Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

11-2018

Learning generalized video memory for automatic video
captioning
Poo-Hee CHANG

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation

CHANG, Poo-Hee and TAN, Ah-hwee. Learning generalized video memory for automatic video captioning.
(2018). Multi-disciplinary International Conference on Atrtificial Intelligence: 12th International Conference:
MIWAI 2018, Hanoi, Vietnam, November 18-20: Proceedings. 11248 LNAI, 187-201.

Available at: https://ink.library.smu.edu.sg/sis_research/6076

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6076&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

®

Check for
updates

Learning Generalized Video Memory
for Automatic Video Captioning

Poo-Hee Chang®™ and Ah-Hwee Tan®

School of Computer Science and Engineering, Nanyang Technological University,
Singapore 639798, Singapore
{phchang,asahtan}@ntu.edu.sg

Abstract. Recent video captioning methods have made great progress
by deep learning approaches with convolutional neural networks (CNN)
and recurrent neural networks (RNN). While there are techniques that
use memory networks for sentence decoding, few work has leveraged on
the memory component to learn and generalize the temporal structure
in video. In this paper, we propose a new method, namely General-
ized Video Memory (GVM), utilizing a memory model for enhancing
video description generation. Based on a class of self-organizing neural
networks, GVM’s model is able to learn new video features incremen-
tally. The learned generalized memory is further exploited to decode
the associated sentences using RNN. We evaluate our method on the
YouTube2Text data set using BLEU and METEOR scores as a stan-
dard benchmark. Our results are shown to be competitive against other
state-of-the-art methods.

Keywords: Memory model - Video captioning - Deep learning
Adaptive Resonance Theory + LSTM - CNN

1 Introduction

Automatic video captioning has a wide array of applications, such as artifi-
cial consciousness, videos categorization and aids for the visually impaired.
It involves the understanding and translation of temporal visual features into
words. While video captioning is a challenging task for both computer vision
and language, recent progress with deep neural networks have led to many pos-
sibilities in regards to automatic video captioning.

Current deep learning approach to the video captioning task typically
involves a deep visual encoder using convolutional neural networks (CNN)
such as AlexNet [17] and a sentence decoder using Long-Short Term Mem-
ory (LSTM) [14], a variant of recurrent neural network (RNN). For example,
the mean pool approach [34] which takes the average of the AlexNet features
across the video frames. The mean pooled vector trains the LSTM network and
decodes a sequence of words. The mean pooling approach serves as a baseline
to many of the recent state-of-the-art algorithms. Further research has explored
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the temporal representation of the videos [33], the temporal representation of
the sentence decoder [41] and the visual attention mechanism [18] for improving
the quality of video captions.

Another area of research involves the introduction of memory into deep neural
models. Weston et al. introduced the Memory Networks [40] which enabled RNNs
to memorize long sequences. The general model of the memory network is to
generalize inputs, to retrieve memories, and to interpret the stored memories.
Memory networks have shown to be able to tackle textual and visual question and
answering tasks [39]. While there are some video captioning work involving the
memory component, such as Iterative Attention/Memory [9] which is a memory
model based attention mechanism, there is a lack of a memory model that focused
on generalizing and storing the temporal structure of the video. Previous memory
model for video captioning have a fixed pre-defined number of memory slots
which may limit the number of useful memories stored.

To address the issue, we adapt from an earlier work, the Adaptive Reso-
nance Theory (ART) [2] which is a class of self-organizing neural network. The
ART model is able to stores input patterns in a content addressable way with
unlimited categories or memory slots. To our best knowledge, the use of ART
neural network as the external memory module for general deep learning tasks
are not explored. One possible reason may be the difficulty of integrating the
ART network with deep learning methods as the ART model does not learn by
back-propagation.

In this paper, we present the video captioning architecture, with a memory
model named the Generalized Video Memory (GVM) that is able to generalize
and store the temporal video features using the ART framework. GVM is able
to store memory incrementally, in which are retrieved for improving caption
decoding. Our main contribution of this paper is to show that how a memory
model based on the ART is integrated with the deep learning approach. The
GVM is able to generalize and retrieve the temporal structure of the video to
improve the quality of the video description base on a deep learning framework.
We construct our framework that is based on the mean pool approach [34],
with the integration of the GVM model. The mean pooled features are the
representation of the visual features within a video. Our method explores on the
representation and storage of similar video features into memories. The idea is
analogous to a human drawing past experiences and knowledge to conduct an
informed judgement based on a limited sensory information. By recalling memory
of similar videos, the LSTM caption decoder is able to utilize the additional
information and generate better quality sentence. Using the publicly available
YouTube2Text data set [5], we show that by combining GVM with the basic
mean pool approach, we can obtain competitive results as compared to the
current state-of-the-art methods.

The organization of this paper is as follows. We report the related work for
video captioning in Sect. 2. In Sect. 3, we introduce our GVM network and the
video captioning framework. In Sect. 4, we discuss the details of the experiment
set up. We then illustrate the performance of GVM by comparing other state-of-
the-art methods in Sect.5. We then finalize our paper with concluding remarks
in Sect. 6.
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2 Related Work

Early research on video captioning has focused on using various image processing
techniques to extract the best subject, verb and object tuples from the video.
Together with rule based, statistical modeling and sentence templates [12,16],
they are able to produce grammatically correct sentences. However, these meth-
ods has focused on a narrow domain with limited vocabularies describing the
objects and its the activities.

Recent success with large-scale image recognition using convolutional neural
networks (CNN) [17,22,27] and language modeling and translation using variants
of the RNN [10,25,26] have inspired researchers to combine both deep learning
domains for work regarding image captioning [15,35].

The natural progression of image captioning using deep learning approach
is to extend to the video domain. Venugopalan et al. [34] used the AlexNet
to extracts frame by frame features. Mean pooling or averaging is applied to
the frame features. The mean pooled vector is presented as input to a two-layer
LSTM network for generating descriptions. While this method of averaging frame
features loses the representation in the temporal aspects, it has provided a good
baseline result for other video captioning work.

To address the temporal representations of video for generating description,
a sequence to sequence LSTM framework is proposed for temporal modeling of
videos and language [33]. Recent work include the attention mechanism [18,41]
which are able to selectively focus on the given input video features. However,
these models do not attend to other videos which have similar visual features.

There is a trend in deep learning to integrate the use of memory into neural
network models. Weston et al. introduced the Memory Networks [40] which
can help RNNs to memorize long sequences. This memory model is known to
be difficult to train by backpropagation. Sukhbaatar et al. [24] proposed an
end-to-end memory network that requires less supervision in training. Memory
networks have been shown to be able to do textual and visual question and
answering tasks [39]. However, these memory models do have limited slots to
store memories.

The ART network [2] was proposed to learn memory or cognitive nodes by
encoding input patterns and to support the recognition and recall of the stored
patterns. A vigilance parameter is used to control the level of generalization
on the stored patterns. Tan et al. proposed the fusion ART [30], which is an
ART variant with multi input fields. The fusion ART model has been applied
to the modeling of episodic memory [4,23,37,38] as well as to the reinforcement
learning [28,29,31,36] domain. Given that the ART network does not learn by
backpropagation, it may present a challenge to integrate the ART model into an
end-to-end neural network. Our work focuses on how the ART-based memory
module is able to integrate into a deep learning approach to the video captioning
domain.



190 P.-H. Chang and A.-H. Tan

3 Video Captioning Using Generalized Video Memory

The video captioning task encodes visual features from an image
sequences (v1,vs,...,v,) and decodes a sequence of words (y1,¥y2,...ym). The
length of both input and output sequences are variable. In this paper, we pro-
pose a memory model named Generalized Video Memory (GVM) network for
storing and recalling of the generalized video features. Our automatic video cap-
tioning framework is based on Venugopalan et al. [34] mean pooling approach.
Firstly, a CNN based image encoder is used for extracting frame features. The
extracted frames features are averaged (mean pooled). The mean pooled vec-
tor representing the video are presented to the GVM for memory generalization
storage. The mean pool vector and the generalized video memory features are
provided as the inputs to a two-layer LSTM caption decoder. By using addi-
tional information from the memory, the caption decoder is able to generate
better captions. Figure 1 shows our video captioning framework integrating with
the GVM network. In the following sections, we describe our video captioning
framework with the GVM network.

GVM Model —» |STM = LSTM — <S>
fooe o/ b
—» LSTM — LSTM —~ 2
! !

f Video ™/ — LSTM > LSTM = baby
Mean | L, .

Pool —» LSTM —» LSTM

"

> L STM > LSTM ~ 'aughing

"

—p' LSTM = LSTM —» </S>

Fig. 1. Video captioning framework with Generalized Video Memory (GVM) model.
The token <S> represents the start-of-sentence and the token </S> represents the
end-of-sentence.

3.1 The CNN Video Encoder

The 16-layer CNN based image encoder, VGG16 [22], is used for encoding the
image features from the video clip. The VGG16 network is loaded with pre-
trained parameters trained with the 1.2M subset images from the ImageNet data
set [21]. We use the publicly available VGG16 implementation from Caffe [8] and
converted the implementation to tensorflow. Image features (4096 dimensional
vector) are extracted from the fully connected layer (fc2) after ReLU activation.
To encode the entire video, image features extracted are averaged (mean pooled)
across the video frames to form a mean pooled vector fcpeqn-
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3.2 The Generalized Video Memory Network

The GVM network proposed in this paper is based on Adaptive Resonance The-
ory (ART) neural network [2] and fusion ART [30]. Figure 2 shows architecture
of the GVM network. The GVM network consists of a input field, namely the
video field, and a category field. The network is designed to learn cognitive
nodes at the category layer (Fy), while encoding the input patterns at the input
field layer (Fy). During learning, the input vector presented to the input field
is matched against the cognitive nodes at the Fj layer. The matching criteria
is controlled by the vigilance parameter. When a match is found, the matched
cognitive node adapts its weights to the new input vector. If no match is found,
a new cognitive node is recruited which learns the newly presented input vector.
Thus, the GVM performs fast and stable learning in response to a continual
stream of input patterns, and learns new patterns incrementally. It supports the
recognition and recall of the stored patterns based on similarity of the search
cue. For completeness, the network dynamics are described below.

Category Field
F,

Tl

Video Field

Fig. 2. The Generalized Video Memory (GVM) network.

Input vectors: Let I = (I3, I, ..., I,) denote an input vector, where [; € [0,1]
indicates the i*" input element. Let the complement coded vector be I, such that
L =1-1,.

Input fields: Let F} denote an input field that holds the input pattern
for the video features. Let x = (x1,x2,...,%2,) be the activity vector of
Fy receiving the input vector I (including the complement) such that x «
(I, Loy Iy I 1oy .o ).

Category field: Let F; denote the category field. Let y = (y1,%2,-..,Ym) be
the activity vector of F.

Weight vectors: Let w; denote the weight vector associated with the jth node
in Fy for learning the input pattern in F.

Parameters: Each field’s dynamics is determined by choice parameters a >
0, learning rate parameters 8 € [0, 1], contribution parameters v € [0,1] and
vigilance parameters p € [0, 1].

The dynamics of the GVM network can be considered as a system of contin-
uous resonance search processes comprising the basic operations as follows.
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Code activation: A node j in F5 is activated by the choice function

|x A wj|
=y KAV (1)
o+ |wj]
where the fuzzy AND operation A is defined by (p A q); = min(p;, q;), and the
norm |.| is defined by |p| = )", p; for vectors p and q.

Code competition: A code competition process follows to select a F» node
with the highest choice function value. The winner is indexed at J where

T; = max{T} : for all Fnode j}. (2)

When a category choice is made at node J, y; =1; and y; =0 for all j # J
indicating a winner-take-all strategy.

Template matching: A template matching process checks if resonance occurs.
It checks if the match function my of the chosen node J meets its vigilance

criterion such that

_ |x A w |

my > p. (3)

|

If the vigilance constraint is violated, a mismatch reset occurs and 7T; is set
to 0 for the duration of the input presentation. Another F» node J is selected
using choice function and code competition until a resonance is achieved. If no
selected node in F5> meets the vigilance, an uncommitted node is recruited in Fj
as a new category node.

Template learning: Once a resonance occurs, the weight vector w; is modified
by the following learning rule:

wi ™ = (1w Al wi). )
Activity readout: The chosen F5 node J may perform a readout of its weight
vectors to an input field F; such that x* = w.

Using the described network dynamics, our memory model is able to gen-
eralize video representations and store memories incrementally at the category
field F5. For our framework, we use the mean pooled vector, fc,ean as inputs to
the GVM model. The mean pool vector, fcmeqn is normalized by dividing the
vector by a scaling factor of M, subjected to a ceiling of one. The normalized
mean pool vector Iorm, i complement coded such that the input vector x is
Thorms Inorm | (8192 dimensional vector). The overall learning process is sum-
marized in Algorithm 1. Each created category node weight vector wj represents
a new memory of a class video features. During learning, the closeness of which
the category nodes are categorized are determined by the vigilance parameter
p. The higher the vigilance parameter, the more specific the category nodes are
learned.
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Algorithm 1. Encoding of the Generalized Video Memory

1: Input: The normalized mean pooled vector

2: Present the normalized mean pooled vector to the video field at F}

3: Perform code activation in the category field F> > see (1)
4: repeat

5: Perform code competition and template matching > see (2 & 3)
6: until resonance occurs > see (3)
7: Perform template learning > see (4)

To recall the generalized video memory, the vigilance parameter, p is set
to zero. The recalling process is described in Algorithm 2 for retrieving the
matching memory x* from the input x. The retrieved memory represents a
generalized feature most similar to the input. With the use of complement coding
and fuzzy AND operations, the memory node is able to represent the range values
of the stored category [3]. The generalized memory is complement coded, such
that x* =[w*, w?], where w* is the lower bound of the memory vector, and
1 —w? is upper bound of memory vector. We averaged both the upper and lower
bound memory vector and rescaled the vector back by M to form the generalized
memory vector, m*. In this case, m* has a dimension of 4096. The vector m* is
used as part of the input to the caption decoder as described in later sections.

Algorithm 2. Retrieval of the Generalized Video Memory
1: Input: The mean pooled vector to the video field

2: Perform code activation in the category field > see (1)
3: Select the winner code with highest choice value > see (2)
4: return The readout of the winner’s memory x*

3.3 Caption Decoder

A standard RNN in principle is able to map a sequence of inputs to a sequence
of outputs. For our work, a RNN is useful in mapping out a sequence of words to
form the video description. Practically however, training a standard RNN with
long-term dependency is difficult as it suffers from vanishing gradient problem [1].
The Long Short-Term Memory (LSTM) [14], a variant of RNN addresses the
vanishing gradient problem with nonlinear gating units and memory cell ¢; to
maintain its state over time. As there are many variants of LSTM [11], to avoid
confusion, we denote the exact LSTM equations used in our work. The LSTM
unit used are described by Graves et al. [10]. The vector formulas for the LSTM
unit are written as:

iy = o(Wigzy + Winhe—1 + ;)

Jt = 0(Wyexs + Wyephy 1 +by)

ot = o(Wozwt + Wonhi—1 + bo) (5)
= fi ©ci—1 + it © ¢(Wepwy + Wephy—1 + be)

ht =01 © ¢(ct)
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where ¢ is the sigmoid function, ¢ is the hyperbolic tangent function and ®
denotes pointwise multiplication of two vectors. The LSTM weight matrices are
denoted byW;;, and its biases bj. Each LSTM unit has three gates to compute
the hidden state h;. For an input of z; at time step ¢, the input gate i; controls
how much of the input x; is to be considered. The forget gate f; controls how
much to forget on the previous memory state ¢;_1. The output gate o; controls
how much information in the memory state ¢; is to be transferred to the hidden
state hy.

To have a direct comparison with the original mean-pool technique, we use
the same two-layer LSTM designs as described in the mean pool approach [34].
A two-layer LSTM captures the structure of time series more naturally than a
single-layer LSTM [13]. From the mean pool method, the mean pooled vector
fCmean is repeatedly presented as inputs to the LSTM caption decoder. In our
work, during training, we present the generalized memory vector, m* as the first
input of the sequence, followed by the fcpean vector repeatedly. This allows to
prime the LSTM model to learn similar experiences from the generalized video
memory vector, while learning the exact representation from the mean pooled
vector. The LSTM model outputs the hidden state per time step. To predict a
word from the hidden states, a word embedding is trained. The word embedding
formula is represented as:

2 = O(Why +1) (6)

where z; is the predicted word output vector, W is the word embedding vector, b
is the bias for the embedding vector, and A, is the hidden states from the second
LSTM layer. The words are represented as one-hot vectors y; with a vector
length D, where D is the size of the vocabulary. The sentence is prepended with
a start-of-sentence (<S>) token, and appended with a end-of-sentence </S>)
token. We use the softmax function to compute the probability distribution of
the words w:

exp(Wyhy + )
ZU}'ED exp(W’w’h’t + b)

During training, the LSTM model maximizes the log-likelihood objective func-
tion which is formulated as,

p(wlhe) = (7)

T
moaxz log p(yt|2e, yi—1;0) (8)

t=1

where 6 denotes the model parameter which is to be optimized over the entire
training data set.

During testing, the first input of the sequence to the LSTM model is the
generalized memory vector m*, followed by the fcpeqn vector repeatedly until
the (</S>) token is emitted.
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4 Experiment

4.1 Data Set

The YouTube2Text data set [5] contains 1,970 YouTube video clips annotated
with multiple language descriptions. The descriptions are created by crowd sourc-
ing using the Amazon’s Mechanical Turk. We use only the English descriptions
from the data set, which is about 80,000 video-sentence pairs. Each clip is usu-
ally less than 10 seconds long which depicts a main activity, accompanied with
about 40 sentences. Following mean pool approach [34], we split the data set by
randomly picking a training set of 1,200 videos, a testing set of 670 videos and
a validation set of 100 videos.

4.2 Preprocessing

Video Preprocessing: We conducted frame sampling for one in every ten
frames. We resized the sampled frames to 224 x 224 pixels, which is the input
size for the VGG16 network. The video clips are zero padded to maintain the
original aspect ratio.

Text Preprocessing: We tokenized the sentences, removed punctuations and
converted the words to lower case. The vocabulary size is about 5,000 after
removal of rare words that appeared less than four times. Due to batch training,
sentences are padded with </S>) tokens to align with the longest length of the
word sequence of each batch.

4.3 Training Details

For the visual encoder, we fix the weights of the VGG16 network to reduce
computation work load. For each video, the outputs vectors of the VGG16 fc2
layer are mean pooled to form the mean pooled vector.

To learn the generalized video memory vector, the mean pooled vectors are
used for memory encoding. The scaling factor M for normalization is set to 64.0.
One shot learning is enabled by setting the GVM’s learning rate 5 to 1.0. The
choice parameter, « is set to 0.001. With the vigilance parameter p set at 0.99,
GVM learns a total of 576 categories after learning training set.

The training of the caption decoder proceeds after learning the GVM’s mem-
ories. The two-layer LSTM caption decoder has 1,000 hidden units for each layer.
To avoid over-fitting, a dropout of 0.5 is used on both the inputs and the out-
puts of both LSTM layers. Training of the caption decoder with GVM model
is described in Sect. 3.3. We stopped training the LSTM caption decoder when
the validation loss does not improve. For our baseline comparison, we have also
replicated the results using the mean pool method with VGG16 video encoder
with our data set splits.
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4.4 Evaluation Metrics

We use two model-free evaluation metrics, BLEU [20] and METEOR [7] to eval-
uate the results against the ground truth sentences. The two metrics are chosen
as most prior work with YouTube2Text data set report their results with BLEU
and METEOR scores, therefore a direct comparison can be done. Both BLEU
and METEOR are typically used for evaluating machine translation and image
captioning tasks. Generally, the higher the scores, the better the correlation of
the predicted descriptions are against human judgement. We employed the codes
from the Microsoft COCO Caption Evaluation Server [6] to obtain both BLEU
and METEOR scores.

5 Experimental Results

The evaluation metric scores are shown in Table 1. While other methods may
have trained with more image/video captioning data set, we only compare the
evaluation results that are trained purely on the YouTube2Text data set, with
the use of pre-trained visual encoder. We report the scores of the compared algo-
rithms along with the type of visual encoder as the evaluation scores can differ
by employing a different visual encoder. The BLEU scores for both the mean
pool (VGGNet) and the S2VT methods are omitted as they are not reported in
the original work. The results are shown in Table 1.

5.1 Compared Algorithms

The following describes briefly on the compared algorithms:

— Factor Graph Model (FGM) [32]. FGM first employs vision recognizers to
obtain the subject, object, activity and place (SOVP) elements. The Factor

Table 1. Evaluation results based on the YouTube2Text data set, with compared
methods with its visual encoder. (*) represents our replicated results.

Model BLEU@4 | METEOR
FGM 13.68 23.9
Mean pool (AlexNet) 31.2 26.9
Mean pool (VGGNet) - 27.7
Our Experiments

Mean pool (VGGNet) * 42.5 27.6
GVM (VGGNet) 42.5 28.1
Recent Methods

S2VT (VGGNet) (AlexNet) - 29.8
LSTM-E (VGGNet) (C3D) 45.3 31.0
HRNE-Attention (GoogLeNet) (C3D) | 46.7 33.9
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Graph Model further refines the co-occurring SOVP elements by maximum
a posteriori (MAP) estimation. A template is used for sentence generation
based on the refined SOVP elements.

— Mean Pool (AlexNet) [34]. The visual features are extracted using
AlexNet. The features are averaged (mean pooled) across the frames of the
entire video. The mean pooled feature is used as the input to the LSTM
caption decoder continuously until a end-of-sentence token is omitted.

— Mean Pool (VGG) [33]. Similar to the above, with the exception of utilising
the VGGNet visual encoder.

- S2VT (VGG & AlexNet) [33]. The VGGNet is used to extract RGB
features, and the AlexNet for to extract optical flow features. Both RGB
and flow features are presented as the input to an encoder-decoder model
of LSTM. The first encoding phase processes the sequences of the visual
features. The second decoding phase generates the captions until a end-of-
sentence token is omitted.

— LSTM-E (VGG & C3D) [19]. Visual-semantic embeddings using LSTM
are used to maximize the probability of next word given the previous word and
visual content. A joint learning of relevance and coherence objective functions
are utilized to minimize losses between the visual and textual content.

— HRNE-Attention (GoogLeNet & C3D) [18]. The Hierarchical Recurrent
Neural Encoder (HRNE) exploits the temporal structure of the video. The
2-layer hierarchical LSTM structure is analogical to a convolutional network.
Information flows to the next layer by a fixed time step. Along with attention
mechanism, HRNE decodes the captions from the video feature sequences.

As the data set split of the training, testing and validation set is randomly
picked, it may affect the metric scores when compared to other work due to the
data set differences. For a fair comparison, we also replicated the result of the
mean pool (VGG16) approach using our data set splits.

5.2 Analysis

With training done on the YouTube2Text data set alone, our framework with
GVM model is able to achieve a METEOR score of 28.1. This is better than
the reported baseline method Mean pool (VGG) at 27.7 and our replicated
result at 27.6. It should be noted that these results are trained only with the
YouTube2Text data set. The result shows that the GVM model is able to enhance
the video captioning quality. While the magnitude of the evaluation scores may
not be intuitive to interpret, by comparing with the latest algorithms that com-
bines multiple visual features, we can gauge that minor differences in score do
make significant contribution to the quality of captions.

When inspecting the test output, there are a number of sentences that do not
contain the verbs of the activities. We attribute this issue to the mean pooling
method as it does not fully capture the order of visual events which is important
for activity recognition.
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Test Example (1) Test Example (2) Test Example (3)

GVM: a hamster is eating a seeds GVM: a band is playing on stage GVM: a man is shooting a gun
BL: a hamster is cutting seeds BL: man is playing BL: a man is shooting a

GT: A hamster is eating sunflower seeds GT: Aman is dancing on a stage GT: Someone is shooting a gun

' \4(,_

Test Example (4) Test Example (5) Test Example (6)

GVM: a cat is meowing GVM: a man is cutting a pineapple GVM: a woman is dancing

BL: a cat is licking BL:amanisaa BL: a woman is eating

GT: Acat is licking its lips GT: Aman is seasoning a chicken GT: Aman is serving some food

Fig. 3. Example 1 to 3 (top left to right) and Example 4 to 6 (bottom left to right)
with screenshots of the video against text generated by the Generalized Video Memory
Network (GVM); the replicated mean pool baseline (BL); and the ground truth (GT).

The one drawback of the ART based network is that the category nodes
learned are dependent on the order of which the inputs are presented. This issue
is mitigated by shuffling the order of the training data during the encoding stage
of the GVM network.

5.3 Test Examples

Figure 3 shows some examples of the generated captions with our framework
using GVM, the replicated mean pool method and the ground truth. Interest-
ingly for test example 2, while the focus is on the dancing man, GVM is able to
pick up the background activities depicting a group of musicians performing on
the stage. Our current framework do not have the attention mechanism which
may improve the focus of the subjects in the video clips. For the test example 4
and 5, while our GVM model captions are invalid, it generates related captions
that are similar to the video scene. The invalid output suggests a down side of
over-generalization of the video memory.

6 Conclusion

We have proposed a memory framework GVM for video captioning. Our exper-
iments have shown that GVM is able to enhance on the BLEU and METEOR



Learning Generalized Video Memory for Automatic Video Captioning 199

scores using a similar baseline design based on mean pooling. We have demon-
strated the potential of enhancing the accuracies of a deep learning model using
memory modules based on ART. We believe by integrating the concepts inves-
tigated in this paper to the latest state-of-the-art video captioning architec-
ture, we can further enhance the scores as well. In future work, we will like to
introduce GVM into the latest state-of-the-art methods and expand the use of
multi-channel input fields to represent multi-modal memories.
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