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ABSTRACT
Densely populated cities face great challenges of high transportation
demand and limited physical space. Thus, in these cities, the public
transportation system is heavily relied on. Conventional public trans-
portation modes such as bus, taxi and subway have been globally
deployed over the past century. In the last decade, a new type of
public transportation mode, shared bike, emerged in many cities.
These shared bikes are deployed by either government-regulated or
profit-driven companies and are either station-based or station-less.
Nonetheless, all of them are designed to better solve the last-mile
problem in densely populated cities as complements to the conven-
tional public transportation system. In this paper, we analyse the pub-
lic transportation patterns in a densely populated city, Chicago, USA,
using comprehensive datasets covering the transportation records
on shared bikes, buses, taxis and subways collected over one year’s
time. Specifically, we apply self-regulated clustering methods to re-
veal both the majority transportation patterns and the irregular ones.
Other than reporting the autonomously discovered transportation
patterns, we also show that our method achieves better clustering
performance than the benchmarking methods.
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1 INTRODUCTION
Cities exist to provide access to people, goods, services and infor-
mation that the better and more efficient this access is, the greater
the social and economic benefits urban living brings. Due to various
reasons, a successful city always attracts more and more residents
and thus becomes more and more densely populated. To achieve
better sustainability, a densely populated city must employ effective
management and design strategies to minimize overcrowding. As
such, public transportation systems play the most crucial role in
the provision of spatial accessibility, which provide the residents an
affordable and efficient way of transportation. Over the past century,
conventional public transportation modes such as buses, taxis and
subways have been globally deployed. In the last decade, a new type
of public transportation mode, shared bikes, emerged in many cities
along with the emerging trend of green transport.

Bike-sharing system is a type of service wherein bicycles are
available for shared usage among various individuals on a short-term
rental basis. Although some shared bikes are occasionally rented
for sightseeing or other entertaining purposes, for most of the time,
the shared bikes are rented by those people who need to travel
a considerably long distance, which may be too time-consuming
and tedious by walking. Therefore, bike-sharing problems are often
considered as the last-kilometer transportation problems.

The shared bikes are deployed by either government-regulated or
profit-driven companies and are either station-based or station-less.
Regardless of the regulating company of the shared bikes, the rental
cost is made affordable to attract more users. The station-based
shared bikes are relatively better managed as rented bikes have to be
returned to vacant slots. However, the fixed bike stations may cause
inconvenience due to supply-demand imbalance in terms of location
difference and time variance. On the other hand, station-less shared
bikes are much more flexible in terms of rental and return as they
do not specify the fixed locations before and after the usage. Thus,
station-less bikes provide much easier access to the users. However,
due to the loose management, more and more bike abuse cases were
observed in cities with station-less bikes deployed.

In this paper, we analyse the public transportation patterns in
a densely populated city, Chicago, USA. The reason of choosing
Chicago as the city of interest is because its public transportation
datasets are comprehensively available. Specifically, usage records
(in varying level of details) of the station-based shared bikes, buses,
taxis and subways in Chicago are all public available. We include
all the aforementioned public transportation datasets over year 2016

https://doi.org/10.1145/3265689.3265697
https://doi.org/10.1145/3265689.3265697


ICCSE’18, July 28–31, 2018, Singapore, Singapore Di Wang, Evan Wu, and Ah-Hwee Tan

in our study. For the knowledge discovery tool, we select a self-
regulated clustering method named Interest-Focused Clustering
based on Adaptive Resonance Theory (IFC-ART) [24] to reveal
both the majority transportation patterns and the irregular ones. It
is encouraging to find that IFC-ART is able to discover certain pat-
terns associated to, but not embedded in, the underlying datasets,
e.g., weather conditions across different days. Other than reporting
the autonomously discovered transportation patterns, we also show
that our method achieves better clustering performance than the
benchmarking methods in most cases.

The rest of the paper is organized as follows. In Section 2, we
review the related literature. In Section 3, we present the clustering
method used for knowledge discovery. In Section 4, we introduce
the design of the case studies and discuss the findings. Finally, in
Section 5, we conclude this paper and propose future work.

2 RELATED WORK
In this section, we first review the recent studies conducted on the
conventional public transportation systems. We then review the more
recent studies on the emerging transportation mode: shared bikes.
We finally review the studies that consider both the shared bikes and
the conventional public transportation modes.

2.1 Conventional Public Transportation Systems
In this big data era, urban bus companies have collected a tremen-
dous amount of travel data from their passengers over the past years.
Thus, these data enable a series of studies regarding public bus sched-
uling and optimization. For example, Wang et al. [26] proposed a
bus scheduling model considering the time-dependent traffic and
demand. The experimental results show that their proposed model
can significantly reduce the bus waiting time, thus enables the provi-
sion of similar averaged waiting time by despatching lesser number
of buses. Moreover, Gokasar and Cetinel [11] found that bus stop
deployment characteristics affect bus dwelling time. Hence, dwell
patterns of a new bus stop can be estimated by comparing dwell
pattern of a similar bus stop. Therefore, planners can avoid long
dwelling time of a new or old bus stop via reallocation.

As a convenient mode of transportation, taxis have been widely
used in densely populated cities. Different from bus and subway,
a taxi only carries a limited number of passengers, but it provides
a faster and more direct means of transportation with relatively
higher expenses. Please note that private taxis such as Uber are not
considered in this paper and many existing studies mainly due to
the availability of their data. Rao et al. [15] found that the pattern
of empty taxis searching for new passengers is highly similar to the
search pattern of animal’s food-hunting in the wild. Yazici et al. [28]
investigated the influence of weather on the demand of taxis. They
found that the impact of weather is not consistent among different
time periods during the day. More interestingly, inclement weather
increases travel time, but effect due to weather conditions decreases
as the transportation network gets congested.

Due to their rapid speed and large capacity to carry many passen-
gers at once, subway systems play a crucial role in densely populated
cities. Xiong et al. [27] found that the conventional operational strate-
gies may not dynamically meet the ever increasing complexity of

the current subway systems. Moreover, they proposed a new man-
agement and control system for subways to provide monitoring,
forecasting, warning, incident management and real-time schedul-
ing functionalities. As such, the proposed system may improve the
reliability, efficiency, safety and service level of complex subway
systems. On the other hand, Deng and Xu [6] investigated the char-
acteristics of the ridership in different subway stations and found
that the ridership is highly proportional to the surrounding land use.

The afore-reviewed literature focus on the investigations on the
individual usage of the conventional public transportation systems.
In this subsection, we do not plan to review a combination of them,
but will do so after we review the shared bike studies in Section 2.2.

2.2 Recent Studies on Shared Bikes
Most existing academic studies on bike-sharing were mainly focused
on the forecast of bike usages and better dynamic balance between
supply and demand. Wang [25] studied the CitiBike1 dataset and
found that in 2015 there was a dramatic increase in bike-sharing users
that required the expansion of bikes and their docking stations. Thus,
the effectiveness of bike rebalancing strategies became much more
crucial. Moreover, Wang [25] found that long-term subscription
users were less affected by time, weather and temperature difference
but short-term users tend to be highly affected by those factors.

Biehl et al. [1] investigated the Divvy dataset (the same dataset
used in our study, see Section 4) from June 2015 to May 2016 and
found that bike-sharing functions well in communities with well-
integrated transportation systems. Moreover, they found stronger
elasticity effects at the community level for three key socio-spatial
variables, namely the percentage of Black and Hispanic residents
and the duration of the bike-sharing station’s presence. As such, they
suggested that the bike-sharing regulators should pay close attention
to the diffusion of bike-sharing across different areas of the city. Hy-
land et al. [13] found that the shared bike usage in Chicago increases
with the increase of bike-sharing stations within the 1-5 km radius for
members and 2-8 km for non-members. Moreover, they found that
the usage decreases if the bike-sharing stations are too close in prox-
imity, i.e., within 0.8 km for members and 1.6 km for non-member.
Sun et al. [17] found that in Chicago neither traffic accidents nor
traffic congestion influences the shared bike usage. However, bus
accessibility is positively associated with the shared bike’s usage.
Furthermore, both on-street and off-street violent crimes tend to
decrease the usage. In this paper, we also thoroughly investigate the
Divvy dataset, but focus more on the relationship of the shared bike
usage with other public transportation modes.

2.3 Studies on Both Shared Bikes and Others
Brand et al. [2] stated that transport planners and services operators
often fail to include the entire trip of individual commuters into
consideration. Therefore, they investigated both the bus and shared
bike usage data and found that bus systems with higher frequencies
and speeds can attract twice the amount of cyclists on the access
(entry) and egress (exit) sides. At the same time, passengers accept
longer access and egress distances with higher speed and higher
frequency bus services. Fishman et al. [9] found two key barriers
preventing high usage of bike-sharing, namely car convenience and

1URL: https://www.citibikenyc.com/system-data
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Figure 1: Network structure of IFC-ART.

docking station inconvenience (for station-based shared bikes). The
first barrier may be highly correlated to the residential density in the
area and the road congestion conditions. The second barrier mainly
relates to the distance from the docking station to the passenger’s
targeted destination. Shaheen et al. [16] conducted a survey and
found that bike-sharing reduces the number of bus rides in several
cities. Moreover, a large decrease in car usage was observed in all
cities. Campbell and Brakewood [3] found that in New York city,
USA, approximately 50-70% of bus trips have been substituted by
shared bikes. Furthermore, the denser the bike-sharing network is,
more passengers will choose cycling over taking other public transits.
The afore-reviewed literature studied the impact of the emerging
bike-sharing on the conventional public transportation modes. In
this paper, we focus on the usage of the shared bikes and their
relationship with other public transportation modes in Chicago.

3 EMPLOYED CLUSTERING METHOD
In terms of the travel pattern analysis model, we select the Interest-
Focused Clustering based on Adaptive Resonance Theory (IFC-
ART) [24] clustering technique. IFC-ART extends the original Fusion-
ART model [18] by allowing users to identify the interesting features
based on the preliminary understanding of the underlying dataset.

As depicted in Figure 1, IFC-ART consists of a high-level cat-
egory field and K number of low-level feature channels (or input
fields), where K varies according to different clustering tasks and
different datasets. Each committed code in the category field rep-
resents certain learned association among the input features in its
weight vectors. The operations of IFC-ART follow the dynamics of
Fusion-ART [18], which are introduced in the following subsection.

3.1 Fusion-Adaptive Resonance Theory
Before we present the dynamics of Fusion-ART [18], we introduce
all terms involved in its operations as follows.

Input vectors: Let Ik = (Ik1 , I
k
2 , . . . , I

k
L ) denote the input vector,

where Ikl denotes input l to channel k, for l = 1, 2, . . . , L and k =

1, 2, . . . ,K , where L denotes the length of Ik and K denotes the total
number of input fields.

Input fields: Let Fk1 denote an input field that receives Ik and let
xk = (xk1 , x

k
2 , . . . , x

k
L ) denote the activation vector of Fk1 receiving

Ik . Please note that normalization is performed on Ik to obtain xk ,
such that xkl ∈ [0, 1]. If fuzzy ART operations (see (1) and (3)) [4]

are used, xk is further augmented with a complement vector xk ,
where xkl = 1−xkl . This augmentation is named complement coding,
which is applied to prevent the code proliferation problem [23].

Category field: Let F2 denote the category field and let y =
(y1,y2, . . . ,y J ) denote the activation vector of F2, where J denotes
the number of codes in F2.

Weight vectors: Let wk
j denote the weight vector of the jth code

Cj in F2 for learning the input patterns in Fk1 , where j = 1, 2, . . . , J .
Parameters: The dynamics of Fusion-ART are regulated by the

parameters associated with each input field, namely choice param-
eters αk > 0, learning rate parameters βk ∈ [0, 1], contribution
parameters γk ∈ [0, 1], where

∑
γk = 1, and vigilance parameters

ρkj ∈ [0, 1].
ART involves a bottom-up processing of the external information

and a top-down modulation of the internal knowledge. Specifically,
the bottom-up processing consists of the code activation and code
competition processes and the top-down modulation consists of
the template matching, template learning, and knowledge readout
processes. All these five processes are introduced as follows.

Code activation: Given {xk |Kk=1}, for each F2 code j, the corre-
sponding activation Tj is computed as follows:

Tj =
∑
k

γk
|xk ∧wk

j |

αk + |wk
j |
, (1)

where the fuzzy AND operation ∧ is defined by pi ∧qi ≡min(pi ,qi )
and the norm |.| is defined by |p| ≡

∑
i pi .

Code competition: Given {Tj |
J
j=1}, the F2 code with the highest

activation value is named the winner, which is indexed at j∗, where
j∗ = argmaxjTj .

Template matching: Given the winner code Cj∗ , the match be-
tween input pattern and weight vector ofCj∗ is computed as follows:

Mk
j∗ =

|xk ∧wk
j∗ |

|xk |
. (2)

If Cj∗ satisfies the vigilance criteria such that ∀Mk
j∗ ≥ ρkj∗ , a reso-

nance occurs in which leads to the subsequent learning or readout
process. Otherwise, a mismatch reset occurs in which Tj∗ ← 0 until
a resonance occurs at another F2 code.

Template learning: If learning is required, once found Cj∗ that
satisfies the vigilance criteria, its corresponding weight vectors are
updated by the following learning rule:

wk (new)
j∗ = (1 − βk )wk (old)

j∗ + βk (xk ∧wk (old)
j∗ ). (3)

Knowledge readout: If readout is required,Cj∗ presents its weight
vectors to the input fields, such that xk (new) = wk

j∗ .
In terms of clustering, the dynamics of Fusion-ART can be sum-

marized as follows. Based on the similarity measures (see (1)), a
winner cluster can be identified. If the input pattern satisfies the
vigilance criteria of the winner cluster (see (2)), it will be added into
the identified cluster (see (3)). Otherwise, Fusion-ART will select
another winner until the vigilance criteria are satisfied and learn
accordingly. At the end of the autonomus clustering process, each
committed code in the category field represents one formed cluster.

3.2 ART Clustering with Focused Preferences
To adaptively regularize the vigilance parameters while maintaining
the focus on the interesting or important features, IFC-ART self-
regulates its vigilance parameters associated with each feature and
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each cluster under a generic framework. In addition to the standard
set of parameters used in Fusion-ART, IFC-ART employs two ad-
ditional parameters, namely the magnifying parameter ϕ, which is
used to define the difference between the normal and interesting fea-
tures, and the regularization parameter δ , which is used to adaptively
tune the vigilance parameters during the clustering process.

The algorithm of IFC-ART is summarized as follows. Based on
the basic understanding of the underlying dataset and the clustering
task, first of all, among the K number of input fields of IFC-ART,
we can identify the set of interesting features IF. Then the remaining
ones form the set of normal features NF, such that |IF| + |NF| = K .
Given the initial vigilance parameter value ρ0 ∈ [0, 1], the vigilance
of an uncommitted code is computed as follows:

ρkJ =

{
min{(1 + ϕ)ρ0, 1}, if k ∈ IF,
ρ0, otherwise,

(4)

where ϕ refers to the magnifying parameter and ϕ ∈ (0, 1). As such,
the difference between the interesting or preferred features and the
normal ones is preserved during the initial formation of all clusters.

Furthermore, during the clustering process, the vigilance parame-
ters are also self-regulated according to the learned weight vectors
and the input patterns. Specifically, when a mismatch reset occurs
during template matching, other than setting the activation value Tj∗
to 0 during the presence of the current input pattern, for every input
field that violates the vigilance criterion, the corresponding vigilance
parameter is adjusted as follows:

ρ
k (new)
j∗ = Mk

j∗ + δ , (5)

where δ is a significantly small number and δ > 0. This particular
regularization of the vigilance parameters is named match tracking.
Its rational is to minimize the conflict between the clusters to a
minimum degree defined by δ .

The overall algorithm of IFC-ART is summarized in Algorithm 1.
For more details, please refer to [24].

4 ANALYSIS OF SHARED BIKE USAGE
Clustering methods have been widely applied to discover the intrin-
sic patterns embedded in various type of data, such as data analytic
in general [14, 20], financial predictions [19, 22], lifestyle differenti-
ation [24], disease diagnosis [21], etc. In this paper, we investigate
the public transportation data collected in Chicago, USA, across
the whole year of 2016. Specifically, we obtain the shared bike data
from the Divvy dataset2 and the bus, taxi and subway data from
Chicago Transit Authority data portal3. In the following subsections,
we first introduce the general setups and then present the various
case studies by investigating the aforementioned dataset(s).

4.1 Case Study Setups
In all the aforementioned datasets, the location is always represented
in terms of latitude and longitude. Therefore, we adopt the haversine
formula to compute the distance between two locations:

2URL: https://www.divvybikes.com/system-data
3Bus: https://data.cityofchicago.org/Transportation/CTA-Ridership-Bus-Routes-Daily-
Totals-by-Route/jyb9-n7fm; Taxi: https://data.cityofchicago.org/Transportation/Taxi-
Trips/wrvz-psew; Subway: https://data.cityofchicago.org/Transportation/CTA-
Ridership-L-Station-Entries-Daily-Totals/5neh-572f

Algorithm 1 Interest-Focused Clustering based on ART

Require: ρ0 ∈ [0, 1], ϕ ∈ [0, 1], δ > 0, αk > 0, βk ∈ [0, 1],
γk ∈ [0, 1], and

∑
γk = 1, where k = 1, 2, . . . ,K and K denotes

the number of input fields
1: Compute ρk1 for the uncommitted code in F2 {see (4)}
2: Initialize IFC-ART with K , αk , βk , γk , and ρk1
3: for all {Ik |Kk=1} in the given dataset do
4: obtain {xk , xk |Kk=1}, such that xkl ∈ [0, 1], where l =

1, 2, . . . , |Ik |, and present the pattern to Fk1
5: for all Cj in F2, where j = 1, 2, . . . , J and J denotes the

number of clusters in F2 do
6: compute Tj {see (1)}
7: end for
8: loop
9: identify j∗, such that j∗ = argmaxjTj

10: compute Mk
j∗ {see (2)}

11: if ∀Mk
j∗ ≥ ρkj∗ then

12: exit loop
13: else
14: Tj ← 0
15: for all Mk

j∗ < ρkj∗ do

16: ρ
k (new)
j∗ ← Mk

j∗ + δ {see (5)}
17: end for
18: end if
19: end loop
20: if j∗ = J {winner is an uncommitted cluster} then
21: wk

J = {x
k , xk }

22: J ← J + 1 {create a new uncommitted cluster}
23: wk

J ← (1, 1, . . . , 1) and wk
J ← (1, 1, . . . , 1)

24: assign ρkJ {see (4)}
25: else
26: update wk

j∗ {see (3)}
27: end if
28: end for

dh = 2r arcsin(
√
sin2(

τ2 − τ1
2
) + cos(τ1) cos(τ2) sin2(

λ2 − λ1
2
)),

(6)
where r denotes the radius of the earth, τi denotes the latitude of
location i, and λi denotes the longitude of location i. Furthermore,
the bearing between the two locations is computed as follows:

θ = arctan(sin(∆λ) cos(τ1) cos(τ2) sin(τ2)−sin(τ1) cos(τ2) cos(∆λ)),
(7)

where ∆λ and ∆τ represent the difference between the two locations
in terms of latitude and longitude, respectively.

Because there are no ground truth in travel patterns, the clustering
results cannot be evaluated using accuracy and entropy types of
measures. For the internal evaluation of clustering results, we select
the Davies–Bouldin Index (DBI) [5] as the measuring metric:
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DBI =
1
J

J∑
i=1

max
i,j

(
σi + σj

d(mCi ,mCj )

)
, (8)

where σi denotes the average distance of all elements in the ith
cluster to its centroid mCi and d() computes the Euclidean distance
between two vectors. DBI combines the measure of both intra-cluster
similarity (numerator of the max term in (8)) and inter-cluster similar-
ity (denominator). A smaller DBI value suggests better performance.

In each case study, four clustering methods of the ART family are
applied. With regard to Algorithm 1, the overall algorithm imple-
ments IFC-ART. If Step 1 is bypassed, the rest procedures implement
Fusion-ART-WMT (with match tracking). If Step 16 is bypassed,
the rest procedures implement Fusion-ART-WIF (with interesting
features). If both steps are bypassed, the rest procedures implement
Fusion-ART. Other than the four ART-type clustering methods, K-
means [12], Spectral Clustering [7], BIRCH [29], DBSCAN [8] and
Affinity Propagation [10] are also used for benchmarking purpose.
However, only K-means and the ART-type clustering methods are
applied to every case study. The other clustering methods are not able
to handle datasets comprise more than tens of thousands samples.

For all the ART-type clustering methods, the following common
parameter values are used invariantly: αk = 0.01, which is mainly
used to avoid NaN in (1), and γk = 1/K , which equally assigns the
contribution of each feature. For IFC-ART, we simply assign ϕ in
(4) to γk and assign δ in (5) to 0.001. Furthermore, we apply a grid
search method to obtain the best clustering results. Specifically, we
vary the value of ρ0 (see (4)) from 0.1 to 0.7 (0.8 and 0.9 normally
require significantly longer run time with inferior results, see [24])
with an increment of 0.1 and βk ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}
(0.001 and 0.005 are only used for datasets with 500,000+ samples).

Commuters’ travelling patterns highly depend on the day type, i.e.,
weekday, weekend and holiday. Therefore, for all the case studies
(see the following subsections), we separate the workdays and non-
workdays and perform respective investigations.

4.2 Case Study 1: Daily Shared Bike Usage
First of all, to get a feel of the usage of shared bikes on a daily
basis, we extract two features, namely the total number of bike
rental transactions and the averaged trip duration within the day.
Moreover, the number of transactions is selected as the interesting
feature because it reflects the utilization of the shared bikes. The
best clustering of all benchmarking models are reported in Table 1.

Although it is clearly shown in Table 1 that DBSCAN obtains the
best DBI scores, it discards a huge amount of data samples, i.e., 55%
and 72% of the data samples are treated as outliers, respectively, and
are removed from the final clustering results. Therefore, in this case
study, Fusion-ART-WIF performs the best.

The clustering results obtained by Fusion-ART-WIF are reported
in Table 2. Although we only use the Divvy dataset in this case study
for pattern discoveries, we link the obtained clustering results to the
daily weather conditions4. First of all, we found through correlation
analysis that among all the weather conditions, such as humidity,
wind, visibility, rain, fog, thunderstorm, hail, etc., only temperature
and snow are highly correlated to the daily shared bike usage. It

4URL: https://www.wunderground.com/history/daily/KORD

Table 1: Performance Comparison on Daily Shared Bike Usage

Model #cluster DBI #cluster DBI
Workdays Non-Workdays

K-means 2 0.45 2 0.40
Spectral Clustering 5 0.76 5 0.95

BIRCH 3 0.52 3 0.51
DBSCAN 3 0.24 2 0.08

Affinity Propagation 10 4.89 6 0.88
Fusion-ART 2 0.45 2 0.38

Fusion-ART-WMT 2 0.45 2 0.38
Fusion-ART-WIF 2 0.44 3 0.33

IFC-ART 2 0.45 3 0.33

Table 2: Clustering Results in Case Study 1

ID # trip count duration temperature snow% depth
Workdays (255 samples)

1 141
5961.29 685.30 3.66

24%
1.40

(2625.90) (82.74) (8.41) (3.54)

2 114
15014.87 950.36 21.50

0%
0

(2007.49) (82.43) (4.85) (0)
Non-Workdays (111 samples)

1 57
3509.27 842.60 2.46

25%
1.00

(2485.37) (183.05) (7.39) (2.93)

2 53
15531.56 1343.93 20.21

0%
0

(2928.56) (107.69) (4.65) (0)

3 1
24989 1406.70 19

0%
0

(-) (-) (-) (-)

# denotes the number of data samples in the cluster; the number within ()
denotes standard deviation; snow% denotes the percentage of the days
that snowed; and depth denotes the averaged depth of the snow in cm.

is encouraging to learn that our clustering algorithm may identify
partial weather conditions merely based on the daily shared bike
usage that all the snowing days are grouped within one cluster only.

Furthermore, the ability of our proposed clustering method to
autonomously identify the outlier(s) is well illustrated in the last row
of Table 2. It is shown that one particular day, 16th July 2016, which
has similar trip duration (the weather conditions as well) with Cluster
#2 but much higher number of shared bike rental transactions, is con-
sidered as a cluster itself. Upon closer inspection, quite a number of
events5 were organized on that Saturday, such as “2016 Blackhawks
Convention", “Summer on Southport Art Festival", “Celebrate Clark
Street Festival", and many more. These popular summer events con-
tributed significantly more number of shared bike rental transactions.

4.3 Case Study 2: Rental and Return Behaviours
Normally, densely populated cities have morning and afternoon
peak hours, which are highly correlated to the office hours during
workdays. In this subsection, we investigate whether such peak
hours also exist in shared bike rentals. Specifically, we extract three
features from the Divvy datasets, namely the transaction time (for
both rentals and returns) and the location (both latitude and longitude

5URL: http://www.chicagonow.com/show-me-chicago/2016/03/chicago-summer-
festivals-2016-calendar-of-summer-festivals-and-events/
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Table 3: Performance Comparison on Rentals and Returns

Model #cluster DBI #cluster DBI
WDays–Rental WDays–Return

K-means 2 0.43 2 0.43
Fusion-ART 3 1.99 4 2.81

Fusion-ART-WMT 4 1.86 4 2.36
Fusion-ART-WIF 3 1.50 4 2.15

IFC-ART 5 1.75 5 1.94
Non-WDays–Rental Non-WDays–Return

K-means 2 0.62 2 0.62
Fusion-ART 6 2.31 3 1.85

Fusion-ART-WMT 6 2.75 4 2.45
Fusion-ART-WIF 6 1.78 3 2.08

IFC-ART 4 2.76 4 2.48

(a) Workdays (b) Non-Workdays

Figure 2: Histogram for shared bike returns.

(a) Layout of shared bike
stations in Chicago

(b) Heat-map in the morn-
ing (Cluster #2, Workdays–
Rental in Table 4)

(c) Heat-map in the evening
(Cluster #1, Workdays–
Rental in Table 4)

Figure 3: Layout of shared bike stations and heat-maps.

for rentals and returns). Moreover, the transaction time is selected
as the interesting feature. The best clustering results are reported in
Table 3. Please note that except K-means and the ART-type methods,
the other clustering methods are not able to handle this huge amount
of data samples (3,595,383 in total).

Although K-means and Fusion-ART-WIF obtain the best over-
all DBI scores, they do not produce consistent number of clusters
between rental and return (these behaviours should be coherent).
In view of this, IFC-ART produces more meaningful clusters (see
Table 4). Please note that two features, namely distance between the
rental and return stations and the rental duration , which are not used
in the clustering process, are also included for discussions.

Table 4: Clustering Results in Case Study 2

ID #transactions time (hh:mm) distance (km) duration (s)
Workdays–Rental (2,546,877 samples)

1 1,224,103
17:16 1.98 926.06
(2:51) (1.51) (1930.74)

2 813,347
09:19 1.94 857.65
(3:04) (1.49) (1513.09)

3 508,182
14:28 1.87 780.27
(4:31) (1.43) (1435.24)

4 1,144
07:19 1.27 655.45
(1:53) (1.05) (1613.40)

5 101
03:29 1.69 2598.97
(2:21) (1.20) (9369.72)

Workdays–Return (2,546,877 samples)

1 1,241,427
17:33 1.99 925.07
(2:57) (1.52) (1701.20)

2 1,074,467
10:32 1.90 847.31
(3:51) (1.43) (1758.32)

3 230,800
14:52 1.93 734.31
(4:32) (1.51) (1554.36)

4 93
01:13 2.05 1059.99
(1:15) (3.10) (1711.61)

5 90
02:51 2.04 3328.56
(2:09) (2.06) (10878.01)

Non-Workdays–Rental (1,048,506 samples)

1 596,001
16:14 2.06 1267.35
(3:43) (1.60) (2347.46)

2 450,416
12:15 2.08 1297.67
(4:02) (1.62) (2069.88)

3 2,036
14:45 1.18 1326.05
(3:41) (1.02) (3948.85)

4 53
02:02 2.35 4324.74
(1:32) (3.55) (14843.32)

Non-Workdays–Return (1,048,506 samples)

1 766,911
16:11 2.08 1284.20
(3:27) (1.63) (2140.64)

2 280,373
10:54 2.06 1270.00
(4:23) (1.56) (2475.90)

3 1,107
17:27 1.30 1451.10
(2:44) (1.37) (4077.47)

4 115
02:32 2.21 1871.45
(1:56) (2.55) (7564.65)

As shown in Table 4, the clustering results are quite meaningful
and coherent, e.g., for the largest clusters in workdays (rental and
return, respectively), they are close in size (1,224,103 vs. 1,241,427)
and the time of rental plus the duration equal to the time of return
(17:16+0:15=17:33). Moreover, we can observe that although the
distance between rental and return stations does not significantly vary
with the day type, i.e., workday or non-workday, the duration of the
rental varies significantly. This finding suggest that the shared bikes
are more often rented for leisure usages on non-workdays rather
than commuting purposes on workdays. The histogram on shared
bike returns (see Figure 2) also supports the same finding and shows
the peak returns in workdays are observed around 8:00–8:30 in the
morning and 17:00–17:30 in the afternoon, as observed in other
public transportation modes as well. Furthermore, the shared bike
station deployments in Chicago, the major morning and afternoon
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transaction patterns in workdays are visualized in Figure 3. The
center areas of Chicago are well highlighted in Figures 3(b) and 3(c)
(along the coast). Moreover, the shared bike rental patterns in the
morning and evening peak hours are quite coherent.

4.4 Case Study 3: Travel Pattern Analysis on All
Public Transportation Modes

In this subsection, we report the travel pattern analysis on the com-
bination of all public transportation methods6, namely shared bike,
bus, taxi and subway. To investigate the impact of shared bikes on
all the other public transportation modes, we first find their common
routes. Specifically, for each pair of the shared bike stations, between
which a rental transaction has been recorded, we find whether the
same route exists for taxi, bus and subway trips. As long as both
the starting location (i.e., taxi pick-up location, boarding bus stop,
and boarding subway station) and ending location are within 300m
radius of the shared bike stations, respectively, we consider it as the
same route. The distance of 300m is intuitively selected because
it can be approximately converted to five minutes’ walking, which
is tolerable and comfortable for most commuters. Furthermore, we
remove the shared bike trips of less than 1km. By doing this, we
try to remove those rental usage for leisure purposes, e.g., in certain
cases, the distance between the rental and return stations is or near
to 0km. Furthermore, a relatively longer distance is required in the
investigation of the complementary or substitution effects of shared
bikes on the conventional public transportation methods, e.g., for a
distance of less than 1km, few people may choose to take a taxi.

Because the travel behaviours are different between peak and
non-peak hours, we divide the shared bike trips according to their
rental hours. Specifically, we apply the threshold of 70,000 transac-
tions to determine the peak hours. As such, the workdays-AM-peak
and workdays-PM-peak trips took place during 7:00–9:00am and
15:30–19:30pm, respectively (see Figure 2(a)). The remaining ones
on workdays are grouped together as the workdays-non-peak trips.
Furthermore, the non-workdays trips are not divided as there is no
significant surge in shared bike usage (see Figure 2(b)).

After obtaining the grouped trips, we first try to investigate the
complementary impact of the shared bikes on conventional public
transportation modes. The investigation results show that the shared
bikes indeed function as a novel convenient mode of public trans-
portations that provide affordable-and-easy trips that are not often
found before. For example, the comparison between shared bike and
taxi trips on the same routes (see Table 5) shows that for a majority
number (over 87%) of trips, people may choose to rent a bicycle
regardless of the time period.

To further investigate the substitution impact of shared bikes on
all the conventional public transportation modes, we only keep the
trips sharing the same routes among shared bikes, buses, taxis and
subways. Due to the limitation of the available datasets, for bus and
subway rides, we only know the daily bus ridership (without the
knowledge of boarding and alighting stations) and daily subway
station entry counts (without the knowledge of exit information),
respectively. Therefore, in this case study, we alternatively choose
6Due to the page limitation, in this paper, we do not include the travel pattern
analysis of shared bikes with one or more other public transportation method(s).
However, interested readers may refer to Evan’s Final Year Project report, URL:
https://repository.ntu.edu.sg/handle/10356/74040.

Table 5: Trips on the Same Routes for both Bikes and Taxis

Time period #Bike trips #Taxi trips Relative difference
Workdays-AM-Peak 278,557 28,751 89.68%
Workdays-PM-Peak 555,489 62,957 88.67%
Workdays-Non-Peak 612,634 69,166 88.71%

Non-Workdays 425,523 54,878 87.10%

Table 6: Performance Comparison on All Modes

Model #cluster DBI #cluster DBI
Workdays-AM-Peak Workdays–PM-Peak

(3,200 samples) (5,971 samples)
K-means 4 3.20 3 1.81

Spectral Clustering 5 13.99 5 2.62
BIRCH 3 13.83 3 35.44

DBSCAN 42 6.44 55 9.62
Fusion-ART 7 2.10 14 3.18

Fusion-ART-WMT 7 1.71 12 3.04
Fusion-ART-WIF 7 2.10 6 2.37

IFC-ART 7 1.71 10 2.66
Workdays-Non-Peak Non-Workdays

(6,070 samples) (2,118 samples)
K-means 5 2.35 3 4.43

Spectral Clustering 5 2.43 5 4.23
BIRCH 3 8.70 3 4.55

DBSCAN 59 13.03 50 11.19
Fusion-ART 7 2.32 7 4.14

Fusion-ART-WMT 6 2.37 7 4.14
Fusion-ART-WIF 7 2.44 7 3.60

IFC-ART 7 2.39 7 3.63

the most relevant features that we can extract besides the route infor-
mation, namely the number of bus services sharing the same route
and whether a subway transit (between different subway lines) is
required for the same route. Specifically, the following four features
on all the same routes for various public transportation modes are
used in this case study: (i) the number of shared bike trips recorded,
(ii) the number of taxi trips recorded, (iii) the number of different
bus services available, and (iv) whether a commuter needs to transit
a different subway line. Moreover, features (ii) and (iii) are identified
as interesting features, as they produce more meaningful clusters.
The best clustering results are reported in Table 6 (Affinity Propaga-
tion cannot well handle these datasets that it always generates more
than 500 clusters and produces overly large DBI scores).

Due to the page limitation, we choose not to show the detailed
clustering results in this paper. However, we find the statistical anal-
ysis on the transportation behavioural difference based on whether a
trip requires a subway transit interesting to report. Specifically, we
present the difference in averaged shared bike usage, taxi trips, and
the available bus services per same route that either requires or does
not require a subway transit in Table 7. Moreover, all the entries are
statistically significantly different between zero subway transit and
one or more transits, by applying ANOVA.

Different from Table 5, Table 7 represents those well established
routes that have more available bus services, much more taxi trips,
and relatively much lesser shared bike usage. It is interesting to learn
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Table 7: Pattern Analysis on Different Transportation Modes

Transport transit× transit
√

transit× transit
√

Workdays-AM-Peak Workdays-PM-Peak
Bike trips 1.20 1.35 1.28 1.45
Taxi trips 38.04 22.47 59.19 42.95

Bus services 7.42 2.63 5.76 2.54
Workdays-Non-Peak Non-Workdays

Bike trips 1.34 1.26 1.65 1.42
Taxi trips 106.34 74.53 45.60 52.80

Bus services 6.65 2.77 4.83 2.67

that for peak hours (upper portion of Table 7), there are always more
numbers of shared bike trips if at least one subway transit is required.
On the contrary, for non-peak hours (lower portion of Table 7), the
corresponding numbers are lesser. This finding suggests that during
peak hours, commuters may be more willingly to use shared bikes
if they would spend more time on the transition of subway lines.
Therefore, the regulators of the shared bikes should consider to
deploy more bike stations or increase the amount of available bikes
(either statically or dynamically) across those areas, in which the
commuters cannot be served by one single subway line. As such,
they may generate more revenues by increasing the number of rental
transactions and at the same time, may better alleviate the burden of
other public transportation modes.

5 CONCLUSION
In this paper, we briefly introduce the emerging mode of public trans-
portation in densely populated cities, i.e., shared bikes. Furthermore,
we investigate the public transportation patterns with the focuses
on shared bike usage in Chicago, USA, using all the public trans-
portation data collected in 2016. Specifically, we apply ART-type
clustering methods to reveal both the majority transportation patterns
and the irregular ones. Our clustering methods are shown to produce
more meaningful clustering results. Moreover, the reported results
may be especially useful to the regulators of shared bikes.

Going forward, we aim to investigate the much more dynamic be-
haviours of another type of shared bikes: station-less ones. Moreover,
we also plan to search for comprehensive datasets that comprise the
detailed bus and subway boarding and alighting information.
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