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Vigilance Adaptation in Adaptive Resonance Theory

Lei Meng, Ah-Hwee Tan and Donald C. Wunsch II

Abstract— Despite the advantages of fast and stable learning,
Adaptive Resonance Theory (ART) still relies on an empirically
fixed vigilance parameter value to determine the vigilance
regions of all of the clusters in the category field (F2), causing
its performance to depend on the vigilance value. It would
be desirable to use different values of vigilance for different
category field nodes, in order to fit the data with a smaller
number of categories. We therefore introduce two methods, the
Activation Maximization Rule (AMR) and the Confliction Mini-
mization Rule (CMR). Despite their differences, both ART with
AMR (AM-ART) and with CMR (CM-ART) allow different
vigilance levels for different clusters, which are incrementally
adapted during the clustering process. Specifically, AMR works
by increasing the vigilance value of the winner cluster when a
resonance occurs and decreasing it when a reset occurs, which
aims to maximize the participation of clusters for activation.
On the other hand, after receiving an input pattern, CMR first
identifies all of the winner candidates that satisfy the vigilance
criteria and then tunes their vigilance values to minimize
conflicts in the vigilance regions. In this paper, we chose Fuzzy
ART to demonstrate these concepts, but they will clearly carry
over to other ART architectures. Our comparative experiments
show that both AM-ART and CM-ART improve the robust
performance of Fuzzy ART to the vigilance parameter and
usually produce better cluster quality.

I. INTRODUCTION

A daptive Resonance Theory (ART) [10] is a neural
theory of cognitive information processing, which states

that fast learning is a resonant phenomenon in neural circuits.
This has led to the development of the ART 1 neural network
model [1] for unsupervised learning. ART 1 performs unsu-
pervised learning by modeling clusters as memory prototypes
and encoding binary input patterns incrementally through a
two-way similarity measure for searching suitable clusters,
which simulates how a human brain captures, recognizes and
memorizes information regarding objects and events. As long
as the difference between the input pattern and the selected
winner cluster from the category field does not exceed a
certain threshold, called the vigilance parameter, the input
pattern is considered a member of the winner cluster. Fuzzy
ART [2] replaces the intersection operator (∩) in ART 1
by the min operator (∧) of fuzzy set theory so as to learn
both binary and analog patterns. Fuzzy ART inherits the
advantages of ART 1 including fast and stable learning and
the incremental clustering.

Although Fuzzy ART and its variants are useful for
unsupervised learning in many areas [3], [4], [5], they
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require manual value selection for the vigilance parameter.
Specifically, Fuzzy ART still relies on an empirically fixed
vigilance value to scale the cluster size, which makes its
performance highly dependent on the vigilance parameter
value. For example, with a small vigilance value, Fuzzy
ART permits high generalization, which may lead to the
generation of several big clusters mixed with patterns from
multiple classes. On the other hand, a large vigilance value
may incur the over-generation of clusters such that one class
may be represented by multiple small clusters. Therefore,
similar to the selection of the number of clusters in the K-
means clustering algorithm [9], selecting a suitable vigilance
value for Fuzzy ART poses a great challenge.

For adapting the vigilance parameter, a match tracking
rule has been proposed in ARTMAP [6], which may adapt
the vigilance value during the cluster selection process for
the input pattern. However, the class label for each input
pattern should be used to identify an incorrect classification,
which is not available for unsupervised learning. He et al.
has proposed one approach [11], [12], called ART under
Constraint (ART-C), for tuning the vigilance parameter in
ART 1, ART 2 [13], ART 2A [14] and Fuzzy ART. However,
ART-C requires a user-predefined number of clusters so that
the selection of vigilance parameter is transformed to that of
the number of clusters. Therefore, under the original ART
clustering paradigm, there is still no work on the vigilance
adaptation task.

In view of this issue, this paper presents two methods, the
Activation Maximization Rule (AMR) and the Confliction
Minimization Rule (CMR), for adapting the vigilance param-
eter to alleviate its effect to the performance of Fuzzy ART.
Despite the differences between the two models, both Fuzzy
ART with AMR (AM-ART) and with CMR (CM-ART)
allow different vigilance levels for different clusters, which
are incrementally adapted during the clustering process.
However, they work in different ways. AMR maximizes the
cluster activation to promote the participation of clusters in
encoding patterns. Specifically, AMR increases the vigilance
value of the winner cluster when a resonance occurs and
decreases it when a reset occurs. This rule helps to alleviate
cases in which the initial vigilance value is too small, causing
patterns belonging to different classes always to be encoded
by the same cluster, or too large, leading to the generation of
many small clusters. On the other hand, CMR minimizes the
conflicts between the vigilance regions of clusters to produce
better cluster boundaries. Different from traditional winner
selection procedures in Fuzzy ART, the resulting CM-ART
first identifies all of the winner candidate clusters that satisfy
the vigilance criteria and then increases the vigilance values
of all of the candidates, except for the winner cluster, to
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violate the vigilance criteria so as the reduce the overlap
between these clusters.

The performances of AM-ART and CM-ART have been
evaluated on a subset of the public image data set NUS-
WIDE [7] in terms of the weighted average precision, net-
work complexity and convergence analysis. Our comparative
experiments show that both AM-ART and CM-ART improve
the robustness of Fuzzy ART to the change in vigilance
parameter and usually produce better cluster quality. We
also find that AM-ART achieves convergence performance
comparable to Fuzzy ART and that CM-ART converges
faster than Fuzzy ART.

The remainder of the paper is organized as follows. Section
2 reviews related works on the tuning of vigilance parameter.
Section 3 presents a summary of the Fuzzy ART algorithm.
Section 4 and Section 5 present the detailed algorithm of
Fuzzy ART with AMR and CMR, respectively. The exper-
imental results are presented in Section 5. The last section
concludes our work.

II. RELATED WORK

ARTMAP is two-channel neural network, with one input
field for the input patterns and the other one for the class
labels, for supervised learning. The match track rule was
firstly used in the search and prediction process of ARTMAP
to maximize code compression which fits the data with
a minimum number of cluster nodes. Specifically, at the
beginning of each input pattern presentation, the vigilance
parameter is set to a baseline. When the template matching
procedure, which evaluates the degree of similarity between
an input pattern and the selected winner cluster, causes a
resonance for the input pattern channel but causes a reset
for that of its class label, a change in the vigilance value
is triggered such that the vigilance value is increased to just
larger than the match function value of the input pattern. The
search process then selects another winner from the rest of
the F2 clusters under the revised vigilance criteria. In this
way, the vigilance value is self-adapted to help the winner
to reject the patterns from other classes.

ART under constraint (ART-C) was firstly proposed in [11]
to allow a series of ART models, including ART 1, ART
2 and Fuzzy ART, to be able to produce a fixed number
of clusters in the category field F2. Specifically, when the
number of clusters exceeds the limit, a pair of clusters in
the category field will be selected according to a match
score. Then, these two clusters are merged and the vigilance
parameter value is set to the match score. The ART-C model
is further applied for ART 2A in [12]. The key difference
between these two work is that in [12], the similarity between
a pair of F2 clusters is defined by the dot product instead of
the function for match score in [11].

Based on the above discussion, we find that ARTMAP
requires the class labels for the patterns to tune the vigilance
parameter and ART-C should introduce a pre-defined number
of clusters to adapt it. Therefore, under the original ART
clustering paradigm, there is no work on the adaptation of
the vigilance parameter.

Fig. 1: The Fuzzy ART architecture.

III. FUZZY ART
The architecture of Fuzzy ART (Fig. 1) comprises one input
field F1 for receiving the input patterns and one category
field F2 for the clusters. The generic network dynamics of
Fuzzy ART are described as follows.

Input vectors: Let I denote the input pattern. With comple-
ment coding [2], I is further augmented with a complement
vector Ī such that Īi = 1− Ii in the input field F1.

Weight vectors: Let wj denote the weight vector associated
with the j-th cluster cj (j = 1, ..., J) in the category field
F2.

Parameters: The Fuzzy ART’s dynamics is determined by
choice parameter α > 0, learning parameter β ∈ [0, 1] and
vigilance parameter ρ ∈ [0, 1].

The clustering process of Fuzzy ART comprises three key
steps:

1) Category choice: For each input pattern I, fuzzy ART
calculates the choice function for all of the clusters in the
category field F2 and select the most suitable cluster (winner
cluster) cj∗ , which has the largest value. The choice function
for the j-th cluster cj is defined by

Tj =
|I ∧wj |
α+ |wj |

, (1)

where the fuzzy AND operation ∧ is defined by (p∧ q)i ≡
min(pi,qi), and the norm |.| is defined by |p| ≡

∑
i pi.

2) Template matching: The similarity between the input
pattern I and the winner cj∗ is evaluated using a match
function Mj∗ , which is defined by

Mj∗ =
|I ∧wj∗ |
|I|

. (2)

If the winner satisfies the vigilance criteria such that
Mj∗ > ρ, a resonance occurs which leads to the learning
step. Otherwise, a new winner is selected from the rest of
the clusters in the category field. If no winner satisfies the
vigilance criteria, a new cluster is generated to encode the
input pattern.

3) Prototype learning: If cj∗ satisfies the vigilance criteria,
its corresponding weight vector wj∗ is updated through a
learning function, defined by

w
(new)
j∗ = β(I ∧wj∗) + (1− β)wj∗ . (3)



IV. FUZZY ART WITH AMR

Through the summary of the Fuzzy ART algorithm in the
previous section, we find that the clustering strategy of
Fuzzy ART can be seen as a selection of the most “similar”
cluster, called a winner cluster, from the category field to
the input pattern defined by the choice function (1), which
evaluates to which degree the input pattern matches the
winner cluster. The winner is subsequently evaluated for its
degree of similarity with the input pattern through the match
function (2) and the vigilance parameter, which determines
the similarity threshold for the vigilance criteria. Therefore,
the vigilance parameter affects the classification of patterns
by thresholding the vigilance regions of clusters. With a
small vigilance value, patterns, even from different classes,
are likely to incur a resonance for the same cluster. On the
other hand, a large vigilance value may lead to the reset of
input patterns for all clusters in the category field so that a
new cluster should be created to encode the input pattern,
which may result in the generation of an overly complicated
network.

To alleviate such problems, the activation maximization
rule (AMR) is proposed, which, different from Fuzzy ART,
allows different vigilance levels for different clusters in the
category field and incrementally tunes the vigilance value
for the winner after a resonance or reset occurs. Specifically,
when a resonance occurs, AMR increases the vigilance value
of the winner cluster and, in contrast, decreases it when a
reset occurs. In this way, AMR may help to improve the
clustering performance when the initial vigilance value is
not suitable. For example, given a data set, when the initial
vigilance value is small, the vigilance value of the winner
cluster will be increased gradually to restrain its activation
to the input pattern. Similarly, when the vigilance value
is large, the vigilance value of the winner cluster will be
gradually decreased to promote its activation. Note that AMR
restrains the continuous activation of the same cluster and
promotes the activation of clusters with a large vigilance
value. Therefore, AMR also helps to even out the size of
clusters representing the same class which helps to prevent
the generation of small clusters, which contains limited
number of patterns.

The complete algorithm of Fuzzy ART with AMR (AM-
ART) is summarized as follows. Similar to the original Fuzzy
ART, the vigilance parameter of the uncommitted cluster
is set to ρ0, which is the initial vigilance value. The key
difference between AM-ART and Fuzzy ART appears in
step 6) and step 8), wherein AM-ART allows each cluster
to have its own vigilance value, which is tuned by a restraint
parameter σ ∈ [0, 1]. A small σ leads to a small change
in the vigilance value of the winner cluster, which has a
small influence on the effect of the initial vigilance value
on the performance of AM-ART. On the other hand, a
large σ may help to make AM-ART more robust to the
change in the initial vigilance value, but may also result in
unstable vigilance regions of clusters, which may decrease
the clustering performance.

Clustering algorithm of AM-ART
1) Create an uncommitted cluster c1 with all weight vectors

containing 1’s in the category field F2 and set ρ1 = ρ0.

2) Receive an input pattern I, normalize it with complement
coding such that Î = [I, Ī]>, and then present it into the
input field F1.

3) For each cluster cj in the category field F2, calculate the
choice function defined in (1).

4) Identify the winner cj∗ with the largest value of the choice
function such that j∗ = arg maxj:cj∈F2 Tj .

5) Calculate the match function Mj∗ defined in (2).

6) If Mj∗ < ρj∗ , a reset occurs. Set ρ(new)
j∗ = (1 − σ)ρj∗ . Set

Tj∗ = 0 and go to 4; Otherwise, a resonance occurs, so go
to 7.

7) If cj∗ is uncommitted, set the cluster weight to the input
pattern such that wj∗ = I and set ρj∗ = ρ0. Create a new
uncommitted node and go to 9; otherwise, go to 8.

8) Update wj∗ according to (3) and set ρ(new)
j∗ = (1 + σ)ρj∗ .

Go to 9.

9) If no input pattern exists, the algorithm stops. Otherwise, go
to 2.

V. FUZZY ART WITH CMR

As described in the previous section, AMR tunes the vigi-
lance parameters of clusters by preventing cases caused by
an inappropriate vigilance value. From another perspective,
in Fuzzy ART, the incorrect recognition of patterns from
different classes is usually caused by a small vigilance value.
For example, given two classes A and B, which lie near each
other in the feature space, a new cluster of class A in the
margin between class A and B, with a small vigilance value,
may move to class B by encoding and learning the patterns of
class B. As thus, it subsequently becomes competitive with
the clusters of class B. Therefore, the overlap of vigilance
boundaries of clusters in the feature space increases the risk
of pattern misclassification.

To address this problem, we propose a confliction min-
imization rule (CMR) to reduce the overlap of vigilance
regions of clusters in the feature space. Different from tradi-
tional winner search procedures of Fuzzy ART, the resulting
Fuzzy ART with CMR (CM-ART) first identifies all of the
winner candidates to the input pattern through the match
function and subsequently reduces the overlap between the
vigilance regions of these candidate clusters so as to achieve
a local minimization of their competitive conflicts.

The complete algorithm of CM-ART is summarized as
follows. Different from AM-ART, which first uses the choice
function to identify a winner, CM-ART identifies all clusters
that satisfy the vigilance criteria, and then uses the choice
function to identify the winner. In step 6), the vigilance
values for all of the winner candidates, except the winner
itself, are updated to minimize the overlap between vigilance
regions. Recall that |I∧wj |

|I| is the value of the match function,
and ∆ > 0 is a very small number. Therefore, the purpose
of this updating equation, similar to the match tracking rule
proposed in [6], is to shrink the vigilance regions of the



winner candidates to violate the vigilance criteria for the
input pattern.

Clustering algorithm of CM-ART
1) Create an uncommitted cluster c1 with all weight vectors

containing 1’s in the category field F2, and set ρ1 = ρ0.

2) Receive an input pattern I, normalize it with complement
coding such that Î = [I, Ī]> and then present it into the input
field F1.

3) For all the clusters cj (j = 1, ..., J) in the category field F2,
calculate the match function defined in (2). Select the clusters
that satisfy the vigilance criteria as winner candidates such
that Mj ≥ ρj .

4) For all of the candidates, calculate the choice function defined
in (1) and identify the winner cj∗ with the largest value such
that j∗ = arg maxj:cj∈F2 Tj .

5) If cj∗ is uncommitted, set the cluster weight to the input
pattern such that wj∗ = I and set ρj∗ = ρ0. Create a new
uncommitted node and go to 7; otherwise, a resonance occurs,
so go to 6.

6) Update wj∗ according to (3). Set the corresponding vigilance
values of the rest of the winner candidates using ρ

(new)
j =

|I∧wj |
|I| + ∆. Go to 7.

7) If no input pattern exists, the algorithm stops. Otherwise, go
to 2.

VI. EXPERIMENTS

A. NUS-WIDE data set

To evaluate the clustering performance of our proposed
methods, we collected a total of 1000 images from a real-
world web image set, called the NUS-WIDE data set [7].
The images belonged to the five biggest classes in this data
set, including dog, bear, bird, sunset and wedding, each of
which contained 200 images.

For the feature representation, we used a concatenation of
three types of visual features, including Grid Color Moment
(255 features), Edge Direction Histogram (73 features) and
Wavelet Texture (128features). These global features can be
efficiently extracted and have been shown to be effective for
image content representation [7]. As thus, each image was
represented by a vector of 426 features.

B. Experiments on AM-ART

1) Performance Comparison of AM-ART with Fuzzy ART:
In the experiments, we set the following values: choice
parameter α = 0.01, learning rate β = 0.6, initial vigilance
parameter ρ0 ranging from 0.1 to 0.9, and restraint parameter
σ = 0.1. A small choice parameter of α = 0.01 is
commonly used, as it has been shown that the clustering
performance is generally robust to this parameter [8]. We
empirically used β = 0.6 to tune the cluster weight towards
the geometric center of the cluster. In our experiments, the
performance of GHF-ART remained roughly the same when
the learning parameter changed from 0.2 to 0.8. Fig. 2
shows the clustering results of AM-ART and Fuzzy ART
with changing vigilance values. The overall average precision
and the number of generated clusters were used to evaluate

(a)

(b)

Fig. 2: Clustering results of AM-ART and Fuzzy ART with
changing vigilance values in terms of (a) overall average
precision and (b) number of generated clusters.

performance. Fig. 2(a) shows that the performance of AM-
ART is improved over Fuzzy ART by 10% when ρ increases
to 0.1 and 0.3. After ρ = 0.5, the performance of AM-ART
and Fuzzy ART becomes similar. However, Fig. 2(b) indi-
cates that AM-ART greatly improves Fuzzy ART in terms of
the number of generated clusters when ρ is larger than 0.5.
Moreover, we can see that the increase in both the number of
generated clusters of AM-ART and the vigilance value are
not as significant as in Fuzzy ART. This demonstrates that,
when the vigilance value is small, AM-ART may improve
the performance of Fuzzy ART by enhancing its ability to
identify more classes, while, when the vigilance value is
large, AM-ART may alleviate the over-generation of clusters.

We also investigated the clustering structure to see how
AMR helps to improve the cluster quality. Specifically,
we studied the performance and the number of generated
clusters of AM-ART and Fuzzy ART on specific classes
when ρ = 0.3 and ρ = 0.9, which have the biggest gap
in average precision and number of clusters respectively.
The results are summarized in Table I(a), which indicates
that without AMR, Fuzzy ART fails to identify the patterns
from the classes “bear” and “bird” which are buried into
the clusters belonging to the other three classes, leading to
a poor cluster quality. With AMR, the performance of AM-
ART greatly improves on the classes “dog”, “sunset” and
“wedding”. Moreover, the patterns belonging to the class
“bear” can be recognized to dominate a cluster. In Table I(b),
we observe that, the overall performance of AM-ART in
average precision is similar to that of Fuzzy ART while the



TABLE I: Clustering performance of AM-ART and Fuzzy ART when ρ = 0.3 and ρ = 0.9 in terms of five classes.

ρ = 0.3 dog bear bird sunset wedding overall

AM-ART Average Precision 0.5206 0.3617 - 0.4623 0.5648 0.4824
Number of Clusters 2 1 0 1 1 5

Fuzzy ART Average Precision 0.3288 - - 0.3428 0.4206 0.3629
Number of Clusters 1 0 0 1 1 3

(a) The vigilance parameter ρ = 0.3

ρ = 0.9 dog bear bird sunset wedding overall

AM-ART
Average Precision 0.7848 0.7306 0.6680 0.7244 0.8166 0.7392

Number of Clusters 4 3 4 2 2 15
Minimum Recall 0.2466 0.3142 0.1617 0.3774 0.2585 0.2836

Fuzzy ART
Average Precision 0.7626 0.7541 0.7027 0.6817 0.8224 0.7348

Number of Clusters 6 5 6 3 2 22
Minimum Recall 0.1446 0.1649 0.0947 0.1667 0.2193 0.1482

(b) The vigilance parameter ρ = 0.9

(a) (b)

Fig. 3: Total change of AM-ART in (a) weight values and (b) number of changed patterns along with the repetition of the
data set.

Fig. 4: Clustering Performance of AM-ART with different
restraint values.

number of clusters decreases significantly. We also recorded
the minimum recall for each class. The results show that
AM-ART achieves a much higher performance in minimum
recall than Fuzzy ART across all classes. This demonstrates
that the proposed AMR can help to prevent the generation
of small clusters.

2) Convergence Analysis of AM-ART: We studied the
convergence of AM-ART by evaluating the change in cluster
weights and patterns during the repetition of the whole
data set. We followed the parameter settings as used in the

previous section and set the initial vigilance value to 0.7.
As shown in Fig. 3(a), AM-ART and Fuzzy ART perform
comparably for convergence in cluster weights. Specifically,
both the weights of AM-ART and Fuzzy change significantly
at the start and remains high before the fifth repetition of the
data set. This is due to the newly generated clusters which
causes an unstable data structure. After that, the change
becomes smooth and is only 7.84 after the tenth run. Finally,
after 27 runs of the data set, there is no change in the weights
of AM-ART, while fuzzy ART converges after 16 runs.

In Fig. 3(b), we similarly observe that the number of
changed patterns of AM-ART remains high and decreases
quickly over the first five runs. However, even after 19 rep-
etitions, 22 patterns continue to change clusters. In contrast,
Fuzzy ART converges much faster and does not change after
15 runs.

3) Sensitivity of AM-ART to restraint parameter: To eval-
uate the robustness of AM-ART to the restraint parameter,
we varied restraint parameter value from 0.1 to 1 to study
how it affects the clustering performance. The results shown
in Fig. 4 show that the performance of AM-ART remains
relatively constant when the restraint parameter changes from
0.1 to 0.4. Then, the performance decreases significantly



(a) (b)

Fig. 5: Clustering results of CM-ART and Fuzzy ART with changing vigilance values in terms of (a) overall average precision
and (b) number of generated clusters.

when the restraint value is between 0.4 and 0.6. After that,
when the value is 0.9 and 1, the performance remains low and
is much worse. This demonstrates that a small restraint value
ranging from 0.1 to 0.4 may lead to a satisfactory result.

C. Experiments on CM-ART

1) Performance Comparison of CM-ART with Fuzzy ART:
We followed the parameter settings in the experiments on
AM-ART. We first compared the performance between CM-
ART and Fuzzy ART in terms of the overall performance and
the number of clusters, as summarized in Fig. 5. Fig. 5(a)
shows that the performance of CM-ART increase greatly
when the vigilance value is below 0.5. After that, the
performance of CM-ART and Fuzzy ART are similar. More
importantly, CM-ART provides a relatively smooth increase
along with the increase in the vigilance value, demonstrating
that CM-ART may largely enhance the robustness of Fuzzy
ART to the changing vigilance values. In Fig. 5(b) shows
that CM-ART may identify more clusters than Fuzzy ART
when the vigilance value is very small. When the vigilance
value is larger than 0.5, the number of clusters generated
by CM-ART and Fuzzy ART are similar. However, CM-
ART generates fewer clusters than Fuzzy ART when the
vigilance value is larger than 0.8. This may due to the fact
that CM-ART builds better cluster boundaries which may
help to recognize patterns and reduce the chance of creating
redundant clusters that are small and that consist of a mix
of patterns from different classes.

2) Convergence Analysis of CM-ART: Similar to the con-
vergence evaluation for AM-ART, we studied the conver-
gence of CM-ART by repeating all of the patterns in the
data set and recording the changes in cluster weights and
the number of changed patterns. The results are shown in
Fig. 6. In contrast to AM-ART in Fig. 3, we can observe
that, in Fig. 6(a), CM-ART converges faster than Fuzzy
ART in terms of the change in weights which approaches
convergence after only 8 runs of the data set. Moreover, the
total change in weights of CM-ART is much smaller than in
Fuzzy ART.

Similarly, Fig. 6(b) indicates that CM-ART triggers a
smaller change in the number of changed patterns than Fuzzy
ART, and also converges faster than Fuzzy ART to achieve

(a)

(b)

Fig. 6: Total change of CM-ART in (a) weight values and
(b) number of changed patterns along with the repetition of
the data set.

a stable cluster structure. The number of changed patterns of
CM-ART decreases to a small level after the fifth run, while
Fuzzy ART reqires two more runs to achieve the same level.

VII. CONCLUSIONS

This paper presented two methods, the Activation Maximiza-
tion Rule (AMR) and Confliction Minimization Rule (CMR),
for the incremental adaptation of the vigilance parameter
in a Fuzzy ART model during the clustering process. In
contrast with Fuzzy ART, both of the resulting clustering
models, AM-ART and CM-ART, allow different vigilance
levels for different clusters but tune the vigilance parameter
from different perspective.

AM-ART employs an activation maximization rule (AMR)
to prevent cases in which the input patterns are continu-
ously encoded by the same cluster, which may indicate an



excessively small vigilance value, and cases in which the
input patterns rarely incur a resonance, which may indicate
a vigilance value that is too large. The experimental results
show that the proposed AM-ART can help to improve the
performance of Fuzzy ART, especially when the vigilance
value is far from suitable. Additionally, AMR may help to
prevent the generation of small clusters by evening out the
size of clusters representing the same class so as to reduce
the number of small clusters.

CM-ART minimizes the overlap of vigilance regions of
clusters, aiming to improve the clustering performance of
Fuzzy ART by producing better cluster boundaries during
the clustering process. From the experimental results, we find
that the proposed CM-ART may largely alleviate the sensi-
tivity of Fuzzy ART to the change of vigilance parameter so
as to improve the robustness of Fuzzy ART. Moreover, CM-
ART converges faster than Fuzzy ART to achieve a stable
cluster structure.

Comparing the experimental results of CM-ART with that
of AM-ART, we find that, under the same parameter settings,
CM-ART achieves better performance in terms of average
precision and has a better effect on improving the robust-
ness of Fuzzy ART to the change of vigilance parameter.
However, AM-ART has a better performance in preventing
the generation of complicated network when the vigilance
parameter has to be set to a large value.
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