Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

4-2020

A generalized formal semantic framework for smart contracts

Jiao JIAO
Shang-Wei LIN

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Software Engineering Commons

Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6070&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

®

Check for
updates

A Generalized Formal Semantic Framework for
Smart Contracts

Jiao Jiao' ®*I®, Shang-Wei Lin'®, and Jun Sun?

! Nanyang Technological University, Singapore
{jiao0023,shang-wei.lin}@ntu.edu.sg
2 Singapore Management University, Singapore
{junsun}@smu.edu.sg

Abstract. Smart contracts can be regarded as one of the most popular
blockchain-based applications. The decentralized nature of the blockchain
introduces vulnerabilities absent in other programs. Furthermore, it is
very difficult, if not impossible, to patch a smart contract after it has
been deployed. Therefore, smart contracts must be formally verified be-
fore they are deployed on the blockchain to avoid attacks exploiting these
vulnerabilities. There is a recent surge of interest in analyzing and veri-
fying smart contracts. While most of the existing works either focus on
EVM bytecode or translate Solidity contracts into programs in inter-
mediate languages for analysis and verification, we believe that a direct
executable formal semantics of the high-level programming language of
smart contracts is necessary to guarantee the validity of the verification.
In this work, we propose a generalized formal semantic framework based
on a general semantic model of smart contracts. Furthermore, this frame-
work can directly handle smart contracts written in different high-level
programming languages through semantic extensions and facilitates the
formal verification of security properties with the generated semantics.

Keywords: Blockchain - Smart contracts - Generalized semantics

1 Introduction

Blockchain [17] technologies have been studied extensively recently. Smart con-
tracts [16] can be regarded as one of the most popular blockchain-based applica-
tions. Due to the very nature of the blockchain, credible and traceable transac-
tions are allowed through smart contracts without relying on an external trusted
authority to achieve consensus. However, the unique features of the blockchain
introduce vulnerabilities [10] absent in other programs.

Smart contracts must be verified for multiple reasons. Firstly, due to the de-
centralized nature of the blockchain, smart contracts are different from programs
written in other programming languages (e.g., C/Java). For instance, the storage
of each contract instance is at a permanent address on the blockchain. In this
way, each instance is a particular execution context and context switches are
possible through external calls. Particularly, in Solidity, delegatecall executes

© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 75-96, 2020.
https://doi.org/10.1007/978-3-030-45234-6_4

76 J. Jiao et al.

programs in the context of the caller rather than the recipient, making it possible
to modify the state of the caller. Programmers must be aware of the execution
context of each statement to guarantee the programming correctness. Therefore,
programming smart contracts is error-prone without a proper understanding of
the underlying semantic model. Secondly, a smart contract can be deployed on
the blockchain by any user in the network. Vulnerabilities in deployed contracts
can be exploited to launch attacks that lead to huge financial loss. Verifying
smart contracts against such vulnerabilities is crucial for protecting digital as-
sets. One famous attack on smart contracts is the DAO attack [41] in which the
attacker exploited the reentrancy vulnerability and managed to take 60 million
dollars under his control. Thirdly, it is very difficult, if not impossible, to patch
a smart contract once it is deployed due to the very nature of the blockchain.

Related Works. There is a surge of interest in analyzing and verifying smart
contracts [32,12,24,28,26,9,25,31,21,44,20,22,38,36,4,34,43,19,30,35,29,23,46,14].
Some of the existing works focus on EVM [2,47] (Ethereum Virtual Machine).
For instance, a symbolic execution engine called Oyente is proposed in [32] to
analyze Solidity smart contracts by translating them into EVM bytecode. In ad-
dition, a complete formal executable semantics of EVM [24] is developed in the
K-framework to facilitate the formal verification of smart contracts at bytecode
level. A set of test oracles is defined in [26,45] to detect security vulnerabilities
on EVM bytecode. In [21], a semantic framework is proposed to analyze smart
contracts at EVM level. Securify [44] translates EVM bytecode into a stackless
representation in static-single assignment form for analyzing smart contracts.
In other works, Solidity smart contracts are translated into programs in inter-
mediate languages for analysis and verification. Specifically speaking, Solidity
programs are formalized with an abstract language and then translated into
LLVM bitcode in Zeus [28]. Similarly, Boogie is used to verify smart contracts
as an intermediate language in the proposed verifiers in [31,23]. In addition, the
formalization in F* [12] is an intermediate-level language for the equivalence
checking of Solidity programs and EVM bytecode. In [22], a simple imperative
object-based programming language, called SMAC, is used to facilitate the on-
line detection of Effectively Callback Free (ECF) objects in smart contracts. To
conclude, most of the existing approaches either focus on EVM bytecode, or
translate Solidity smart contracts into programs in intermediate languages that
are suitable for verifying smart contracts or detecting potential issues in associ-
ated verifiers or checkers. Furthermore, none of the existing works can directly
handle smart contracts written in different high-level programming languages
without translating them into EVM bytecode or intermediate languages.

Motivations. A direct executable formal semantics of the high-level smart
contract programming language is a must for both understanding and verifying
smart contracts. Firstly, programmers write and reason about smart contracts
at the level of source code without the semantics of which they are required to
understand how Solidity programs are compiled into EVM bytecode in order to
understand these contracts, which is far from trivial. In addition, there may be se-
mantic gaps between high-level smart contract programming languages and low-

A Generalized Formal Semantic Framework for Smart Contracts 77

level bytecode. Therefore, both high-level [27,48,49,15,11] and low-level [24,21]
semantics definitions are necessary to conduct equivalence checking to guarantee
that security properties are preserved at both levels and reason about compiler
bugs. Secondly, even though smart contracts can be transformed into programs
in intermediate languages to be analyzed and verified in existing model checkers
and verifiers, the equivalence checking of the high-level smart contract program-
ming language and the intermediate language considered is crucial to the validity
of the verification. For instance, most of the false positives reported in Zeus [28]
are caused by the semantic inconsistency of the abstract language and Solidity.

As domain-specific languages, high-level smart contract programming lan-
guages, such as Solidity, Vyper, Bamboo, etc, intend to implement the correct
or desired semantics of smart contracts although they may not actually achieve
this. This means that these languages are semantically similar in order to in-
terpret the same high-level semantics of smart contracts. For instance, Vyper is
quite similar to Solidity in spite of syntax differences and the semantics inter-
preted by Bamboo is consistent with that of Solidity (cf. Section 2.1 for details).
Considering this fact, we propose a generalized formal semantic framework based
on a general semantic model of smart contracts. Different from previous works
which either analyze and verify smart contracts on EVM semantics or interpret
Solidity semantics with the semantics of intermediate languages, the proposed
framework aims to generate a direct executable formal semantics of a particular
high-level smart contract programming language to facilitate the high-level verifi-
cation of contracts and reason about compiler bugs. Furthermore, this framework
provides a uniform formal specification of smart contracts, making it possible to
apply verification techniques to contracts written in different languages.

Challenges. The challenges of developing a generalized formal semantic
framework mainly lie in the construction of a general semantic model of smart
contracts. Firstly, different high-level smart contract programming languages dif-
fer in syntax which limits state transitions. Compared with Solidity, Vyper [8]
and Bamboo [1] have more syntax limits to exclude some vulnerabilities reported
in Solidity. For instance, Vyper eliminates gasless send by blocking recursive
calls and infinite loops, and reentrancy attacks by excluding the possibility
of state changes after external calls [40]. In addition, there are no state variables
in Bamboo and each contract represents a particular execution state, making
it possible to limit operations to certain states to prevent attacks. Therefore,
we need to take into account the syntax differences when constructing a gen-
eral semantic model for smart contracts. Secondly, semantics developed with the
general semantic model must be direct to guarantee the validity of the verifi-
cation. For instance, as discussed above, even though intermediate languages
may be a good solution to construct a general semantic model, they introduce
semantic-level equivalence checking issues due to pure syntax translations.

Contributions. In this work, we develop a generalized formal semantic
framework for smart contracts. The contributions of this work lie in three as-
pects. Firstly, our work is the first approach, to our knowledge, to a generalized
formal semantic framework for smart contracts which can directly handle con-

78 J. Jiao et al.

tracts written in different high-level programming languages. Secondly, a gen-
eral semantic model of smart contracts is constructed with rewriting logic in the
K-framework. With the general semantic model, a direct executable formal se-
mantics of a particular high-level smart contract programming language can be
constructed as long as its core features fall into the ones defined in this model.
The general semantic model is validated with its interpretation in Solidity using
the Solidity compiler test set [6] and evaluation results show that it is complete
and correct. Lastly, the generated semantics facilitates the formal verification
of smart contracts written in a particular high-level programming language as
a formal specification of the corresponding language. Together with low-level
specifications [24,21], it allows us to conduct equivalence checking on high-level
programs and low-level bytecode to reason about compiler bugs and guarantee
that security properties are preserved at both levels.

Outline. The remaining part of this paper is organized as follows. In Sec-
tion 2, we introduce smart contracts and the K-framework. The general semantic
model of smart contracts is introduced in Section 3. In Section 4, we take Solidity
as an example to illustrate how to generate a direct executable formal semantics
of a particular high-level smart contract programming language based on the
general semantic model. Section 5 shows the evaluation results of the proposed
framework. Section 6 concludes this work.

2 Preliminaries

In this section, we briefly introduce smart contracts and the K-framework.

2.1 Smart Contracts

Solidity Smart Contracts. Ethereum [2,47], proposed in late 2013 by Vita-
lik Buterin, is a blockchain-based distributed computing platform supporting
the functionality of smart contracts. It provides a decentralized international
network where each participant node equipped with EVM can execute smart
contracts. It also provides a cryptocurrency called “ether” (ETH) which can be
transferred between different accounts and used to compensate participant nodes
for their computations on smart contracts.

Solidity is one of the high-level programming languages to implement smart
contracts on Ethereum. A smart contract written in Solidity can be compiled
into EVM bytecode and executed by any participant node equipped with EVM.
A Solidity smart contract is a collection of code (its functions) and data (its
state) that resides at a specific address on the Ethereum blockchain [7]. Fig. 1
shows an example of Solidity smart contracts, named Coin, implementing a
very simple cryptocurrency. In line 2, the public state variable minter of type
address is declared to store the address of the minter of the cryptocurrency, i.e.,
the owner of the smart contract. The constructor, denoted by constructor (),
is defined in lines 5-7. Once the smart contract is created and deployed?, its

3 How to create and deploy a smart contract is out of scope and can be found in:
https://solidity.readthedocs.io

A Generalized Formal Semantic Framework for Smart Contracts 79

1 | contract Coin {

2 address public minter;

3 mapping (address => uint) public balances;

4

5 constructor () public {

6 minter = msg.sender;

7 ¥

8

9 function mint (address receiver, uint amount) public {
10 if (msg.sender != minter) return;

11 balances [receiver] += amount;

12 X

13

14 function send(address receiver, uint amount) public {
15 if (balances[msg.sender] < amount) return;

16 balances [msg.sender] -= amount;

17 balances [receiver] += amount;

18 }

19 |}

Fig. 1. Solidity Smart Contract Example

constructor is invoked automatically, and minter is set to be the address of
its creator (owner), represented by the built-in keyword msg.sender. In line 3,
the public state variable balances is declared to store the balances of users.
It is of type mapping, which can be considered as a hash-table mapping from
keys to values. In this example, balances maps from a user (represented as an
address) to his/her balance (represented as an unsigned integer value). The mint
function, defined in lines 9-12, is supposed to be invoked only by its owner to
mint coins, the number of which is specified by amount, for the user located
at the receiver address. If mint is called by anyone except the owner of the
contract, nothing will happen because of the guarding if statement in line 10.
The send function, defined in lines 14-18, can be invoked by any user to transfer
coins, the number of which is specified by amount, to another user located at the
receiver address. If the balance is not sufficient, nothing will happen because
of the guarding if statement in line 15; otherwise, the balances of both sides
will be updated accordingly.

A blockchain is actually a globally-shared transactional database or ledger.
If one wants to make any state change on the blockchain, he or she has to cre-
ate a so-called transaction which has to be accepted and validated by all other
participant nodes. Furthermore, once a transaction is applied to the blockchain,
no other transactions can alter it. For example, deploying the Coin smart con-
tract generates a transaction because the state of the blockchain is going to be
changed, i.e., one more smart contract instance will be included. Similarly, any
invocation of the function mint or send also generates a transaction because
the state of the contract instance, which is a part of the whole blockchain, is
going to be changed. Transactions have to be selected and added into blocks to
be appended to the blockchain. This procedure is the so-called mining, and the
participant nodes are called miners.

Vyper Smart Contracts. Vyper is a high-level programming language for
smart contracts running on EVM. As an alternative to Solidity, Vyper is con-

80 J. Jiao et al.

1 |minter: public(address)

2 balances: map(address, wei_value)

3

4 | @public

5 | def __init__(Q):

6 self .minter = msg.sender

7

8 | @public

9 def mint(receiver: address, amount: wei_value):
10 if (msg.sender != self.minter): return
11 self .balances[receiver] += amount

13 | @public
14 def send(receiver: address, amount: wei_value):

15 if (self.balances[msg.sender] < amount): return
16 self.balances [msg.sender] -= amount
17 self .balances[receiver] += amount

Fig. 2. Vyper Smart Contract Example

sidered to be more secure by blocking recursive calls and infinite loops to avoid
gasless send, and excluding the possibility of state changes after external calls
to prevent reentrancy attacks [40]. Thus, it is more difficult to write vul-
nerable code in Vyper. In addition, it supports bounds and overflow checking,
and strong typing. Particularly, timing features such as block timestamps are
supported as types, making it possible to detect the vulnerability of timestamp
dependence [32] on Vyper semantics. This is not possible on Solidity semantics
since Solidity does not support timing features. Apart from security, simplicity
is another goal of Vyper. It aims to provide a more human-readable language,
and a simpler compiler implementation. An example Vyper smart contract cor-
responding to the Solidity smart contract illustrated in Fig. 1 is shown in Fig. 2.

Bamboo Smart Contracts. Bamboo is another high-level programming
language for Ethereum smart contracts. In Bamboo, state variables are elimi-
nated and each contract represents a particular execution state, making state
transitions explicit to avoid reentrancy attacks by default. This is because
operations in functions are limited to certain states. An example Bamboo smart
contract which is equivalent to the Solidity smart contract illustrated in Fig. 1 is
shown in Fig. 3. In this example, explicit state transitions are applied to strictly
limit operations in the constructor to a certain state. To be specific, the default
part in the contract PreCoin which is equivalent to the constructor in Fig. 1 can
only be invoked once, after which the state is always Coin. This is consistent
with the fact that the constructor of a Solidity smart contract is only invoked
once when a new contract instance is created.

Comparison. As introduced above, Vyper smart contracts are similar to So-
lidity smart contracts regardless of the differences in syntax formats. Compared
with Solidity, Vyper simply excludes the vulnerabilities reported in Solidity at
syntax level. Apart from the syntax differences, explicit state transitions are ap-
plied in Bamboo to prevent potential attacks. Despite the limits in syntax and
state transitions, high-level smart contract programming languages have a lot in
common in semantics due to the fact that they have to be functionally the same.

A Generalized Formal Semantic Framework for Smart Contracts 81

1 contract PreCoin(address => uint balances){

2 defaultq{

3 return then become Coin(sender(msg), balances);

4 }

5 |}

6

7 contract Coin(address minter, address => uint balances){
8 case(void mint (address receiver, uint amount)){

9 if (sender(msg) !'= minter)

10 return then become Coin(minter, balances);

11 balances[receiver] = balances[receiver] + amount;
12 return then become Coin(minter, balances);

13 }

14 case(void send(address receiver, uint amount)){

15 if (balances[sender(msg)] < amount)

16 return then become Coin(minter, balances);

17 balances [sender(msg)] = balances[sender (msg)] - amount;
18 balances[receiver] = balances[receiver] + amount;
19 return then become Coin(minter, balances);

20 }

21 |}

Fig. 3. Bamboo Smart Contract Example
2.2 The K-framework

The K-framework (K) [39] is a rewriting logic [33] based formal ezecutable se-
mantics definition framework. The semantics definitions of various programming
languages have been developed using K, such as Java [13], C [18], etc. Partic-
ularly, an executable semantics of EVM [24], the bytecode language of smart
contracts, has been constructed in the K-framework. K backends, like the Is-
abelle theory generator, the model checker, and the deductive verifier, can be
utilized to prove properties on the semantics and construct verification tools [42].

A language semantics definition in the K-framework consists of three main
parts, namely the language syntax, the configuration specified by the developer
and a set of rules constructed based on the syntax and the configuration. Given
a semantics definition and some source programs, the K-framework executes
the source programs based on the semantics definition. In addition, specified
properties can be verified by the formal analysis tools in K backends. We take
IMP [37], a simple imperative language, as an example to show how to define a
language semantics in the K-framework.

The configuration of the IMP language is shown in Fig. 4. There are only
two cells, namely k and state, in the whole configuration cell T. The cells in
the configuration are used to store some information related to the program
execution. For instance, the cell k stores the program for execution Pgm, and in
the cell state a map is used to store the variable state.

< ($paM:Pgm)i { .Map state >T

Fig. 4. IMP Configuration

Here, we introduce some basic rules in the K-IMP semantics. These rules are
allocate, read and write. The syntax of IMP is also given in Fig. 5.

82 J. Jiao et al.

Pgm ::= "int" Ids ";" Stmt Ids ::= List{Id, ","}

AExp ::= Int | Id | "-" Int | AExp "/" AExp > AExp "+" AExp | "(" AExp ")"
BExp ::= Bool | AExp "<=" AExp | "!" BExp > BExp "&&" BExp | "(" BExp ")"
Block ::= "{" "}" | "{" Stmt "}"

Stmt ::= Block | Id "=" AExp ";" | "if" "(" BExp ")" Block "else" Block |
"while" "(" BExp ")" Block > Stmt Stmt

Fig. 5. Syntax of IMP

RULE ALLOCATE

int X,Xs;S Rho:Map RULE FINISH-ALLOCATE
int Xs;$ k Rho (X |-> 0) /et < int .Ids;S A%
requires notBool (X in keys(Rho)) s
RULE WRITE
RI)‘(ILIEd READ X = I:Int; X |-> _
: —_——— ...)k e T ...)stat
T e (oo X 1> T .. state X |-> I state

Let us start with the rule of memory allocations in IMP shown in ALLOCATE.
When Pgn, interpreted as int X,Xs;S, is encountered, we need to store a list of
variables (X,Xs) starting from X in the cell state with a list of mappings. Here
state can be regarded as a physical memory or storage, and Xs is also a list of
variables which can be empty. X is popped out of the cell k and a new mapping
from X to 0 is created in the cell state, which means that a memory slot has
been allocated for X to store its initial value 0. No duplicate names are allowed
in state, which is guaranteed by the require condition. Then we go like this until
Xs becomes empty, which means that all the variables have already been stored
in state. At this point, the execution of the first part of Pgm has been finished
and we proceed to the execution of the statement S. This can be summarized
in FINISH-ALLOCATE where .Ids is an empty list of identifiers, which means
that the variable list is empty. Please note that . means an empty set in the
K-framework. If a rule ends with ., it means that nothing will be executed.

Then we come to the rules of read and write for variables. As shown in
READ, if we want to look up the value of the variable X, we need to search
it in the cell state by mapping the variable name X to its value I. So the
evaluation of this expression X is its value I. If we cannot find a mapping for X,
the program execution will stop at this point. Particularly, ... means there can
be something in the corresponding position. For instance, the mapping of X can
be in any position in the cell state. However, for rules in the cell k, . .. can only
be at the end since the program which is stored in k is executed sequentially.
As illustrated in WRITE, if we want to assign the integer I to the variable X,
similarly we need to search it in state by mapping the variable name. We also
need to rewrite the value of X, denoted by “_” which is a placeholder, to I.

Rewriting logic facilitates the construction of a general semantic model for
smart contracts. This is because a rewriting logic style semantics consists of a set
of rewriting steps from the language syntax to its evaluations. In spite of syntax
differences, different smart contract languages have a lot in common in logical

A Generalized Formal Semantic Framework for Smart Contracts 83

RULE ALLOCATE-GENERAL

#allocate(X, I) Rho:Map
<—- ¢ <m>“
requires notBool (X in keys(Rho))

RULE READ-GENERAL

#read (X) RULE WRITE-GENERAL
1 fk < #urite(X, I) X [-> _ >
—_—)k . ————— ...)state
< X |->1I --->state : X I->1
RUIﬁtAXLLX‘;%*TE‘IMP RULE REeAD-IMP RULE WRITE-IMP
Yallocare (X 0V d ()’(o X:I1d X = I:Int;
allocatelX, O)...Jk #read(X) /* #write(x, 1) /F
~ int Xs;S
MemoryOperations ::= #read(Id) | #write(Id, Int) | #allocate(Id, Int) ‘

Fig. 6. Syntax of General Memory Operations

aspects to achieve the equivalent functionality. Rewriting logic makes it possible
to separate the language syntax from the common logical aspects based on which
the general semantic model is constructed. The semantics rules introduced above
can be general and not specific to IMP. We show the general rules for read,
write and allocate in READ-GENERAL, WRITE-GENERAL and ALLOCATE-
GENERAL, respectively. In these rules, #read, #write and #allocate represent
the functions to read, write and allocate memory slots for variables with specified
parameters and their syntax is shown in Fig. 6. The semantics rules for memory
operations in IMP can be obtained by rewriting the corresponding IMP syntax
to the general memory operations defined above, namely #read, #write and
#allocate, which form a general semantic model. The semantics rules for read,
write and allocate in IMP based on the general semantic model are shown in
READ-IMP, WRITE-IMP and ALLOCATE-IMP, respectively. Particularly, the
symbol ~ means “followed by”. The semantics rules interpreted with the internal
semantics of the general memory operations defined in Fig. 6 are equivalent to
those developed from scratch, namely READ, WRITE and ALLOCATE. Rather
than pure syntax translations to intermediate languages, a general semantic
model enables semantic-level mappings to commonly shared high-level features.

3 A General Semantic Model

Different high-level smart contract programming languages vary in syntax but
have a lot in common semantically to achieve the equivalent functionality. Con-
sidering this fact, we construct a general semantic model for smart contracts
based on the commonly shared high-level semantic features that are indepen-
dent of any specific language or platform. The semantics of a high-level smart
contract programming language can be summarized into three aspects in terms
of its functionality, namely memory operations, new contract instance creations

84 J. Jiao et al.

and function calls. Particularly, new contract instance creations and function
calls are the two kinds of transactions on the blockchain. In this section, we
present an overview of the desired semantics of these three core features.

3.1 Syntax

The syntax of the general semantic model is defined in the K-framework and
shown in Fig. 7. Due to limit of space, we only present the syntax of rewriting
steps related to memory operations, new contract instance creations and function
calls with MemOp, NewInstanceCreation and InstanceStateUpdate, respec-
tively. Particularly, ExpressionList is a list of Expressions. TypeName consists
of ElementaryTypeName which takes one memory slot, ComplexTypeName which
is composed of a set of ElementaryTypeNames, and ReferenceTypeName which
refers to a pre-defined instance. For Solidity, ElementaryTypeName consists of
all the elementary types defined in the official documentation [7] except Byte.
ComplexTypeName refers to mappings, arrays and Byte. ReferenceTypeName in-
volves user-defined types and function types. Id stands for identifiers. Int and
Bool represent integers and Boolean values, respectively. Values, a subset of
ExpressionList, is a list of Value types which can be integers (Int) or Boolean
types (Bool). Msg is the type of transaction information. VarInfo stores variable
information. MemberAccess deals with expressions in member access formats.

RewritingSteps ::= MemOp | NewInstanceCreation | InstanceStateUpdate
MemOp = read (Expression) | readAddress(Int, Id) | write(Expression, Value)
| writeAddress(Int, Id, Value) | allocate(Int, VarInfo)

| allocateAddress (Int, Int, Id, Value)

NewInstanceCreation ::= createNewInstance(Id, ExpressionList)
| updateState(Id) | allocateStorage(Id)
| initInstance(Id, ExpressionList)

InstanceStateUpdate ::= functionCall (Expression; Expression; Id;
ExpressionList; Msg) | functionCall(Id; ExpressionList)
| switchContext (Int, Int, Id, Msg) | returnContext (Int)
| exception() | updateExceptionState() | revertState ()

Expression ::= Id | Value | Msg | VarInfo | MemberAccess

ExpressionlList ::= List{Expression, ","} | Values

Value ::= Int | Bool Values ::= List{Value, ","}

Msg ::= #msgInfo(Int, Int, Int, Int)

VarInfo ::= #varInfo(Id, TypeName, Id, Value)

MemberAccess ::= #memberAccess (Expression, Id)

TypeName ::= ElementaryTypeName | ComplexTypeName | ReferenceTypeName

Fig. 7. Syntax of the General Semantic Model

3.2 Configuration

The runtime configuration indicates program states at each execution step, mak-
ing detailed runtime features available. The runtime configuration of the general
semantic model is illustrated in Fig. 8. Due to limit of space, only a part of the

A Generalized Formal Semantic Framework for Smart Contracts 85

cells is presented here. In this configuration, there are six main cells in the whole
configuration cell T and they are k, controlStacks, contracts, functions,
contractInstances and transactions. The value of each cell is initialized in
the configuration with its type specified. A dot followed by any type represents
an empty set of this type. For instance, .List is an empty list. Particularly, X is
the most general type which can be any specific type defined in the K-framework.

$PGM: SourceUnit >k

< (ListItem(-1) contractStack ¢ -List >functionStack>
< .List >n€wStack < .List >blockStack: controlStacks
0:Int >cntContractDefs
< < K >cName < .List >stateVaTs < false >constructor .. .>Commct* >CO””““S
0:Int)entFunctions
< 0:Int >f1d < 'K>fName < 'K>inputPa'rameters

-K)returnParameters -K Body «« | functionx |functions

-K funQuantifiers

< 0:Int >cntContructs
< (-1) :Int >ctId < -K>ctNa'me

< -Map >ctContea:t -Map)giobalContext
-Map >ctType < .Map >ctLocation <+« |contractInstancex |contractInstances
< -Map)ctStorage -Map)Memory
< 0:Int)siotNum 0:Int >Balance

< < 1:Int >cntTra,ns < 0 |-> "Main" >t7‘anC’omputation

. transactions
K)Msg < ~L15t>m5gStack >

Fig. 8. Runtime Configuration of the General Semantic Model

In k, source programs, called SourceUnit, are stored for execution. If the
programs stored in k terminate in a proper way, there will be a dot in this cell,
indicating that this cell is empty and there are no more programs to execute.

controlStacks consists of contractStack, functionStack, newStack and
blockStack. To be specific, contractStack keeps track of the current contract
instance. functionStack stores a list of function calls. newStack records a list
of new contract instance creations. blockStack stores a list of variable contexts
to look up and assign values to variables in different scopes.

In contracts, a set of contract definitions is stored. Each cell contract
represents a contract definition. The number of distinct contracts is counted in
cntContractDefs. In contract, the contract name is stored in cName. State
variable information is stored in stateVars. In addition, Constructor indicates
whether the contract has a constructor or not and its initial value is false.

Similarly, functions stores a set of function definitions. Each cell function
represents a function definition. The total number of function definitions is stored
in cntFunctions. For each function definition, the function Id and the function
name are stored in £Id and fName, respectively. In addtion, function parameters,
including input parameters and return parameters, are recorded in the corre-

86 J. Jiao et al.

sponding cells. We also store the function body in the cell Body and the function
quantifiers which can be modifiers or specifiers in the cell funQuantifiers.

In contractInstances, thereis a set of contract instances. Each cell contract-
Instance represents a contract instance. The number of contract instances is
counted in cntContracts. We store the contract instance Id and the name of
its associated contract in the cells ctId and ctName, respectively. Four different
mappings are applied to keep track of more information of a variable. Specifi-
cally speaking, ctContext, ctType, ctLocation and ctStorage/Memory record
the mappings from a variable name to its logical address in the storage or mem-
ory, a variable name to its type, a variable name to its location information,
namely “global” or “local”, and the logical address of a variable in the storage
or memory to its value, respectively. globalContext keeps track of the state
variable context. The number of memory slots taken by variables is calculated
in slotNum. The cell Balance records the balance of each contract instance.

In the cell transactions, we keep track of the number of transactions in
cntTrans, every transaction in tranComputation and also “msg” information
in Msg and msgStack. “msg” is a keyword in smart contracts to represent trans-
action information. For instance, “msg.sender” is the caller of the function and
“msg.value” specifies the amount of ether to be transferred in Solidity. The cell
msgStack stores a list of transaction information tuples while Msg records the
current one. We simulate transactions of smart contracts with a “Main” contract
which is similar to the main function in C. In the “Main” contract, new contract
instances can be created and external function calls to these instances are avail-
able. The Id of the “Main” contract is “-1”, since other contract instances start
from 0. Therefore, the initialized content in contractStack is ListItem(-1),
and cntTrans is counted from 1, which means that the creation of the “Main”
contract is the first transaction recorded in tranComputation.

3.3 Semantics of the Core Features

We introduce the semantics rules for the core features in smart contracts. Due to
limit of space, the implementation details (cf. [3]) of the sub-steps are omitted.

Memory Operations. We present an overview of the semantics rules for
memory operations on elementary types, such as int, uint and address in So-
lidity, each of which takes only one memory slot. Complex types, such as arrays,
mappings, etc, are compositions of elementary types. A memory operation on a
complex type can be regarded as a set of recursive memory operations on elemen-
tary types. For instance, the memory allocation for a one-dimensional fixed-size
array is equivalent to allocating an elementary type for each index of this array.
Reading and writing a particular index involve recursive steps to retrieve the
logical address of this index from the base address of the array. Mappings are
similar to dynamic arrays. For a mapping from address to uint, the memory
allocation for this mapping is equivalent to allocating an unsigned integer type
at each address involved. Reference types which refer to pre-defined instances
can be simply implemented as mappings in the K-framework.

A Generalized Formal Semantic Framework for Smart Contracts 87

RULE READ
read(X:Id)

readAddress(Addr, L) ~
< N>ct[d < .. X |=> Addr .. ->ctContext

X I=>L.. ->ctLocation -+« JcontractInstance

<. .. X |-> T:ElementaryTypeName .. .>c,5TypE

>k < ListItem(N:Int) .. .>con”actsmck

RULE WRITE
write(X:Id, V:Value)

writeAddress(Addr, L, V)
(N)erra (... X 1-> Addr .. .)etConteat

<- .o X I->L.. '>ctLocation ««+ Jcontractinstance
<. .. X |-> T:ElementaryTypeName .. ~>ctType

k < ListItem(N:Int) ~-->contmct5tack

RULE ALLOCATE
allocate(N:Int, #varInfo(X:Id, T:ElementaryTypeName, L:Id, V:Value))

allocateAddress(N, Addr, L, V)

Addr TYPE:Map
< N>Ct1d < m>slotNum < m>ctType
CON:Map LOC:Map . [contractInstance
<m etContest <m ctLocation

RULE NEW-CONTRACT-INSTANCE-CREATION
createNewInstance(X:Id, E:ExpressionList) >
k

updateState(X) ~ allocateStorage(X) ~ initInstance(X, E) /"

RULE FuNcTION-CALL
functionCall(C:Int; R:Int; F:Id; Es:Values; M:Msg)
switchContext(C, R, F, M) ~ functionCall(F; Es) ~ returnContext(R) k

Let us start with the read operation on elementary types shown in READ.
Here, we consider the object X as a variable which is an Id type. The first thing
to do is to get the current execution context. This is achieved by retrieving the
current contract instance Id N in contractStack and mapping the corresponding
contract instance with N in the cell ctId. After that, we retrieve the logical
address of X, denoted by Addr, in ctContext and the location information of
X, denoted by L, in ctLocation. With these two parameters, we can obtain the
evaluation of X through readAddress which retrieves the value located at Addr
in the associated cell specified by L. To be specific, if L specifies this variable
as a global one, the search space is ctStorage. Otherwise, the value is retrieved
in Memory. write is similar to read. After retrieving the logical address of X,
denoted by Addr, and the location information of X, denoted by L, we rewrite
the value at Addr to the value V in the cell specified by L through writeAddress.

Then we come to the allocation for elementary types shown in ALLOCATE.
The first input parameter N indicates the object contract instance Id. The vari-
able information including the name X, the type T, the location information L
and the initial value V, is stored in #varInfo. First, we retrieve the correspond-
ing instance by mapping the Id N in ctId. Then the number of memory slots is
increased by 1 in slotNum. After that, the variable information is recorded in the
associated cells. To be specific, we record the logical address Addr, the type T, and

88 J. Jiao et al.

the location information L in ctContext, ctType and ctLocation, respectively.
Finally, a memory slot is allocated for this variable through allocateAddress.

New Contract Instance Creations. As illustrated in NEW-CONTRACT-
INSTANCE-CREATION, the contract name X and the arguments in the construc-
tor E are taken as input parameters to create a new instance of X. There
are altogether three sub-steps for this transaction and they are updateState,
allocateStorage and initInstance. To be specific, updateState updates the
blockchain states, including the states of contract instances and transactions,
and the stack information to indicate the new contract instance creation. In ad-
dition, allocateStorage allocates state variables and initInstance deals with
initialization issues, such as calling the constructor, in the new instance.

Function Calls. In order to make the semantics of function calls general
for all kinds of calls and extensible for different smart contract languages, a
uniform format is applied to generalize the semantics. The uniform format is
functionCall(Id_of Caller; Id_of Recipient; Function Name; Arguments;
Msg_Info). Particularly, Msg_Info represents the transaction information, in-
cluding the Ids of the caller and the recipient instances, the value of digital
assets to be transferred and the transaction fees to be consumed. The semantics
rule for function calls based on this format is shown in FUNCTION-CALL.

In the rule FUNCTION-CALL, the caller of this function is C and the recipient
is R. F is the function name and Es specifies the function call arguments. M is the
“msg” information to keep track of transactions. In particular, the types of these
parameters have been specified. The semantics of function calls is designed from
a general point of view. Each external function call is regarded as an extension
of an internal function call. Whenever there is an external function call, we first
switch to the recipient instance and then call the function in this instance as an
internal call. Finally, we switch back to the caller instance. In this way, external
function calls can be achieved through internal function calls and switches of
contract instances. This mechanism also applies to internal function calls where
the caller is the same as the recipient. There are three sub-steps in FUNCTION-
CALL. The first one is to switch to the recipient instance from the caller through
switchContext. The second is an internal function call functionCall. The last
one is to return to the caller instance through returnContext.

Particularly, the semantics of function calls is equipped with exception han-
dling features. If an exception is encountered, it will be propagated to the trans-
actional function call to revert the whole transaction. The propagation of excep-
tions is a sub-step in returnContext. The exception handling mechanism is also
general, making it possible to deal with all kinds of exception handling features
in smart contracts, such as revert and assert in Solidity, in a similar way.

RULE EXCEPTION-PROPAGATION RULE TRANSACTION-REVERSION

exception() exception()
k

updateExceptionState()
(ListItem(R)ListItem(C) ...)contractStack ~ revertState()
requires C >=Int 0 (ListItem(R)ListItem(-1) JeontractStack

updateExceptionState() ...k

A Generalized Formal Semantic Framework for Smart Contracts 89

There are two stages in handling exceptions. The first one is the propaga-
tion of exceptions to the transactional function call as shown in EXCEPTION-
PROPAGATION, and the second is the reversion of the transaction as shown in
TRANSACTION-REVERSION. The first stage is present in nested calls to propa-
gate exceptions to the transactional function call, while the second stage is only
present in the transactional function call stemming from the “Main” contract.
In the stage of propagating exceptions, the exception state is updated through
updateExceptionState() to indicate that an exception has been encountered.
Particularly, the Id of the caller instance should be larger than or equal to 0 since
the caller cannot be the “Main” contract. And in the stage of reverting transac-
tions, the caller is the “Main” contract whose Id is “-1”. In addition to updating
the exception state, the whole transaction is reverted through revertState().

4 Direct Semantics Generation

A direct semantics of a high-level smart contract programming language can be
developed based on the general semantic model introduced above. From the per-
spective of rewriting logic, a language semantics is a set of rewriting steps from
the language syntax to its evaluations. Each of these rewriting steps implements
a function to move the syntax a step further to its final evaluations. The general
semantic model which consists of a set of internal rewriting steps and defines the
desired semantics of smart contracts can be regarded as a logical intermediate
language. A direct semantics of a high-level smart contract programming lan-
guage can be constructed by rewriting its syntax to the features in the general
semantic model with several functional steps. This also indicates the process of
smart contract language design. We take Solidity as an example to illustrate how
to generate the semantics based on the general semantic model. The semantics
rules presented below are based on the Solidity syntax defined in [7].

Let us start with the look-up operation in Solidity. As shown in LOOK-UP,
the object is considered to be a variable X. X is evaluated with read in the general
semantic model. We simply rewrite the corresponding Solidity syntax to read.
assignment is similar to Look-up. As shown in ASSIGNMENT, we simply rewrite
the assignment syntax in Solidity to write in the general semantic model.

RULE Look-Up RULE ASSIGNMENT RULE NEW-INSTANCE-SOLIDITY
X:Id X:Id = V:Value new X:Id (E:ExpressionList)
read(@ " /F write(X, V) k createNewInstance(X, E) k

Both state and local variable allocations are achieved through allocate in
the general semantic model. State variables are allocated when new contract
instances are created, while local variables are allocated right after declarations.

In NEW-INSTANCE-SOLIDITY, the syntax of new contract instance creations
in Solidity is rewritten to createNewInstance in the general semantic model.

Function calls in Solidity are written in a format similar to member access.
For instance, target.deposit.value(2) () is a typical function call in Solidity.
To be specific, target specifies the recipient instance and deposit is the function

90 J. Jiao et al.

RULE FUNCTION-CALL-SOLIDITY
#memberAccess(R:Int, F:Id) ~ Es:Values n MsgValue:Int ~ MsgGas:Int >
k

functionCall(C; R; F; Es; #msgInfo(C, R, MsgValue, MsgGas))
< ListItem(C:Int) .. ->cont7'act5tack

RULE REVERT RULE ASSERT
revert (.ExpressionList); assert(true); assert(false);
exception() exception()

RULE REQUIRE
< require(true); > < require(false); >
exception()

to be called in that instance. value specifies msg.value as 2. In addition, we
can specify other parameters, such as msg.gas, function arguments, etc. When
it comes to the semantics of function calls in Solidity, the first thing to do
is to decompose the member access like format and transform it into the one
in the general semantic model. As shown in FUNCTION-CALL-SOLIDITY, each
decomposed part in Solidity calls is reorganized in functionCall. Specifically
speaking, #memberAccess(R:Int, F:Id) specifies the recipient instance R and
the function to be called in this instance F. Es specifies the function arguments.
MsgValue and MsgGas represent msg.value and msg.gas, respectively.

The semantics rules for function calls apply to all kinds of function calls in
Solidity, including high-level and low-level calls, constructors and fallback func-
tions. For instance, if there is no function name specified in a function call or
the specified function name does not match any existing function in the recip-
ient instance, the first decomposed part in FUNCTION-CALL-SOLIDITY will be
#memberAccess(R:Int, String2Id("fallback")) where R is the Id of the re-
cipient instance and “fallback” refers to the fallback function in that instance.
In this case, the fallback function in R will be invoked. In addition, in the case
of delegatecall, the recipient instance R is the same as the caller instance C
since the execution takes place in the caller’s context.

Exception handling features in Solidity can be interpreted with the semantics
of exception() in the general semantic model. The semantics rules for revert,
assert and require are shown in REVERT, ASSERT and REQUIRE, respectively.

5 Evaluation

We evaluate the proposed generalized formal semantic framework for smart con-
tracts by showing that the generated semantics, an interpretation of the general
semantic model with a particular language, is consistent with the semantics
interpreted by the corresponding official compiler on benchmarks. The testing
language makes no difference to the evaluation since it aims to validate the
semantics of the commonly shared high-level features defined in the general se-
mantic model. We take Solidity as an object for the evaluation since there are
sufficient Solidity smart contracts available for testing the generated Solidity

A Generalized Formal Semantic Framework for Smart Contracts 91

Table 1. Coverage of the Generated Solidity Semantics

Features Coverage Features Coverage

Types(Core) Statements(Core)

Elementary Types If Statement FC
address FC While Statement FC
bool FC For Statement FC
string FC Block FC
Int FC Inline Assembly N
Uint FC Statement
Byte FC Do While Statement FC
Fixed N Place Holder Statement FC
Ufixed N Continue FC

User-defined Types FC Break FC

Mappings FC Return FC

Array Types FC Throw,Revert,Assert,Require FC

Function Types FC Simple Statement FC

address payable FC Emit Statement FC

Functions(Core) Expressions(Core)

Function Definitions Bitwise Operations FC
Constructors FC Arithmetic Operations FC
Normal Functions FC Logical Operations FC
Fallback Functions FC Comparison Operations FC
Modifiers FC Assignment FC

Function Calls Look Up FC
Internal Function Calls FC New Expression FC
External Function Calls FC Other Expressions FC

Using For FC Inheritance FC

Event FC

FC: Fully Covered and Consistent with Solidity IDE N: Not Covered

semantics. The Solidity semantics developed with the proposed framework is
publicly available at https://github.com/kframework/solidity-semantics.

The generated Solidity semantics is evaluated from two perspectives: the
first one is its coverage (i.e., completeness), and the second is its correctness
(i.e., consistency with Solidity compilers). Evaluation results show that the So-
lidity semantics developed with the proposed framework completely covers the
supported high-level core language features specified by the official Solidity doc-
umentation [7] and is consistent with the official Solidity compiler Remix [5].

We evaluate and test the Solidity semantics developed with the proposed
framework with the Solidity compiler test set [6]. This test set is regarded as
a standard test set or benchmarks for evaluating Solidity semantics since the
test programs are written in a standard or correct way defined by the language
developers and cover all the features in Solidity. There are altogether 482 tests
in the Solidity compiler test set. The evaluation is done by manually comparing
the execution behaviours of the generated Solidity semantics with the ones of
the Remix compiler on the test programs. We consider the generated Solidity
semantics is correct if the execution behaviours indicated in the configuration
are consistent with the ones of the Remix compiler. A feature is considered to
be fully covered if all the compiler tests involving this feature are passed. We list
the coverage of the generated Solidity semantics in Table 1 from the perspective
of each feature specified by the official documentation.

From Table 1, we can observe that the generated Solidity semantics com-
pletely covers the supported high-level core features of Solidity. As for types, the

92 J. Jiao et al.

generated Solidity semantics covers the following elementary types: address,
bool, string, Int, Uint and Byte. Fixed and Ufixed are not covered because
they are not fully supported by Solidity yet [7]. User-defined types, including
struct, contract types and enum, are covered. Mappings, arrays, function types
and address payable are also covered. In addition, the semantics associated
with functions, such as function definitions and function calls, is fully cov-
ered. The semantics of statements is completely covered except that of inline
assembly statements which are considered to be low-level features accessing
EVM (i.e., this part of semantics can be integrated with KEVM [24]). All kinds
of expressions in Solidity are covered. Lastly, the semantics of event is also cov-
ered and the parts of semantics for using for and inheritance are covered
with rewriting. For all the parts of covered semantics, they are considered to be
correct since the execution behaviours involved are consistent with the ones of
Remix. Therefore, the generated Solidity semantics can be considered to be com-
plete and correct in terms of the supported high-level core features of Solidity,
indicating the completeness and correctness of the general semantic model.

Threats to Validity. We validate the general semantic model with its in-
terpretation in Solidity. The validity of the proposed framework holds for any
particular high-level smart contract programming language as long as its core
features fall into or can be properly rewritten to the ones defined in the gen-
eral semantic model. The proposed framework may not work if the core features
cannot be interpreted with the ones defined in the general semantic model. How-
ever, this is unlikely due to the nature of smart contract executions. For instance,
transactions in existing instances are implemented with or can be transformed
into function calls regardless of the platforms of smart contract programs.

6 Conclusion

In this paper, we propose a generalized formal semantic framework for smart con-
tracts. This framework can directly handle smart contracts written in different
high-level programming languages, such as Solidity, Vyper, Bamboo, etc, without
translating them into EVM bytecode or intermediate languages. In this frame-
work, a direct executable formal semantics of a particular high-level smart con-
tract programming language is constructed based on a general semantic model
with rewriting logic. The general semantic model is validated with its interpre-
tation in Solidity and evaluation results show that it is complete and correct.
Furthermore, the proposed framework provides a formal specification of smart
contracts written in different languages.

Acknowledgements. This work is supported by the Ministry of Education,
Singapore under its Tier-2 Project (Award Number: MOE2018-T2-1-068) and
partially supported by the National Research Foundation, Singapore under its
NSoE Programme (Award Number: NSOE-TSS2019-03).

A Generalized Formal Semantic Framework for Smart Contracts 93

References

Rl o

© NSO

10.

11.

12.

13.

14.

15.

16.

17.
18.

Bamboo (2018), https://github.com/pirapira/bamboo

Ethereum (2020), https://www.ethereum.org

Implementation Details (2020), https://github.com/SmartContractSemantics/
SemanticFrameworkforSmartContracts

Mythril (2020), https://github.com/ConsenSys/mythril

Remix - Solidity IDE (2020), https://remix.ethereum.org

Solidity Compiler Test Set (2020), https://github.com/ethereum/solidity

Solidity Documentation (2020), https://solidity.readthedocs.io/en/latest

Vyper Documentation (2020), https://vyper.readthedocs.io/en/latest

Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards Verifying Ethereum Smart
Contract Bytecode in Isabelle/HOL. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs. pp. 66-77. CPP 2018,
ACM, New York, NY, USA (2018)

Atzei, N., Bartoletti, M., Cimoli, T.: A Survey of Attacks on Ethereum Smart
Contracts (SoK). In: Maffei, M., Ryan, M. (eds.) Principles of Security and Trust
- 6th International Conference, POST 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10204,
pp. 164-186. Springer (2017). https://doi.org/10.1007/978-3-662-54455-6_8
Bartoletti, M., Galletta, L., Murgia, M.: A Minimal Core Calculus for Solidity
Contracts. In: DPM/CBT@QESORICS (2019)

Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Béguelin,
S.Z.: Formal Verification of Smart Contracts: Short Paper. In: Murray, T.C., Ste-
fan, D. (eds.) Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security, PLASQCCS 2016, Vienna, Austria, October 24, 2016.
pp. 91-96. ACM (2016)

Bogdanas, D., Rosu, G.: K-Java: A Complete Semantics of Java. In: Rajamani,
S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015. pp. 445-456. ACM (2015)

Chen, T., Zhang, Y., Li, Z., Luo, X., Wang, T., Cao, R., Xiao, X., Zhang, X.: Token-
Scope: Automatically Detecting Inconsistent Behaviors of Cryptocurrency Tokens
in Ethereum. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019. pp. 1503-1520. ACM (2019)
Crafa, S., Pirro, M., Zucca, E.: Is Solidity Solid Enough? In: Financial Cryptogra-
phy Workshops (2019)

Delmolino, K., Arnett, M., Kosba, A.E., Miller, A., Shi, E.: Step by Step Towards
Creating a Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.S., Brenner, M., Rohloff, K.
(eds.) Financial Cryptography and Data Security - FC 2016 International Work-
shops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26,
2016, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9604, pp.
79-94. Springer (2016). https://doi.org/10.1007/978-3-662-53357-4_6

Drescher, D.: Blockchain Basics (2017)

Ellison, C., Rosu, G.: An Executable Formal Semantics of C with Applications.
In: Field, J., Hicks, M. (eds.) Proceedings of the 39th ACM SIGPLAN-SIGACT

94

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

J. Jiao et al.

Symposium on Principles of Programming Languages, POPL 2012, Philadelphia,
Pennsylvania, USA, January 22-28, 2012. pp. 533-544. ACM (2012)

Feist, J., Grieco, G., Groce, A.: Slither: A Static Analysis Framework for Smart
Contracts. In: Proceedings of the 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain, WETSEBQICSE 2019, Montreal, QC,
Canada, May 27, 2019. pp. 8-15. IEEE / ACM (2019)

Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.: Mad-
Max: Surviving Out-of-gas Conditions in Ethereum Smart Contracts. PACMPL
2(0O0PSLA), 116:1-116:27 (2018)

Grishchenko, I., Maffei, M., Schneidewind, C.: A Semantic Framework for the Se-
curity Analysis of Ethereum Smart Contracts. In: Bauer, L., Kiisters, R. (eds.)
Principles of Security and Trust - 7th International Conference, POST 2018,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 10804, pp. 243-269. Springer (2018).
https://doi.org/10.1007/978-3-319-89722-6 10

Grossman, S., Abraham, 1., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sa-
giv, M., Zohar, Y.: Online Detection of Effectively Callback Free Objects with
Applications to Smart Contracts. PACMPL 2(POPL), 48:1-48:28 (2018)

Hajdu, A., Jovanovic, D.: solc-verify: A Modular Verifier for Solidity Smart Con-
tracts. arXiv preprint abs/1907.04262 (2019)

Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore,
B.M., Park, D., Zhang, Y., Stefanescu, A., Rogu, G.: KEVM: A Complete Formal
Semantics of the Ethereum Virtual Machine. In: 31st IEEE Computer Security
Foundations Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018.
pp. 204-217. IEEE Computer Society (2018)

Hirai, Y.: Defining the Ethereum Virtual Machine for Interactive Theorem Provers.
In: Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y.A., Teague, V.,
Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) Financial Cryptogra-
phy and Data Security - FC 2017 International Workshops, WAHC, BITCOIN,
VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 10323, pp. 520-535. Springer (2017).
https://doi.org/10.1007/978-3-319-70278-0_33

Jiang, B., Liu, Y., Chan, W.K.: ContractFuzzer: Fuzzing Smart Contracts for Vul-
nerability Detection. In: Huchard, M., Késtner, C., Fraser, G. (eds.) Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engi-
neering, ASE 2018, Montpellier, France, September 3-7, 2018. pp. 259-269. ACM
(2018)

Jiao, J., Kan, S., Lin, S., Sandn, D., Liu, Y., Sun, J.: Executable Operational
Semantics of Solidity. arXiv preprint abs/1804.01295 (2018)

Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: Analyzing Safety of Smart
Contracts. In: 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The Internet So-
ciety (2018)

Kolluri, A., Nikolic, I., Sergey, 1., Hobor, A., Saxena, P.: Exploiting the Laws of
Order in Smart Contracts. In: Zhang, D., Mgller, A. (eds.) Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019. pp. 363-373. ACM (2019)

Krupp, J., Rossow, C.: teEther: Gnawing at Ethereum to Automatically Exploit
Smart Contracts. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Security Sym-

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

A Generalized Formal Semantic Framework for Smart Contracts 95

posium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. pp.
1317-1333. USENIX Association (2018)

Lahiri, S.K., Chen, S., Wang, Y., Dillig, I.: Formal Specification and Verification
of Smart Contracts for Azure Blockchain. arXiv preprint abs/1812.08829 (2018)
Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making Smart Contracts
Smarter. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016. pp. 254-269. ACM
(2016)

Marti-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. Theor.
Comput. Sci. 285, 121-154 (2002)

Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G., Feist, J., Brun-
son, T., Dinaburg, A.: Manticore: A User-Friendly Symbolic Execution Framework
for Binaries and Smart Contracts. In: 34th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2019, San Diego, CA, USA, November
11-15, 2019. pp. 1186-1189. IEEE (2019)

Nehai, Z., Bobot, F.: Deductive Proof of Ethereum Smart Contracts Using Why3.
arXiv preprint abs/1904.11281 (2019)

Nikolic, I., Kolluri, A., Sergey, 1., Saxena, P., Hobor, A.: Finding the Greedy,
Prodigal, and Suicidal Contracts at Scale. In: Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC 2018, San Juan, PR, USA,
December 03-07, 2018. pp. 653-663. ACM (2018)

Nipkow, T., Klein, G.: IMP: A Simple Imperative Language. Concrete Semantics.
Springer, Cham (2014)

Rodler, M., Li, W., Karame, G.O., Davi, L.: Sereum: Protecting Existing Smart
Contracts Against Re-Entrancy Attacks. In: 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society (2019)

Rosu, G., Serbanuta, T.F.: An Overview of the K Semantic Framework. Journal
of Logic and Algebraic Programming 79(6), 397-434 (2010)

Sergey, 1., Kumar, A., Hobor, A.: Scilla: A Smart Contract Intermediate-level Lan-
guage. arXiv preprint abs/1801.00687 (2018)

Siegel, D.: Understanding the DAO Attack (2016), https://www.coindesk.com/
understanding-dao-hack-journalists

Stefanescu, A., Park, D., Yuwen, S., Li, Y., Rosu, G.: Semantics-based Program
Verifiers for All Languages. In: Visser, E., Smaragdakis, Y. (eds.) Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016,
Amsterdam, The Netherlands, October 30 - November 4, 2016. pp. 74-91. ACM
(2016)

Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, 1., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: SmartCheck: Static Analysis of Ethereum Smart Contracts. In: 1st
IEEE/ACM International Workshop on Emerging Trends in Software Engineering
for Blockchain, WETSEBQICSE 2018, Gothenburg, Sweden, May 27 - June 3,
2018. pp. 9-16. ACM (2018)

Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Biinzli, F., Vechev,
M.T.: Securify: Practical Security Analysis of Smart Contracts. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018. pp. 67-82. ACM (2018)

96

45.

46.

47.

48.

49.

J. Jiao et al.

Wang, H., Li, Y., Lin, S., Ma, L., Liu, Y.: VULTRON: Catching Vulnerable Smart
Contracts Once and for All. In: Sarma, A., Murta, L. (eds.) Proceedings of the
41st International Conference on Software Engineering: New Ideas and Emerging
Results, ICSE (NIER) 2019, Montreal, QC, Canada, May 29-31, 2019. pp. 1-4.
IEEE / ACM (2019)

Wang, S., Zhang, C., Su, Z.: Detecting Nondeterministic Payment Bugs in
Ethereum Smart Contracts. PACMPL 3(OOPSLA), 189:1-189:29 (2019)

Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger.
Ethereum project yellow paper 151, 1-32 (2014)

Yang, Z., Lei, H.: Lolisa: Formal Syntax and Semantics for a Subset of the Solidity
Programming Language. arXiv preprint abs/1803.09885 (2018)

Zakrzewski, J.: Towards Verification of Ethereum Smart Contracts: A Formal-
ization of Core of Solidity. In: Piskac, R., Riimmer, P. (eds.) Verified Software.
Theories, Tools, and Experiments - 10th International Conference, VSTTE 2018,
Oxford, UK, July 18-19, 2018, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 11294, pp. 229-247. Springer (2018). https://doi.org/10.1007/978-3-
030-03592-1_13

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

	A generalized formal semantic framework for smart contracts
	Citation

	tmp.1632920910.pdf.vhYXV

