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Abstract

Social in-feed advertising delivers ads that seamlessly fit in-
side a user’s feed, and allows users to engage in social ac-
tions (likes or comments) with the ads. Many businesses pay
higher attention to “engagement marketing” that maximizes
social actions, as social actions can effectively promote brand
awareness. This paper studies social action prediction for in-
feed advertising. Most existing works overlook the social in-
fluence as a user’s action may be affected by her friends’
actions. This paper introduces an end-to-end approach that
leverages social influence for action prediction, and focuses
on addressing the high sparsity challenge for in-feed ads. We
propose to learn influence structure that models who tends
to be influenced. We extract a subgraph with the near neigh-
bors a user interacts with, and learn topological features of
the subgraph by developing structure-aware graph encoding
methods. We also introduce graph attention networks to learn
influence dynamics that models how a user is influenced by
neighbors’ actions. We conduct extensive experiments on real
datasets from the commercial advertising platform of WeChat
and a public dataset. The experimental results demonstrate
that social influence learned by our approach can significantly
boost performance of social action prediction.

Introduction

Social media in-feed advertising delivers ads in the form of a
native feeds stream for smooth user experience. This emerg-
ing format of advertising has become one of the most ef-
fective advertising methods (Fan, Lu, and Gupta 2017), and
been widely adopted by social platform market leaders like
Facebook, Twitter and WeChat.

One key characteristic of in-feed advertising is that a user
can engage in social actions with an ad as with other com-
mon contents, such as likes and comments. And such actions
are visible to the user’s friends, who are also exposed with
the same ad. Then, the users can interact with their friends
by liking the same ad or replying to friends’ comments. Evi-
dently, the more people engage with the ads, the more likely
they have interest in the products/business in the ads. Thus,
many businesses pay higher attention to the “engagement

∗Ju Fan is the corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

marketing” that maximizes social actions; gaint social me-
dia platforms, such as Facebook, also take engagement as a
crucial advertising metric1.

As a crucial step to promote user engagements, this paper
studies social action prediction: given an ad exposure to a
user, it predicts whether the user will perform social action
on the ad. This problem is inherently different from click-
through rate (CTR) prediction, which is studied in conven-
tional advertising (Guo et al. 2017; Chen et al. 2016). Unlike
the click behavior, social actions of a user in the scenario of
in-feed advertising would be very likely influenced by her
friends. For example, after noticing that some friends have
liked an ad, the user may be encouraged to join her friends
and interact with the ad. According to some marketing stud-
ies (Edelman 2013), consumers trust their peers’ opinions of
products over companies’. Unfortunately, the existing pre-
diction techniques overlook such social influence.

However, it is very challenging to utilize social influence
for in-feed advertising, as social interactions among users on
the same ads are highly sparse. Firstly, in the social interac-
tion network (SIN) built on same-ad interaction data, users
have very few neighbors: the average degree of the SIN is
much less than that of general social networks. Secondly,
similar users may not be connected or may be far away from
each other in the SIN. The prominent sparsity challenge
makes the existing methods inadequate for in-feed ads. For
example, DeepInf (Qiu et al. 2018) is the state-of-the-art so-
cial influence prediction approach designed for general so-
cial network settings. It predicts action status of a user by
considering her neighbors’ features and action status. How-
ever, it is not effective for in-feed advertising as very limited
neighbor information is available due to the sparsity.

To address the challenge, we introduce an end-to-end ap-
proach to learn predictive signals in social influence for
boosting social action prediction. First, we propose to model
who tends to be influenced. We introduce the topological
feature learning into in-feed advertising by extracting a sub-
graph of each user as its neighborhood and encoding topol-
ogy of the neighborhood. The intuition is that the topology
reflects whether the user is in the “center” or “peripheral”
of a neighborhood that tends to influence her. The topolog-

1https://www.facebook.com/business/news/pageinsights

246



ical features are robust and effective for social action pre-
diction even though the network is very sparse, as validated
by our experiments. Furthermore, we consider how a user is
influenced by her neighbors. We utilize graph attention net-
works to combine neighbors’ features and their action status
to learn influence dynamics. Finally, we combine social in-
fluence with ad exposure features, and leverage state-of-the-
art classification models to predict social actions.

To summarize, we make the following contributions.
(1) To the best of our knowledge, we are the first to sys-

temically study social action prediction on large-scale and
real in-feed advertising datasets, which are collected from
WeChat, the largest social platform in China.

(2) We study the social influence modeling problem for
action prediction in social in-feed advertising. We propose to
learn topological features of social influence structure, and
develop structure-aware graph encoding methods.

(3) We conduct extensive experiments on real datasets.
The results show that the learned topological features are
effective to improve prediction performance, and useful to
provide insights by visualization. The results also demon-
strate that consideration of social influence can boost 4−5%
improvement on AUC for social action prediction.

Problem Formulation

This paper studies social action prediction for in-feed adver-
tising. We refer to the delivery of an ad a to a user u as an
ad exposure ε = 〈a, u〉, and define the problem as below.

Definition 1 (Social Action Prediction) Given an ad expo-
sure ε = 〈a, u〉, social action of u on a is defined as a binary
variable yε such that yε = 1 if u performs actions (“like”
or “comment”) on a, or yε = 0 otherwise. Social action
prediction is to develop a model ŷε = f(ε) to estimate the
probability that user u performs social action on ad a.

For effective prediction, this paper focuses on learning
predictive signals in social influence. A naı̈ve method to
learn social influence is simply based on the utilization of
users’ social connections, i.e., the friendships or following
relationships. However, social connections don’t necessarily
lead to similar behaviors among the users. We propose to
learn social influence from the historical interaction among
users. The intuition is that if two users are friends and they
“co-like” (i.e., have social actions on) the same ads very re-
cently, we consider that they are more likely to influence
each other on the incoming ad exposures. Formally, we in-
troduce a social influence network (SIN) to model historical
interactions among users.

Definition 2 (Social Interaction Network, SIN) Social in-
teraction network (SIN) is defined as a directed graph G =
(V, E) where V is a set of users and E is an edge set. Edges in
E denote the influence relationship between users: an edge
e exists from u to v, if 1) u and v have social relationship
(they are friends or v follows u) and 2) v has actions on an
ad on which u already has actions.

Based on the SIN, our objective is to learn social influence
features of a target user u from it and fed the features to the
model ŷε = f(ε) to produce accurate prediction.

Our Approach

We develop an end-to-end approach to learn predictive sig-
nals in social influence. Figure 1 provides an overview of
our approach. It first constructs a social interaction network
(SIN) from users’ historical interactions with the ads, based
on the definition of SIN. In our work, we use users’ inter-
actions within a period (e.g., two months) before the dates
of training/prediction instances to construct the SIN. Then,
our approach aims to model two types of social influence
features from the constructed SIN for a target user u.

• We model who tends to be influenced by the neighbors.
To this end, we propose to learn topological features x(s)

u

of the target user’s neighbors from the SIN, as illustrated
in Figure 1 (b). The intuition is that the topology reflects
whether the user is in the “center” or “peripheral” of a
neighborhood that tends to influence her. For effectively
learning topological features, we develop structure-aware
graph encoding methods.

• We consider how a user is influenced by her neighbors.
The intuition is that, even if two users have similar topo-
logical structures, the influences to them may be differ-
ent because of various features and action statuses of the
neighbors, as shown in Figure 1 (c). Thus, we utilize
graph attention networks to combine neighbors’ features
and their action status to learn influence dynamics x(d)

u .

To effectively predict action status ŷε for an ad exposure
instance ε = 〈a, u〉, besides the above social influence fea-
tures, we also consider intrinsic features of ε, denoted by
x
(i)
ε , so as to capture whether u is interested in a. More de-

tails of intrinsic features can be referred to our experiments.
Finally, a classification model, such as Logistic Regression
(LR) or DeepFM (Guo et al. 2017), is utilized to predict so-
cial action (Figure 1 (d)). The model concatenates both so-
cial influence and intrinsic features, and outputs the predic-
tion result ŷε = f(x

(s)
u ,x

(d)
u ,x

(i)
ε ).

Modeling Topological Influence Structure

Influence structure modeling aims to learn topological fea-
tures of the neighborhood of target user u in SIN. Taking
the SIN in Figure 1 (a) as an example, we observe that users
u and w have different structural features. User u is in the
“center” of her local structure, which means that u tends to
be influenced by many neighbors in historical user interac-
tions. In contrast, user w is in the “peripheral”, which shows
that w is less likely to be influenced previously. We consider
such influence structure would affect their action statuses in
the future. However, the challenge is how to embed users
with similar structural roles closely together. The existing
methods, such as DeepWalk (Perozzi, Al-Rfou, and Skiena
2014), LINE (Tang et al. 2015) may not be adequate, as they
focus on learning homophily of users. Node2vec (Grover
and Leskovec 2016) can lead to structure equivalence em-
beddings using breath-first sampling (BFS). However, it
may not work well in our sparse SIN where nodes with simi-
lar structural roles may not be connected or may be far away
from each other, due to the high sparsity.
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Figure 1: Framework of our proposed approach.

We propose a method to learn topological features of u’s
local structure. It first extracts a subgraph of u as its neigh-
borhood and then encodes this neighborhood based on the
Weisfeiler-Lehman (WL) algorithm (Douglas 2011). The
goal of the encoding is to assign subgraphs of similar struc-
ture with similar numerical vectors as representation.

To learn structural role of target user u, we first introduce
neighborhood of u, i.e., the subgraph that encloses u.

Definition 3 (Neighborhood) Given an SIN G and a target
user u, the in-neighborhood (out-neighborhood) of u, de-
noted by ΓI

u (ΓO
u), is defined as a subgraph of G with: 1)

node set Vu = {v|v ∈ V, d(v, u) ≤ r} (Vu = {v|v ∈
V, d(u, v) ≤ r}) where d(v, u) is the shortest distance from
v to u and r is a user-defined threshold, and 2) edge set Eu
containing edges among the nodes in Vu.

We decide the value of r empirically and use r = 2 as it
achieves the best performance in our experiments. For sim-
plicity, this section only considers in-neighborhood, denoted
as neighborhood Γu and omits edge directions.
Neighborhood Labeling. A straightforward way to rep-
resent topological structure is to use graph isomorphism
test: isomorphic neighborhoods should be encoded closely
together. However, as graph isomorphism is proved to
be NP-hard, we apply the Weisfeiler-Lehman (WL) algo-
rithm (Zhang and Chen 2017; Yanardag and Vishwanathan
2015; Douglas 2011). The idea is to decompose a neigh-
borhood into its subtree patterns, and neighborhoods with
similar patterns could be assigned with similar representa-
tions. To this end, it iteratively labels a neighborhood using
the following node coloring process.

(1) Initially, the algorithm colors target user u and other
nodes Γu based on their shortest path distances to u, i.e.,
label(0)[v] = dist(v, u). Then, for each node in Γu, it col-
lects a multi-set mul(0)[v] that contains its neighbors’ labels,

mul(0)[v] = {label(0)[w]|(w, v) ∈ E}, (1)

where the labels in mul(0)[v] are sorted in ascending order.
(2) In the i-th iteration, the algorithm assigns every node v

with a new label that reflects its previous label and the multi-
set of its neighbors. Specifically, it defines signature of v by

concatenating v’s label label(i−1)[v] with mul(i−1)[v], i.e.,

sig(i)[v] =
{
label(i−1)[v] | mul(i−1)[v]

}
(2)

It sorts the nodes according to their signatures using set
comparison: sig[v1] < sig[v2]

2 iff label[v1] < label[v2]
or ∃ l,mul[v1][l] < mul[v2][l], ∀j < l,mul[v1][j] =
mul[v2][j]. After sorting, it assigns new label label(i)[v] to
each node where assigning the same label to nodes with the
same signature, and updates mul(i)[v] accordingly.

(3) The algorithm terminates if the node labels are stable,
or a pre-defined number of iterations is reached.
Neighborhood Encoding. It aims to encode u’s neighbor-
hood based on its labeling results and produce a numerical
vector x(s)

u as its representation. To this end, we introduce
two encoding methods described as follows.

(1) Frequency-based encoding: It utilizes frequencies of
the subtree patterns in the neighborhood. As subtree patterns
are reflected by node labels, the method counts the occur-
rences of labels in each labeling iteration. Suppose that there
are h iterations in the above labeling algorithm. In the i-th
iteration, it generates a vector xi where the j-th element of
xi is the occurrence of label j in this iteration, i.e.,

xi[j] =
∑

v∈Γu

I(label(i)[v] = j), (3)

where I(label(i)[v] = j) is an indicator function that equals
1 if label(i)[v] = j or 0 otherwise. Finally, it concatenates
the vectors generated in all iterations as the final neighbor-
hood encoding, i.e., x(s)

u = [x1;x2; . . . ;xh].
There are two limitations for frequency-based encoding.

First, node labels would have correlations, which will then
affect performance of the classification model. Second, it
may not be generalized to capture the topological structures
that appear few or are not in the training set.

(2) Embedding-based encoding: It aims to learn the la-
tent representation of the structures which can overcome
the above limitations. The method first learns embeddings
for node labels, inspired by (Yanardag and Vishwanathan
2015). Then, it aggregates label embeddings to encode the

2For simplicity, we omit the superscript if the context is clear.
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neighborhood. Specifically, given one neighborhood, it con-
siders its node labels in each iteration as a sequence. Then,
by considering all neighborhoods in our SIN, it includes all
sequences together to form a “corpus”, where each label
is like a “word” and each sequence is like a “sentence”. It
applies word embedding techniques (Mikolov et al. 2013)
on the corpus to obtain embedding for each label. Finally,
neighborhood encoding x

(s)
u can be obtained by averaging

the label embeddings in the neighborhood.

Algorithm 1 GRAPHENCODE (G, h)

Require: G: an SIN; h: number of iterations
1: for each target user u in G do
2: Extract neighborhood Γu from G for u
3: Initialize label(0)[v], mul(0)[v] for each v ∈ Γu

4: for i iterates from 1 to h do
5: Generate sig(i)[v] for each node v in Γu

6: Sort nodes in ascending order of sig(i)[v]
7: Update label(i)[v] and mul(i)[v]
8: end for
9: end for

10: for each target user u in G do

11: Generate x
(s)
u based on node labels using frequency

or embedding-based methods
12: Add {(u,x(s)

u )} into O
13: end for
14: Return O

1: {}

2: {1}

2: {1,3}

3: {2,2}
2: {1,3}

1: {2,2,2}

2: {1}

3: {1,4}

4: {3,3}
3: {1,4}

1: {2,3,3}

2: {1}

3: {1,4}

4: {3,3}
3: {1,4}

(a) Initial coloring. (b) 1st iteration. (c) 2nd iteration.

1: {2,2,2} 1: {2,3,3} 1: {2,3,3}

Figure 2: Illustration of neighborhood labeling.

To summarize, the pseudo-code of our method is sum-
marized in Algorithm 1. Figure 2 shows an example of
the algorithm. It initializes node labels according to their
distances to target user u (the orange node), and collects
multi-sets of their neighbor labels. For example, the label
and multi-set of user u are respectively 1 and {2, 2, 2}.
Then, it sorts the nodes based on the signatures in as-
cending order, i.e., 1 : {2, 2, 2} < 2 : {1} < 2 :
{1, 3} = 2 : {1, 3} < 3 : {2, 2}, and assigns the nodes
with new labels as 1, 2, 3, 3, 4 where two nodes have the
same label 3 as they have the same signature. The algo-
rithm can terminate when the labels are stable. Based on
the labeling results, frequency-based encoding generates
x
(s)
u = [1, 1, 2, 1; 1, 1, 2, 1] if only two iterations are con-

sidered, as label 3 occurs twice while other labels occur
once in each iteration. For embedding-based encoding, the
method generates two sequences, 〈1 1, 1 2, 1 3, 1 3, 1 3〉
and 〈2 1, 2 2, 2 3, 2 3, 2 3〉, where each label, say 2 1, rep-

resents that a node is labeled with 1 in the second iteration.
Then, it trains label embeddings based on the sequences and
then computes x(s)

u by averaging label embeddings.
Time complexity of the algorithm is O((mr+nr log nr) ·

h · |V|) where mr and nr are respectively average edge num-
ber and node number in a neighborhood with parameter r,
and h is the number of iterations in neighborhood labeling.

Modeling Social Influence Dynamics

We aim to learn influence dynamics for target user u that
captures both features of u’s neighbors and their influences
to u. The motivation is that, if u observes some “close”
neighbors have performed actions, u may be more likely to
follow her neighbors. Similar to (Qiu et al. 2018), we lever-
age a recently proposed technique graph attention networks
(GAT) (Velickovic et al. 2017) to model influence dynamics.

GAT introduces the attention mechanism into Graph Con-
volutional Network (GCN) (Kipf and Welling 2016), using
self-attention strategy to compute the hidden representation
of each node by attending over its neighbors. We apply GAT
over the neighborhood Γu of user u. Formally, GAT defines
a matrix A = [aij ]n×n to measure importance between any
two users vi and vj in neighborhood Γu. It computes this
matrix as follows. Let Hu = {h1,h2, . . . ,hn} denote fea-
tures of n nodes in u’s neighborhood (we will describe the
details of node features later). Based on Hu, GAT computes
attention coefficient eij as eij = attn(Whi,Whj), where
a shared matrix W is applied to every node to transform
original vertex features into more expressive ones, and attn
is the attention function. The design of the attention function
in GAT follows Velickovic et al. (Velickovic et al. 2017) us-
ing a single-layer feed-forward neural network, i.e.,

eij = LeakyReLU(cT [Whi||Whj ]), (4)

where || is vector concatenation, cT is weight parameters,
and LeakyReLU is a nonlinearity activation function.

Then, a softmax function is applied to normalize the atten-
tion coefficients, aij = softmax(eij) =

exp(eij)∑
vk∈Γu

exp(eik)
.

Based on matrix A = [aij ]n×n, we obtain influence dy-
namics, through stacked GAT layers, as a linear combination
of its neighbors with a non-linear ReLU activation function.

h(l+1)
u = σ(

∑

vj∈Γu

aujWh
(l)
j ). (5)

where h
(l)
j refers to the representation of node vj in the l-

th GAT layer. In particular, h(0)
j = hj . Moreover, suppose

that we have L GAT layers, we generate influence dynamic
features x(d)

u as the output of the last layer.
To complement node features hj , we consider three kinds

of features. The first one is user profile features. We want
users with similar profiles would have larger attention coef-
ficient eij . The second one is network homophily features
captured by node2vec (Grover and Leskovec 2016). The in-
tuition is that users close to each other in the network should
have larger attention coefficient. The third one is vj’s status
on performing social actions on recent ads. We concatenate
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Table 1: Dataset statistics. |V |, |E| and Deg are # of users
and # of edges and average degree of the SIN respectively.
N is # of ad exposure instances.

Dataset |V | |E| Deg N

WechatDay 4,815,987 15,119,817 3.14 1,448,735
WechatWeek 4,815,987 15,119,817 3.14 5,311,495
Weibo 624,687 4,681,881 7.49 2,269,140

three feature vectors as hj and using the vectors to feed into
the GAT model. We implement multi-head GAT (Velickovic
et al. 2017), which is an extension of the above single-head
graph attention.

Experiments

Experiments Setup

Datasets. We evaluate the approaches on three real datasets
from two domains, social in-feed advertising and Weibo. Ta-
ble 1 shows the statistics of the datasets.
(1) Advertising Datasets. We construct large-scale datasets
based on the real ad exposure logs from WeChat. Each el-
ement in the log is an ad exposure with social action sta-
tus. The intrinsic features of each ad exposure include: 1)
user profile of u, e.g., age, gender, and education; 2) ad at-
tributes of a, e.g., industry category and media format; 3)
context features, e.g., OS and network types. We prepare
two datasets, WechatDay and WechatWeek, by extracting
one day and one week data from the logs respectively. As
the datasets are very imbalanced in label class, we apply the
negative sampling method to keep the ratio between positive
and negative instances to be 1:5. We construct an SIN for the
datasets by considering user historical interactions within 2
months immediately before the periods of the datasets. The
SIN is very sparse as observed in Table 1.
(2) Weibo dataset. As social in-feed advertising datasets
contain sensitive personal information of users, the datasets
WechatDay and WechatWeek cannot be published for test-
ing the reproducibility of our proposed approach. Thus,
we also conduct experiments on an open dataset Weibo3

(Zhang et al. 2013), which is from the most popular Chi-
nese microblogging platform. We regard social action on
this dataset as user’s repost (retweet) behavior. We also use
negative sampling with the ratio of 1:5. We build an SIN by
using historical repost records, and define influence relation-
ship from user u to v if v follows u and v reposts at least one
microblog of u’s reposts.
Comparison methods. We implement our framework
shown in Figure 1 that first learns social influence fea-
tures and then utilizes a prediction model to produce the
results. For a comprehensive evaluation, we examine three
prediction models. (1) LR, the simple logistic regression
model. (2) DeepFM (Guo et al. 2017), a factorization-
machine based neural network (3) ResFM, an improvement
of DeepFM model, replacing DNN in DeepFM with residual
network (He et al. 2016) to solve the problems of gradient

3http://aminer.org/Influencelocality

disappearance/explosion and network degradation in DNN
with the increase of network depth.

For social influence learning, we compare with the state-
of-the-art methods. We tune the parameters of the methods
to achieve the best performance. First, for modeling influ-
ence structure x

(s)
u , we evaluate the following methods. (1)

Node2vec utilizes network embedding techniques (Grover
and Leskovec 2016) to generate structure embedding of tar-
get user u with the parameter setting: window-size is 10,
walk-length is 20, num-walks is 20, p is 1 and q is 2. (2)
WLFrq and WLEmb are our proposed methods based on the
WL algorithm, where WLFrq is frequency-based encoding
and WLEmb is embedding-based encoding.

Second, for modeling influence dynamics x
(d)
u , we eval-

uate the following three methods. (1) GCN utilizes the graph
convolutional network (Kipf and Welling 2016) to learn in-
fluence from near neighbors. GCN is implemented by stack-
ing two GCN layers and 16 neurons per layer. (2) GAT is the
graph attention network method. We implement multi-head
GAT (Velickovic et al. 2017) in which each GAT layer con-
sists of K = 8 attention heads. Node features hj of GCN
and GAT are described previously. (3) We also compare the
method WL+GAT that includes both graph encoding and GAT
for influence learning.

To evaluate the effect of social influence features, we
compare with plain-LR, plain-DeepFM and plain-ResFM
that only consider intrinsic ad exposure features (i.e.,
the gray vector in Figure 1). Furthermore, we compare
the proposed framework against a very recent approach
DeepInf (Qiu et al. 2018), which also utilizes social influ-
ence for predicting user actions.
Evaluation metrics. We use Area Under Curve (AUC),
which is defined as the area enclosed by the coordinate axis
under the ROC curve, as the evaluation metric4.
Hyper-parameter settings. For LR, we add the L1 and
the L2 regularization to prevent model over-fitting. The
DeepFM model uses a two-layer neural network with 32 hid-
den units and an embedding size of 16. Batch normalization
with decay 0.99 is also used for deep learning models. For
WL-based graph encoding, we use r = 2 to generate neigh-
borhoods and set the default dimension of x(s)

u as 60. For
GAT-based influence dynamics modeling, we use two GAT
layers where each layer has 16 neurons. We use elu as acti-
vation function in GCN/GAT and DeepFM. All parameters
are initialized using a random normalization. The models are
trained using Adam optimizer with logloss function, learn-
ing rate 0.001 and mini-batch size 1024. All the ad exposure
instances in the datasets are split into two parts, i.e., 70% for
training and 30% for testing. We use cross validation over
the training set to tune hyper-parameters.
Significance test. We perform paired t-test at a 99% confi-
dence level (p value < 0.01) to test the result differences
obtained by our approach and every baseline. The test result
shows significant differences of our approach with respect
to all the baselines.

4We also evaluate the performance on F-measure and find sim-
ilar trends with AUC. We omit the results due to the space limit.
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Evaluation on Social Influence Learning

We evaluate alternative methods for social influence learn-
ing. Figures 3(a), 3(b) and 3(c) report the results under dif-
ferent classification models respectively.

We first evaluate the methods for modeling social influ-
ence structure. Our methods WLFrq and WLEmb significantly
outperform baseline Node2vec on the advertising datasets.
This is because Node2vec mainly focuses on learning ho-
mophily of the users. However, users closely connected to-
gether in the network may not have similar behaviors on so-
cial actions. In contrast, WL-based methods focus on learn-
ing topological features, which are more important than ho-
mophily for predicting actions on advertising datasets. WLEmb
achieves better performance than WLFrq under the LR model.
The reason is that WLEmb learns embeddings of node labels
and can overcome the sparsity and non-independent issues
caused by simply counting frequencies in WLFrq. Neverthe-
less, the superiority of WLEmb becomes less significant under
DeepFM and ResFM, because the deep models can learn the
latent states of label frequencies. We also find that the im-
provement of WLEmb over Node2vec is more significant on
the advertising datasets, compared with the Weibo dataset.
This is attributed to the reposting behavior in Weibo. Dif-
ferent from social actions in advertising, reposting tends to
have community-based diffusion, and Node2vec is capable
of learning nodes within common communities.

Then, we examine the methods for modeling social influ-
ence dynamics. Our proposed method WL+GAT combining
WLEmb and GAT to learn both social influence structure and
dynamics performs the best. The results verify topological
features of user’s neighbors are indispensable for action pre-
diction. We also find the improvement is more remarkable
on the advertising datasets. This is because social actions in
advertising are very sparse and limited information of neigh-
bor statuses and features can be used. In this case, topologi-
cal features play a more important role.

Comparison on Action Prediction

As observed in Table 2, compared with the plain-LR
plain-DeepFM, and plain-ResFM, the consideration of so-
cial influence features can improve the prediction perfor-
mance with large margin, e.g., 4 − 5% improvements on
AUC on WechatDay and WechatWeek. We also observe that
a simple LR model considering social influence can beat
a complicated DeepFM model without social influence fea-
tures. The experimental results validate that social influence
plays an important role in advertising action prediction.

We also observe that the classification model ResFM
achieves superior performance on the advertising datasets.
That is because most of the advertising data are sparse fea-
tures, which are easy to produce the gradient disappear-
ance/explosion phenomenon. The introduction of residual
network can solve this problem, and the performance is im-
proved compared with the ordinary DNN in DeepFM model.
With the increase of network depth, the performance im-
provement of residual network would be more significant.
Moreover, we find DeepInf cannot achieve good perfor-
mance in our tasks. This is attributed to the close world as-
sumption of DeepInf: Although it utilizes GAT to model

Table 2: Social Action Prediction Performance on AUC.

Dataset Method AUC (%)

WechatDay

plain-LR 80.0
plain-DeepFM 80.7
plain-ResFM 81.0
DeepInf 69.4
Ours (LR) 83.1

Ours (DeepFM) 84.1
Ours (ResFM) 84.4

WechatWeek

plain-LR 79.7
plain-DeepFM 80.6
plain-ResFM 81.0
DeepInf 70.5
Ours (LR) 83.3

Ours (DeepFM) 84.3
Ours (ResFM) 84.4

Weibo

plain-LR 75.0
plain-DeepFM 82.2
plain-ResFM 82.0
DeepInf 77.1
Ours (LR) 79.0

Ours (DeepFM) 84.9
Ours (ResFM) 84.8

predictive signals in social influence, it solely relies on these
signals to produce prediction results. However, this may not
be sufficient for prediction, due to the high sparsity.

Visualization of Influence Structure

We use the WechatDay dataset to visualize the topological
structures learned by our graph encoding approach. Then,
given ad exposure instances, we select the most frequent
x
(s)
u vectors in the positive and negative instances respec-

tively. Figure 4 depicts some extracted enclosing neighbor-
hoods corresponding to these encoding vectors where the
target users are denoted by the orange circles. We have an
interesting observation that the most frequent positive neigh-
borhoods enclose target user u in the “center”, while the
most frequent negative ones enclose u in the “peripheral”.
This supports our claims: users, who are influenced by var-
ious neighbors in the history, tend to be influenced in the
future. In contrast, social influence may not affect the ones
who are rarely influenced by neighbors previously.

Hyper-parameter Analysis

We examine prediction performance under different hyper-
parameters on the WechatDay dataset. We first examine
graph encoding dimension in Figure 5(a): as the dimen-
sion increases, the prediction performance first improves and
then declines. This is because if the dimension is too large,
the topological features will be too sparse, which will affect
the prediction performance. As a result, we set the default di-
mension as 60 in our experiments. We also examine embed-
ding size in DeepFM and report the results in Figure 5(b).
Different embedding sizes have an impact on the results, but
our approach WL+GAT consistently performs the best.
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(a) WechatDay dataset.
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(b) WechatWeek dataset.
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(c) Weibo dataset.

Figure 3: Evaluating social influence learning.

(a) Most frequent positive influence structures. (b) Most frequent negative influence structures.

Figure 4: Visualization of learned social influence structures.
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Figure 5: Hyper-parameter analysis.

Related Work

Click-Through Rate (CTR) Prediction. Recently, CTR
prediction has been extensively studied. A large number of
deep models are introduced with a general framework that
consists of embedding and deep neural networks. Wide &
Deep (Cheng et al. 2016) and DeepFM (Guo et al. 2017)
combine embeddings and deep neural networks in parallel
while FNN (Zhang, Du, and Wang 2016) and PNN (Qu et al.
2016) combine these two parts in series. NFM (He and Chua
2017) adds element-by-element multiplication to make full
use of the information of the second-order feature interac-
tion. Unlike click behavior, social actions of a user in the
scenario of in-feed advertising would be very likely influ-
enced by her friends. The existing works do not consider
social influence for prediction.
Social Influence Modeling. Conventional social influence
studies can be categorized into pairwise (Goyal, Bonchi, and
Lakshmanan 2010; Li et al. 2018b), topic-level (Tang et al.

2009; Chen et al. 2015; Fan et al. 2018) and structure-level
influence (Zhang et al. 2013; Li et al. 2017). DeepInf (Qiu
et al. 2018) is a recently proposed deep learning approach
that utilizes graph attention networks (GAT) for micro-level
influence prediction. In this paper, we propose to learn topo-
logical features of users’ historical interaction on social in-
fluence, and develop a structure-aware graph encoding ap-
proach, which shows superiority in our experiments.
Network Embedding. Network Embedding learns low-
dimensional representation of nodes in the network. Prox-
imity based embedding methods such as deep walk (Perozzi,
Al-Rfou, and Skiena 2014), node2vec (Grover and Leskovec
2016) are based on random walk. LINE (Tang et al. 2015)
and SDNE (Tu et al. 2018) find proximity among nodes.
Graph convolution based embedding includes non-spectral
approaches (Niepert, Ahmed, and Kutzkov 2016) and spec-
tral approaches (Defferrard, Bresson, and Vandergheynst
2016; Li et al. 2018a). Structural equivalence based meth-
ods include subgraphs (Shervashidze et al. 2009), random
walks or paths (Vishwanathan et al. 2010) and subtree pat-
terns (Shervashidze and Borgwardt 2009; Yanardag and
Vishwanathan 2015). In our paper, we leverage graph encod-
ing techniques inspired by Weisfeiler-Lehman Kernel (Sher-
vashidze et al. 2011; Yanardag and Vishwanathan 2015) to
solve a new problem, i.e., learning influence structure.

Conclusion

In this paper, we have studied the problem of social action
prediction for in-feed advertising. We introduced an end-
to-end approach to learn predictive signals in social influ-
ence. We focused on learning topological features to model
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social influence structures, and developed structure-aware
graph encoding methods. We also modeled influence dy-
namics features by combining neighbors’ features and action
influences. We conducted extensive experiments on the real
in-feed adverting datasets and an open dataset from Weibo
to show the performance superiority of our approach.
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