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Abstract
Episodic memory enables a cognitive system to
improve its performance by reflecting upon past
events. In this paper, we propose a computational
model called STEM for encoding and recall of
episodic events together with the associated con-
textual information in real time. Based on a class
of self-organizing neural networks, STEM is de-
signed to learn memory chunks or cognitive nodes,
each encoding a set of co-occurring multi-modal
activity patterns across multiple pattern channels.
We present algorithms for recall of events based on
partial and inexact input patterns. Our empirical
results based on a public domain data set show that
STEM displays a high level of efficiency and ro-
bustness in encoding and retrieval with both partial
and noisy search cues when compared with a state-
of-the-art associative memory model.

1 Introduction
Memory is the basis of human intelligence, enabling us to
react to current situations based on our past experiences. At
the functional level, almost all cognitive processes, such as
reasoning, planning, learning and problem-solving, require
some form of memory. In this paper, we consider a special
form of memory, known as episodic memory [Tulving, 1983],
which refers to the record of temporal sequences of events
associated with contextual information, in particular people,
objects, activities, time, and places. Such type of memory is
expected to be a core component of any cognitive system, be
it biological or artificial, as it enables the system to recall past
events and to adapt its actions from past experience.

The main challenge of modeling episodic memory is to
build an efficient storage mechanism for encoding an incom-
ing stream of episodic events consisting of multi-modal sen-
sory as well as contextual information in real time. The
episodic memory should allow generalization across events,
when required and be scalable and remain plastic (adaptable)
to new incoming events. On the other hand, the memory
model should support recall of stored events in real time in
response to partial or inexact search cues.

Although there has been great interests in the study of
episodic memory, most early episodic memory models are

largely based on symbolic representation. As they are
designed to encode complex relationships between events,
they are not able to handle recall using vague or incom-
plete cues [Ho et al., 2003; Samsonovich and Ascoli, 2005;
Nuxoll and Laird, 2007]. Also, by encoding the incoming
events without generalization, scaling up the memory storage
in a real time environment is a key issue.

Taking a biologically-inspired approach [O’Keefe and
Dostrovsky, 1971], this paper presents a computational
model of episodic memory, named the Spatio-Temporal
Episodic Memory (STEM) model, based on a generalized
self-organizing neural network model known as fusion Adap-
tive Resonance Theory (fusion ART) [Tan et al., 2007]. Fu-
sion ART is a generalization of the Adaptive Resonance The-
ory (ART) for pattern fusion and association across multi-
modal pattern channels. By inheriting the ART properties, it
is designed to learn cognitive nodes, each encoding the as-
sociated information of an event represented across multiple
pattern channels, in response to a continual stream of incom-
ing patterns in an online and real time manner.

Although similar neural models of episodic memory,
known as the Episodic Memory - Adaptive Resonance The-
ory (EM-ART) [Wang et al., 2012; Subagdja et al., 2012;
Subagdja and Tan, 2015] and the general associative mem-
ory (GAM) [Shen et al., 2013], have been developed, they
function more as a sequential memory model and lack the
explicit learning and representation of time and space. In
contrast to the EM-ART and the GAM model, the proposed
memory model does not employ a separate episode layer. In-
stead, the information of time is represented explicitly and
learned through a time input channel. The design of time
input channel is inspired from the autobiographical memory
model [Wang et al., 2016]. For retrieval of events based on
time, we develop a novel memory search algorithm for identi-
fying cognitive nodes, which encode events at a specific time
or within a selected time interval. In addition, a dedicated
“place” pattern channel is incorporated for learning spatial
representation of real world position coordinates.

In an application context, the proposed STEM model is in-
tended to augment a cognitive system equipped with a sen-
sory front-end. In the most general case, the system may
have multi-modal sensing capabilities, notably visual sens-
ing, object recognition, and scene analysis. The incorpora-
tion of episodic memory will thus enable the cognitive system
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to memorize and maintain a record of the happenings on a
scene with both temporal and spatial information, which can
then be subsequently analyzed. For evaluation, we extract
event-based information from a public domain video data
set [Fisher et al., 2005]. Compared with the GAM model,
our experiments show that the STEM model is able to encode
the over 40,000 extracted events in seconds and supports re-
call of the stored events using partial and noisy search cues.

2 Related Work
One common approach to modeling episodic memory is
to store them as a trace of events and activities in a lin-
ear order, wherein some operations are designed specifi-
cally to retrieve and modify the memory to support par-
ticular tasks [Vere and Bickmore, 1990; Ho et al., 2003;
Mueller and Shiffrin, 2006]. These models however are lim-
ited to processing simple sequential trace structure and may
not be able to learn complex relations between events or to
retrieve memory with imperfect or noisy cues. Another work
extends SOAR as an existing generic cognitive architecture
with mechanisms to maintain sequential traces of production
system operations [Nuxoll and Laird, 2007]. It makes use
of SOAR built-in operations to conduct complex memory en-
coding and retrieval. One critical issue of this approach is the
requirement of effective partial matching to deal with incom-
plete and possibly degraded cues for retrieval [Nuxoll, 2007].

Another approach using neural networks aims to model
episodic memory with inherent support for partial match-
ing and pattern generalization. Grossberg and Merrill com-
bine ART (Adaptive Resonance Theory) neural network with
spectral timing encoding to model timed learning in hip-
pocampus [Grossberg and Merrill, 1996]. However, this
model is only made specifically to handle learning timed re-
sponses in episodic memory. Shastri focuses on complex re-
lational representation in SMRITI, a neural architecture for
episodic memory [Shastri, 2002]. The model can handle role-
entity bindings in which retrieval cues can involve transient
values for retrieval using partial information. Although SM-
RITI has already supported complex inferences on top of the
relational representation, it omits the temporal or sequential
relations between items altogether.

Instead of modeling hippocampus, some other neural mod-
els focus on handling spatio-temporal or multi-modal pat-
terns. For example, TESMECOR [Rinkus, 2004] rapidly
stores spatio-temporal patterns in a distributed manner while
providing a robust retrieval mechanism that supports complex
sequential representation. Starzyk and He develop a neural
network model of anticipation-based spatio-temporal learn-
ing that can store and retrieve complex sequences as units of
episodes [Starzyk and He, 2009]. Based on a neural model
for complex sequential learning and production [Wang and
Arbib, 1993], the model can tolerate errors from search cues
and support partial matching. Shen et al. propose the general
associative memory (GAM) model [Shen et al., 2013] that
stores both static and temporal sequence information. GAM
is also able to tolerate noisy and partial cues. However, these
models function more like sequential memory and do not en-
code the time information explicitly.

PlaceTimeObject Activity

Coordinate Landmark

Event Layer

Context Layer

Figure 1: The STEM architecture

Another recent approach, including Neural Turing Ma-
chines [Graves et al., 2014] and Memory Networks [Weston
et al., 2014], makes use of recurrent neural networks to store
episodic memory of sequential inputs. However, these meth-
ods present a computational challenge for real-time learning
as described in [Kaiser and Sutskever, 2015] and [Angelov
and Sperduti, 2016].

3 The STEM Architecture
Using self-organizing neural networks as the building block,
the proposed memory model is designed to integrate multi-
modal episodic memory involving audio, visual imagery, self
and other contextual information.

Figure 1 shows the overall architecture of the Spatio-
temporal Episodic Memory (STEM) model. It can be viewed
as two fusion ART models connected in a hierarchical man-
ner. The context layer consists of four input fields, namely
the object field for representing the presence of specific peo-
ple and objects in the event; the activity field for representing
the occurred activity; the time field for representing the time
of occurrence; and the place field for location representation.

The place field in the context layer receives inputs from
two lower level fields, namely the coordinate field for rep-
resenting the real world position, and the landmark field for
representing a specific region, such as “entrance”, “lift”, and
“reception” etc. The place field learns the spatial representa-
tion in the form of space category nodes by using the fusion
ART algorithm. Each space category node learned represents
a group of visited positions. The learned spatial representa-
tion is then used as an input into the event field in the event
layer. Together with the object, time and activity input fields
from the context layer, the event field learns recognition nodes
in response to the presented sensory and contextual informa-
tion.

3.1 Fusion ART
The episodic memory model proposed in this paper is based
on fusion ART [Tan et al., 2007] which can be viewed as an
Adaptive Resonance Theory (ART) neural network [Carpen-
ter and Grossberg, 2003] with multiple input fields (Figure 2).
The network is designed to learn cognitive nodes encoding
groups of multi-modal input patterns and support the recog-
nition and recall of the stored patterns. By inheriting the ART
properties, fusion ART performs fast and stable learning in
response to a continual stream of input patterns, and learns
new patterns incrementally. There is no separate phase of op-
erations for learning and recall. For completeness, a summary
of the network dynamics is given below.
Input vectors: Let Ik = (Ik1 , I

k
2 , . . . , I

k
n) denote an input

vector, where Iki ∈ [0, 1] indicates the input i to channel k,
for k = 1, . . . , n. With complement coding, the input vector
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Figure 2: Fusion ART
Ik is augmented with a complement vector Īk such that Īki =
1− Iki .
Input fields: Let F k

1 denote an input field that holds the in-
put pattern for channel k. Let xk = (xk1 , x

k
2 , . . . , x

k
n) be the

activity vector of F k
1 receiving the input vector Ik (including

the complement).
Category field: Let F2 denote the category field. Let y =
(y1, y2, . . . , ym) be the activity vector of F2.
Weight vectors: Let wk

j denote the weight vector associated
with the jth node in F2 for learning the input pattern in F k

1 .
Parameters: Each field’s dynamics is determined by choice
parameters αk ≥ 0, learning rate parameters βk ∈ [0, 1],
contribution parameters γk ∈ [0, 1] and vigilance parameters
ρk ∈ [0, 1].

The dynamics of a multi-channel ART can be considered
as a system of continuous resonance search processes com-
prising the basic operations as follows.
Code activation: A node j in F2 is activated by the choice
function

Tj =
n∑

k=1

γk
|xk ∧wk

j |
αk + |wk

j |
, (1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡

∑
i pi for

vectors p and q.
Code competition: A code competition process follows to
select a F2 node with the highest choice function value. The
winner is indexed at J where

TJ = max{Tj : for all F2 node j}. (2)
When a category choice is made at node J , yJ = 1; and

yj = 0 for all j 6= J indicating a winner-take-all strategy.
Template matching: A template matching process checks if
resonance occurs. Specifically, for each channel k, it checks
if the match function mk

J of the chosen node J meets its vig-
ilance criterion such that

mk
J =

|xk ∧wk
J |

|xk|
≥ ρk. (3)

If any of the vigilance constraints is violated, mismatch re-
set occurs and TJ is set to 0 for the duration of the input pre-
sentation. Another F2 node J is selected using choice func-
tion and code competition until a resonance is achieved. If
no selected node in F2 meets the vigilance, an uncommitted
node is recruited in F2 as a new category node.
Template learning: Once a resonance occurs, for each chan-
nel k, the weight vector wk

J is modified by the following
learning rule:

w
k(new)
J = (1− βk)w

k(old)
J + βk(xk ∧w

k(old)
J ). (4)

Activity readout: The chosen F2 node J may perform a
readout of its weight vectors to an input field F k

1 such that
xk(new) = wk

J .

Place

Coordinate Landmark

Figure 3: Spatial representation architecture

A fusion ART network, consisting of different input (out-
put) fields and a category field is a flexible architecture. In
this paper, we show how fusion ART can be used for learning
spatial and episodic event representation.

3.2 Learning Spatial Representation
As shown in Figure 3, the place field learns spatial represen-
tation of the scene via the fusion ART mechanism with two
input fields, namely the coordinate field and the landmark
field, which represent the physical position and symbolic lo-
cation respectively.

The coordinate field represents a position in the 2D map
which can be represented with continuous values along the
X-Y axis. These values are normalized to [0,1] range. The
landmark field is a symbolic representation of the locations.

Using the fusion ART dynamics, the place field is able to
learn and generalize spatial representation of the environment
in response to coordinate positions and landmark symbols.
The overall process is summarized in Algorithm 1.

Algorithm 1 Spatial representation encoding
1: Present the coordinate and landmark vectors
2: Perform code activation in the place field . see (1)
3: repeat
4: Perform code competition and template matching . see (2)
5: until resonance occurs . see (3)
6: Perform template learning . see (4)

3.3 Learning Event Representation
After the cognitive nodes in the place field are learned, we
proceed to encode the events by presenting the input vectors
into their respective input fields as shown in Algorithm 2.

Algorithm 2 Event encoding
1: for each event in the schedule do
2: Present the coordinate and landmark vectors
3: Perform code activation/competition in the place field . see (1)
4: Present the object, activity, time, and place vectors
5: Perform code activation in the event field . see (1)
6: repeat
7: Perform code competition and template matching . see (2)
8: until resonance occurs . see (3)
9: Perform template learning . see (4)

10: end for

3.4 Retrieval of Events
After the events are encoded, we are able to retrieve the mem-
ory based on the retrieval cues. A retrieval cue is a stimulus to
facilitate activation of memory. The content of a retrieval cue
is similar to the input event vectors with possibly incomplete
or erroneous attribute values. As presented in Algorithm 3,
upon presenting a retrieval cue, the algorithm retrieves its
winner(s) based on the maximum choice value. With the win-
ner node(s) known, we are able to conduct activity readout of
the event.
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Algorithm 3 Event retrieval
1: Input: Retrieval cue, and the trained model
2: Activate the place field with coordinate and landmark fields
3: Select the winner code(s) in place field
4: Activate the event field with object, activity, time and place fields
5: Select a list of cognitive nodes in event layer
6: return List of winners with highest choice value

3.5 Temporal Representation
The time stamps of events are encoded and presented in the
time input field of the STEM model for time representation.
Time, represented in unit of seconds, is normalized into a real
value between 0 and 1.

Through a direct memory access procedure, STEM
searches for the cognitive node which best matches with the
given search cue. Given a specific time stamp as the search
cue, the following lemma shows the code activation and com-
petition process of STEM will select the cognitive node en-
coding an event with a time stamp closest to the chosen time.

Direct Time-based Memory Access Property: During di-
rect memory access, given the complemented coded temporal
activity vector xct = (t, 1 − t), the fusion ART code activa-
tion and competition process will select the cognitive node J
with the weight vector wc1

J closest to xct.
Proof (by Contradiction): Given a complement coded tempo-
ral activity vector xct = (t, 1 − t), suppose STEM selects a
F2 node J and there exists another F2 node K of which the
weight vector wct

K = (tK , 1− tK) is more similar to xct than
wct

J = (tJ , 1 − tJ). As wct
K is more similar to xct than wct

J ,
it means |t − tK | < |t − tJ |. Without loss of generalization,
suppose t < tK < tJ , we derive that the choice functions (1)
of F2 nodes K and J are

TK =
|xct ∧wct

K |
αct + |wct

K |
=

t+ 1− tK
αct + 1

(5)

TJ =
|xct ∧wct

J |
αct + |wct

J |
=

t+ 1− tJ
αct + 1

(6)

As tK < tJ , the above condition implies that T c
K > T c

J ,
which means node K should be selected by STEM instead of
node J (Contradiction). [End of Proof]

In addition to providing direct access to stored events based
on a time stamp, STEM further supports memory access to
stored events with time stamps falling into a selected time
interval. The lemma below summarizes such a property.

Direct Time Interval Memory Access Property: During
memory recall, given the complemented coded temporal ac-
tivity vector xct = (t1, t2), the fusion ART code activation
and competition process will select a set of cognitive nodes
J1, J2, . . . , JN , each of which encodes an event with a time
stamp t ∈ [t1, 1− t2].
Proof: Given a complement coded temporal activity vector
xct = (t1, t2), suppose there exists a F2 node J encoding
weight vector wct

J = (tJ , 1− tJ), where tJ ∈ [t1, 1− t2], we
can derive that t1 < tJ and t2 < 1− tJ . As such, the choice

function value of the F2 node J is given by

|xct ∧wct
J |

αct + |wct
J |

=
t1 + t2
αct + 1

, (7)

which is the maximal possible given the temporal activity
vector. Therefore, the node J will be selected by the memory
access process. [End of Proof]

4 Experiments
4.1 The CAVIAR Data Set
We use the CAVIAR data set [Fisher, 2004; Fisher et al.,
2005]. It contains 28 videos of a lobby entrance, together
with hand-labeled ground truths of the surveillance activities.
Information is provided to map from pixels to real world po-
sitions using ground plane homography. For our purpose, we
use the ground truth to provide the objects, activities and po-
sitional information to be encoded into our memory model.
Since the data set is small (26,419 frames), we augment the
data by treating each frame of the video as one second. As
the data set does not contain time information, we label each
video frame with a specific time in the day.

4.2 Encoding of Memory
In the CAVIAR data set, each frame may involve multiple ob-
jects or groups. To encode such events, we define a separate
event for each object or group, in each frame instance. There
are a total of 46,125 events. The encoding schemes of the
input fields are summarized below.
1. The Object vector indicates the presence of up to nine per-

sons or objects, each represented by a binary attribute. To
emulate the distributed representation of visual objects in
the human brain [Valdez et al., 2015], it is further encoded
with a (5,1) repetition code.

2. The Activity vector indicates the presence of one of the
nine different activities, each symbolized with a 7x7 bi-
nary image (Figure 4). Each pixel is either 1 (black) or 0
(white). We use the data set’s “situation” labels to identify
the current activity of the object(s).

3. The Time vector contains a normalized real-valued at-
tribute, obtained by dividing the current time of the day
in seconds by the total number of seconds in a day.

4. The Coordinate vector represents the estimated real
world position quantized to the nearest feet. The pixel po-
sition is first extracted from the bounding box provided in
the data set. By using homography, the pixel positions are
mapped to the real world points with respect to the X and
Y axis. It is further normalized into a real value between 0
and 1 for each axis.

5. The Landmark vector represents one of the ten region
of interest (Figure 5) for this domain. The ten different
regions are represented by a vector of seven bits, encoded
similarly to a seven-segment digit display.

6. The Place vector represents the winner node(s) of the
place field activated by the coordinate and landmark vec-
tors. The vector is constructed based on the indices of the
learned place nodes.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4: Iconic patterns for encoding types of activities: (a) inac-
tive; (b) moving; (c) browsing; (d) joining; (e) interacting; (f) split
up; (g) fight; (h) leaving object; (i) none.
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Figure 5: Left: A frame from CAVIAR data set, showing the en-
trance of a lobby. Right: Landmark regions with labels.

Before the STEM model encodes the event input patterns,
the place field is first trained with the coordinates and their
corresponding landmark labels. The spatial representation is
learned with vigilance values of ρ = 0.99, the contribution
parameter γ = 0.5 and choice parameter α = 0.001 on both
the coordinate and landmark fields. See Figure 6 for visual-
ization of the learned spatial nodes.

After the cognitive nodes in the place field are learned, we
proceed to encode the events by presenting the input vectors
to their respective input fields. The events are presented se-
quentially based on the constructed schedule of a day.

For performance comparison, we have chosen the general
associative memory (GAM) [Shen et al., 2013], a recently
proposed spatio-temporal memory model which has shown
superior performance in comparison with traditional mem-
ory models in handling partial and noisy retrieval cues. As
the GAM learns with a single pattern channel, it is trained
by concatenating all contextual inputs of an event into one
pattern. The GAM will require noisy training inputs to cal-
culate the classification thresholds. However, due to the large
number of events, only exact event inputs without noise are
trained. During recall, thresholding is removed so the GAM
will always recall at least one nearest matched event. In both
models, aging and removal of the memory nodes are not used.

4.3 Retrieval of Events
After the events are encoded into the memory models, ex-
periments are conducted to retrieve events based on retrieval
cues. For a fair comparison, in each retrieval trial, we only

Figure 6: Visualization of the learned spatial nodes in place field.
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Figure 7: Retrieval accuracy based on noisy cues.

consider the top recalled event returned by each model. A
search is successful if the recalled event corresponds with the
original event.

In our experiments, noisy and partial cues are tested for
retrieval. For each cue type, 1,000 randomly selected events
from the data set are used to form the cues and be tested. The
following types of cues and the results are summarized below.

Noisy cue: For each event attribute, it is subjected to an
error rate e ∈ [0, 100]. For binary valued fields, there is a
probability of e/100 for its attributes to be toggled, such as
xnoisy = 1 − x. For continuous attributes found in time and
coordinate fields, there is a probability of e/100 that its at-
tributes are subjected to a Gaussian noise. Our experiments
are conducted with error rates of 0 to 50. A noisy cue with
e = 0 is in fact an exact cue. As shown in Figure 7, while
both models are able to achieve 100% recall with zero noise,
the STEM model is highly robust with noisy cues up to 20%
of error.

Partial cue: The partial cue contains missing attributes
from one or more field vectors such as object, activity, time,
coordinate and landmark. We have conducted our experi-
ment with partial cues constructed from all five down to one
field vector chosen randomly. For the STEM model, the miss-
ing field attributes and their complement values are assigned
to zeroes. For the GAM model, the missing field attributes
are set to zero. For evaluation, two performance measures are
used, namely the retrieval accuracy of the recalled events with
respect to the corresponding target events; and recall error in
terms of the normalized Euclidean distance (ED) between the
recalled event activity patterns and the corresponding target
event activity patterns.

As shown in Figure 8, the STEM model also performs sig-
nificantly better than GAM with partial field cues. This can
be attributed to STEM’s capability in handling multi-channel
input patterns whereas GAM performs pattern matching of
the aggregated input patterns as a whole. In addition, STEM
represents the place field based on the coordinate and land-
mark inputs. Therefore the place field can still recall a place
representation even with incomplete spatial information.

4.4 Retrieval of Episodes
For the STEM model, an episode can be dynamically re-
trieved based on the direct time interval memory access prop-
erty (Section 3.5). Given a time interval between t1 and t2,
the time cue with complemented coded vector is [t1, 1 − t2].
Experiments are conducted by randomly picking 1,000 pairs
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Figure 8: (a) Retrieval accuracy and; (b) Recall error in response to
partial cues.

of t1 and t2 time-only cues. We are able to retrieve 100%
accuracy on all events happened in between time t1 and t2.

GAM is also able to retrieve episodes with exact search
cues at 100% accuracy. However, a successful episodic re-
trieval will be dependent on retrieving the first event correctly
as the GAM will retrieve the event sequences thereafter. As
GAM is unable to accurately retrieve the correct event based
on time-only partial cues (shown in Figure 8), it is unable to
retrieve episodes with time-only partial cues.

5 Analysis of Space and Time Requirement
The space and time analysis addresses the feasibility of the
model to operate in real-time on a typical computer. For
space requirement, we compute the estimated size of com-
puter memory needed to store the model’s data. For time, we
regard the performance deadline for real-time requirement as
one second, which is the intended sampling rate. We will
compare the event encoding computation performance of our
model with the original ART model.

5.1 Space Requirement
We make assumptions of the general behavior of the crowd
in a specific place, to determine the number of events that the
system will store per day. We have chosen the lobby as a
scenario so that the parameters used in the assumption can be
put into a realistic context.

Assumption for the Lobby Scenario
We assume that the daily human traffic in the lobby is 1,000
people, with the average duration in the scene for each person
at 30 seconds. The physical area of the lobby is assumed to
be 750 square feet. The vector size in the object, activity,
time, coordinate and landmark fields are 250, 49, 1, 2 and 7
respectively. The object field is represented by 50 attributes
with (5,1) code repetition. The activity field is derived from
the 7x7 image, while the landmark field is representing ten
landmarks with seven-segment encoding.

Spatial Memory Estimation
We assume that the maximum number of nodes formed in the
place layer is equal to the number of unique combinations of
the coordinate and landmark values. As such, the maximum
number of nodes in the spatial representation is also the size
of the area, which is 750. We use two doubles (16 bytes) to
represent an attribute with its complement. The memory size
encoded by each spatial node is thus {2+7}×16 = 144 bytes.
The total memory size encoded by the place field is therefore
750× 144 = 108, 000 bytes or 0.103 MB.

Event Memory Requirement
We assume the number of events in a day is the number of
times people appeared at one-second intervals. Therefore, the
expected number of daily events is the product of the average
daily human traffic and the average duration in the scene, i.e.
30, 000. The estimated memory size encoded by each event
node, including complement, is 13, 888 bytes ({250 + 49 +
1 + 750} × 16). Finally, the estimated memory size of the
daily events is 480.65 MB.

Overall Memory Estimation Analysis
On the whole, the required computer memory needed to store
all events, together with the spatial representation under the
lobby scenario is 480.75 MB. As such, a typical consumer
hard disk (1 TB) is sufficient to deal with the scenario over
several years.

5.2 Time Requirement
In the standard Fusion ART model, the worst-case time com-
plexity of encoding a new node (when no matching node is
found) isO(tn2), where t is the number of attributes in the in-
put fields, and n is the number of event nodes. The quadratic
complexity is due to computing the winner nodes for gener-
alization. With generalization, encoding over 22,928 out of
46,126 events, will take more than one second to store one
event. In our implementation, we disabled the search process
as no generalization of events are needed. Thus, its computa-
tion complexity is just O(t). Consequently, the time taken to
encode an event is 367.45 microseconds on average, which is
no greater than the sampling rate of one second.

During retrieval of events, we use a vigilance of zero. This
means that winner selection is only based on code activation,
without the vigilance check. The computation complexity of
this retrieval is O(tn). It takes 341 milliseconds on average
in our test to retrieve an event using retrieval cues, which is
well adequate for real time use.

6 Conclusion
We have designed and implemented an episodic memory
module called STEM that performs explicit encoding of time,
space and contextual information of objects, people, and their
activities. In this paper, we have demonstrated the encoding
and recall capabilities of the model based on event-related in-
formation extracted from a public domain video data set. Our
experiments show that the STEM model is able to support ro-
bust recall of the stored events in response to partial and noisy
search cues, in comparison with a recent spatio-temporal as-
sociative memory model.

Going forward, we shall integrate the episodic memory
model to a visual cognitive system deployed in a real time
environment. In addition, we shall explore the use of code
compression and pruning so that we can mitigate the issue of
ever growing memory in the real world.
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