of O((#N)2) where #N is the number
of nodes. Once the bounds are computed, we systematically
enumerate all maximum symbolic traces such that each loop
head n is visited at most bound(n) times. It is straightforward
to see that this procedure always terminates and returns a finite
set of symbolic traces.

Example IV.1. In the following, we illustrate how bound(x <
100) is computed. The example is shown in the Figure 8 where
the graph on the right represents the source code on the left
(a.k.a. control flow graph which can be constructed using ex-
isting approaches [15]). Assignment statements are highlighted
in blue. There is a total of 3 paths P1, P2, P3 in the while-
loop, and they visit 5 assignment statements. Since we follow
both branches of an if-statement, there exists a symbolic trace
tr containing P1, P2, P3 regardless of the order. Trace tr is
of the form 〈· · · , opi, · · · , opj , · · · , opk, · · · , op′i, · · · 〉 where
opi and op′i are executed opcodes of the loop head x < 100;
opj is mapped to y < 100 and opk is mapped to z < 100.

There are 5 assignment statements between opi and op′i and
the bound of the loop head is 5. Note that the number of
assignment statements in the example is the number of SWAPs
appeared in between opi and op′i.

The following establishes the soundness of our approach,

i.e., using the bounds, we are guaranteed to never miss any of
the 4 kinds of vulnerabilities that we focus on.

Lemma 1. Given a smart contract, if there exists a symbolic
trace which suffers from intra-function reentrancy vulnerabil-
ity (or cross-function reentrancy, or dangerous tx.origin, or
arithmetic vulnerability), there must be one in Tr.

We sketch the proof in the following. All vulnerabilities
in Section III are defined based on control/data dependency
between opcodes. That means we always have a vulnerable
trace, if there is, one as long as the set of symbolic traces we
collect exhibit all possible dependency between opcodes. To
see that all dependencies are exhibited in the traces we collect,
we distinguish two cases. All control dependency between
opcodes are identified as long as all possible branches in the
smart contract are executed. This condition is satisfied based
on the way we collect traces in Tr. This argument applies to
data dependency between opcodes which do not belong to any
loop as well. Next, we consider the data dependency between
opcodes inside a loop. Note that with each loop iteration, there
are two possible cases: no new data dependency is identified
(i.e., the data dependency reaches fixed point) or at least 1 new
dependency is identified. If the loop contains n assignments,
in the worst case, all of these opcodes depend on each other
and we need a trace with n iterations to identify all of them.
Based on how we compute the bound for the loop heads, the
trace is guaranteed to be in Tr. Thus, we establish that the
above lemma is proved.

It is well-known that symbolic execution engines may suffer
from the path explosion problem. SGUARD is not immune
as well, i.e., the number of symbolic paths explored by
SGUARD is in general exponential in the loop bounds. Existing
symbolic execution engines address the problem by allowing
users to configure a bound K which is the maximum number
of times any loop is unrolled. In practice, it is highly non-
trivial to know what K value should be used. Given the impact
of K, i.e., the number of paths are exponential in the value of
K, existing tools often set K to be a small number by default,
such as 3 in sCompile [16] and 5 in Manticore [17]; and it is
unlikely that users would configure it differently. While having
a large K leads to the path explosion problem, having a small
K leads to false negatives. For instance, with K = 3, the
overflow vulnerabilities due to the two expressions m = n+1,
n = x + 1 in the Figure 8 would be missed as this bound
is not sufficient to infer dependency from variable x on m
and n. In contrast, SGUARD automatically identifies a loop
bound for each loop which guarantees that no vulnerabilities
are missed. In Section V, we empirically evaluate whether the
path explosion problem occurs often in practice.

B. Dependency Analysis

Given the set of symbolic traces Tr, we then identify
dependency between all opcodes in every symbolic trace in
Tr, with the aim to check whether the trace suffers from any
vulnerability. In the following, we present our approach to
capture dependency from symbolic traces.

Algorithm 2: build CFG
1 let edges ← ∅;
2 foreach trace tr in Tr do
3 foreach opi, pci in tr do
4 if opi = JUMPI then
5 let edge ← (pci, pci+1) ;
6 add edge to edges;

7 return edges;

Algorithm 3: fd(tr, opi)
1 let opcodes← ∅;
2 foreach opj that taints opi do
3 if opj is an assignment opcode then
4 add opj to opcodes ;

5 if opj reads data from memory which was written by an
assignment opcode opk then

6 add opk to opcodes ;
7 add fd(tr, opk) to opcodes;

8 if opj reads data from storage which was written by an
assignment opcode opk then

9 if opk is not visited then
10 add opk to opcodes;
11 foreach trace tr′ contains opk do
12 add fd(tr

′, opk) to opcodes;

13 return opcodes;

Given a symbolic trace Tr, an opcode opi, we aim to
identify a set of opcodes dp in Tr such that: (soundness) for
all opk in dp, opi depends on opk; and (completeness) for all
opk in Tr, if opi depends on opk then opk ∈ dp. To identify
dp, we systematically identify all opcodes that opi is control-
dependent on in Tr, all opcodes that opi is data-dependent on
in Tr and then compute their transitive closure.

To systematically identify all control-dependency, we build
a control flow graph (CFG) from Tr (as shown in Algo-
rithm 2). Afterwards, we build a post-dominator tree based on
the CFG using a workList algorithm [18]. The result is a set
PD(opi) which are the opcodes that post-dominate opi. The
set of opcodes which opi control-depend on in the symbolic
trace tr is then systematically identified as the following.

{ op | op ∈ tr;∃ (opm, opn) ∈ succs(op),

opi ∈ PD(opm), opi /∈ PD(opn) }

where succs(op) returns successors of op according to CFG.
Identifying the set of opcodes which opi is data-dependent

on is more complicated. Data dependency arises from 3 data
sources, i.e., stack, memory and storage. In the following,
we present our over-approximation based algorithm which
traces data-flow on these data sources in order to capture data
dependency. Although an opcode typically reads and writes
data to the same data source, an opcode may write data to
a different data source in some cases. That makes data-flow
tracing complicated, i.e., data flows from stack to memory

through MSTORE, memory to stack through MLOAD, stack to
storage through SSTORE and storage to stack through SLOAD.
Since only assignment opcodes (i.e., SWAP, MSTORE, and
SSTORE) create data dependency, we thus design an algorithm
to identify data-dependency based on the assignment opcodes
in tr. The details are presented in the Algorithm 3, which
takes a symbolic trace tr and opcode opi as input and returns
a set of opcodes that opi is data-dependent on.

Algorithm 3 systematically identifies those opcodes in tr
which taint opi. An opcode opj is said to taint another opcode
opi if opi reads data from stack indexes written by opj , or
there exists an opcode opt such that opj taints opt and opt
taints opi. For each opj that taints opi, there are three possible
dependency cases.
• Stack dependency: opi is data-dependent on opj if opj is

an assignment opcode (i.e., SWAP) (lines 3-4)
• Memory dependency: opj is data-dependent on opk if

opj reads data from memory which was written by the
assignment opcode opk (i.e., MSTORE) (lines 5-7)

• Storage dependency: opj is data-dependent on opk if
opj reads data from storage which was written by the
assignment opcode opk (i.e., SSTORE) (lines 8-12)

Note that the algorithm is recursive, i.e., if opk is added into
the set of opcodes to be returned, a recursive call is made to
further identify those opcode that opk is data-dependent on
(lines 7 and 12). Further note that since storage is globally
accessible, the analysis may be cross different traces in Tr
(line 11).

Algorithm 3 in general over-approximates. For instance,
because memory and storage addresses are likely symbolic
values, a reading address and a writing address are often
incomparable, in which case we conservatively assume that
the addresses may be the same. In other words, R(opj) ∩
W (opk) 6= ∅ is true if either R(opj) or W (opk) is a symbolic
address.

C. Fixing the Smart Contract

Once the dependencies are identified, we check whether
each symbolic tr suffers from any of the vulnerabilities defined
in Section III-C and then fix the smart contract accordingly. In
general, a smart contract is fixed as follows. Given a vulnerable
trace tr, according to our definitions in Section III-C, there
must be an external call opc ∈ C in tr. Furthermore, there
must be some other opcode op that opc depends on which
together makes tr vulnerable (e.g., if op is SSTORE, tr suffers
from reentrancy vulnerability; if op is ADD, SUB, MUL or
DIV, tr suffers from arithmetic vulnerability). The idea is
to introduce runtime checks right before op so as to prevent
the vulnerability. According to the type of vulnerability, the
runtime checks are injected as follows.
• To prevent intra-function reentrancy vulnerability, we add

a modifier nonReentrant to the function F containing
op. Note that the nonReentrant modifier works as a
mutex which blocks an attacker from re-entering F . To
prevent cross-function reentrancy vulnerability, we add

the modifier nonReentrant to the function containing
op. The details of the fixing algorithm are presented in
Algorithm 4 which takes a vulnerable trace tr and the
dependency relation dp as inputs.

• To fix dangerous tx.origin vulnerability, we replace op
(i.e., ORIGIN) with msg.sender which returns address
of the immediate account that invokes the function.

• To fix arithmetic vulnerability, we replace op (i.e., ADD,
SUB, MUL, DIV, or EXP) with a call to a safe math
function which checks for overflow/underflow before
performing the arithmetic operation.

Note that in the case of reentrancy vulnerability and arithmetic
vulnerability, if a runtime check fails (e.g., assert(x >
y) which is introduced before x - y fails), the transaction
reverts immediately and thus the vulnerability is prevent,
although the gas spent on executing the transaction so far
would be wasted. Further note while Algorithm 4 is applied
to every vulnerable trace, the same fix (e.g., introducing
nonReentrant on the same function) is applied once. We
refer the readers to Section II-C for examples on how smart
contracts are fixed.

The following establishes the soundness of our approach.

Theorem 1. A smart contract fixed by Algorithm 1 is
free of intra-function reentrancy vulnerability, cross-function
reentrancy vulnerability, dangerous tx.origin vulnerability, and
arithmetic vulnerability.

The proof of the theorem is sketched as follows. According
to the Lemma 1, given a smart contract S, if there are vul-
nerable traces, at least one of them is identified by SGUARD.
Given how SGUARD fixes each kind of vulnerability, fixing
all vulnerable traces in Tr implies that all vulnerable traces
are fixed in S.

We acknowledge that our approach does not achieve the
preciseness as discussed in Section III-C. That is, a trace
which is not vulnerable may be affected by the fixes if it
shares some opcodes with the vulnerable traces. For instance,
an arithmetic opcode which is shared by a vulnerable trace and
a non-vulnerable trace may be replaced with a safe version that
checks for overflow. The non-vulnerable trace would revert
in the case of an overflow even though the overflow might
be benign. Such in-preciseness is an overhead to pay for
security in our setting, along with the time and gas overhead.
In Section V, we empirically evaluate that the overhead and
show that they are negligible.

V. IMPLEMENTATION AND EVALUATION

In this section, we present implementation details of
SGUARD and then evaluate it with multiple experiments.

A. Implementation

SGUARD is implemented with around 3K lines of Node.js
code. It is publicly available at GitHub1. It uses a locally
installed compiler to compile a user-provided contract into a

1https://github.com/reentrancy/sGuard

https://github.com/reentrancy/sGuard
https://github.com/reentrancy/sGuard

Algorithm 4: fixReentrancy(tr, dp)

1 let tr ← 〈s0, op0, · · · , sn, opn, sn+1〉;
2 foreach i in 0..n do
3 if opi ∈ C then
4 foreach j in i+ 1..n do
5 if opj is SSTORE and opi depends on opj

according to dp then
/* Fix intra-function reentrancy */

6 add modifier nonReentrant to the
function containing opi;

/* Fix cross-function reentrancy */

7 foreach ops that opi depends on according
to dp do

8 if ops is SSTORE then
9 add modifier nonReentrant to

the function containing ops;

JSON file containing the bytecode, source-map and abstract
syntax tree (AST). The bytecode is used for detecting vulnera-
bility, whereas the source-map and AST are used for fixing the
smart contract at the source code level. In general, a source-
map links an opcode to a statement and a statement to a node
in an AST. Given a node in an AST, SGUARD then has the
complete control on how to fix the smart contract.

In addition to what is discussed in previous sections, the
actual implementation of SGUARD has to deal with multiple
complications. First, Solidity allows developers to interleave
their codes with inline-assembly (i.e., a language using EVM
machine opcodes). This allows fine-grained controls, as well
as opens a door for hard-to-discover vulnerabilities (e.g.,
arithmetic vulnerabilities). We have considered fixing vul-
nerabilities with SGUARD (which is possible with efforts).
However, it is not trivial for a developer to evaluate the
correctness of our fixes as SGUARD would introduce opcodes
into the inline-assembly. We do believe that any modification
of the source code should be transparent to the users, and
thus decide not to support fixing vulnerabilities inside inline-
assembly.

Second, SGUARD employs multiple heuristics to avoid
useless fixes. For instance, given an arithmetic expression
whose operands are concrete values (which may be the case of
the expression is independent of user-inputs), SGUARD would
not replace it with a function from safe math even if it is a
part of a vulnerable trace. Furthermore, since the number of
iterations to be unfolded for each loop depends on the number
of assignment statements inside the loop, SGUARD identifies
a number of cases where certain assignments can be safely
ignored without sacrificing the soundness of our method. In
particular, although we count SSTORE, MSTORE or SWAP as
assignment statements in general, they are not in the following
exceptional cases.

• A SWAP is not counted if it is not mapped to an
assignment statement according source-map;

• An assignment statement is not counted if its right-hand-

0 1000 2000 3000 4000 5000
0

100

200

300

400

lo
op

 b
ou

nd

loop bound
80% cutoff

Fig. 9: Loop bounds computed by SGUARD

side expression is a constant;
• An assignment statement is not counted if its left-hand-

side expression is a storage variable (since dependency
due to the storage variables is analyzed regardless of
execution order).

In addition, SGUARD implements a strategy to estimate the
value of memory pointers. A memory variable is always placed
at a free memory pointer and it is never freed. However,
the free pointer is often a symbolic value. That increases
the complexity. To simplify the problem without missing
dependency, SGUARD estimates the value of the free pointer
ptr if it is originally a symbolic value. That is, if the memory
size of a variable is only known at run-time, we assume that
it occupies 10 memory slots. The free pointer is calculated
as ptrn+1 = 10 × 0x20 + ptrn where ptrn is the previous
free pointer. If memory overlap occurs due to this assumption,
additional dependencies are introduced, which may introduce
false alarms, but never false negatives.

Lastly, SGUARD allows user to provide additional guide to
generate contract-specific fixes. For instance, users are allowed
to declare certain variables are critical variables so that it
will be protected even if there is no dependency between the
variable and external calls.

B. Evaluation

In the following, we evaluate SGUARD through multiple
experiments to answer the following research questions (RQ).
Our test subjects include 5000 contracts whose verified source
code are collected from EtherScan [19]. This includes all the
contracts after we filter 5000 incompilable contracts which
contain invalid syntax or are implemented based on previous
versions of Solidity (e.g., version 0.3.x). We systematically
apply SGUARD to each contract. The timeout is set to be 5
minutes for each contract. Our experiments are conducted on
with 10 concurrent processes and takes 6 hours to complete.
All experiment results reported below are obtained on an
Ubuntu 16.04.6 LTS machine with Intel(R) Core(TM) i9-9900
CPU @ 3.10GHz and 64GB of memory.

RQ1: How bad is the path explosion problem? Out of the 5000
contract, SGUARD times out on 1767 (i.e., 35.34%) contracts
and successfully finish analyzing and fixing the remaining
contracts within the time limit. Among them, 1590 contracts

are deemed safe (i.e., they do not contain any external calls)
and no fix is applied. The remaining 1643 contracts are fixed in
one way or another. We note that 38 of the fixed contracts are
incompilable. There are two reasons. First, the contract source-
map may refer to invalid code locations if the corresponding
smart contract has special characters (e.g., copyright and heart
emoji). This turns out to be a bug of the Solidity compiler
and has been reported. Second, the formats of AST across
many solidity versions are slightly different, e.g., version
0.6.3 declares a function which is implemented with attribute
implemented while the attribute is absent in version 0.4.26.
Note that the compiler version declared by pragma keyword
is not supported in the experiment setup as SGUARD uses a
list of compilers provided by solc-select [20]. In the end, we
experiment with 1605 smart contracts and report the findings.

Recall that the number of paths explored largely depend on
the loop bounds. To understand why SGUARD times out on
35.34% of the contracts, we record the maximum loop bound
for each of the 5000 smart contracts. Figure 9 summarizes the
distribution of the loop bounds. From the figure, we observe
that for 80% of the contracts, the loop bounds are no more
than 17. The loop bounds of the remaining 20% contracts
however vary quite a lot, e.g., with a maximum of 390.
The average loop bound is 15, which shows that the default
bounds in existing symbolic execution engines could be indeed
insufficient.

RQ2: Is SGUARD capable of pinpointing where fixes should
be applied? This question asks whether SGUARD is capable of
precisely identifying where the fixes should be applied. Recall
that SGUARD determines where to apply the fix based on the
result of the dependency analysis, i.e., a precise dependency
analysis would automatically imply that the fix will be ap-
plied at the right place. Furthermore, control dependency is
straightforward and thus the answer to this question relies on
the preciseness of the data dependency analysis. Data depen-
dency analysis in Algorithm 3 may introduce impreciseness
(i.e., over-approximation) at lines 5 and 8 when checking
the intersection of reading/writing addresses. In SGUARD,
the checking is implemented by transforming each symbolic
address to a range of concrete addresses using the base
address and the maximum offset. The over-approximation is
only applied if at least one symbolic address is failed to
transform due to nonstandard access patterns. If both symbolic
addresses are successfully transformed, we can use the ranges
of concrete addresses to precisely check the intersection and
there is no over-approximation. Thus, we can measure the
over-approximation of our analysis by reporting the number
of failed and successful address transformations.

Figure 10 summarizes our experiment results where each
bar represents the number of failed and successful address
transformations regarding the memory (i.e., MLOAD, MSTORE)
and storage (i.e., SLOAD, SSTORE) opcodes. From the results,
we observe that the percentage of successful transforma-
tions are 99.99%, 85.58%, 99.98%, and 98.43% for SLOAD,
MLOAD, SSTORE, and MSTORE respectively. MLOAD has

SLOAD MLOAD SSTORE MSTORE0

1

2

3

4

5

6

nu
m
be

r o
f t
ra
ns
fo
rm

at
io
ns

1e6

success
failure

Fig. 10: Memory and storage address transformations

the worst accuracy among the four opcodes. This is mainly
because some opcodes (e.g., CALL, and CALLCODE) may
load different sizes of data on the memory. In this case, the
MLOAD may depend on multiple MSTOREs, and it becomes
even harder considering the size of loaded data is a symbolic
value. Therefore, we simplify the analysis by returning true
(hence over-approximates) if the size of loaded data is not
0x20, a memory allocation unit size.

RQ3: What is the runtime overhead of SGUARD’s fixes?
This question is designed to measure the runtime overhead
of SGUARD’s fixes. Note that runtime overhead is often con-
sidered as a determining factor on whether to adopt additional
checks at runtime. For instance, the C programming language
has been refusing to introduce runtime overflow checks due to
concerns on the runtime overhead, although many argue that it
would reduce a significant number of vulnerabilities. The same
question must thus be asked about SGUARD. Furthermore,
runtime checks in smart contracts introduce not only time
overhead but also gas overhead, i.e., gas must be paid for
every additional check that is executed. Considering the huge
number of transactions (e.g., 1.2 million daily transactions are
reported on the Ethereum network [21]), each additional check
may potential translate to large financial burden.

To answer the question, we measure additional gas and
computational time that users pay to deploy and execute the
fixed contract in comparison with the original contract. That
is, we download transactions from the Ethereum network
and replicate them on our local network, and compare the
gas/time consumption of the transactions. Among the 1605
smart contracts, 23 contracts are not considered as they are
created internally. In the end, we replicate 6762 transactions
of 1582 fixed contracts. We limit the number of transactions
for each contract to a maximum of 10 such that the results
are not biased towards those active contracts that have a huge
number of transactions.

Since our local setup is unable to completely simulate
the actual Ethereum network (e.g., the block number and
timestamps are different), a replicated transaction thus may
end up being a revert. In our experiments, 3548 (52.47%)
transactions execute successfully and thus we report the results
based on them. A close investigation shows that the remaining
transactions fail due to the difference between our private

Fig. 11: Overhead of fixed contracts

Instruction SGUARD BC BC/SGUARD
ADD 576 2245 3.9×
SUB 394 2125 5.39×
MUL 198 1423 7.19×
DIV 179 1508 8.42×

TABLE III: Total number of bound checks

network and the Ethereum network except 1 transaction, which
fails because the size of the bytecode of the fixed contract
exceeds the size limit [22].

Figure 11 summarizes our results. The x-axis and y-axis
show the time overhead and gas overhead of each transaction
respectively. The data shows that the highest gas overhead is
42% while the lowest gas overhead is 0%. On average, users
have to pay extra 0.79% gas to execute a transaction on the
fixed contract. The highest and lowest time overhead are 455%
and 0% respectively. On average, users have to wait extra
14.79% time on a transaction. Based on the result, we believe
that the overhead of fixing smart contracts using SGUARD is
manageable, considering its security guarantee.

For arithmetic vulnerabilities, there is a simplistic fix, i.e.,
add a check to every arithmetic operation. To see the difference
between SGUARD and such an approach, we conduct an
additional experiment on the set of smart contracts that we
successfully fixed (i.e., 1605 of them). We record the total
number of bound checks added to the 4 arithmetic instructions
(i.e., ADD, SUB, MUL and DIV) by SGUARD and the simplistic
approach. The results are shown in Table III, where column BC
shows the number for the simplistic approach. We observe that
on average SGUARD introduces 5.42 times less bound checks
than the simplistic approach. Since each bound check costs
gas and time when executing a transaction, we consider such
a reduction to be welcomed.

RQ4: How long does SGUARD take to fix a smart contract?
This question asks about the efficiency of SGUARD itself.
We measure the execution time of SGUARD by recording
time spending to fix each smart contract. Naturally, a more
complicated contract (e.g., with more symbolic traces) takes
more time to fix. Thus, we show how execution time varies
for different contracts. Figure 12 summarizes our results,
where each bar represents 10% of smart contracts and y-axis
shows the execution time in seconds. The contracts are sorted
according to the execution time. From the figure, we observe

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

300

se
co
nd

s

execution time
90% cutoff

Fig. 12: SGUARD execution time

No. Name #RE #AR #TX Symbolic traces
#1 USDT 7 7 7 265
#2 LINK 7 7 7 291
#3 BNB 7 7 7 128
#4 HT 7 7 7 0
#5 BAT 7 X 7 128
#6 CRO 7 7 7 401
#7 LEND 7 7 7 281
#8 KNC 7 7 7 443
#9 ZRX 7 7 7 0
#10 DAI 7 7 7 0

TABLE IV: Fixing results on the high profile contracts

that 90% of contracts are fixed within 36 seconds. Among
the different steps of SGUARD, SGUARD spends most of the
time to identify dependency (70.57%) and find vulnerabilities
(20.08%). On average, SGUARD takes 15 seconds to analyze
and fix a contract.

Manual inspection of results To check the quality of the fix,
we run an additional experiment on the top 10 ERC20 tokens
in the market. That is, we apply SGUARD to analyze and fix
the contracts and then manually inspect the results to check
whether the fixed contracts contain any of the vulnerabilities,
i.e., whether SGUARD fails to prevent certain vulnerability
or whether SGUARD introduce unnecessary runtime checks
(which translates to considerable overhead given the huge
number of transactions on these contracts). The results are re-
ported in Table IV where column RE (respectively AE and TX)
shows whether any reentrancy (respectively arithmetic, and
tx.origin) vulnerability is discovered and fixed respectively;
and the symbol X and 7 denote yes and no respectively. The
last column shows the number of symoblic traces explored.

We observe that the number of symbolic traces explored
for three tokens HT, ZRX and DAI are 0. It is because these
contracts contain no external calls and thus SGUARD stops im-
mediately after scanning the bytecode. Among the remaining
7 tokens, six of them (i.e., LINK, BNB, CRO, LEND, KNC,
and USDT) are found to be safe and thus no modification
is made. One arithmetic vulnerability in the smart contracts
BAT is reported and fixed by SGUARD. We confirm that a
runtime check is added to prevent the discovered vulnerability.
A close investigation however reveals that this vulnerability is
unexploitable although it confirms to our definition. This is
because the contract already has runtime checks. We further

measure the overhead of the fix by executing 10 transactions
obtained from the Ethereum network on the smart contract.
The result shows that SGUARD introduces a gas overhead of
18%. Lastly, our manual investigation confirms that all of the
contracts are free of the vulnerabilities.

VI. RELATED WORK

To the best of our knowledge, SGUARD is the first tool that
aims to repair smart contracts in a provably correct way.

SGUARD is closely related to the many works on automated
program repair, which we highlight a few most relevant ones
in the following. GenProg [1] applies evolutionary algorithm
to search for program repairs. A candidate repair patch is
considered successful if the repaired program passes all test
cases in the test suite. In [2], Dongsun et al. presented PAR,
which improves GenProg by learning fix patterns from existing
human-written patches to avoid nonsense patches. In [23],
Abadi et al. automatically rewrites binary code to enforce
control flow integrity (CFI). In [24], Jeff et al. presented
ClearView, which learns invariants from normal behavior of
the application, generates patches and observes the execution
of patched applications to choose the best patch. While there
are many other program repair works, none of them focus on
fixing smart contracts in a provably correct way.

SGUARD is closely related to the many work on applying
static analysis techniques on smart contracts. Securify [4]
and Ethainter [5] are approaches which leverage a rewriting
system (i.e., Datalog) to identify vulnerabilities through pattern
matching. In terms of symoblic execution, in [25], Luu et al.
presented the first engine to find potential security bugs in
smart contracts. In [26], Krupp and Rossow presented teEther
which finds vulnerabilities in smart contracts by focusing on
financial transactions. In [27], Nikolic et al. presented MAI-
AN, which focus on identifying trace-based vulnerabilities
through a form of symoblic execution. In [28], Torres et al.
presented Osiris which focuses on discovering integer bugs.
Unlike these engines, SGUARD not only detects vulnerabilities,
but also fixes them automatically.

SGUARD is related to some work on verifying and analyzing
smart contracts. Zeus [29] is a framework which verifies the
correctness and fairness of smart contracts based on LLVM.
Bhargavan et al. proposed a framework to verify smart con-
tracts by transforming the source code and the bytecode to an
intermediate language called F* [30]. In [31], the author used
Isabelle/HOL to verify the Deed contract. In [32], the authors
showed that only 40% of smart contracts are trustworthy based
on their call graph analysis. In [33], Chen et al. showed that
most of the contracts suffer from some gas-cost programming
patterns.

Finally, SGUARD is remotely related to approaches on
testing smart contracts. ContractFuzzer [34] is a fuzzing engine
which checks 7 different types of vulnerabilities. sFuzz [15]
is another fuzzer which extends ContractFuzzer by using
feedback from test cases execution to generate new test cases.

VII. CONCLUSION

In this work, we propose an approach to fix smart contracts
so that they are free of 4 kinds of common vulnerabilities.
Our approach uses run-time information and is proved to be
sound. The experiment results show the usefulness of our
approach, i.e., SGUARD is capable of fixing contracts correctly
while introducing only minor overhead. In the future, we
intend to improve the performance of SGUARD further with
optimization techniques.

REFERENCES

[1] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the 31st
International Conference on Software Engineering, ser. ICSE ’09, 2009,
pp. 364–374.

[2] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in 2013 35th International Con-
ference on Software Engineering (ICSE). IEEE, 2013, pp. 802–811.

[3] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “Sapfix: Automated end-to-end repair at scale,”
in 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP). IEEE, 2019,
pp. 269–278.

[4] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67–82.

[5] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: a smart contract security analyzer for composite vulnerabil-
ities.” in PLDI, 2020, pp. 454–469.

[6] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[7] RSK. [Online]. Available: https://www.rsk.co/
[8] Hyperledger. [Online]. Available: https://www.hyperledger.org/
[9] A Postmortem on the Parity Multi-Sig Li-

brary Self-Destruct. [Online]. Available: https://www.parity.io/
a-postmortem-on-the-parity-multi-sig-library-self-destruct/

[10] Thinking About Smart Contract Security. [Online]. Available: https:
//blog.ethereum.org/2016/06/19/thinking-smart-contract-security/

[11] OpenZeppelin. [Online]. Available: https://github.com/OpenZeppelin/
openzeppelin-contracts

[12] J. Jiao, S. Kan, S. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic
understanding of smart contracts: Executable operational semantics of
solidity,” in 2020 IEEE Symposium on Security and Privacy (SP).
Los Alamitos, CA, USA: IEEE Computer Society, may 2020, pp.
1695–1712. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/SP40000.2020.00066

[13] M. Rodler, W. Li, G. Karame, and L. Davi, “Sereum: Protecting existing
smart contracts against re-entrancy attacks,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS’19), 2019.

[14] Known Attacks. [Online]. Available: https://consensys.github.io/
smart-contract-best-practices/known attacks/

[15] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings
of the 42nd International Conference on Software Engineering (ICSE),
2020, pp. 778–788.

[16] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, “scompile:
Critical path identification and analysis for smart contracts,” in Inter-
national Conference on Formal Engineering Methods. Springer, 2019,
pp. 286–304.

[17] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 1186–1189.

[18] A worklist algorithm for dominators. [Online]. Available: http:
//pages.cs.wisc.edu/∼fischer/cs701.f08/lectures/Lecture19.4up.pdf

[19] Etherscan. [Online]. Available: https://etherscan.io/
[20] Solc-Select. [Online]. Available: https://github.com/crytic/solc-select

https://www.rsk.co/
https://www.hyperledger.org/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00066
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00066
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
http://pages.cs.wisc.edu/~fischer/cs701.f08/lectures/Lecture19.4up.pdf
http://pages.cs.wisc.edu/~fischer/cs701.f08/lectures/Lecture19.4up.pdf
https://etherscan.io/
https://github.com/crytic/solc-select

[21] Ethereum transactions per day. [Online]. Available: https://etherscan.io/
chart/tx

[22] EIP-170. [Online]. Available: https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-170.md

[23] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 13, no. 1, pp.
1–40, 2009.

[24] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan et al.,
“Automatically patching errors in deployed software,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles,
2009, pp. 87–102.

[25] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[26] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automati-
cally exploit smart contracts,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 1317–1333.

[27] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
34th Annual Computer Security Applications Conference. ACM, 2018,
pp. 653–663.

[28] C. F. Torres, J. Schütte et al., “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference. ACM, 2018, pp. 664–676.

[29] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in 25th Annual Network and Distributed System
Security Symposium (NDSS’18), 2018.

[30] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy et al., “Formal verification of smart contracts: Short paper,”
in Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security. ACM, 2016, pp. 91–96.

[31] Y. Hirai, “Formal verification of deed contract in ethereum
name service,” November-2016.[Online]. Available: https://yoichihirai.
com/deed. pdf, 2016.

[32] M. Fröwis and R. Böhme, “In code we trust?” in Data Privacy
Management, Cryptocurrencies and Blockchain Technology. Springer,
2017, pp. 357–372.

[33] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017,
pp. 442–446.

[34] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing
smart contracts for vulnerability detection,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE 2018. New York, NY, USA: ACM, 2018,
pp. 259–269. [Online]. Available: http://doi.acm.org/10.1145/3238147.
3238177

https://etherscan.io/chart/tx
https://etherscan.io/chart/tx
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md
http://doi.acm.org/10.1145/3238147.3238177
http://doi.acm.org/10.1145/3238147.3238177

	SGUARD: Towards fixing vulnerable smart contracts automatically
	Citation

	I Introduction
	II Background and Overview
	II-A Smart Contract
	II-B Vulnerabilities
	II-C Patching Smart Contracts

	III Problem Definition
	III-A Concrete Semantics
	III-B Symbolic Semantics
	III-C Problem Definition

	IV Detailed Approach
	IV-A Enumerating Symbolic Traces
	IV-B Dependency Analysis
	IV-C Fixing the Smart Contract

	V Implementation and Evaluation
	V-A Implementation
	V-B Evaluation

	VI Related Work
	VII Conclusion
	References

