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ABSTRACT
User Generated Content (UGC) is re-shaping the way people
watch video and TV, with millions of video producers and
consumers. In particular, UGC sites are creating new view-
ing patterns and social interactions, empowering users to be
more creative, and developing new business opportunities.
To better understand the impact of UGC systems, we have
analyzed YouTube, the world’s largest UGC VoD system.
Based on a large amount of data collected, we provide an
in-depth study of YouTube and other similar UGC systems.
In particular, we study the popularity life-cycle of videos,
the intrinsic statistical properties of requests and their re-
lationship with video age, and the level of content aliasing
or of illegal content in the system. We also provide insights
on the potential for more efficient UGC VoD systems (e.g.
utilizing P2P techniques or making better use of caching).
Finally, we discuss the opportunities to leverage the latent
demand for niche videos that are not reached today due to
information filtering effects or other system scarcity distor-
tions. Overall, we believe that the results presented in this
paper are crucial in understanding UGC systems and can
provide valuable information to ISPs, site administrators,
and content owners with major commercial and technical
implications.

Categories and Subject Descriptors
C.2.0 [COMPUTER-COMMUNICATION NETWORKS]:
General

General Terms
Measurement, Design

Keywords
User Generated Content, Power-Law, Long Tail, VoD, P2P,
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1. INTRODUCTION
Video content in standard Video-on-Demand (VoD) sys-

tems has been historically created and supplied by a lim-
ited number of media producers, such as licensed broad-
casters and production companies. Content popularity was
somewhat controllable through professional marketing cam-
paigns. The advent of user-generated content (UGC) has
re-shaped the online video market enormously. Nowadays,
hundreds of millions of Internet users are self-publishing con-
sumers. The content length is shortened by two orders of
magnitude and so is the production time. Wired magazine
refers to this small-sized content pop culture as “bite-size
bits for high-speed munching” [34].

The scale, dynamics, and decentralization of the UGC
videos make traditional content popularity prediction un-
suitable. UGC popularity is more ephemeral and has a much
more unpredictable behavior. As opposed to the early days
of TV where everyone watched the same program at the
same time, such strong reinforcement of popularity (or un-
popularity) is diluted in UGC. Constant waves of new videos
and the convenience of the Web are quickly personalizing
the viewing experience, leading to a great variability in user
behavior and attention span. Understanding the popular-
ity characteristics is important because it can bring forward
the latent demand created by bottlenecks in the system (e.g.
poor search and recommendation engines, lack of metadata).
It also greatly affects the strategies for marketing, target ad-
vertising, recommendation, and search engines. At the same
time, a lack of editorial control in UGC is creating problems
of content aliasing or copyright infringement, which seriously
threatens the future viability of such systems.

To understand the nature and the impact of UGC sys-
tems, in this paper we analyze YouTube, the world’s largest
UGC VoD system. The main contribution of this paper is
an extensive trace-driven analysis of UGC video popular-
ity distributions. To this extent, we have collected a large
amount of data from YouTube and another UGC system,
Daum. Our analysis reveals very interesting properties re-
garding the distribution of requests across videos, the evo-
lution of viewer’s focus, and the shifts in popularity. Such
analysis is pivotal in understanding some of the most press-
ing questions regarding new business opportunities in UGC.
Our analysis also reveals key results regarding the level of
piracy and the level of content duplication in such systems,
which could have major implications in the deployment of
future UGC services.



The highlights of our work could be summarized as fol-
lows:

1. We compare some prominent UGC systems with other
standard VoD systems such as Netflix and Lovefilm.
We highlight the main differences between the two
systems and point out interesting properties regarding
content production, consumption, and user participa-
tion patterns.

2. By analyzing the popularity distributions from vari-
ous categories of UGC services and by tracking the
time evolution of it, we show that the popularity dis-
tribution of UGC exhibits power-law with truncated
tails. We discuss several filtering mechanisms that cre-
ate truncated power-law distributions, and estimate
the potential benefits arising from the hidden latent
demand caused by such filtering effects.

3. We provide insights into more efficient UGC distribu-
tion systems, namely, caching and peer-to-peer (P2P).
Our analysis can be of great value to content providers
and site administrators due to the large amount of net-
work traffic generated by UGC.

4. We measure the prevalence of content duplication and
illegal uploads in UGC, and their impact in various
system characteristics. Content aliasing and illegal up-
loads are critical problems of today’s UGC systems,
since they can hamper the efficiency of UGC systems
and cause costly lawsuits.

The rest of the paper is organized as follows. §2 describes
our trace methodology and the key characteristics of UGC.
In §3, we analyze the popularity distribution of UGC and the
forces that shape it. §4 investigates how popularity of videos
evolve over time. §5 considers the performance potential
of server workload and bandwidth savings via caching and
P2P. §6 focuses on the level of content duplication and illegal
uploads in UGC. Finally, we present related works in §7 and
in §8, we conclude.

2. METHODOLOGY AND PROPERTIES
This section introduces our data collection process and

the general properties of the measured UGC videos.

2.1 Data Collection
Our dataset consists of meta-information about user-generated

videos from YouTube and Daum UGC services. YouTube,
the world’s largest UGC site, serves 100 million distinct
videos and 65, 000 uploads daily [6]. Daum UCC, the most
popular UGC service in Korea, is well-known for its high-
quality videos (streaming as high as at 800 kb/s) and serves
two million visitors and 35 million views weekly [1].

We crawled YouTube and Daum sites and collected meta
information about videos by visiting their indexed pages
that link all videos belonging to a category. Due to the
massive scale of YouTube, we limited our data collection
to two of the categories: ‘Entertainment’ and ‘Science &
Technology’ (now called ‘Howto & DIY’). Throughout this
paper, we simply refer to them as Ent and Sci. For Daum,
we have collected video information from all the categories.
Each video record contains fixed information (such as the
uploader, the upload time, and the length) and time-varying

information (such as views, ratings, stars, and links). Views
and ratings indicate the number of times the video has been
played or evaluated by users. Stars indicate the average
score from rating, and links indicate the list of external web
pages hyper-linking the video. Our traces include multiple
snapshots of video information taken daily across six days
for Sci. These multiple snapshots give insights on the ac-
tual request patterns and the popularity evolution of UGC
videos. Table 1 summarizes our dataset with basic statistics.

Our traces do not contain information about individual
user requests. However, our analysis focuses on video popu-
larity evolution, aggregated request distribution, and other
statistics that do not require detailed knowledge of such in-
dividual user’s behavior.

2.2 UGC versus Non-UGC
Next, we highlight the key differences and similarities be-

tween UGC and non-UGC (or professionally generated con-
tents). For comparison purposes, we use data from three
representative non-UGC services. Netflix, a popular on-
line video rental store, has made customer ratings for their
17,770 videos publicly available at [4]. We use this data set
in our comparison. We additionally crawled the web site of
Lovefilm [3], Europe’s largest online DVD rental store, and
Yahoo! Movies [5] for meta-information about their movie
collections. Our Lovefilm dataset contains the video length
and the director. Our Yahoo dataset contains the daily top
ten US Box Office Chart from 2004 to March 2007, and their
theater gross. Table 2 summarizes the non-UGC dataset.

Table 2: Summary of non-UGC traces

Trace # Videos Period Description
Netflix 17,770 Oct 2006 Customer ratings
Lovefilm 39,447 Jan 2007 Length and director
Yahoo 361 2004 - 2007 Theater gross income

2.2.1 Content Production Patterns
One key characteristic of UGC is the fast content produc-

tion rate. The scale of production of UGC is strikingly differ-
ent compared to non-UGC. For example, IMDb, the largest
online movie database, carries 963,309 titles of movies and
TV episodes produced since 1888 until today [2]. In con-
trast, YouTube enjoys 65,000 daily new uploads – which
means that it only takes 15 days in YouTube to produce the
same number of videos as all IMDb movies.

UGC requires less production efforts, compared to non-
UGC. Accordingly, the number of distinct publishers is mas-
sive for UGC. The average number of posts per publisher,
however, is similar for UGC and non-UGC (e.g. 90% of
film directors publish less than 10 movies, based on Love-
film, and similarly 90% of UGC publishers upload less than
30 videos in YouTube). Interestingly, there exist extremely
heavy publishers in UGC, who post over 1,000 videos over
a few years. In contrast, the largest number of movies pro-
duced by a single director scales only up to a hundred movies
over half a century.

The length of UGC videos varies across categories. Daum
CF category shows the shortest median length of 30 seconds,
while Daum Music Video category shows the longest median
length of 203 seconds. Compared with non-UGC, the UGC
video length is shorter by two orders of magnitude. The
median movie length in Lovefilm is 94 minutes.



Table 1: Summary of UGC traces
Name Category # Videos Tot. views Tot. length Data collection period

YouTube Ent 1,687,506 3,708,600,000 15.2 years Dec 28, 2006 (crawled once)
YouTube Sci 252,255 539,868,316 1.8 years Jan 14 - 19, ’07 (daily), Feb 14, ’07, Mar 15, ’07 (once)
Daum All 196,037 207,555,622 1.0 year Mar 1, 2007 (crawled once)

2.2.2 User Participation
The video popularity and ratings (i.e. the number of view-

ers who evaluated the video) show a strong linear relation-
ship for both UGC and non-UGC, with the correlation co-
efficient of 0.8 for YouTube and 0.87 for Yahoo. This is an
interesting observation, because it indicates that users are
not biased towards rating popular videos more than unpop-
ular ones.

Despite the Web 2.0 features added in YouTube to encour-
age user participation, the level of active user participation
is very low. While 54% of all videos are rated, the aggre-
gate ratings only account for 0.22% of the total views. Com-
ments, a more active form of participation, account for mere
0.16% of total views. Other Web 2.0 sites also have reported
similar trends on relatively low user involvements [11].

2.2.3 How Content Is Found?
We now examine the Web pages that link to YouTube

videos. Based on Sci trace, 47% of all videos have incom-
ing links from external sites. The aggregate views of these
linked videos account for 90% of the total views, indicat-
ing that popular videos are more likely to be linked. Nev-
ertheless, the total clicks derived from these links account
for only 3% of the total views, indicating that views com-
ing from external links are not very significant. We have
identified that the top five web sites linking to videos in
YouTube Sci are myspace.com, blogspot.com, orkut.com,
Qooqle.jp, and friendster.com; four of them from social
networking sites, and one on video recommendation.

3. IS UGC POPULARITY POWER-LAW?
Analyzing the exact form of probability distribution not

only helps us understand the underlying mechanism, but
also helps us answer important design questions in UGC
services. This has also been true in other areas [10, 21, 37].
For instance, the scale-free nature of Web requests has been
used to improve search engines and advertising policies. The
distribution of book sales has also been used to design better
online stores and recommendation engines.

The power-law model has been increasingly used to ex-
plain various statistics appearing in the computer science
and networking applications. A distinguished feature of
power-law is a straight line in the log-log plot of views ver-
sus frequency. However, there are other distributions (e.g.
log-normal) with very similar shape. Hence it is a nontrivial
task to determine whether a certain distribution is power-
law or log-normal, unless the plot shows a clear straight line
across several orders of magnitude [17,19,32,35,38].

The shape of a distribution reflects the underlying mech-
anism that generates it. Normally, the power-law distri-
bution arises from rich-get-richer principle, while the log-
normal distribution arises from the law of proportionate ef-
fect1. However, in a real-world, the shape of the natural
1The log-normal distribution is very similar to the normal distri-

distribution can be affected due to various reasons. In fact,
many distributions whose underlying mechanism is power-
law fail to show clear power-law patterns, especially at the
two ends of the distribution: the most popular and the least
popular items. For instance, in the case of movies in cine-
mas [9], the distortion often comes from the lack of enough
movie theaters, where niche content cannot be screened as
much as it should. This is a distribution bottleneck, which
can be removed by bringing the content online.

Yet, there are other bottlenecks that can distort the shape
of a distribution. The NetFlix data in Figure 1 shows a
pattern for the non-popular videos that is not power-law.
In this case, however, it is an information bottleneck. This
relates to the fact that users cannot easily discover niche
content, or content is not properly categorized or ranked2.
The latent demand for products that cannot be reached due
to inefficiencies in system, can have tremendous commercial
and technical consequences [10]. No wonder NetFlix recently
launched the $1 million netflix prize to improve their recom-
mendation engine [4].
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Figure 1: Empirical plot of ranks against ratings,
with a synthetic power-law fitted for ranks 1 to 100.

In the rest of this section, we study the popularity distri-
bution properties of YouTube.

3.1 Pareto Principle
The Pareto Principle (or 80-20 rule) is widely used to de-

scribe the skewness in distribution. Such skewness tells us
how niche-centric the service is. To test the Pareto Princi-
ple, we count the number of views for the least r-th popular
videos and show it in Figure 2. The horizontal axis repre-
sents the videos sorted from the most popular to the least
popular, with video ranks normalized between 0 and 100.
The graph shows that 10% of the top popular videos ac-

bution; the difference is at is multiplicative process, not additive.
2Note that we plot customer ratings rather than views since this
was the only data available [4]. However, we have observed from
other VoD and UGC sites that ratings and views are related by
a linear relationship (see §2.2.2). Thus the general distribution
presented in this plot should not differ greatly when plotting rank
against views.



count for nearly 80% of views, while the rest 90% of the
videos account for very requests. Note that Daum data also
reveals a similar behavior.

This result is quite surprising, since other online systems
show much smaller skew. For instance, analysis of a large
VoD system in China, PowerInfo, shows that 90% of least
popular VoD files account for 40% of all requests [39]. One
would expect that as more videos are made available, users’
requests should be better spread across files. However, counter-
intuitively, requests on YouTube seem to be highly skewed
towards popular files. It is debatable whether such skewed
distribution is rooted in the nature of UGC (because peo-
ple primarily want to see what others have seen before), or
whether better recommendation engines would mitigate the
strong dominance of popular content and shift the users’
requests toward less popular videos.

A nice immediate implication of this skewed distribution
is that caching can be made very efficient since storing only
a small set of objects can produce high hit ratios. That is,
by storing only 10% of long-term popular videos, a cache
can serve 80% of requests. We revisit caching in more detail
in §5.1.
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Figure 2: Skewness of user interests across videos

3.2 Statistical Properties
We now delve deeper into the actual statistical proper-

ties of UGC popularity, focusing on how users’ requests are
distributed across popular and non-popular content. To bet-
ter understand each type of content, we will use two differ-
ent representations of the popularity distribution: a plot
of views against the complementary cumulative number of
views (i.e. frequency) and a plot of video ranks against
views. With the first representation we can focus on the
most popular videos. The second representation shows bet-
ter the behavior of unpopular videos and has recently been
used to understand the so-called “the Long Tail” by Ander-
son [10]. Note that these two plots are in fact transposed
versions of each other and represent the same quantity [37].

3.2.1 Popular Content Analysis
Figures 3(a) and (b) show the popularity distribution of

videos for four representative categories of YouTube and
Daum. All of them exhibit power-law behavior (a straight
line in a log-log plot) across more than two orders of magni-
tude. The fitted power-law exponents are also shown in the
figure. However, YouTube Sci and Daum Food categories
show a sharp decay for the most popular content. To ex-
amine the truncation in detail, Figure 3(c) shows the plot
of Sci with the best-fit curves of power-law, log-normal,
exponential, and power-law with an exponential cutoff. A
log-normally distributed quantity is one whose logarithm is

normally distributed. Power-law with an exponential cutoff
has an exponential decay term e−λx that overwhelms the
power-law behavior at large values of x. For x < 1

λ
, it is

almost identical to a normal power-law, and for x > 1

λ
, to a

normal exponential decay.
Our fitting result suggests that truncation at the tail fol-

lows power-law with an exponential cutoff. However, the
exact popularity distribution seems category-dependent. For
instance, while the distribution of Daum Food also showed
power-law with exponential cutoff, other Daum categories
(not shown here) showed non power-law distributions. Nonethe-
less, most of them showed power-law waist, with a truncated
tail that fits best by power-law with an exponential cutoff.

There are several mechanisms that generate power-law
distributions. The simplest and the most convincing one
is the Yule process (also rephrased as preferential attach-
ment or rich-get-richer principle) [12, 30, 40]. In UGC, this
process can be translated as follows: if k users have already
watched a video, then the rate of other users watching the
video is proportional to k. We will now investigate why a
power-law distribution can have an exponential cutoff on the
most popular content.

To this extent, we first review two models that have been
suggested to explain the cause of such truncation and ex-
plore whether they are applicable to our scenario. First,
Amaral et al. suggested that the aging effect can yield trun-
cation [8]. Consider a network of actors, where every actor
will stop acting, in time. This means that even a very highly
connected vertex will, eventually, stop receiving new links.
However, the aging effect does not apply to our case, as
videos across all ages show truncated tail. In fact, as we
will see later in the paper, our daily trace shows that 80% of
the videos requested on a given day are older than 1 month,
contradicting the hypothesis of aging effect in our case.

Second, Mossa et al. considered a different model to ex-
plain the degree distribution of the WWW [36]. Along with
the preferential attachment, the model adopts the concept of
information filtering, which means that a user cannot regard
all the information but receive information from only a frac-
tion or a fixed number of existing pages. Due to this informa-
tion filtering process, the preferential attachment is hindered
and the exponential cutoff appears. The information filter-
ing is surely present also in both UGC and standard VoD
services. However, highly popular videos are prominently
featured within these VoD services to attract more view-
ers, and thus it is unlikely that information filtering causes
truncation in our case.

Instead, Gummadi et al. give us some better hints on
the causes for our truncated tail [26]. In their study of file
popularity in P2P downloads, they suggest the cause of dis-
tortion arises from “fetch-at-most-once” behavior of users.
That is, unlike the WWW traffic where a single user fetches
a popular page (e.g. CNN) many times, P2P users fetch
most objects once. Given a fixed number of users, U , the
videos, V , and the average number of requests per user, R,
the authors simulate P2P downloads with two types of user
populations: Power and HitOnce. Both user groups make
requests based on the same initial Zipf file popularity. How-
ever, Power group may request videos multiple times, and
HitOnce group, at most once. HitOnce user will make mul-
tiple draws until a new item is requested. The resulting
popularity graph for HitOnce users appears truncated, as
opposed to the straight line behavior of Power users [26].
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(a) YouTube empirical plot (b) Daum empirical plot (c) Curve fitting for YouTube

Figure 3: Video popularity distribution of YouTube and Daum follows power-law in the waist, with varying
exponent from 1.5 to 2.5. YouTube Sci and Daum Food exhibit sharp decay in the tail of hot content.
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(a) Varying the requests per user, R, and
the number of users, U
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Figure 4: Study on the impact of the “fetch-at-most-once” on tail distribution: synthetic plots, (a) and (c),
and empirical plot, (b)

UGC also has “Fetch-at-most-once”-like behavior; since
video content does not change (i.e. immutable) viewers are
not likely to watch the same video multiple times, as they
do for mutable web objects. Expanding on the work in [26]
we suggest that other system characteristics such as R and
V , in combination with the “fetch-at-most-once”, can have a
major impact in forming the truncated tail. To verify this,
we repeat the simulation described above with varying pa-
rameters for U , R, and V . In our setting, the Zipf parameter
is set as 1.0 for the initial video popularity.

Figure 4 shows the resulting video popularity in a plot of
views against the cumulative number of videos. We make
several observations from Figure 4(a). First, compared with
Power, all HitOnce scenarios show a truncated tail, as ex-
pected. Interestingly, the truncated tail gets amplified as
the number of requests per user, R, increases. If R is small,
then the“fetch-at-most-once”effect barely takes place. With
increased R, the “fetch-at-most-once” effect starts playing a
bigger role, since there is a higher chance that a particu-
lar user is geared towards the same popular file multiple
times. Second, adding more users in the system, U , in-
creases views per videos (shifting the plot in the x-axis).
However, the overall shape of the graph does not change,
indicating that U has little impact in the tail truncation.
Finally, increasing both R and U (from U = 2000, R = 10
to U = 10000, R = 50), the tail shape changes in a similar
way as when R increases.

Note that larger R and U values represent the case where
new users are added to the system and old users make more
and more requests (thus R increases). This intuitively cap-
tures what happens in the real UGC systems. In fact, our
traces also show similar trends. Figure 4(b) shows the pop-
ularity distribution of Sci, over a short and long-term win-
dow. Having a long-term window represents large R and U

values. The plot of popularity during one day (i.e. small R)
exhibits a clear power-law decay, while for longer terms, the
distribution exhibits a truncated tail as in Figure 4(a).

Another factor that can greatly impact the shape of a dis-
tribution is the number of videos, V . Figure 4(c) shows the
same simulation results, repeating for a smaller number of
videos (V = 100). If V is small, the “fetch-at-most-once” ef-
fect becomes amplified since there is only a small number of
videos to choose from. This results in a highly truncated tail,
as shown in Figure 4(c) for the case of U = 2000, R = 50. We
can also empirically verify this from our plots of YouTube
and Daum data. Let us revisit the plots in Figures 3(a)
and (b). We observe that the tail cutoff is much more pro-
nounced for categories with smaller number of videos, such
as Sci in the case of YouTube and Food in the case of Daum.

So far, we focused on the popularity distribution of popu-
lar content and showed, via numerical simulations and em-
pirical validation, that the tail truncation is affected by both
the average requests per users and the number of videos in
a category. Next, we move on to the non-popular portion of
the distribution.
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Figure 5: Ranks versus views plot for YouTube Sci videos.

3.2.2 The Long Tail Analysis

Anderson, in his book “the Long Tail” [10], asserted that
there exist huge opportunities in the unlimited number of
non-popular items. Here we will investigate the Long Tail
opportunities in UGC services. In particular, we try to an-
swer the following questions: what is the underlying distri-
bution of non-popular items, what shapes the distribution
in one way or another, and how much benefit the Long Tail
can bring for UGC services.

Let us first look into the distribution of the non-popular
content. We use a plot of video ranks against views, where
unpopular videos are put at the tail. This representation,
suggested by Zipf, has been used to observe Zipf’s law. Fig-
ure 5(a) shows such empirical plot of Sci videos, on a log-
log scale. The figure shows a Zipf-like waist (a straight line
in a log-log plot) with a truncated tail. When we perform
goodness-of-fit test with several distributions, the truncated
tail fits best with Zipf with an exponential cutoff, as clearly
shown in the figure. Log-normal is the second best fit, al-
though it does not follow well in the tail portion.

However, as stressed before, it is hard to decide whether
a distribution is Zipf and is modulated by a bottleneck, or
is just a natural log-normal distribution. Identifying the
true nature of the distribution is hugely important because
it can affect strategies for marketing, target advertising, rec-
ommendation, and search engines. Some of the reasons for
a truncated tail are as follows:

• Natural shape: User-generated content, by defini-
tion, varies widely in its quality. One may argue that
the natural shape of the popularity distribution of UGC
is truncated (e.g. log-normal), since significant frac-
tion of videos in UGC are of low interest to most users.
For example, UGC is normally produced for small au-
diences (e.g. family members), as opposed to profes-
sionally generated content.

• Sampling Biases or pre-filters: The plot of Netflix
in Figure 1 shows a sharp decay in the tail. This can
be explained by sampling bias. Even though NetFlix
provides an enormous online catalog of DVDs world-
wide, their videos are a set of movies that are sampled
from all the movies ever made; only a small portion
of movies world-wide are made into DVD titles. In
UGC services, publishers post videos sampled from the
video pool in their possession. Obviously, the sampling

is biased toward interesting ones. The following ex-
plains the effect of pre-filters: From a complete list of
N videos, whose popularity distribution follows Zipf,
remove h videos such that the probability of a video
removed is proportional to the inverse order of their
ranks. Then, the remaining N − h videos will have
truncated tail.

• Information filtering or post-filters: Search or
recommendation engines typically return or favor a
small number of popular items [15, 36], steering users
away from unpopular ones and creating a truncated
tail. This truncation is more apparent over time since
old non-popular videos are exposed longer to such post-
filtering. Indeed, we are able to observe this in our
traces. Figure 5(b) shows the popularity distributions
of Sci videos of different ages. Videos aged 1 day are
clearly less truncated in the tail than older ones.

If Zipf were to be the natural shape and the truncated tail
was due to some removable bottlenecks (e.g. post- or pre-
filters), then in the system with no bottleneck, the videos
in the truncated region would gain deserved views, offer-
ing the better chances to discover rare niche videos to users
and potential business opportunities to the company. We
next estimate the potential benefit from the removal of such
bottlenecks. The estimation is calculated as the ratio of ag-
gregated additional views against the existing total views.
Table 3 shows the measured benefits for the four UGC video
categories. We also present the number of videos that may
benefit. YouTube Ent and Sci show great opportunities in
the Long Tail economics (42-45% potential improvement),
due to the large number of videos that can benefit. While
in Daum Travel and Food, the benefit is reduced due to
a small number of videos that benefit. When the number
of videos is small, the inefficiencies of the system (due to
filtering effects) are smaller since information can be found
easier.

Table 3: Potential gain from the Long Tail: addi-
tional views and the number of beneficiary videos

Ent Sci Travel Food

Gain 45%(1.2M) 42%(240K) 4%(5K) 14%(400)



Yet, such benefits may not hold if the truncation appears
as a result of a natural user behavior. Interestingly, for
most of our UGC data, goodness-of-fit suggests Zipf with an
exponential cutoff as the best-fit, rather than a log-normal.
This makes a stronger case for filtering effects rather than
a natural behavior. While Zipf (so as power-law) is scale-
free in nature, exponential is a distribution that is scaled
or limited in size. Therefore, the two will rarely appear
coherently and naturally as a single mechanism. Rather, a
more likely explanation is that the underlying mechanism is
Zipf, and the exponential cut-off reveals filtering effects in
the system which truncates the tail. Nevertheless, revealing
the true nature of the truncated tail calls for further in-depth
studies.

4. POPULARITY EVOLUTION OF UGC
As opposed to standard VoD systems where the content

popularity fluctuation is rather predictable (via strategic
marketing campaigns of movies), UGC video popularity can
be ephemeral and has a much more unpredictable behavior.
Similarly, as opposed to the early days of TV when everyone
watched the same program at the same time, such tempo-
ral correlation is much more diluted in UGC. Videos come
and go all the time, and the viewing patterns also fluctuate
based on how people get directed to such content, through
RSS feeds, web reviews, blogs, e-mails, or other recommen-
dation web sites. To better understand this temporal focus,
in this section, we analyze the UGC video popularity evolu-
tion over time. Our analysis is conducted from two different
angles. We first analyze whether requests concentrate on
young or old videos. We then investigate how fast or slow
popularity changes for videos of different age, and further
test if the future popularity of a video can be predicted. For
the analysis, we use daily trace of YouTube Sci videos.

4.1 Popularity Distribution Versus Age
To examine the age distribution of requested videos, we

first group videos by age (binned every five days) and count
the total volume of requests for each age group. Figure 6
displays the maximum, median, and the average requests
per age group. We only consider videos that are requested
at least once during the trace period. The vertical axis is in
log-scale. For very young videos (e.g. newer than 1 month),
we observe slight increase in the average requests, which in-
dicates viewers are mildly more interested in new videos,
than the rest. However, this trend is not very pronounced
when we examine the plot of maximum requests. Some old
videos too receive significant requests. In fact, our trace
shows massive 80% of videos requested on a given day are
older than 1 month and this traffic accounts for 72% of to-
tal requests. The plot becomes noisy for age groups older
than 1 year, due to small number of videos. In summary,
if we exclude the very new videos, user’s preference seems
relatively insensitive to video’s age.

While user’s interests is video-age insensitive in a gross
scale, the videos that are requested the most on any given
day seem to be recent ones. To further verify this, we
look into the age distribution of top twenty most requested
videos. Figure 7 shows the result for a different time-window
of a day, a week, a month, and all time. For each plot, we
used two snapshots, taken the corresponding periods apart,
and ranked videos based on the increase in their views. For
the plot of “all time”, we assume the initial views of videos
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Figure 7: Age distribution of top 20 videos

are zero. Over a one day period, roughly 50% of the top
twenty videos are recent. However, as the time-window in-
creases, the median age shifts towards older videos. This
suggests ephemeral popularity of young videos. To better
understand its effect, in the following, we discuss the video
popularity evolution over time.

4.2 Temporal Focus
We now continue our discussion on the video popularity

and investigate how the popularity of individual UGC videos
evolve over time, how fast or slow it changes, and whether
the future popularity of a video can be predicted.

4.2.1 Probability of Videos Being Watched Over Time
When a video is posted, it has zero views; gradually videos

will gain views over time. To capture this trend in UGC
videos, in Figure 8, we show the percentage of videos aged
≤ X days having ≤ V views. We provide several view points
by considering a range of V values from 0 to 10,000. The
graph shows that after a day, 90% of videos are watched
at least once, and 40% are watched over 10 times. After a
longer period of time, more videos gain views, as expected.
One noticeable trend in the graph is the consistent deeps
at certain times (e.g. 1 day, 1 month, 1 year). These
points seem to coincide with the time classification made
by YouTube in their video categorization. From this plot,
we can see that the slope of the graph seems to decay as
time passes. Noting the log-scale in the horizontal axis, this
indicates the probability of a given video to be requested de-
creases sharply over time. In fact, if we consider the case of



V = 10, the probability that a given file gets more than 10
requests over the duration of first 24 hours, 6 days, 3 weeks,
and 11 months, is 0.43, 0.18, 0.17, and 0.14, respectively.
This indicates that if a video did not get enough requests
during its first days, then, it is unlikely that they will get
many requests in the future. Based on these observations,
we will next test if it is possible to predict a video’s future
popularity.
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Figure 8: Probability of videos being watched over
time, based on YouTube Sci trace

4.2.2 Predicting Near-Future Popularity
The ability to predict future popularity is immensely use-

ful in many ways, because the service providers may pre-
populate these videos within multiple proxies or caches and
the content owners may use this fast feedback to better man-
age their contents (e.g. production companies releasing trail-
ers to predict popularity). We now explore the possibility of
using early views records in predicting near-future popular-
ity. We compare the first few days’ video views with those
after some period of time (i.e. 5, 7, and 90 days). Table 4
shows the correlation coefficient of views for combinations
of snapshots. We also present the number of videos used
for sampling. Our results show that second day record gives
an accurate estimation with a relatively high accuracy (cor-
relation coefficient above 0.8). Using the third day record
improves the prediction accuracy, yet, only marginally. Our
results also show a high correlation with the second day
record even for more distant future popularity (e.g. three
months afterwards).

Table 4: Correlation coefficient of video views in two
snapshots and the number of videos analyzed

Age (x0) x0+5 days old 7 days old 90 days old
2 days old 0.9665 (5185) 0.8793 (3394) 0.8425 (11215)
3 days old 0.9367 (3394) 0.9367 (3394) 0.8525 (9816)

4.2.3 Popularity Shifts
Now we examine how easy or hard it is for new and old

videos to become very popular as a function of their age.
To observe this, we will first look at how the video rank
changes over a range of video ages. In Figure 9(a), we use
two snapshots from our daily traces of six consecutive days,
taken at day zero and day 5, and consider only those videos
that appear on both of the snapshots. We group videos by
their age (bin in units of ten days) and plot the change in
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Figure 9: Changes in ranking and popularity

ranks (i.e. ∆rank) over age. For each age group, we plot
the maximum, top 99 percentile, average, and the minimum
change in ∆rank. The vertical axis ranges from −4, 059 to
235, 132, which indicates that some videos decreased in their
ranks by 4, 059 during the trace period, while some jumped
up 235, 132 ranks.

We make several observations from Figure 9(a). First,
young videos can change many rank positions very fast,
while old videos have a much smaller rank fluctuation, in-
dicating a more stable ranking classification for old videos.
Still, some of the old videos also increased their ranks dra-
matically. This could indicate that old videos are able to
ramp up the popularity ladder and become popular after a
long time, e.g. due to the Long Tail effects and good rec-
ommendation engines. However, it is hard to conclude this
from Figure 9(a) since a few requests may also result in ma-
jor rank changes. We will revisit this issue at the end of this
section.

The gap between the maximum and the top 99 percentile
lines reflects that only a few young videos (e.g. less than 1%)
make large rank changes, indicating that only a very small
percentage of the young videos make it to the top popular
list while the rest have much smaller ranking changes. We
also see a consistent minimum ∆rank line at nearly -4000
across all age group. A detailed look at those videos reveals
that those videos did not receive any request during the
trace period, however their ranking was pushed back as other
videos got at least one request. This shows that unpopular
videos that do not receive any request will die in the ranking
chart at a rate of 2000 positions per day.

As discussed before, when it comes to identifying major
shifts in the popularity distribution, considering the actual
change in views or ranks is not enough. Videos can get many
requests but make a minor rank change, and vice versa; a
large rank change could be due to a very few requests (e.g.



from zero to five requests). To identify videos that made
dramatic rank changes as well as received large number of
requests, we propose using the product of (∆rank ·∆views)
as in Figure 9(b). Please note that as opposed to Figure 9(a)
the vertical axis now is in log scale. Now we observe more
drastic popularity shifts for young videos; barely no sin-
gle old video received a significant number of requests to
make major upward shift in the popularity distribution. In
short, revival-of-the-dead effect, where old videos are sud-
denly brought up to the top of the chart, does not happen
strongly in our trace.

5. EFFICIENT UGC SYSTEM DESIGN
With the increasing popularity of UGC, YouTube alone is

estimated to carry astonishing 60% of all videos online, serv-
ing 100 million distinct videos daily [6]. This corresponds
to, in our estimation, massive 50 - 200 Gb/s of server access
bandwidth on a traditional server-client model. Accordingly
network operators are reporting a rise of overall Web traffic
and HTTP video streaming [7].

In this section, we explore the benefits for alternate dis-
tribution schemes, namely, caching and peer-to-peer (P2P).
We provide a rough estimate on the potential savings that
caching and P2P can provide to the YouTube servers. Yet,
our results are optimistic upper bounds for the benefits that
one could expect in real deployment. Throughout this sec-
tion, we use daily traces of six consecutive days for 263, 847
YouTube Sci videos. Our study does not include the net-
work impact of various distribution schemes in ISPs, since
our data does not contain geographical locations of the users.

5.1 Better Use of Caching
Caching stores redundant copies of a file near the end user

and has been proven to be extremely effective in many Web
applications. Several factors affect the caching efficiency:
the cache size, the number of users and videos, the correla-
tion of requests, the shifts in popularity, and so on. Here, we
hypothesize a virtual global cache system for YouTube and
assess with real trace how many hits on YouTube servers can
be eliminated. Such cache could be deployed centralized or
fully-distributed. In either case, we assume that all user re-
quests are distributed across the global caching system and
that caches cooperate, redirecting users to the right video
copy. However, we do not make any assumptions about the
exact location of caches or their number. Our interest, in-
stead, is at investigating the global cache performance from
the server’s point-of-view, under massive new uploads and
dynamic popularity evolution.

To this extent, we consider the following three conven-
tional caching schemes:

1. A static finite cache, where at day zero the cache is
filled with long-term popular videos. The cache con-
tent is not altered during the trace period.

2. A dynamic infinite cache, where at day zero the cache
is populated with all the videos ever requested before
day zero, and thereafter stores any other videos re-
quested during the trace period.

3. A hybrid finite cache, which works like the static cache,
but with extra space to store the daily most popular
videos.

We populate the static cache with long-term popular videos
accounting for 90% of total traffic. This corresponds to 16%
of Sci videos as in the Pareto Principle (see Figure 2). The
dynamic infinite cache simply stores all the videos ever re-
quested. The hybrid finite cache is first populated with the
top 16% of Sci videos, then the cache also allocates small
extra space to store the daily top 10,000 videos.

We perform a trace-driven simulation to assess the cache
performance in terms of the required cache size and the cache
miss ratio. To do this, we replay the 6-day trace under our
three caching schemes and calculate the average hit and miss
ratios. We simply use the number of videos cached as the
cache size, because the video length and the encoding rate
do not vary much across files. We further assume that each
time a video is viewed, the full video is stored in the cache
(even when the user watched it partially)3. Table 5 sum-
marizes the cache performance averaged over the 6-day pe-
riod. The results indicate that about 40% of the videos that
are requested daily are different from the long-term popu-
lar videos. However, the corresponding number of requests
toward those videos accounts for only about 20% of the to-
tal requests. In fact, we can see that a simple static cache
that stores the top long-term popular files uses 84% less
space than a dynamic infinite cache solution which stores
all videos, and still manages to save about 75% of the load
in the server. It is worth noting that only about 2% of videos
that are requested every day are newly uploaded ones. We
should also mention that, by storing the most popular daily
requests in addition to the long-term popular videos, a hy-
brid cache improves the cache efficiency by 10%, compared
to the static cache.

Table 5: Synthetic cache efficiency

Type Size # missed videos # missed requests
Static 41,235 115,002 (48.8%) 5,093,832 (26.7%)

Dynamic 256,647 4,683 (1.9%) 648,376 (3.4%)
Hybrid 51,235 94,893 (40.3%) 3,271,649 (17.1%)

5.2 Potential for Peer-Assisted VoD
Now we explore the potential benefits of a P2P technique

in UGC distribution based on real trace. We consider a peer-
assisted VoD distribution where users stream videos from
VoD servers as well as from other online users (or peers).
Typically, peers share videos they have watched for a cer-
tain period of time. Inherently, a P2P system is effective
only when there are enough number of online peers sharing
content – this is called a torrent. The efficacy of P2P for
massive content distribution has been studied in other ap-
plication [22]. Here we investigate the potential benefits that
a P2P technique can bring to YouTube. We first assess the
feasibility of peer-assisted VoD distribution of UGC by ex-
amining how many files benefit from such an approach. We
then perform a trace-driven analysis to measure how much
server workload can be lowered when peers assist video de-
livery, compared to the traditional server-client model.

3In fact many caches already download the entire requested ob-
ject regardless of whether the user terminates the connection
early. Such proactive caching strategy can serve future requests
more rapidly.
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Figure 10: Inter-arrival times of requests

We commence by estimating the inter-arrival times of re-
quests. Our trace provides temporal granularity of requests
by the day. Within a single day, we assume that requests are
exponentially distributed. Then, the inter-arrival time of re-
quests has a mean of 1

λ
, where λ is the intensity of requests

(i.e. the number of requests made that day). We later use
the inter-arrival time to calculate the number of concurrent
online users. Figure 10 shows the CDF of the average inter-
arrival time per video. We observe that roughly 95% of the
videos are requested once every 10 minutes or longer. This
implies that the fraction of files that can benefit from P2P
is very small, as most files are requested infrequently.

Next we calculate the number of concurrent users per
video (e.g. the torrent size). We again assume that users
watch the entire video and the users may share the file im-
mediately after they start downloading4. The torrent size
here depends on how long the users stay on the YouTube
site (i.e. session or sojourn time) and how often they visit
YouTube (i.e. frequency of sessions). The session time of
a user is important because the P2P sharing may happen
only when the user is online. We consider the following four
P2P session times: 1) a user shares while watching a video
(i.e. video length), 2) shares for the duration of time he
spends on YouTube, 3) shares for one extra hour after he
is done watching, and 4) shares for one extra day. Accord-
ing to Nielsen/NetRatings [13], the average session time of
YouTube users is currently 28 minutes. We hence assume
users share videos for 28 minutes in our second case. In the
last two cases, we consider users sharing videos even when
they are no longer in the system. We mention that this may
become a reality in the future (e.g. users equipped with
always-on set-top boxes that run P2P).

Then for a given P2P system time of a user, t, and the
inter-arrival time of requests, 1

λ
, the expected number of

concurrent users is λt. Note that this value can be less than
1, indicating that there are times within that day with no
users watching the video. We consider the P2P approach
only when λt is greater than one (i.e. more than one user
watched a video). When λt ≤ 1, we simply apply the tradi-
tional server-client model. Figure 11(a) shows the CDF of
the average number of concurrent users over the monitor-
ing period per video. We observe that for most of the cases
the average number of concurrent users, λt, is less than 1,
indicating that only a few videos are to benefit from P2P.
However, when users share videos for a longer period of time

4We assume that all peers watching the same video have useful
data to share with other peers. While we do not discuss in de-
tail how to achieve this efficiency, we note that such a P2P-VoD
swarming protocol is feasible (e.g. using coding, proper gossiping,
and overlay mesh construction) [25,33].
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Figure 11: Potentials of a P2P system

(e.g, 1 day), P2P may assist 60% of videos with at least 10
current users all the time.

While the number of files that can benefit from P2P come
out relatively small, this does not necessarily mean P2P is
inefficient for UGC. As we have seen from the previous sec-
tions, UGC requests are highly skewed and temporal. There-
fore, we investigate the benefits of P2P by comparing the
estimated server workload between traditional client-server
and P2P-assisted distribution approaches. In a client-server
model, each request is directly served by the server. While
in the P2P-assisted model, peers will participate in stream-
ing only when there are concurrent users. As a measure of
server workload, we use the total length of the streamed con-
tent. Figure 11(b) compares the server workload based on
trace-driven analysis. Our results show that the potential of
P2P is actually very large. The server workload is reduced
by 41% even when users share only videos while they are
watching. When users share videos for one day, the server
workload reduces by a tremendous 98.7%, compared to a
client-server approach.

6. ALIASING AND ILLEGAL UPLOADS
Content aliasing and illegal uploads are critical problems

of today’s UGC systems, since they can hamper the effi-
ciency of UGC systems as well as cause costly lawsuits. In
this section, we study the prevalence of content duplication
and illegal uploads in UGC, and their impact in various sys-
tem’s characteristics.

6.1 Content Aliasing
Traditional VoD services offer differently encoded versions

of the same video, typically to support diverse downward
streaming bandwidths. In UGC, there often exist multiple
identical or very similar copies for a single popular event. We
call this group of videos, aliases, and this new phenomenon
content aliasing. Multiple copies of video for a single event



dilute the popularity of the corresponding event, as the num-
ber of views is distributed over multiple copies. This has a
direct impact on the design of recommendation and ranking
systems, as it is no longer straightforward to track the popu-
larity of an event from a single view count nor present users
with unique videos, instead of numerous identical copies.

To estimate the prevalence of aliases, we have conducted
the following experiment. We first sample 216 videos from
the top 10, 000 videos of YouTube Ent category. Then we ask
51 volunteers to view and familiarize themselves with some
of those videos. After viewing some from our sample set,
volunteers search YouTube using keywords of their choice
and flag any videos that deem pertaining to the same event
as aliases5 Our volunteers have identified 1, 224 aliases for
184 videos out of original 216. Most videos have 1 to 4
aliases, while the maximum number of aliases is 89. Out of
all videos that pertain to the same event, we call the video
with the earliest upload time original.
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Figure 12: Sum of all views of the original and aliases
versus views of original videos

Figure 12 shows the sum of views from all aliases and the
original video against the number of views of the original
videos. For a few videos, the sum of views from aliases grows
more than two orders of magnitude than the views of the
original. This clearly demonstrates the popularity dilution
effect of content aliasing. Undiluted and augmented by the
views of aliases, the original video could have been ranked
much higher.
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Figure 13: Number of aliases versus the age differ-
ences

5We have created a webpage http://beta.kaist.ac.kr for vol-
unteers to view the video along with the description, and then
search for content aliases in YouTube.

Next, we analyze the time intervals between aliases. We
plot the age differences between the original video and its
aliases in Figure 13 (the bin size is 5 days). A large number
of aliases are uploaded on the same day as the original video
or within a week. To examine how the number of views has
changed, in Figure 14 we plot the views of aliases normalized
against that of the original versus their age difference. One
conspicuous point represents an alias that showed up more
than 200 days later than the original and received almost
1000 times more views. This particular video was originally
listed in the Music category, and later posted on the Comedy
category with much more views. We find it rather surpris-
ing to see so many aliases still appear 100 or more days after
the original video. They are also found to belong to differ-
ent categories from the original and have been cross-posted
over multiple categories. These aliases could be a potential
reason for the flattened popularity tail. We leave further in-
vestigation behind this delayed popularity for future work.
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Figure 14: Normalized views versus the age differ-
ences

The Pearson correlation coefficient of the plot in Figure 14
is 0.004. It signifies little correlation or no decrease in the
number of views over time. With a good number of aliases
older than 100 and more views, we discern no clear trend
in the aliases and their views over time. Those aliases that
turn up 100 days later with much fewer views are likely to
serve personal archiving purposes.

Finally, we check for the existence of heavy alias upload-
ers. Suspecting their strong motivation for online popularity,
we have wondered if they could post aliases of already pop-
ular videos. Our data, however, shows that over 80% of all
aliases are by one-time uploaders and the maximum number
of aliases by one uploader is 15.

6.2 Illegal Uploads
UGCs derived from copyrighted contents raise a serious

legal dilemma for UGC service providers. In a sense, aliases
can be considered to a great extent as a form of“video spam.”
A recent study from Vidmeter [28] suggests that nearly 10
percent of videos in YouTube are uploaded without the per-
mission of the content owner. Vidmeter’s report cover only
the top ranked UGCs. We augment Vidmeter’s work by
looking not only at the top ranked videos, but all in Ent.

We get the list of all videos at two different times, and
compare the two lists. The discrepancy represents the deleted
videos. When we follow the links to the deleted videos,
YouTube offers a notice about the reason behind deletion.



Possible reasons are: removed by users, terms of use viola-
tion, copyright claim, and restricted access. From the first
set of videos (1, 687, 506), the number of all deleted videos
are 6, 843 (0.4%). Only about 5% of deleted videos have vi-
olated the copyright law, which is a far smaller number than
Vidmeter’s.

7. RELATED WORK
We have already incorporated many of the references that

closely relate to our work throughout the paper. As our work
covers a broad spectrum of topics from popularity analysis to
Web caching and P2P streaming, in this section, we briefly
summarize the related work on each topic.

VoD service has become extremely popular in the In-
ternet. Especially the demand for user-generated contents
has grown explosively. Among the numerous UGC sites,
YouTube, MSN, Google Video, Yahoo! Video, and UnCut
Video are the notable ones. Despite the excitement, rela-
tively little attempts have been made to understand how
these UGC services are fundamentally different from tra-
ditional well-explored video distribution services [23]. In
contrast, much has been written about traditional VoD ser-
vices. The first kind of studies is by Griwodz et al., where
they use off-line video rental records to study video popular-
ity [24]. Recently, Yu et al. conducted an in-depth analysis
of access patterns and user behaviors in a centralized VoD
system [39].

In the study of popularity distributions, Newman car-
ried out a good comprehensive study of power-law distri-
butions [37]. He examined several examples of power-law:
Web hits, copies of books sold, telephone calls, etc. Also a
paper by Alderson et al. develops an interesting and rich
theory for scale-free networks [31]. Power-law distribution
with a truncated tail has frequently appeared in the degree
distributions of various real-world networks such as WWW,
protein networks, e-mail networks, actor networks, and sci-
entific collaboration networks [16,20,36].

The concept of peer-assisted video streaming has been ex-
tensively explored [14, 22, 27, 29]. Most existing work con-
centrate on the protocol design under various topological
constraints [18, 27]. Our study considers the potential for
P2P delivery in large-scale UGC systems, which have unique
characteristics in terms of user consumption patterns and
video popularity distributions.

8. CONCLUSIONS
In this paper we have presented an extensive data-driven

analysis on the popularity distribution, popularity evolution,
and content duplication of user-generated video contents.
To the best of our knowledge, this work is the first major
stab at understanding the explosive growth of UGC and its
implications on underlying infrastructures.

We have studied the nature of the user behavior and iden-
tified the key elements that shape the popularity distribu-
tion (e.g. what shapes the Long Tail, alters the skewness of
popularity, or breaks the power-law behavior for very popu-
lar contents). Our results indicate that information filtering
is the likely cause for the lower-than-expected popularity of
niche contents, which if leveraged, could increase the total
views by as much as 45%.

We have studied different UGC cache designs, and showed
that simple policies that cache the most popular contents

can offload server traffic by as much as 50%. Similarly, we
have also demonstrated that a distribution system based on
a P2P system can have great benefits, despite the diversity
of requests and short video length.

Finally, we have tackled the impact of content aliasing
and illegal uploads, which could hamper the future success
of UGC services. Content aliasing is widely practiced and
makes the video ranking difficult. Illegal uploads are more
common amongst highly ranked videos. We believe that our
work answers very critical and pressing questions, and lies
the basis for the design of future UGC systems. Our dataset
has been mainly focused on snapshots obtained from two
large UGC systems. It will be interesting to see how our
analysis results hold in the future and across other UGC
systems.
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