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Abstract—Neural Fuzzy Inference System (NFIS) is a widely
adopted paradigm to develop a data-driven learning system. This
hybrid system has been widely adopted due to its accurate reason-
ing procedure and comprehensible inference rules. Although most
NFISs primarily focus on accuracy, we have observed an ever
increasing demand on improving the interpretability of NFISs
and other types of machine learning systems. In this paper, we
illustrate how we leverage the trade-off between accuracy and
interpretability in an NFIS called Genetic Algorithm and Rough
Set Incorporated Neural Fuzzy Inference System (GARSINFIS).
In a nutshell, GARSINFIS self-organizes its network structure
with a small set of control parameters and constraints. Moreover,
its autonomously generated inference rule base tries to achieve
higher interpretability without sacrificing accuracy. Furthermore,
we demonstrate different configuration options of GARSINFIS
using well-known benchmarking datasets. The performance of
GARSINFIS on both accuracy and interpretability is shown
to be encouraging when compared against other decision tree,
Bayesian, neural and neural fuzzy models.

Index Terms—interpretability, neural fuzzy inference system,
genetic algorithm, rough set, interpretable rules

I. INTRODUCTION

Neural Fuzzy Inference System (NFIS) [1] or also widely
known as Fuzzy Neural Network (FNN) synthesizes the human
cognitive and reasoning processes by tolerating imprecise
information and handling ambiguous situations. NFIS solves
complex problems using linguistic models consisting of highly
intuitive and easily comprehensible fuzzy rules. The hybridiza-
tion performs non-fuzzy or fuzzy operations in different layers
of the network to integrate both the learning aptitude of neural
networks and the transparency of fuzzy systems.

To better preserve the semantic meanings of the linguistic
models, certain level of the rule base’s legibility has to be guar-
anteed. The interpretability improvement is “regarded as one
of the most important issues in data-driven fuzzy modeling”
[2]. There are two major approaches proposed in the literature
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Prime Minister’s Office, Singapore under its IDM Futures Funding Initiative.
This research is also supported in part by the Science & Technology
Development Foundation of Jilin Province under grant No. 20160101259JC
and the National Science Fund Project of China No. 61772227.

to improve a model’s interpretability. One is to reduce the
complexity after the construction of the model and the other
is to define constraints before the construction process. For
the first approach, many methods have been proposed, such as
rule aggregation [3], rule removal [4], rule transformation [5],
feature selection [6], and knowledge reduction (on both rules
and features) [7]–[9]. The second approach mainly focuses on
controlling the quality and quantity of the derived membership
functions [10], [11] and also focuses on defining constraints
on both membership functions and rules [12], [13]. Only a few
prior studies [14]–[16] provide options or device parameters
to leverage the trade-off between accuracy and interpretability.

In this paper, we illustrate how we leverage the trade-
off between accuracy and interpretability in an NFIS called
Genetic Algorithm and Rough Set Incorporated Neural Fuzzy
Inference System (GARSINFIS). In a nutshell, GARSINFIS
self-organizes its network structure with a small set of control
parameters and constraints. Moreover, it employs and fine-
tunes the inference rule base, which is autonomously derived
by an iterative clustering algorithm called Genetic Algorithm
based Rough Set Clustering (GARSC). Because knowledge
reduction is performed and the formations of clusters are
iteratively optimized, the derived rule base is highly inter-
pretable and reliable. For performance evaluations, we conduct
experiments on well-known benchmarking datasets of different
complexity to demonstrate different configuration options of
GARSINFIS. The performance of GARSINFIS on both ac-
curacy and interpretability is shown to be encouraging when
compared against other decision tree, Bayesian, neural and
neural fuzzy models.

The rest of this paper is organized as follows. Section II in-
troduces the GARSC clustering algorithm. Section III presents
the system architecture of GARSINFIS, which employs and
fine-tunes the fuzzy rules derived by GARSC. Section IV
reports the experimental results of applying GARSINFIS in
different configurations on the benchmarking datasets. Sec-
tion V concludes this paper and proposes future work.



Fig. 1. Illustration of transferring crisp membership functions to fuzzy ones.

II. GARSC: GENETIC ALGORITHM BASED ROUGH SET
CLUSTERING

GARSC [17] incorporates the advantages of both genetic
algorithm [18] and rough set theory [19]. Specifically, we
employ genetic algorithm to determine optimal or suboptimal
solutions and use rough set theory to perform knowledge
reduction [20]. Based on rough set knowledge reduction, any
categorical inference rule set can be greatly reduced without
losing any essential knowledge. This great property of rough
set theory can be really helpful in improving the comprehen-
siveness of a set of inference rules [21], i.e., reducing the num-
ber of retained features, the number of employed rules, and
the number of arguments kept in each inference rule. Please
note that the crisp rules reducted by rough set approximations
are transformed into fuzzy ones by deriving Gaussian fuzzy
membership functions accordingly (See Fig. 1). Specifically,
assume in dimension x, we define n−1 number of separation
boundaries, then x is discretized into n regions. Therefore, the
determination of a Gaussian type fuzzy membership function
fGi

(x) = exp(−‖x−ci‖
2

2σ2
i

) only requires the computation of
mean ci and standard deviation σi of all the data points in the
ith region xi. Then, the generated fuzzy rules are employed
by GARSINFIS (see Section III) for performance evaluation
of the underlying solution.

The step of transforming the crisp membership functions to
fuzzy ones is necessary to better deal with the non-overlapping
in crisp separations adopted by rough set theory. Instead,
we employ fuzzy membership functions to tolerate imprecise
information and better deal with unforeseen circumstances.
This particular step of knowledge transfer naturally prevents
the resulting fuzzy membership functions from separating or
overlapping too much with their neighbours, which makes the
fuzzy rules more interpretable. Moreover, as the membership
functions are generated in each individual dimension without
normalization and transformation, the semantic meanings of
the associated fuzzy linguistic labels are greatly reserved. The
necessity of transformation from crisp membership functions
to fuzzy ones is also empirically shown in Section IV-A.

A. Predefined Discretization Constraints

Before introducing GARSC in detail, we first define a
couple of constraints being applied on data discretization. The
first constraint is the maximum number of separation bound-
aries allowed in each dimension. It is easy to infer that this
constraint subsequently defines the maximum number of fuzzy
membership functions might be formulated in each dimension.

Nonetheless, the actual number of fuzzy membership functions
derived is also affected by the knowledge reduction process. In
any dimension, the minimum number of separation boundaries
actually in use is zero, which denotes that the corresponding
dimension is not included in the reducted inference rule base.
Furthermore, this constraint should not be set to a large value
so as to avoid the employment of a large number of fuzzy
membership functions, which degrade the interpretability of
the overall model.

The second constraint is on the minimum distance has to
be fulfilled between any neighbouring separation boundaries in
the same dimension. This constraint ensures the relatively high
level of generation possessed by the derived fuzzy membership
functions. As such, any neighbouring membership functions
are well separated. We use mindis to denote this minimum
distance requirement and present its definition as follows:

mindisi =
ubi − lbi

max(nopi,M)
, (1)

where i denotes the ith dimension; ubi and lbi denote the upper
and lower boundaries of the value range in the ith dimension,
respectively; nopi denotes the total number of different values
in the ith dimension that for each corresponding conditional
attribute value, its associated decision attribute has more than
one values; and M denotes the predefined minimum number
of separation boundaries in each dimension, which is assigned
to 10 unless specified otherwise.

B. Attribute and Rule Removal

In rough set theory, a decision table is independent when
all its dispensable attributes have been removed. Therefore,
we can obtain an independent decision table by performing
attribute reduction to find the reduct of the original decision
table with the minimum cardinality. If in all rules, some
attributes are always dispensable, they shall be removed from
the reasoning process. As such, we actually perform feature
selection along the knowledge reduction process.

The reduction of decision rules is similar to attribute re-
duction. Besides the merging of duplicate rules, an inference
rule is dispensable if and only if the performance of the
resulting rule base does not decline after the rule being
removed. This removal procedure is often denoted as the
pruning of redundant rules. Furthermore, rules share the same
conditional attribute values but differ in the decision attribute
are named inconsistent rules. The removal of these rules is
required to preserve the integrity of the inference rule base.
The confidence of the kth rule is computed as follows:

conf(k) = min

(
card(Ui(ki) ∩ dk)

card(Ui(ki))

)
,∀i ∈ C, (2)

where card computes cardinality; Ui denotes the union func-
tion of decision attributes of each individual rule in the
underlying decision table that shares the same value on the
ith attribute; ki denotes the value of the ith attribute of the
kth rule; and dk denotes the decision value of the kth rule.

Within each inconsistent rule set, only one rule should be
kept by following three selection criteria: (i) preserve the rule



that has the maximum confidence value; (ii) if confidence
value ties, preserve the rule that covers the most number of
data samples; and (iii) if the number of data samples still ties,
preserve a random selected rule with equal probability.

C. Commonly Adopted Strategies in Genetic Algorithms

In genetic algorithms, the number of chromosomes exist in
one generation is defined by the population size. Therefore,
to evaluate more number of solution candidates, we can set a
larger population size.

GARSC uses real numbers to compose chromosomes.
Specifically, each gene of a chromosome represents a separa-
tion boundary in the corresponding dimension. Please note that
although GARSC confines the maximum number of separation
boundaries allowed in each dimension, the actual number of
partitions in use varies, i.e., chromosomes (comprising of
separation boundaries in all dimensions) in GARSC do not
have a fixed length.

When producing a new generation of chromosomes,
GARSC applies the elitism replacement strategy. Specifically,
the elitism ratio µ ∈ [0, 1) determines how many highly
fit chromosomes in the current generation P (t) shall be
kept in the next generation P (t + 1). Generally speaking,
to avoid domination of certain species especially in the early
generations, µ is normally set to relatively small values.

The stopping criterion of GARSC is defined as when GA
reaches the pre-determined number of generations. This gen-
eration number should be set carefully to allow GA converge.

D. Evaluation of the Fitness of Chromosome

The fitness evaluation function examines the performance of
the corresponding chromosome. Because the fitness function
characterizes the optimal solution that GA tries to search
for, it is often considered as the most important module in
GA. Because the aim of GARSC is to derive comprehensive
inference rules without degrading accuracy, we integrate both
interpretability and accuracy terms in its fitness function (see
(3)). Specifically, capital letters are used to denote constant
values and small letters are used to denote variables. Terms 1
and 5 in (3) relate to accuracy and the remaining terms relate
to interpretability. A chromosome with smaller fitness value is
a better solution candidate to the underlying problem.

f(x) = τ1(1− a)
NOD
NOF︸ ︷︷ ︸

1

+ τ2
nof

NOF︸ ︷︷ ︸
2

+ τ3
nor

NOD︸ ︷︷ ︸
3

+ τ4
noa

NOF · NOD︸ ︷︷ ︸
4

+ τ5
mse
NOF︸ ︷︷ ︸
5

, (3)

where x denotes the chromosome under evaluation; τ1, . . . , τ5
denote the pre-determined coefficient values; a denotes the ac-
curacy of solution x on the underlying data set; NOD denotes
the number of data elements; NOF denotes the number of
dimensions; nof denotes the number of features (dimensions)
included in the inference rule base; nor denotes the number
of rules in the inference rule base; noa denotes the aggregated

number of arguments in the antecedent part of all rules; and
mse denotes mean squared error:

mse =
1

NOD

NOD∑
i=1

(yi − ŷi)2, (4)

where yi denotes the value of prediction and ŷi denotes the
value of ground truth.

E. Selection of Parents to Produce Offspring

During the production of offspring to be evaluated in the
next generation, each pair of parents are selected from the
current generation based on their fitness values. Generally
speaking, parents normally have relatively higher fitness values
than those not being selected. Among all parent selection
strategies, we adopt tournament selection [22], in which the
competition among candidates can be easily regulated by both
the tournament size m and the selection probability s.

Prior to the selection of two parents to produce offspring by
means of the crossover operator, m number of candidates are
first randomly chosen for consideration. These candidates are
then sorted in descending order according to their fitness val-
ues. Subsequently, the selection starts with the first candidate
in the sorted list until one fulfils the selection criterion and is
select as one parent. Specifically, the selection probability of
the ith candidate s(i) is defined as follows:

s(i) = s(1− s)i−1, 0.5 < s ≤ 1. (5)

The tournament size m determines the stressfulness of com-
paratively lesser fit chromosomes being selected as parents.
Specifically, for a relatively less fit chromosome, its chance
of getting selected as parent will increase with a smaller
m value, but decrease with a larger m value. Therefore, to
prevent early domination of certain highly fit chromosomes or
often formally known as premature convergence in the early
generations of GA, s should be set to a smaller value so that
less fit chromosomes still have relatively higher chances of
being selected. On the other hand, to fine-tune the highly
fit chromosomes with more in-depth exploitation in the late
generations, s should be set to a larger value. As such, we
define the tournament selection probability s as follows:

s = 0.5

(
1 +

icg
NOG

)
, (6)

where icg denotes the index of the current generation and NOG
denotes the predefined number of generations to terminate GA.

Because icg ∈ [1,NOG], s for each generation in GA forms
an arithmetic progression series in the interval [0.5+ 0.5

NOG , 1],
which precisely fulfils the constraining requirement of (5).

F. Modified Crossover Operator for Varying Length

When a pair a parents have been selected, they produce
offspring that partially inherit their genes through a crossover
operation. Nonetheless, the crossover rate determines whether
the selected pair of parents will eventually exchange their
genes so that only their offspring are kept in the next
generation or themselves shall be kept alternatively. Due to



Fig. 2. An example of applying the modified uniform crossover operator.

the adoption of elitism replacement strategy, in GARSC, we
always set the crossover rate to one.

To deal with the varying length of different chromosomes
that comprise of different numbers of separation boundaries
across all the input dimensions, we propose a modified uni-
form crossover operator and illustrate its usage in Fig. 2.
Akin to conventional uniform crossover operators, a binary
control string of length equals to NOF is first randomly
generated. In each position of this string, the corresponding
binary value determines a child should inherit the gene from
which parent. As such, there shall be no misunderstanding
in the dimensionality and length of the corresponding genes
when producing the offspring.

Please recall that GARSC performs feature selection (see
Section II-B), therefore, it is common for chromosomes have
empty gene in the respective input dimension as represented
by the square brackets “[ ]” in Fig. 2. As such, it is possible
that a produced offspring consists of only empty genes in every
dimension. To deal with this exception, the “empty” offspring
shall be reinitialized to a random “non-empty” chromosome.

G. Modified Mutation Operators for Gene Replacement

To deal with GARSC’s chromosomes, which comprise of
separation boundaries across all dimensions, we propose three
modified mutation operators. Specifically, one of the following
three operators shall be applied on the select gene for mutation
based on equal probability: (i) add one randomly selected
separation boundary if it does not violate any constraint; (ii) if
the gene is non-empty, remove one separation boundary from
it; and (iii) vary the value of a randomly selected separation
boundary if the new value does not violate any constraint.

Akin to tournament selection probability s, the mutation
rate mrate determining the probability of mutating each gene
should increase from smaller values in the early generations
to larger values in the late generations. As such, we define
mrate as follows:

mrate =
1

NOF
+

(NOF− 1) · icg
NOF · NOG

. (7)

III. GARSINFIS: GENETIC ALGORITHM AND ROUGH SET
INCORPORATED NEURAL FUZZY INFERENCE SYSTEM

GARSINFIS [23] is a six-layer, feed-forward, and partially
connected architecture. For the antecedent and consequent
parts of the derived fuzzy rules (by GARSC), we use rect-
angular boxes (see Fig. 3) to represent their corresponding
neurons in the condition and consequence layers, respectively.

Altogether, GARSINFIS comprises of six layers, where
each layer performs the corresponding non-fuzzy or fuzzy

Fig. 3. The network architecture of GARSINFIS.

operation. Specifically, the input layer designates vectored in-
put data to the corresponding linguistic variables. As GARSC
performs feature selection, not all the linguistic variables are
going to be used in this layer. Condition layer provides fuzzy
membership functions used for each of the linguistic variables
employed. Rule-base layer fires the antecedent part of fuzzy
rules and passes the firing strengths to all the nodes in the next
layer. Normalization layer normalizes the rule firing strengths
and passes them to the respective nodes in the next layer.
Consequence layer computes the consequence part of fuzzy
rules using the normalized rule firing strengths and passes the
results to the single neuron in the following layer. Output layer
computes the final non-fuzzy output of the network. Readers
may refer to [24] for all the mathematical details of the non-
fuzzy and fuzzy operations used in GARSINFIS.

Because the knowledge space is reduced during the iterative
clustering process, the network structure will not be fully
connected and the number of nodes created in each layer will
be minimized. By applying the most essential information, the
network size is expected to be smaller than the other Takagi-
Sugeno-Kang (TSK) [25], [26] type of neural fuzzy systems.

IV. EXPERIMENTAL RESULTS

Different configurations of GARSINFIS used in this paper
are summarized in Table I. Please note that the coefficient val-
ues presented in Table I are simply selected for demonstration
purposes, the trade-off between accuracy and interpretability
may be easily tuned by assigning the corresponding coefficient
parameters (see (3)) to any combinations of real numbers.

All the datasets used in this paper (see Table II) are
downloaded from UCI [27]. In each experiment, two adjacent
configurations from Table I are applied for comparisons to
show performance improvement. Furthermore, in each exper-
iment run, two thirds of randomly selected data are used to
train GARSINFIS and the remaining one third are used to
test. The same pairs of the training and testing datasets are
then applied by the benchmarking models to ensure all of
them are compared on equal basis. Performance of all models
is averaged from ten runs to remove randomness.

The commonly adopted GARSINFIS’s control parameters
in all experiments are introduced as follows: (i) in any input
dimension, we only allow a maximum of two separation
boundaries; (ii) we set the elitism ratio to 0.1; and (iii) we



TABLE I
DIFFERENT GARSINFIS CONFIGURATIONS EVALUATED

Id Configuration Details
1 GARSINFIS-crisp employs crisp inference rules; its identified separation boundaries are different from those of the fuzzy configuration
2 GARSINFIS-a&i focuses on both accuracy and interpretability: τ1,...,5 = 1, i.e., f(x) = (1− a)NOD

K
+ nof

NOF + nor
NOD + noa

NOF · NOD + mse
NOF

3 GARSINFIS-a focuses on accuracy only (rules are still simplified): τ1,5 = 1, τ2,3,4 = 0, i.e., f(x) = (1− a)NOD
K

+ mse
NOF

4 GARSINFIS-1 extends the zero-order TSK fuzzy rules derived by GARSINFIS-a into first-order ones (see details in [24])

TABLE II
SUMMARY OF GARSINFIS PARAMETERS USED FOR VARIOUS DATASETS

Dataset NOF NOD population size. NOG
wine 13 178 100 60

ionosphere 32 351 200 10
material 60 208 200 20

TABLE III
RESULTS ON UCI WINE DATA SET

Model Train% Test% Whole% # Fea. # Rule

GARSINFIS-a&i mean 100.0 94.31 98.09 3.5 5.6
std 0.00 2.10 0.71 0.71 0.97

GARSINFIS-crisp mean 96.13 93.66 95.30 3.8 5.9
std 1.97 2.19 1.53 0.63 0.88

C4.5 mean 90.88 94.13 91.97 4.0 5.6
std 2.29 3.49 1.79 1.25 0.84

Naive Bayes mean 97.13 97.48 97.25 13 N.A.std 1.14 1.80 0.89

SVM mean 98.82 97.82 98.49 13 N.A.std 0.91 1.37 0.75

MLP mean 97.21 97.48 97.30 13 11std 1.06 1.63 0.78

RBF mean 100.0 97.82 99.27 13 6std 0.00 1.96 0.65

ANFIS mean 100.0 96.98 98.99 13 3.7
std 0.00 2.05 0.69 1.16

DENFIS mean 100.0 96.98 98.99 13 42.8
std 0.00 1.73 0.58 1.99

RS-POPFNN mean 99.83 92.12 97.26 12.5 90.5
std 0.35 4.02 1.34 0.71 8.40

RS-HeRR mean 100 94.63 98.21 4.8 73.0
std 0.00 2.15 0.63 0.32 2.21

set the tournament size to two. The other parameter values
used in each experiment are listed in Table II.

For benchmarking models, we select the following ones:
C4.5 decision tree [28], Naive Bayes classifier [29], Support
Vector Machine (SVM) [30], Multi-Layer Perceptron (MLP)
network [31], Radial Basis Function (RBF) network [31], AN-
FIS [32] (in this paper, ANFIS employs the Fuzzy C-Means
(FCM) clustering algorithm [33]), DENFIS [34] (employs
Evolving Clustering Method (ECM) [35]), RS-POPFNN [8]
and RS-HeRR [9].

A. Performance Improvement by Employing Fuzzy Rules

In this subsection, GARSINFIS-a&i and GARSINFIS-crisp
(the two models are optimized separately, not directly trans-
formed) are applied to the wine recognition dataset. As shown
in Table III, GARSINFIS-a&i achieves higher accuracy and
employs more compact inference rule bases than GARSINFIS-
crisp. These results illustrate the necessity of representing
the crisp clustering results using fuzzy membership functions
to better deal with imprecise information and unforeseen
circumstances. Among all models, although GARSINFIS-a&i
only achieves the best accuracy on the training dataset, the
rest measures are still competitive to the respective winners
with small difference.

TABLE IV
RESULTS ON UCI IONOSPHERE DATA SET

Model Train% Test% Whole% # Fea. # Rule

GARSINFIS-a mean 94.70 90.77 93.39 8.3 19.2
std 1.96 2.16 1.92 1.25 2.86

GARSINFIS-a&i mean 93.59 90.51 92.56 7.9 18.9
std 0.92 1.87 1.05 1.37 2.08

C4.5 mean 97.99 90.60 95.53 7.6 11.5
std 0.78 3.32 1.15 1.17 2.12

Naive Bayes mean 82.88 83.68 83.14 32 N.A.std 1.52 3.28 1.67

SVM mean 90.34 85.56 88.75 32 N.A.std 0.88 1.69 0.45

MLP mean 99.36 88.80 95.84 32 19std 0.22 2.92 0.93

RBF mean 93.63 90.60 92.62 32 6std 1.09 2.67 0.79

ANFIS mean 100.0 84.24 94.75 32 24.6
std 0.00 1.85 0.62 3.84

DENFIS mean 99.91 80.17 93.33 32 93.6
std 0.18 3.32 1.08 2.17

RS-POPFNN mean 98.21 82.39 92.94 27.1 151.3
std 0.53 2.62 0.99 1.20 5.50

RS-HeRR mean 100.0 87.26 95.75 6.7 146.2
std 0.00 2.56 0.85 2.16 15.0

B. Accuracy Increase without Sacrificing Interpretability

In this subsection, GARSINFIS-a and GARSINFIS-a&i are
applied to the ionosphere detection dataset. As shown in
Table IV, when comparing to GARSINFIS-a&i, GARSINFIS-
a achieves higher accuracy but worse interpretability by em-
ploying only accuracy focused fitness function (see Table I).
This finding illustrates how the trade-off between accuracy and
interpretability may be effortlessly tuned by assigning differ-
ent values to the respective coefficients. Among all models,
although GARSINFIS-a only achieves the best accuracy in
the testing dataset, the rest measures are still competitive to
the respective winners with acceptable difference.

C. Further Accuracy Increase Using More Complex Rules

In this subsection, GARSINFIS-1 and GARSINFIS-a are
applied to the material discrimination (sonar) dataset. As
shown in Table V, when comparing to GARSINFIS-a,
GARSINFIS-1 achieves higher accuracy by extending the
zero-order TSK fuzzy rules into first-order ones [24]. Please
note that the decrease in interpretability is not represented
in the number of selected features and employed rules. It is
the consequent parts of the rules become less comprehensible
but fine-tune the model to achieve higher accuracy. This
finding demonstrates a way to increase accuracy by sacrificing
interpretability. Among all models, GARSINFIS-1 achieves
satisfactory accuracy.

V. CONCLUSION

In this paper, we illustrate how we leverage the trade-off
between accuracy and interpretability in GARSINFIS. In a
nutshell, GARSINFIS self-organizes its network structure with



TABLE V
RESULTS ON UCI SONAR DATA SET

Model Train% Test% Whole% # Fea. # Rule

GARSINFIS-1 mean 92.72 72.59 86.01 8.6 21.1
std 1.30 2.94 1.44 0.70 2.96

GARSINFIS-a mean 90.70 69.38 83.53 8.6 21.1
std 1.39 5.36 2.08 0.70 2.96

C4.5 mean 97.84 70.82 88.83 11.6 13.6
std 0.59 6.25 2.23 1.58 1.17

Naive Bayes mean 73.78 70.26 72.60 60 N.A.std 2.88 6.27 2.60

SVM mean 88.40 77.31 84.70 60 N.A.std 2.47 4.11 1.54

MLP mean 99.21 81.21 93.21 60 33std 3.20 4.27 2.15

RBF mean 96.47 81.20 91.38 60 10std 2.24 3.13 2.09

ANFIS mean 100.0 73.84 91.28 60 4.4
std 0.00 3.73 1.24 0.88

DENFIS mean 98.92 77.03 91.62 60 71.7
std 0.91 4.43 1.43 1.64

RS-POPFNN mean 100.0 70.01 90.00 24.2 137.3
std 0.00 6.01 2.00 6.43 2.41

RS-HeRR mean 100.0 72.85 90.95 6.1 120.7
std 0.00 6.24 2.08 1.20 5.10

a small set of control parameters and constraints. Moreover,
its autonomously generated inference rule base tries to achieve
higher interpretability without sacrificing accuracy. We con-
duct experiments on applying difference configuration options
of GARSINFIS using well-known benchmarking datasets. The
performance of GARSINFIS on both accuracy and inter-
pretability is shown to be encouraging when compared against
other competitive benchmarking models.

Going forward, we plan to investigate other options to fur-
ther improve the accuracy of GARSINFIS without sacrificing
interpretability. Moreover, we will apply GARSINFIS on chal-
lenging real-world applications to serve as a comprehensive
and reliable decision support system.
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