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Abstract. Electroencephalograph (EEG) signals reveal much of our
brain states and have been widely used in emotion recognition. However,
the recognition accuracy is hardly ideal mainly due to the following rea-
sons: (i) the features extracted from EEG signals may not solely reflect
one’s emotional patterns and their quality is easily affected by noise; and
(ii) increasing feature dimension may enhance the recognition accuracy,
but it often requires extra computation time. In this paper, we propose
a feature smoothing method to alleviate the aforementioned problems.
Specifically, we extract six statistical features from raw EEG signals and
apply a simple yet cost-effective feature smoothing method to improve
the recognition accuracy. The experimental results on the well-known
DEAP dataset demonstrate the effectiveness of our approach. Compar-
ing to other studies on the same dataset, ours achieves the shortest fea-
ture processing time and the highest classification accuracy on emotion
recognition in the valence-arousal quadrant space.

Keywords: Emotion recognition, EEG, DEAP, Feature smoothing

1 Introduction

Emotion is the subjective experience that reflects our mental states and can
significantly affect our cognitive function and action tendencies [10]. With the
advances in artificial intelligence (AI) and brain-computer interface (BCI) tech-
nologies, the ability for computer applications to recognize human emotions can
provide us more intelligent services, such as style-adjusting e-learning system [1],
driver’s fatigue detection [6], e-healthcare assistance [4], etc.

In efforts to recognize human emotions using machines, researchers mainly
rely on the following three types of data: (i) behavioral patterns such as facial
expressions, (ii) physiological signals from peripheral nervous system such as
electrooculography (EOG), and (iii) physiological signals from central nervous
system such as electroencephalograph (EEG). Compared to the other two types
of signals, EEG is more informative for high-level brain activities [7]. Moreover,
studies showed that EEG exhibits promising characteristics in revealing the sub-
ject’s emotional states [17]. Thanks to the emerging non-invasive brain-computer
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interfacing devices, EEG has become one of the most prevalent signals being used
to recognize human emotions.

With the aid of machine learning algorithms, many prior studies used differ-
ent features extracted from raw EEG signals to decode the underlying emotion.
However, the recognition accuracy is hardly ideal because of the following rea-
sons: (i) EEG is a mixture of fluctuations induced by many neuronal activities
in the brain and is susceptible to interference [13]. The features extracted from
EEG may vary drastically within short periods but human emotions are rela-
tively stable, which means the features may not directly reflect the emotional
patterns; and (ii) increasing the feature dimension may improve the recogni-
tion accuracy, but this approach usually introduces more computational cost in
feature extraction, classifier training, and the classification task.

To address the aforementioned feature instability problem without increas-
ing the feature dimension, in this paper, we propose a fast and robust feature
smoothing method, which can be applied on the extracted EEG features to im-
prove the emotion recognition accuracy.

Without feature smoothing, emotion-irrelevant patterns make the extracted
features less distinctive, thus reduce the classification accuracy. This problem
can be alleviated by applying moving average smoothing on the extracted EEG
features. This simple feature smoothing method will not increase the feature
dimension nor add in much time to the total feature processing process. We
evaluate our proposed approach on the widely studied DEAP dataset [8]. Specif-
ically, we extract six statistical features from the EEG signals and apply moving
average smoothing on all the extracted features. Using support vector machine
(SVM) as the classifier, we obtain 82.3% accuracy in recognizing four classes
of emotions, which is higher than four prior studies using the same dataset.
Moreover, the processing time of our feature set is the shortest.

The rest of this paper is organized as follows. In Section 2, we review related
work on EEG-based emotion recognition. In Section 3, we present the motivation
of feature smoothing and the details of our methodology. In Section 4, we show
our experimental results on the DEAP dataset with comparisons and discussions.
Finally, we conclude and propose future work in Section 5.

2 Related Work

Various prior studies have been conducted to explore how to extract better
feature sets for EEG-based emotion recognition. Some studies investigated the
characteristics of EEG signals in the frequency domain. Heraz and Frasson [5]
used the amplitude of four frequency bands to obtain an averaged accuracy
of 74%, 74% and 75% on 17 subjects in the valence, arousal and dominance
dimensions, respectively. Bos [2] explored arithmetic combinations of the power
on frequency bands to obtain the highest accuracy of 92% in both arousal and
valence dimensions on five subjects. Some studies investigated other feature sets
such as discrete wavelet coefficients (84.67% for happy and sad on five subjects)
[23], fractal dimension (around 90% for arousal on twelve subjects) [16], and
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higher order crossing (50.13% for four emotions on DEAP dataset) [9]. However,
majority of the afore-reviewed results are based on binary emotion classifications,
which may not be enough to capture the emotional variations in our daily life.
Moreover, as a general observation from the literature, the recognition accuracy
decreases, sometimes significantly, if the models need to recognize more classes of
emotion. Vyzas et al. [12] managed to recognize six emotions with a remarkable
accuracy of 81% on a single subject, but they incorporated other physiological
signals such as blood pressure and heart rate besides EEG.

The difficulty in accurately recognizing different emotions merely from EEG
signals lies in the non-stability of EEG features. It has been found that feature
smoothing can reduce such non-stability and improve recognition accuracy. Shi
and Lu first proposed a linear dynamical system (LDS) approach to estimate the
latent states of vigilance [15] and later used this model for feature smoothing
in emotion recognition (91.77% for positive/negative) [21]. Although LDS is
effective in enhancing recognition accuracy, the expectation-maximization (EM)
algorithm incorporated in the smoothing process makes the overall approach
computationally expensive. Pham et al. [11] used the Savitzky-Golay method,
which is based on local least-squares polynomial approximation, to smooth EEG
features. Although their proposed method improved the recognition accuracy in
the valence dimension, the improved accuracy of 77.38% is not high among
similar binary classification problems. In this paper, we apply moving average
feature smoothing on six statistical features extracted from the raw EEG signals.
As such, the smoothing method does not introduce much computational cost.

3 Moving Average Smoothing on Statistical Feature Set

We adopt the common process to recognize human emotions using EEG signals,
i.e., extract features from the raw data, then train the classifier to perform
emotion recognition. In addition, we apply feature smoothing on the extracted
features before training the classifier. We introduce each of these key steps of
our proposed approach with details in the following subsections.

3.1 Feature Extraction

In our proposed approach, we only extract six statistical features, which have
been widely adopted in prior studies. Vyzas et al. [18] showed that these six
features are strongly correlated to emotions. Moreover, it is computationally
inexpensive to extract these simple statistical features.

Let Xn denote an EEG signal value at the nth time stamp, where n =
1, 2, . . . , N and N denotes the total number of data samples. Moreover, let X̄n

denote the corresponding normalized signal with zero mean and unit variance.
Then we extract the following six statistical features:

1. µ, mean of the raw signal over time N :

µ =
1

N

N∑
n=1

Xn. (1)
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2. σ, standard deviation of the raw signal:

σ =

√√√√ 1

N − 1

N∑
n=1

(Xn − µ)
2
. (2)

3. δ, mean of the absolute values of the first differences of the raw signal:

δ =
1

N − 1

N−1∑
n=1

|Xn+1 −Xn| . (3)

4. δ̄, mean of the absolute values of the first differences of the normalized signal:

δ̄ =
1

N − 1

N−1∑
n=1

∣∣X̄n+1 − X̄n

∣∣ =
δ

σ
. (4)

5. γ, mean of the absolute values of the second differences of the raw signal:

γ =
1

N − 2

N−2∑
n=1

|Xn+2 −Xn| . (5)

6. γ̄, mean of the absolute values of the second differences of the normalized
signal:

γ̄ =
1

N − 2

N−2∑
n=1

∣∣X̄n+2 − X̄n

∣∣ =
γ

σ
. (6)

3.2 Moving Average Smoothing on Extracted Features

Within short time periods, the emotional states of human are relatively stable,
but the features obtained from EEG signals may have strong variation in time
due to the impact of emotion-irrelevant activities and random fluctuations [13].
To make the features more robust for emotion recognition, we propose to use the
moving average method to smooth the features in time sequence. Specifically, we
first divide EEG data into non-overlapping windows and extract features from
each window. Let fi denote a single feature f extracted from the ith time window,
where i = 1, 2, . . . , I and I denotes the total number of the non-overlapping
windows. The smoothed feature f̄i is then computed as follows:

f̄i =
1

T

bi+2/Tc∑
bi−2/Tc

fi, (7)

where T is the size of the moving average smoother.
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3.3 Classification Algorithm

In this paper, we use SVM as the classifier due to its well-known generalization
property. In particular, we use the one-vs-all scheme for multiclass classification
of the LIBSVM package [3].

For binary classification, given training samples {xi, yi}, where i = 1, 2, . . . , l,
xi ∈ Rd and yi ∈ {−1, 1}, SVM solves the following optimization problem:

minimize
w,b,ξ

1

2
||w||2 + C

l∑
i=1

ξi,

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0,

(8)

where C denotes the cost parameter indicating the penalty of error and ξi denotes
the tolerance of error. Kernel function φ(xi) maps the feature vector xi into
another feature space. In this paper, we use radial basis function (RBF) kernel,
which is represented as:

K(xi, xj) ≡ φ(xi)
Tφ(xj) = exp(−γ||xi − xj ||2), γ > 0, (9)

where γ defines the steepness of the decision boundary.

4 Emotion Recognition on DEAP Dataset

To assess the performance of our feature extraction and feature smoothing strat-
egy, we use the well-known DEAP dataset for evaluations. DEAP dataset was
collected by Koelstra et al. [8] for human emotion analysis. EEG signals of 32
subjects were elicited using multimodal stimuli and recorded on 32 channels us-
ing the Biosemi ActiveTwo system1. In the preprocessed dataset provided2, each
subject has 40 minutes’ recordings of EEG signals. Moreover, ratings of valence,
arousal and dominance were labeled by the subjects after each trial. The EEG
data were down-sampled to 128 Hz, filtered by a bandpass filter of 4-45 Hz, and
normalized with respect to the common reference in each channel. In this paper,
we take the subjects’ labels in the valence and arousal dimensions as the ground
truth of the EEG data. Actually, we are following the circumplex model of affect
proposed by Russel [14]. In his widely adopted model (e.g., applied in [8], [20]
and [19]), emotions are represented in a two-dimensional space, where the two
axes represent valence and arousal, respectively.

4.1 Experimental Setup

In our experiments, we segment all EEG data given in the DEAP dataset into
non-overlapping windows of one second, where each window consists of 128 data
samples. Therefore, the total number of observations/windows of a subject is

1 http://www.biosemi.com
2 http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
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2400 (40 videos times 60 seconds). Moreover, for every observation, we extract
the six statistical features from each EEG channel. Because data in DEAP were
collected using a 32-channel device, the size of our feature set is 192.

In DEAP , the ratings of valence and arousal were given as decimals in the
[1, 9] interval. Therefore, we choose 5 as the threshold for class labeling in the
valence-arousal space. In other words, we use the ratings provided by the subjects
in DEAP as the ground truth to define four classes of emotion for assessments.
These four classes are VLAL, VLAH , VHAL and VHAH , where V denotes valence,
A denotes arousal, L denotes low value (< 5), and H denotes high value (≥ 5).

To split the training and testing samples, we did not choose the k-fold cross-
validation scheme because feature smoothing should only be applied on contin-
uous time sequence that segmenting a continuous feature sequence into k parts
will break down the continuity. Instead, we choose 80%/20% splitting strategy
to preserve the continuity in features. Specifically, for samples in each minute, we
use the first 80% for training and the rest 20% for testing. Feature smoothing
is then applied separately on the two sets. This splitting strategy is depicted
in Fig. 1(a). Furthermore, we normalize training samples (referring to the ex-
tracted features rather than the raw signals) to zero-mean and unit variance to
train the classifier, and then use the normalization parameters obtained from
training samples to normalize testing samples before performing classification.

Fig. 1. 80%/20% splitting strategy for obtaining training, validation and testing sets.

In feature smoothing, the window size T (see (7)) greatly affects the perfor-
mance. To obtain the best value of T , we further split a validation set from the
training set using the same splitting ratio as illustrated in Fig. 1(b). Table 1
shows the accuracy obtained on the validation set based on classifiers trained
using the training set (64%) with respect to different T values. As shown in Ta-
ble 1, we obtain the best accuracy when T = 11. As such, we use T = 11 during
subsequent feature smoothing on both the training (80%) and testing datasets.

Table 1. Classification accuracy on the validation set with varying T values

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Acc (%) 59.83 68.23 73.55 76.15 77.86 78.96 80.36 80.58 81.13 81.06 81.31 80.81 80.77 80.67 80.90 79.49
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On the other hand, to find the appropriate parameter settings of SVM, we
perform grid search on both the cost parameter C (see (8)) and the penalty
parameter γ (see (9)) for {n×10m}, where n = 1, 2, . . . , 9 and m = −3,−2, . . . , 3.
When T = 11, we find the best performing values as C = 10 and γ = 0.005.
This combination of parameter values are used in all the experiments presented
in this paper.

4.2 Results and Discussions

Fig. 2 shows the four-class emotion recognition results of each individual subject
before and after applying our moving average feature smoothing method. The
average accuracy (across all subjects) improves significantly from 61.73%±7.07%
to 82.30%± 8.44% after applying feature smoothing. This finding strongly sup-
port the high effectiveness of our feature smoothing method.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

subject index

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ac
cu

ra
cy

before smoothing
after smoothing

Fig. 2. Emotion recognition accuracy before and after feature smoothing.

Besides 80%/20%, we also conduct experiments on other splitting ratios and
then present the results in Table 2. Similar to Fig. 1(b), for each splitting ratio
R, we further split a validation set from the training set based on R to obtain
the corresponding optimal T value. As clearly shown in Table 2, our feature
smoothing method always improves the recognition accuracy. It is more encour-
aging to see that even when R = 20%/80%, our approach can obtain an accuracy
of 62.43% on four-class emotion recognition. This satisfactory performance ob-
tained on low splitting ratio well demonstrates the generalization capability or
robustness of our approach. To be more elaborate, for a longitudinal study with
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stable emotion transitions, say each session lasts one minute (same as DEAP),
our approach only requires the EEG signals collected in the first twelve seconds
to be labeled for training, hereafter, it can already achieve 62.43% accuracy on
four-class emotion recognition.

Table 2. Performance of feature smoothing using different train/test splitting ratios

Train/Test (%)
Acc before
smoothing (%)

T value
Acc after

smoothing (%)
Acc

improvement (%)

20/80 51.37 5 62.43 11.06
40/60 55.67 7 72.41 16.74
60/40 58.26 11 78.36 20.10
80/20 61.73 11 82.30 20.57

Table 3. Comparison with prior studies on DEAP

Study Feature Set Feature Smoothing Time (s) Classifier Subjects Performance

[8]
PSD (32 channels)+ diff-
erence between 14 pairs
of symmetric channels

None 166.2
Gaussian
Naive Bayes

All 32
subjects

Valence: 57.6%,
arousal: 62%

[9]
Six statistics
+ FD + HOC
(32 channels)

None >1000
SVM with
polynomial
kernel

All 32
subjects

Four emotions:
80%

[22] PSD (16 channels) None 82.6 CNN
22 selected
subjects

Valence: 76.63%

[11] PSD (32 channels) Savitzky-Golay 207.4 SVDD
All 32
subjects

Three levels of
valence: 71.75%

Our
work

Six statistics
(32 channels)

None 67.8
SVM with
RBF kernel

All 32
subjects

Valence-arousal
quadrant: 61.73%

Moving average 77.4
SVM with
polynomial
kernel

Valence-arousal
quadrant: 67.90%

Moving average 77.4
SVM with
RBF kernel

Valence-arousal
quadrant: 82.30%

Note: PSD denotes power spectrum density, FD denotes fractal dimension, HOC denotes higher order
crossing, CNN denotes convolutional neural network, and SVDD denotes support vector data description.

To further assess the performance of our proposed method, we compare our
results with some prior studies using the same DEAP dataset. In Table 3, [8]
used leave-one-video-out scheme for classification, [22] conducted 11-fold cross-
validation on 22 selected subjects, [9] and [11] used 5-fold cross-validation. Al-
though our data splitting strategy is different from all the benchmarking studies
(similar but conducted four times less than 5-fold CV) and some models adopted
different number of classes for emotion recognition, we still compare all the re-
sults in the same table. Nonetheless, we use the same computer (2.20 GHz CPU
with 8 GB RAM) and the same programming language (MATLAB) to obtain all
the feature sets shown in Table 3 and report their processing time (feature ex-
traction and smoothing if applicable). It is encouraging to see that our approach



EEG-Based Emotion Recognition via Fast and Robust Feature Smoothing 9

achieves the highest accuracy of 82.3%, which is even higher than those recogniz-
ing lesser number of emotional classes. Moreover, our moving average approach
does not add in much computational time to the overall feature processing pro-
cedure ((77.4− 67.8)/77.4 = 12.4%). Compared to other benchmarking models,
either with or without feature smoothing, our approach has the shortest feature
processing time.

5 Conclusion

In this paper, we propose a fast and robust EEG-based emotion recognition
approach that applies the simple moving average feature smoothing method on
the six extracted statistical features. To assess the effectiveness of our approach,
we apply it on the well-known DEAP dataset to perform emotion recognition in
the valence-arousal quadrant space. The results are more than encouraging. First
of all, the average accuracy (when using 80%/20% splitting ratio) significantly
improves from 61.73% to 82.3% after feature smoothing is applied. Secondly, we
show the robustness of our approach that it always significantly improves the
recognition accuracy for various data splitting ratios. Last but most importantly,
our approach achieves the best performance in terms of both feature processing
time and recognition accuracy among all the benchmarking models.

In the future, we will further test the robustness of our approach by conduct-
ing experiments on own collected and other datasets. We will also look into the
theoretical insights of why the simple moving average method may significantly
improve the emotion recognition accuracy.
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