
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2012

Formal analysis of pervasive computing systems Formal analysis of pervasive computing systems

Yan LIU

Xian ZHANG

Jin Song DONG

Yang LIU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6065&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yan LIU, Xian ZHANG, Jin Song DONG, Yang LIU, Jun SUN, Jit BISWAS, and Mounir MOKHTARI

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/6065

https://ink.library.smu.edu.sg/sis_research/6065

Formal Analysis of Pervasive Computing Systems

Yan Liu, Xian Zhang, Jin Song Dong

School of Computing, National University of Singapore

Email: {yanliu, zhangxi5, dongjs}@comp.nus.edu.sg

Yang Liu

Temasek Lab, National University of Singapore

Email: tslliuya@nus.edu.sg

Jun Sun

Singapore University of Technology and Design

Email: sunjun@sutd.edu.sg

Jit Biswas

Institute for Infocomm Research

Email: biswas@i2r.a-star.edu.sg

Mounir Mokhtari

CNRS-IPAL/Institut TELECOM

Email: Mounir.Mokhtari@it-sudparis.eu

Abstract—Pervasive computing systems are heterogenous
and complex as they usually involve human activities, various
sensors and actuators as well as middleware for system
controlling. Therefore, analyzing such systems is highly non-
trivial. In this work, we propose to use formal methods
for analyzing pervasive computing systems. Firstly, a formal
modeling framework is proposed to cover the main character-
istics of pervasive computing systems (e.g., context-awareness,
concurrent communications, layered architectures). Secondly,
we identify the safety requirements (e.g., free of deadlocks and
conflicts etc.) and propose their specifications as safety and
liveness properties. Finally, we demonstrate our ideas using
a case study of a smart nursing home system. Experimental
results show the effectiveness of our approach in exploring
system behaviors and revealing system design flaws such as
information inconsistency and conflicting reminder services.

Keywords-Pervasive Computing, Formal Modeling, System
Verification

I. INTRODUCTION

Pervasive computing systems are context-aware and

adaptable to the evolving environments [1]. The changes in

the environment are monitored and recorded in the system

as contexts. If a particular event happens, the system is

able to adapt itself to the changes. In the current literature,

these systems usually adopt a layered design with sensors

in the hardware layer to acquire environment contexts;

inference engines in the middleware layer to manage and

reason these contexts as well as make adaptation decisions;

services in the application layer to invoke actuators to

execute the decisions. Consequently, the heterogeneity of

technology and massive ad hoc interactions among layers

make pervasive computing systems highly complicated [2].

Furthermore, various environment inputs and unpredictable

user behaviors cause the system behaviors beyond control,

especially when multiple users are interacting with the

system simultaneously. Therefore, it is a challenging task

to guarantee the correctness and even the safety of such

systems. Traditional validation methods such as simulation

and testing have their limitations in performing this task,

i.e., these methods can only cover partial system behaviors

based on the selected scenarios.

In this work, we propose to use formal methods to analyze

pervasive computing systems to overcome these limitations.

Our contributions are three-folds as explained below.

Firstly, we propose a framework to formally model the

system design and the environment inputs. Important char-

acteristics of pervasive computing systems such as context-

awareness, layered architecture and concurrent communica-

tions are discussed. Modeling patterns for these features are

provided and illustrated with examples. We adopt CSP# [3]

as the sample modeling language for its rich set of syntax in

modeling concurrent system with hierarchies. Dong et al. [4]

and Coronato et al. [5] proposed to model such systems

using TCOZ [6] and Ambient Calculus [7] respectively.

Although these languages are good at modeling the com-

munications and mobility features respectively, the support

for modeling hierarchical structures is limited. Most impor-

tantly, there is very little tool support for these languages,

which limits the usage and applicability of their approaches.

Secondly, we identify critical properties of pervasive

computing systems and provide their specification patterns

in corresponding logics. According to the stakeholders

(designers, engineers and users of these systems), safety

requirements are essential to pervasive computing systems.

Arapinis et. al. in [8] proposed some critical requirements

of a homecare system. For instance, “Sensors are never

offline when a patient is in danger” or “If a patient is in

danger, assistance should arrive within a given time”. In our

work, we classify the important requirements into safety

properties (nothing bad happens) and liveness properties

(something good eventually happens). Furthermore, formal

specification patterns of these properties are proposed. As a

result, we can verify the critical properties against the system

model by using automatic verification techniques like model

checking [9]. Hence, design flaws can be detected at the

early design stage.

Thirdly, we demonstrate a case study of a smart healthcare

system for mild dementia patients, AMUPADH [10]. A

typical workflow of this formal analysis process is shown in

Figure 1. We start the project with collecting requirements

through multiple visits to the nursing home and interviews

Stakeholders:

Nurses,

Engineers

Collecting

Descriptions

Modeling

Framework:

EnvModel,

SystemModel

Collecting

Requirements

Property

Specification:

Safety,

Liveness

Model

Checkers

Good

Behaviors

Bad

Behaviors

counterexamples

Figure 1: Formal Analysis Workflow

of nurses/doctors. From discussions with system designers,

we learn that AMUPADH is a typical pervasive computing

system which incorporates sensors and a reasoning engine

to understand the patients’ intentions and provides reminder

services to help them. Additionally, AMUPADH has a

multi-person sharing environment which exhibits additional

complexity in terms of concurrent interactions. Then, we

model the user behaviors and system design based on

our modeling framework using CSP# language. Critical

properties such as deadlock freeness, guaranteed reminder

service and conflicting reminders tests are verified using

PAT model checker [11] (a self-contained framework for

modeling, simulating and reasoning of concurrent and real-

time systems). Multiple unexpected bugs such as information

inconsistency are exposed.

In the rest of the paper, we introduce AMUPADH sys-

tem in Section II. The modeling framework and critical

properties of pervasive computing systems are demonstrated

in Section III and IV respectively. Section V illustrates

the case study and reports the unexpected bugs we found.

Related works are discussed in Section VI. Lastly, Section

VII concludes the paper with future work.

II. A MOTIVATING EXAMPLE: AMUPADH - AN

AMBIENT ASSISTED LIVING SYSTEM FOR DEMENTIA

HEALTHCARE

Dementia is a progressive, disabling, chronic disease

common in elderly people. Elders with dementia often

have declining short-term memory and have difficulties in

remembering necessary activities of daily living (ADLs).

However, they are able to live independently or in assisted

living facilities with little supervision.

Ambient Assisted Living systems equip the environment

with a spectrum of computation and communication devices

that seamlessly augment human thoughts and activities.

The system developed in AMUPADH is able to monitor

the patients’ behaviors using activity recognition techniques

(sensors and reasoning rules) and offer help to the patients

(prompt reminders through actuators such as speakers etc.).

Figure 2: An Overview of the Smart Bedroom System

A. System Overview

The architecture of the system is shown in Figure 2.

The system is deployed in a bedroom with two beds and

a shower facility. Different kinds of sensors are deployed

in the room to capture environment changes. For instance,

the pressure sensor under a mattress is used to detect

whether the bed is empty or occupied. Sensors communicate

with the controller via wireless network. The controller

in the middleware interprets sensor signals into low-level

contexts from which high-level contexts are inferred by the

reasoning engine. This reasoning task is performed based

on a set of predefined rules written in Drools1 (based on

First Order Logic). Evaluation of these rules is triggered by

a sensor message or periodically by a timer. In the case

that a rule is satisfied, the system will adapt to a new

state by updating internal variables or invoking reminder

services. For example, if the activity of patient sleeping on a

wrong bed is recognized, the system will prompt a reminder

requesting him to use his own bed.

B. Sensors

In AMUPADH, four types of sensors are deployed in

the bedroom and shower room to monitor the activity of

dementia patients as shown in Figure 3.

• RFID Reader is for identification and tracking. There

are two readers placed beside the doors to detect who

has entered the rooms respectively and two attached to

each bed to identify who is using the bed. Each patient

is wearing an RFID tag placed in a wrist band.

• Pressure Sensor is placed under the mattress of each

bed to detect activities in bed, e.g., sitting or lying.

• Shake Sensor can detect vibration. They are attached

to water pipe and soap dispenser for sensing the usage

of water tap and soap respectively.

• Motion Sensor (A.K.A. passive infrared sensor (PIR))

can measure infrared light radiating from objects in its

range. It is used to detect the presence of the patient in

the shower room.

1Drools Expert: http://www.jboss.org/drools/drools-expert.html

Figure 3: Sensor Layout in the Bedroom

C. Controller

In the Controller, contexts are managed and inferenced.

It has two components i.e., the Main Interface interprets the

sensor signals and triggers the evaluation of all rules when

a sensor message arrives; the Context Checker evaluates

all rules every 5 minutes. The rules are written in Drools

and evaluated by the business rule engine, Drools Expert.

They are specified with a name, a condition formed of

predicates and the adaptation actions. For example, the rule

for detecting sitting bed for too long is specified as follows.

rule "personA sat on Bed A for too long (30mins)"

when

Sensor(id == "pressureBedA",

pressureState == Sensor.pressure_state.SITTING,

duration > 30)

$x : XMPPInterface()

then

$x.SendData("ACTIVITY.error."+"SitBedTooLong"+"."

+"personA");

end

The condition of this rule consists of three

context variables: the sensor’s id, status and timer.

This rule can be interpreted as: the message

ACTIVITY.error.SitBedTooLong.personA will be delivered

to the reminding system if the SITTING status of pressure

sensor on bed A has lasted for more than 30 minutes. The

messages are sent out via a shared bus. The full set of 23

rules used in the system is listed in [12].

D. Reminding System

The reminding system in the application layer acti-

vates/deactivates reminders based on the incoming mes-

sages from Controller. For example, if the message

is ACTIVITY.error.SitBedTooLong.personA, the reminding

system decodes it and knows patient A (named Jim) has

sleeping problems. Thus it invokes a speaker and prompts

‘Jim, you have been sitting on bed for a long time, please

go to sleep’. This reminder will be continuously repeated

until proper actions have been taken. If the prompts reaches

the maximum number, this reminder will be sent to nurses.

Pervasive Computing System Environment

Sensors

Pressure Sensor

RFID Reader

Vibration Sensor

Accelerometer

Middleware

Context Manager

Reasoning Engine

Adaptation Manager

Applications

Reminder Services

Actuators

Meeting Services

Alarm Services

User Behaviors

Start Projector

Cook

Sleep on Bed

Make a Phone Call

Have Lunch

Play a Game

Facilities

Projector

Microwave Oven

Bed

Mobile Phone

Chair

Tablet PC

BUS

BUS

Figure 4: Architectures of Pervasive Computing Systems

III. A MODELING FRAMEWORK FOR PERVASIVE

COMPUTING SYSTEMS

Pervasive computing systems are carefully designed for

users who expect the system to aid in their daily life.

They are usually complex and adopt a layered architecture

as shown in Figure 4. In this section, we discuss the

important features of pervasive computing systems layer-

by-layer and propose corresponding modeling patterns for

them. Besides, environment inputs perform an important

role in pervasive computing systems. Thus, along with the

modeling of system components, we also propose modeling

patterns for different environment aspects which are usually

not included in most complex systems models.

A. Modeling Environments

Pervasive computing systems seamlessly interact with the

environments and acquire context inputs from the users

and objects like TVs and Beds. To some extent, pervasive

computing systems are driven by the environment context

change (we call it scenario here). For example, a person

entering a room which is previously empty will trigger the

lights to be switched on; or when the system detects the

time is 9:00pm, a take-medicine-reminder will be sent to the

patient. Thus, it is important to model the scenarios with

the system design. Meanwhile, the scenario model is also

important for generating meaningful counterexamples so as

to alleviate the burden of analyzing verification results.

Modeling Activities and Environment Objects: User

behaviors are various and usually unpredictable. For most

pervasive computing systems, we can observe that: 1) the

system usually targets a certain group of activities and

ignores other irrelevant ones; 2) relevant user activities

are determined but the order of them is unpredictable.

For instance, a person enters the bedroom, then he may

directly go to sleep or he could possibly enter the shower

room for other activities. In practice, targeted activities can

be provided by system designers. We use a shower room

scenario to demonstrate the modeling patterns.

In the shower room, a user performs many activities such

as wandering or turning on the shower tap. These activities

can be modeled as events which are abstractions of the

observations. For example, an activity represented as event

exitShowerRoom is an observation of the user’s behavior

of leaving the shower room. However, it requires more

advanced language constructs such as non-deterministic

choices to model all possible orders of activities. We explain

the idea using a CSP# model of the shower room scenario.

All the possible activities the patient can do in the room are

modeled as different choices and they are enclosed into a

process named PatientShowerRoom.

PatientShowerRoom() = exitShowerRoom → PatientOutside()

2 turnOnTap → PatientShowerRoom()

2 turnOffTap → PatientShowerRoom()

2 wandering → PatientShowerRoom()

2 useSoap → PatientShowerRoom();

Here, the operator 2 represents the non-deterministic choice.

It operates this way that the process PatientShowerRoom

randomly choose an activity such as turnOnTap to execute.

Then it may transfer control to itself again and choose

useSoap to execute. It is guaranteed that all possible orders

of activities are generated using state space exploration

techniques like model checking.

However, there might exist some unrealistic orders of

events. For example, there is a sequence which contains

two consecutive events of turnOnTap. Obviously, the patient

cannot perform turning tap on activity again if the tap is

turned on already. In order to eliminate such cases, we need

to model these constraints such that the patient’s behavior

is synchronized with the status of the object being used. In

fact, it is essentially the problem of modeling synchronous

behaviors. We propose to use event synchronization in CSP#

and give an example of shower tap model in the following.

Other solutions are possible such as using a global variable

or synchronous channels.

ShowerTap() = turnOnTap → turnOffTap → ShowerTap();

Env() = PatientShowerRoom() ‖ ShowerTap();

The constraint of using tap behaviors is modeled as

if turnOnTap event happens, it will be disabled until

the turnOffTap activity is performed. The two processes

PatientShowerRoom and ShowerTap are composed to be a

complete model of the environment, Env. Here, the operator

‖ denotes parallel composition. Its operational semantic says

that the executions of the composed processes must be

synchronized on common events appearing in all of them.

Interested readers can refer to [3] for more details. Here, the

turnOnTap event becomes a common event between the two

processes.

Modeling Location Transitions: While modeling the

patients behaviors, we divide the activities according

to the locations where they can be performed. In the

PatientShowerRoom model, if the event exitShowerRoom is

engaged, the process will pass control to the PatientOutside

process. Thus, only activities outside can be selected to

run while activities in the shower room are disabled. This

modeling approach is to reflect the location transitions in

the model and to generate realistic sequences of activities.

Modeling Multiple Users: In multiple-user sharing en-

vironment, the activities that different users can perform in

a certain location are usually the same. However, in some

cases, these activities need to be differentiated. For example,

in AMUPADH, the system tracks different patients using

RFID tags. Thus, the sitting on bed behavior performed

by patient1 and patient2 are different from the system’s

point of view. We model this requirement using the process

parameters and events with indexes. In the following, we

provide the behavior model of the patient using bed where

identify information is important.

PatientBed(i) = sitOnBed.i → PatientBed(i)

2 lieOnBed.i → PatientBed(i)

2 leaveBed.i → PatientBed(i);

Parameter i in process PatientBed(i) represents the iden-

tity of the patients. This identity variable is also attached

to events so as to differentiate the activities performed by

different patients.

B. Modeling System Design

Pervasive computing systems share the features such

as layered architecture and concurrent communications. A

common architecture of such systems is shown in Figure 4.

In the following, we discuss these common features and their

modeling layer by layer.

1) Modeling Sensor Layer: There are a lot of interesting

problems in this layer. First of all, there are different

communication patterns like synchronous communication or

asynchronous message passing. These communications form

the basic functionality of sensors. Additionally, different

sensors have different frequencies of sending messages. For

example, RFID reader sends a signal to system every 1

second while pressure sensor sends every 10 seconds. This

issue may cause the system to make wrong adaptations since

the information of the environment may not be completely

refreshed at some time point. Finally, sensors have limited

power supply and may fail from time to time. These two

problems regarding the different sending rates and unstable

working conditions of sensors create many uncertainties in

pervasive computing systems.

Nonetheless, problems might also exist in the wireless

network such as message loss. We skip this part since

research of model checking wireless networks has been done

extensively in the literature [13]. The details about signal

encoding/decoding and message transmission via wireless

networks are abstracted away for simplicity in our work.

Modeling Concurrent Interactions: Sensors interact

with the environment by detecting events and report sensed

contexts by transmitting signals to middleware. The behav-

iors of detecting and transmitting can be abstracted to two

modeling patterns which are synchronous events and mes-

sage passings respectively. Event synchronization has been

introduced in Section III-A. As for message passing, there

are different modeling patterns in different languages. Some

languages support synchronous channels through which the

sending and receiving events are synchronized. In other

languages, broadcast channels or asynchronous channels

with buffers are supported. In the following, we model the

shake sensor using a synchronous channel.

channel port 0;

Shake_Sensor() = (

turnOnTap → port!Shake.UnStationary → Skip

2 turnOffTap → port!Shake.Stationary → Skip

); Shake_Sensor();

Here, port is the synchronous channel defined for the

shake sensor to communicate with middleware. Shake,

UnStationary and Stationary are integer constants represent-

ing the sensor’s ID and possible statuses. In the model, the

shake sensor sends out the signal UnStationary when the tap

is turned on. Note that CSP# supports multi-process synchro-

nization that the event turnOnTap can be synchronized in all

three processes.

Modeling Frequency: Sensors are tuned to have dif-

ferent sending rates due to their functionalities and the

purpose of saving energy. However, if the rates are not

carefully calculated, the system may work incorrectly. To

analyze these behaviors, we propose to use timed modeling

languages such as Stateful Timed CSP (STCSP) [14] or

Timed Automata (TA) [15]. The modeling pattern of sending

rates using STCSP would be as follows.

FSR_Sensor() = (

sitOnBed ։ port!FSR.Sitting ։ Skip

2 lieOnBed ։ port!FSR.Lying ։ Skip

2 leaveBed ։ port!FSR.Empty ։ Skip

2 nothing ։ port!FSR.Empty ։ Skip

); Wait[10]; FSR_Sensor();

Here, operator ։ denotes the urgent event in its left hand

side which cannot be interleaved by other timed events.

Wait[t] is the syntax to model the process idling for t time

units. The above process models the periodic behaviors of

the pressure sensor which senses the environment for certain

activities and immediately transmits its status. Then it idles

for 10 time units and starts sensing again.

Modeling Sensor Failures: Sensors have limited accu-

racy, so that they may fail to detect certain events. They

could also run out of battery and then fail to send the

signals. Intuitively, we model this with probabilistic mod-

eling languages such as Probabilistic CSP (PCSP) [16] or

Probabilistic Timed Automata (PTA) [17].

RFID_Reader() =

enterBedroom.1 → port!RFID.PersonA → Skip

2 enterBedroom.2 → port!RFID.PersonB → Skip;

MalSensor() = pcase{ 9: RFID_Reader()

1: fail → Skip }; MalSensor();

Here, pcase is a syntax for modeling probabilities. 9 and

1 are probability weights here. This process models that the

RFID reader works correctly with probability of 90%.

In summary, different issues in the sensor layer can be

modeled using different language constructs. Notice that the

two modeling languages (i.e., STCSP, PCSP) we adopted

are both extensions of CSP# language. As demonstrated

in above examples, our intention is that it is easy to start

with a simple model and extend it with richer features with

minimum efforts.

2) Modeling Middleware Layer: As shown in Figure 4,

middleware performs the tasks of managing and reasoning

contexts as well as making adaptation decisions. Messages

received from sensors will trigger an update of the system

knowledge/contexts. The status of a sensor is one kind

of contexts. Context variables are modeled using shared

variables in supporting modeling languages.

Furthermore, the reasoning engine performs reasoning by

evaluating predefined rules whose conditions are proposi-

tions of context variables. A common practice for specifying

rules is to use guarded processes or if-else statements. The

following example models the rule in Section II-C in CSP#:

Rule() = if(sensors[Pressure_Sensor] == SITTING &&

Duration[Pressure_Sensor] > 30)

res!Act.SitTooLong.1 → Skip;

Finally, an adaptation decision will be made based on the

reasoning results and sent to the application layer to execute.

This again can be modeled by message passing patterns. For

the above example, if the rule which interprets that someone

is sitting on bed for more than 30 time units, a message will

be sent to the application layer through the channel res.

3) Modeling Application Layer: Application layers vary

according to different implementations. However, we may

only care about the responsive actions which will affect the

end users. Thus we focus on modeling of how the adaptation

decisions are executed. For instance, in the AMUPADH

system, the reminding system is modeled as follows:

Reminder() = res?status.rid.pid → (

[status == Act]ActivateReminder(rid,pid)

2[status == Deact]DeactReminder(rid,pid)

); Reminder();

ActivateReminder(rid,pid) =

updatereminder[rid][pid] = true → Skip;

By decoding the message received from middleware,

the workflow of reminder system diverts according to

the status command. If it is an Act command, the sys-

tem activates reminder rid to patient pid by calling

ActivateReminder(rid, pid) process. Similar logic applies for

deactivating a reminder.

C. Compose a Complete Model

In pervasive computing systems, different components

in different layers cooperate to fulfill the system goals.

However, how to model this cooperate relations are left to

be discussed till now. From a careful study, we discover

that there are three kinds of relationships between these

components which are sequential, independent and concur-

rent relations. Sequential relation means the execution of the

components is strictly sequential according to the workflows

of the system. Components that are completely unrelated to

each other execute independently. As for concurrently re-

lated components, they have synchronized behaviors. These

relations can be well supported in hierarchical languages

such as CSP#. Respectively, these three relations can be

modeled as sequential, interleave and parallel compositions

using operators ; , ||| and ‖ respectively. Examples here

may reuse some process names in above models. Note

that parallel composition has been introduced in modeling

activities in the environment.

Sensors() = Shake_Sensor() ||| FSR_Sensor();

Middleware() = ContextManager(); ReasoningEngine();

AdaptationManager();

Here, since each sensor in the environment works inde-

pendently, the sensor layer model Sensors() is composed by

the interleave operator. On the other hand, in the middleware

layer, the three components are executed sequentially as

determined in the workflow. Therefore, the middleware

model Middleware() is composed using sequential operator.

IV. PROPERTIES OF PERVASIVE COMPUTING SYSTEMS

After system engineers finished the design of a pervasive

computing system, they are often asked to provide guaran-

tees for correctness and even safety requirements. They may

be asked to answer general questions like “Is the system free

of conflict adaptations?” or “Will the services deliver when

they are supposed to?”. These high level requirements cannot

be validated against the system thoroughly using traditional

techniques like testing. However, they can be specified and

verified using formal methods. For example, using model

checking technique, the first question can be verified in the

following steps. First, define the conflict adaption scenario

as a state; Secondly, use reachability verification algorithms

to exhaustively search the system state space to see if such

a state is reachable. In this section, we discuss the critical

properties and propose their specification patterns.

A. Desirable Properties

Properties regarding the good behaviors of the systems

are desirable.

1) Deadlock freeness: Deadlock freeness is one of the

important safety requirements. Deadlock is a situation that

the system reaches a state where no more actions can be

performed. It can lead to serious consequences such as

falling of the patient is not being alerted to a nurse. Deadlock

checking is supported in most model checking tools.

2) Guaranteed Services: Well designed application ser-

vices determine fundamental responsive behaviors of perva-

sive computing systems. For example, in a smart meeting

room, upon detection of some one entered the room, a

OS- Outside

BR- Bedroom

SR- Shower Room

OSstart

BRBED SR

openBedroomDoor

closeBedroomDoor

enterBedroom

openBedroomDoor

closeBedroomDoor

openShowerRoomDoor

closeShowerRoomDoor

exitBedroom

enterShowerRoom

sitOnBed

wandering

turnOnTap

turnOffTap

pressSoap

openShowerRoomDoor

closeShowerRoomDoor
exitShowerRoom

sitUp

lyDown

leaveBed

Figure 5: Patient Behaviors

service will be scheduled to run that it will invoke an

actuator to automatically turn on the lights. Effectiveness of

these services is an important measurement of the system for

the sake of users. To specify this requirement, we propose

patterns of liveness properties using Linear Temporal Logic

(LTL). For example,

2(PatientWandering → 3 LeaveRoomReminder)

Here, 2 and 3 are operators in LTL which read “always”

and “eventually”. This formula specifies the property mean-

ing “Always when PatinetWandering situation happens, the

service LeaveRoomReminder will be eventually delivered”.

The services are usually required to be delivered in

bounded time. Obviously, it is certainly undesirable if the

reminder is sent too late that even the patient has left the

room. To specify the bounded liveness properties, one can

use Timed Computational Tree Logic (TCTL) which extends

CTL with clock constraints. The other possible solution is

to bound the target system model with deadline semantics

in some real time modeling languages such as STCSP.

3) Security: Since pervasive computing systems carry

lots of environment information including the user’s con-

fidential profiles, it is critical to protect privacy. Leakage of

information can compromise the safety of the user and his

or her belongings. For instance, food delivery person should

not have access to the patients medical profile. Properties to

describe security problem can be specified in many kinds of

logics such as LTL. For example,

2(FoodDeliveryPerson → not (3 AccessPatientProfile))

Model checking techniques for security problems are

proposed in papers such as [18].

B. Testing Purposes

To test the system after being deployed is cumbersome

considering the reengineering workload. Fortunately, those

unwanted scenarios can be specified in properties and

checked using reachability verification algorithms.

1) System Inconsistency: Failures of sensors and wireless

networks may cause contexts of the environment in the

Open Close

enterBedroom

exitBedroom

closeBedroomDoor

openBedroomDoor

(a) Bedroom Door Behavior

Empty Sitted Lied

sitOnBed

leaveBed

lyDown

sitUp

leaveBed

(b) Bed Behavior

Figure 6: Surrounding Environment

system to be out of date. Thus system knowledge can be

inconsistent with actual environments. By defining such

conflicting states, you can test again the system model to

see if such a state is reachable.

2) Conflicting/ False Services: To guarantee the services

being eventually delivered is not enough. It is also important

to check if these services are sent properly. Some problems

have been reported by domain experts such as conflicts

of reminders [19]. These problems are especially common

in multi-user systems. For example, in AMUPADH, two

conflicting reminders are prompted at the same time that one

asks the patient to leave shower room while the other asks

the patient to use soap to continue showering. This causes

the confusion of the patient and could agitate them. Another

scenario is that the reminder is sent to the wrong person.

These problems can be specified in reachability properties.

3) Properties in rules: Rule-based reasoning engines are

popular in pervasive computing systems. The correctness

of rules is essential to the correct behaviors of systems.

Problems of these rules include duplicated rules, conflict

rules and unreachable rules. This is also easy to specify.

For example, to check whether a rule is unreachable, the

condition of the rule can be defined as a state and property

can be expressed as testing if the state is reachable.

V. CASE STUDY: FORMAL ANALYSIS OF AMUPADH

The proposed approach is applied to analyze AMUPADH.

We adopt CSP# modeling language since it supports most of

the modeling patterns in the framework. Important properties

are specified in reachability semantic and LTL formulae.

PAT model checker is chosen to parse the model, build up the

system state space and verify these properties. Experiment

results are listed and unexpected bugs are reported.

A. System Modeling

In this section, we model the environments and the system

design using our framework and use Labeled Transition

Systems (LTS) for demonstration.

1) Environment Model: As shown in Figure 5 and 6.

These LTSs can be generated using simulation function of

PAT. In Figure 5, there are four possible locations that a

patient can reside. The transition edges between states are

labeled with patient’s activities.

This patient model should be synchronized with objects

within the surrounding environment. The objects that are

Empty

Occupied

Reasoning

Engine

sitOnBed.i leaveBed

lyDown

port!Empty

port!i

(a) Bed RFID Reader

Empty

Occupied

Reasoning

Engine

sitOnBed.i leaveBed

lyDown

sitUp

port!Empty

port!Lying

port!Sitting

(b) Bed Pressure Sensor

Figure 7: Sensor Behaviors

modeled include doors of bedroom and washroom, beds and

washroom taps. The behavior models of the doors and beds

are shown in Figure 6a and 6b respectively.

2) Sensor Model: Different sensors are used in AMU-

PADH to monitor specific behaviors of the patients. For

example, pressure sensors attached to the bed mattresses

are for monitoring how the patients use the beds. The

information captured by sensors is passed from sensors to

the controller via a synchronized channel port. Every sensor

possesses multiple unique states when made available to the

system. Figure 7 shows the modeling of sensors using the

bed RFID readers and bed pressure sensors as mentioned in

Section II-B. Then, we combine all processes of sensors to

one process Sensors using composition patterns.

Sensors()=Rfid_Bedroom()

||| (Rfid_Beds() ‖ FSR_Sensors())

||| (Rfid_ShowerRoom() ‖ PIR_ShowerRoom())

||| ShakeSensors();

3) Controller and Reasoning Engine Model: Inside the

reasoning engine, rule evaluation is triggered by two pro-

cesses, namely the MainInterface and ContextChecker pro-

cesses. In order to model the periodical evaluation by

ContextChecker, we use a constant integer RATE to represent

the interval and Duration variable to record elapsed time.

The atomic syntax used here is to ensure the process

inside the block is executed without interference from other

processes.

ReasonEngine() = MainInterface() ||| ContextChecker();

MainInterface() =

atomic{port?id.status → update{sensors[id]=status;
Duration= call(setTimer,id,status,Duration)} →
FireAllRules()};MainInterface();

ContextChecker()=

atomic{update{Duration = call(tick,Duration,RATE)}
→ FireAllRules()};ContextChecker();

On receiving a message from any sensor, the

MainInterface updates the sensor status and Duration.

After that, the FireAllRules process is invoked to perform

reasoning. In the model above, we use the syntax

call(setTimer, id, status,Duration) to call an external static

function setTimer (written in C#) to update Duration

according to the input of sensor id and status. This is

a special feature in PAT, which allows users to separate

ActRm

DeactRm

res?status.rid.pid

[status==ACT]

[status==DEACT]

Figure 8: Reminding System Behaviors

complicated calculation from the high level model in order

to have a simple model with efficient verification. The

ContextChecker is similar to the MainInterface in updating

sensor statuses and Duration, but does so in a periodic

cycle instead of using a listener.

The process FireAllRules sequentially evaluates every rule

independent of the results from previous cycles of rule

evaluation and triggers proper actions such as setting a flag

or sending a message to the reminding system. Messages

are passed via a synchronous channel named res. We model

every rule in a separate process. In the following, we list

one rule to illustrate the modeling. The process Rule 14 1()
models a complicated rule defined for recognizing the wan-

dering behavior of the dementia patient. It says if the shake

sensor on shower tap is stationary, the PIR sensor detects the

patient’s presence has lasted for 15 time units, the shower

flag is still false and patient 1 is in the shower room, then

patient1 is wandering in the shower room. Consequently, the

reasoning engine sets the wander flag to true and passes a

message to inform the reminding system that patient1 needs

to be reminded to leave the room.

FireAllRules() = Rule0();

...

Rule_14_1() = if(sensors[ShakeTap] == STATIONARY &&

sensors[PirShowerroom] == FIRING &&

Duration[PirShowerroom] ≥ 15 &&

!ShowerFlag && Location_Person[1] == SHOWERROOM){
setFlag{WanderFlag = true} →
res!Error.WanderingInShowerroom.1 → Rule_14_2()}

else {Rule_14_2()};
...

4) Reminding System Model: In the system, reminders

are activated/ deactivated upon receiving corresponding mes-

sages from the controller. As shown in Figure 8, the re-

minding system receives a triplet from the controller via

channel res. This triplet consists of a command, behavior

code and patient ID. If the command is ACT, the reminder

rid will be activated and prompted to patient pid, otherwise

the specified reminder will be stopped if it is active. The

ACT and DEACT are command constants corresponding to

Normal and Error in rule processes.

Finally we integrate all the sub-system models together

into a process named SmartRoom() using composition pat-

terns. Interested readers are referred to [12].

B. System Verification

In this section, requirements concerned by system de-

signers and users (patients/ nurses/ doctors) are formally

specified and verified.

1) Deadlock freeness (P1): Deadlock freeness property is

directly supported in PAT using the keyword deadlockfree.

However, the complete SmartRoom() model is too large

to verify, we decompose it into subsystems according to

locations. In fact the two subsystems shares only one context

variable, the patient’s location which can only be determined

by one RFID tag (not shared). Thus, we argue that this

decomposition fulfills the verification purpose.

P1.1 #assert SmartRoom() deadlockfree;

P1.2 #assert SmartBedroom() deadlockfree;

P1.3 #assert SmartShowerRoom() deadlockfree;

2) Guaranteed Reminders (P2): A well designed remind-

ing service is very important for assisting elders with mild

dementia. We list two reminder services in the bedroom and

shower room scenarios respectively as follows. Other similar

properties (P2.3-P2.6) are specified in [12].

Guaranteed Lying Wrong Bed Reminder (P2.1): This

property states that when a patient is sleeping in a wrong

bed, the system will always prompt the LyingWrongBed

reminder eventually.

#define LyingWrongBed (sensors[RfidBed_1] 6= EMPTY

&& sensors[RfidBed_1] 6= 1);

#define RemindedWrongBed

(ReminderStage[LyingWrongbed*2 + 1] 6= 0);

#assert SmartBedroom() �

2 (LyingWrongBed → 3 RemindedWrongBed);

Here, condition LyingWrongBed specifies the scenario

that someone else is sleeping on patient1’s bed, and

RemindedWrongBed defines the state the reminder is

prompted.

Guaranteed Tap Not Off Reminder (P2.2): This prop-

erty states that when the system detects that the shower tap

is not off for a long time, the reminder Tap Not Off will

eventually be sent.

#define TapNotOff (sensors[ShakeTap] == UNSTATIONARY

&& Duration[ShakeTap]>30);

#define OffTapReminded

(ReminderStage[TapNotOff*2] 6= 0

|| ReminderStage[TapNotOff *2+1] 6= 0);

#assert SmartShowerRoom() �

2 (TapNotOff → 3 OffTapReminded);

where condition TapNotOff specifies the situation that the

shower tap is turned on for more than 30 time units, and

OffTapReminded defines the state the reminder is prompted.

3) Contradict Knowledge (P3): The following property

is specified to check whether there are contradictions in the

system. For example, if the PIR sensor is in SILENT status,

there should be no one in the shower room.

#define Contradiction (Pos_Person[1] == SHOWERROOM

&& sensors[PIR] == SILENT);

#assert SmartShowerRoom() reaches Contradiction;

4) Conflicting/False Reminders (P4):

Property Result # States # Transitions Time(s)

P1.1 - - - OOM
P1.2 True 1.43M 2.04M 815
P1.3 True 10.8M 15.8M 7045
P2.1 True 1.60M 2.43M 1945
P2.2 False 0.07M 0.131M 39
P2.3 False 2.19M 4.53M 12414
P2.4 False 0.832M 1.66M 729
P2.5 False 4314 5150 1.6
P2.6 True 1.58M 2.38M 1913
P3 True 572 745 0.3

P4.1 True 2446 3036 1.11
P4.2 True 0.01M 0.02M 6.1

Table I: Results of Experiment

False Reminders (P4.1): False reminders are generated

prompts that should not be sent to patients. In the following,

we specify a situation that the Sit Bed Too Long reminder

is sent to patient1 but in fact he is not in the bedroom.

#define FalseReminder (Pos_Person[1] 6= BEDROOM

&& ReminderStage[SitBedLong] 6= 0);

#assert SmartBedRoom() reaches FalseReminder;

Conflicting Reminders (P4.2): In the following,

ConflictReminder defines a state where two reminders (i.e.

WanderingInSR reminder and Shower No Soap reminder)

are simultaneously prompted to one patient.

#define ConflictReminder

(ReminderStage[ShowerNoSoap * 2] 6= 0

&& ReminderStage[WanderingInSR * 2] 6= 0);

#assert SmartShowerRoom reaches ConflictReminder;

Based on the work of Section A and B, experiments

are carried out to formally verify the properties against the

system model. The experiments test bed is a PC with Intel

Xeon CPU at 2.13GHz and 32GB RAM. The results are

shown in Table I, where OOM indicates out of memory.

C. Discovery of Unexpected Bugs

Counterexamples are returned as evidences if the system

model violates certain properties. They are of great value to

system engineers to debug the system. The set of confirmed

bugs are reported as follows which are unexpected by the

development team.

1) P2.2 - P2.5: The violation of these properties reveals

a critical problem of the system that it fails to monitor

the patient’s location correctly. A patient exiting the shower

room with tap left on is a typical case. The two reminders,

Shower Not Off and WanderingInSR will repeatedly prompt

even though there is no one in the shower room.

2) P3: The verification result shows the contradiction

state exists and this exposes the inconsistencies in the sys-

tem. One possible cause is the failure of location monitoring.

3) P4.1: This property is witnessed to be valid. Through

careful investigation, we notice that the rule defined for

Sit Bed Too Long does not have an identity attached to the

rule’s condition and hence this reminder is sent to the bed’s

default owner irregardless of the bed’s current user.

4) P4.2: It is validated by the scenario of a patient wan-

dering in the shower room and triggering the WanderingInSR

reminder. He then ignores the reminder and turns on the

shower tap to play with water (A typical behavior of a

dementia patient). The water runs for a long time that the

Shower No Soap reminder is triggered, therefore causing

the system to prompt the conflicting reminders.

Due to page limits, we skip the detailed feedbacks from

the system designers. In general, they improved their system

by amending the rules with necessary identify information.

Furthermore, in order to precisely detect the patient’s loca-

tion, they added PIR sensors in the bedroom and some rules

to assure the consistence among context variables.

D. Discussion

We gained several observations from this case study. First

and foremost, model checking techniques can provide a

very good guide on system design. From our experiences

of working with designers of the system, they usually focus

on setting up a demonstration based on selected scenarios

without considering other useful situations. In fact, the

development and consideration of all possibilities when

constructing scenarios and rules is an impossible task and

would either take many man-hours to find out through actual

deployment. Besides, it is important to find unexpected bugs

based on the stakeholders requirements before deployment

of the whole system. Hence the engineers can retrieve certain

normal or abnormal scenarios they are interested in based

on our analysis results.

On the other hand, the experimental results also reflect

typical state space explosion problem in model checking

techniques. The number of states in verifying property P1.3

reaches the level of 108, which is the limit of explicit-state

model checkers like SPIN and PAT. Advanced techniques

such as partial order reduction and compositional verification

are desirable to alleviate this problem.

VI. RELATED WORK

Pervasive computing systems have achieved many mile-

stones in recent years. However, works on applying formal

methods to assure the correctness of such systems are

limited. In [4], they proposed a TCOZ model for a smart

meeting room system which very well captured the con-

current communications and real-time constraints of sensors

and actuators. Important properties are manually proved in

the paper. Researchers in [5] used Ambient Calculus to

model a location sensitive smart guiding system in a hospital.

The mobility issue is well modeled and reasoned in their

work. However, both of the two languages cannot model

the hierarchies in systems. Moreover, lack of verification

tools support restricts the applicability of their approaches

to large pervasive computing systems. Our work advances

them by adopting hierarchical modeling languages which

is also supported by popular model checkers for automatic

verification. In [20], the Adaptation Finite-State-Machine

(A-FSM) is proposed for modeling context-aware adaptive

mobile applications. They also proposed fault patterns based

on the A-FSM which can be automatically detected using

their algorithms. However, how to model systems in A-FSM

is not clear in their work and their approach cannot handle

liveness properties. Our work provides modeling patterns

for most parts of pervasive computing systems and steps of

building a system model. Besides, a wide range of properties

can be verified using our approach regarding the safety and

liveness requirements.

VII. CONCLUSION

In this work, we propose a formal modeling framework for

pervasive computing systems. Different modeling patterns

are discussed according to the typical features of systems

such as concurrent communications, context-awareness and

layered architectures. We also provide environment model-

ing patterns which are usually not considered in modeling

complex systems. Furthermore, critical properties of safety

and liveness requirements are identified and specified in

proper logics such as specifying guaranteed reminder ser-

vices using LTL. To demonstrate our approach, we present

a case study of applying the modeling framework to a

healthcare system for dementia patients. Critical properties

are verified using PAT model checker with unexpected bugs

revealed. Experimental results and sources of the bugs are

explained. This work demonstrates the usefulness of formal

methods (particularly model checking techniques) in ana-

lyzing pervasive computing systems. In the future, we will

optimize the verification algorithms and explore advanced

techniques to tackle the state space explosion problem.

ACKNOWLEDGMENT

The authors would like to thank Lee Vwen Yen Alwyn,

Clifton Phua, Zhu Jiaqi and Kelvin Sim from Institute for

Infocomm Research in Singapore for the kindness contribu-

tions and valuable feedback to this work.

REFERENCES

[1] D. Saha and A. Mukherjee, “Pervasive computing: A
paradigm for the 21st century,” Computer, vol. 36, pp. 25–31,
2003.

[2] W. K. Edwards and R. E. Grinter, “At home with ubiquitous
computing: Seven challenges,” in UbiComp, 2001, pp. 256–
272.

[3] J. Sun, Y. Liu, J. S. Dong, and C. Chen, “Integrating speci-
fication and programs for system modeling and verification,”
in TASE, 2009, pp. 127–135.

[4] J. S. Dong, Y. Feng, J. Sun, and J. Sun, “Context Awareness
Systems Design and Reasoning,” in ISoLA, 2006, pp. 335–
340.

[5] A. Coronato and G. D. Pietro, “Formal specification of
wireless and pervasive healthcare applications,” ACM Trans.
Embed. Comput. Syst., vol. 10, pp. 12:1–12:18, 2010.

[6] B. Mahony and J. S. Dong, “Blending Object-Z and Timed
CSP: an introduction to TCOZ,” in ICSE ’99, 1998, pp. 95–
104.

[7] L. Cardelli and A. D. Gordon, “Mobile ambients,” in FoSSaCS
’98, 1998, pp. 140–155.

[8] M. Arapinis, M. Calder, L. Denis, M. Fisher, P. D. Gray,
S. Konur, A. Miller, E. Ritter, M. Ryan, S. Schewe,
C. Unsworth, and R. Yasmin, “Towards the verification of
pervasive systems,” ECEASST, vol. 22, 2009.

[9] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model
checking. MIT Press, 1999.

[10] J. Biswas, M. Mokhtari, J. S. Dong, and P. Yap, “Mild
dementia care at home - integrating activity monitoring, user
interface plasticity and scenario verification,” in ICOST, 2010,
pp. 160–170.

[11] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “Pat: Towards flexible
verification under fairness,” in CAV ’09, 2009, pp. 709–714.

[12] Y. Liu, X. Zhang, Y. Liu, J. Sun, J. S. Dong, J. Biswas,
and M. Mokhtari, “Technical Report for Formal Analysis
Pervasive Computing Systems,” http://www.comp.nus.edu.sg/
∼yanliu/techreport.pdf.

[13] P. C. Olveczky and S. Thorvaldsen, “Formal modeling, per-
formance estimation, and model checking of wireless sensor
network algorithms in real-time maude,” Theor. Comput. Sci.,
vol. 410, pp. 254–280, 2009.

[14] J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and E. Andre,
“Modeling and verifying hierarchical real-time systems using
stateful timed csp,” in The ACM Transactions on Software

Engineering and Methodology (TOSEM), 2011, to appear.

[15] R. Alur, “Timed automata,” Theor. Comput. Sci., vol. 126, pp.
183–235, 1999.

[16] J. Sun, S. Z. Song, and Y. Liu, “Model checking hierarchical
probabilistic systems,” in ICFEM, 2010, pp. 388–403.

[17] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0:
Verification of probabilistic real-time systems,” in CAV, 2011,
pp. 585–591.

[18] W. Marrero, E. Clarke, and S. Jha, “Model Checking for
Security Protocols,” Carnegie Mellon University, Tech. Rep.,
1997.

[19] K. Du, D. Zhang, X. Zhou, and M. Hariz, “Handling conflicts
of context-aware reminding system in sensorised home,”
Cluster Computing, vol. 14, pp. 81–89, March 2011.

[20] M. Sama, S. Elbaum, F. Raimondi, D. S. Rosenblum, and
Z. Wang, “Context-aware adaptive applications: Fault patterns
and their automated identification,” IEEE Trans. Softw. Eng.,
vol. 36, pp. 644–661, 2010.

View publication statsView publication stats

	Formal analysis of pervasive computing systems
	Citation
	Author

	tmp.1632921095.pdf.iyAxg

