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Chapter 2
Clustering and Its Extensions
in the Social Media Domain

Abstract This chapter summarizes existing clustering and related approaches for
the identified challenges as described in Sect. 1.2 and presents the key branches of
socialmediamining applicationswhere clustering holds a potential. Specifically, sev-
eral important types of clustering algorithms are first illustrated, including clustering,
semi-supervised clustering, heterogeneous data co-clustering, and online clustering.
Subsequently, Sect. 2.5 presents a review on existing techniques that help decide
the value of the predefined number of clusters (required by most clustering algo-
rithms) automatically and highlights the clustering algorithms that do not require
such a parameter. It better illustrates the challenge of input parameter sensitivity of
clustering algorithms when applied to large and complex social media data. Further-
more, in Sect. 2.6, a survey on several main applications of clustering algorithms to
social media mining tasks is offered, including web image organization, multi-modal
information fusion, user community detection, user sentiment analysis, social event
detection, community question answering, social media data indexing and retrieval,
and recommender systems in social networks.

2.1 Clustering

Clustering, aimed at identifying natural groupings of a dataset, is a commonly used
technique for statistical data analysis inmanyfields, such asmachine learning, pattern
recognition, image and text analysis, information retrieval, and social network analy-
sis. This section presents a literature reviewon the important clustering techniques for
multimedia data analysis in terms of different theoretical basis. To gain a systematical
understanding on the clustering taxonomy, please look at past efforts [168, 169].

2.1.1 K-Means Clustering

K-means clustering [109] is a centroid-based partitional algorithm, which partitions
the data objects, represented by feature vectors, into k clusters. It iteratively seeks k
cluster centers in order to minimize the intra-cluster squared error, defined as
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16 2 Clustering and Its Extensions in the Social Media Domain

argmin
S

k∑

i=1

∑

x∈si
||x − μi ||, (2.1)

whereS = {s1, . . . , sk} is a partition of data in k groups, x is the feature vector of a
data object in the cluster si , μi is the weight vector (in this case the mean vector) of
all feature vectors of cluster si , and ||.|| is the vector norm, typically the Euclidean
norm, measuring the distance between x and μi .

K-means clustering is widely used due to its easy implementation, linear time
complexity of O(n), and well-founded objective function, and many variations have
been proposed such as Fuzzy C-means Clustering [123] and Kernel K-means Clus-
tering [51]. However, it suffers from two fundamental drawbacks: (1) the number of
clustering k is difficult to determine, and (2) the clustering result is sensitive to the
initialization of cluster centers. Accordingly, numerous research efforts have been
conducted to tackle these problems, such as [7, 9, 58].

Although such problems are still unsolved, the standard K-means clustering, in
practice, frequently finds reasonable solutions quickly and is widely used in various
applications, such as image segmentation [40], image organization [24], and graph
theoretic clustering [136, 146].

2.1.2 Hierarchical Clustering

Hierarchical clustering algorithms attempt to generate a hierarchy of clusters for data
objects. Typically, hierarchical clustering techniques fall into two types:

• Agglomerative clustering: Each data object is a leaf cluster of the hierarchy, and
pairs of clusters are merged iteratively according to certain similarity measures.

• Divisive clustering: All the data objects start in one cluster, and cluster splitting
is performed recursively according to some dissimilarity measures.

The agglomerative clustering algorithms typically merge leaf data objects and
clusters using a combination of distance metrics for single data objects and clusters.
The distance between data objects is usually defined as vector norms, such as

• Euclidean distance (�2 norm): d(a, b) = √∑
i (ai − bi )2

• Manhattan distance (�1 norm): d(a, b) = ∑
i |ai − bi |

While the similarity or dissimilarity/distance between clusters is usually measured
by the linkage criteria, such as

• Single-linkage [66]: min { d(a, b) : a ∈ A, b ∈ B }
• Average-linkage [144]: 1

|A||B|
∑

a∈A

∑
b∈B d(a, b)

• Complete-linkage [3]: max { d(a, b) : a ∈ A, b ∈ B }
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In contrast to the iterative merging of pairs of leaf and intermediate nodes, the
divisive clustering usually produces each layer of the hierarchy using some clustering
algorithms, such as K-means, decision tree and ART [13].

Although hierarchical clustering has been widely used in image and text domains
[76, 140], three major problems remain: (1) High time complexity, usually of O(n3),
limits its scalability for big datasets; (2) The generated hierarchy can be very complex
for a dataset containing diverse contents; and (3)Deciding the stop criteria is difficult.

In recent years, some hierarchical clustering algorithms have been developed for
web image organization [24, 53], which successively use different types of features,
such as textual and visual features, to build a multi-layer hierarchy. However, this
approach cannot provide a semantic hierarchy of clusters. Also, it suffers from the
problem of error propagation, because the clustering result of data objects in one
layer is based on that of the previous layers.

2.1.3 Graph Theoretic Clustering

Graph theoretic clustering models the relations between data objects by a graph
structure where each data object is a vertex, and an edge between a pair of vertices
indicates their relation. This approach is intended to group the vertices into clusters
according to some optimization criteria. Graph theoretic clustering is widely studied
in the literature because of its well-defined objective functions which can be easily
utilized to formulate a wide range of clustering problems.

Spectral clustering, one of the most well-known graph theoretic clustering meth-
ods, refers to a type of clustering technique, such as normalized cut [146] and min-
imum cut [166]. For example, given an affinity matrix A = {Ai j } where Ai j is the
distance between the i-th and j-th objects, the normalized cut algorithm first com-
putes its Laplacian matrix

L = D − A, (2.2)

where D is a diagonal matrix where Dii = ∑
j Ai j . Subsequently, the eigenvalues λ

and eigenvectors y are obtained by solving

(D − W)y = λDy. (2.3)

By representing data objects using the first k eigenvectors, the data clusters are
obtainedbyperforming theK-means algorithmon the newdata representationmatrix.

Todecrease the computation cost and avoid the effect causedbydifferent similarity
measures, bipartite spectral graph partitioning [135] is proposed. It directly models
the relations between data and features using a bipartite graph and finds the solution
by solving a singular value decomposition problem [65]. A similar idea has been
applied on the image domain [133].
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2.1.4 Latent Semantic Analysis

Latent SemanticAnalysis (LSA) [49] is initially proposed to analyze the relationships
between a set of documents and the words therein. Given a term-document matrix
X, LSA decomposes the matrix into three matrices via singular value decomposition
(SVD) [65], defined as

X = UΣVT , (2.4)

where U and VT are orthogonal matrices containing the singular vectors and Σ is
a diagonal matrix containing the singular values. The new data representation is
obtained using the k rows in VT corresponding to the k largest singular values in Σ ,
i.e. the latent semantic space.

The key idea behind LSA is to map the high-dimensional term vectors of
documents to a lower dimensional representation in a so-called latent semantic
space. Analogous to spectral clustering, a traditional clustering algorithm should
be employed to obtain the cluster assignment of data objects in the latent semantic
space. LSA has been applied to a wide range of topics including text summarization
[124, 151], face recognition [59], and image retrieval and annotation [130].

2.1.5 Non-Negative Matrix Factorization

Non-negative Matrix Factorization (NMF) [94], similar to Latent Semantic Analysis
(LSA), is also a technique based onmatrix factorization. In contrast, NMF iteratively
decomposes the feature matrix X ∈ �n×m into two matrices W ∈ �n×k and H ∈
�k×m based on the objective function minimizing the reconstruction error, defined
as

min ||X − WH||2F , (2.5)

where ||.||2F is the squared Frobenius norm.
Contrary to spectral clustering and LSA that are equivalent to the feature reduction

process, NMFderives the cluster indicatormatrixW that directly reveals the relations
between eachof then documents and apre-definednumber of clusters k (dimensions).
As such, the cluster membership of each document is determined by the largest
projection value among all the k dimensions. A study [170] indicates that NMF
outperforms spectral methods in text document clustering in terms of both accuracy
and efficiency.

Recently, a tri-factorizationobjective function [52] has beenproposed for a general
framework of data clustering, which has been extended to perform document-word
co-clustering [68] and semi-supervised document clustering [45].
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2.1.6 Probabilistic Clustering

Probabilistic clustering, usually referred to as mixture models, is a generative model-
based approach, which uses statistical distributions to model clusters and achieves
the cluster assignment of data objects by optimizing the fit between the data and
the distributions. Specifically, this approach assumes that data objects are generated
from a set of probabilistic distributions, so the data points in different clusters should
follow different probabilistic distributions. Typically, this approach requires the user
to specify the number and the functional forms of the distributions, such as the Gaus-
sian distribution [113]. As such, the clustering process is equivalent to estimating
the parameters of the probabilistic distributions.

Gaussian mixture model (GMM) is a commonly-used algorithm for probabilistic
clustering,where eachdata objectx ∈ X is estimatedby aweighted sumof kGaussian
distributions, defined as

p(x|θ) =
k∑

i=1

φiN (x|μi , σi ), (2.6)

s.t.
k∑

i=1

φi = 1 (2.7)

where θ is the set of parameters of distributions to be estimated, N (μi , σi ) is the
i-th Gaussian distribution and φi is the corresponding weight.

The objective function of GMM is to maximize p(x) for each data object,
defined as

argmax
θ

∑

x∈X
p(x) (2.8)

Themost popularmethod for solving the parameter estimation task of probabilistic
distributions defined in Eq. (2.8) is the Expectation-Maximization (EM) algorithm
[50, 121, 132], which estimates the maximum likelihood of parameters based on
Bayes’s theorem. The EM iteration alternates between performing an expectation
(E) step, which creates a function for the expectation of the log-likelihood and is
evaluated using the current estimate for the parameters, and a maximization (M)
step, which computes parameters by maximizing the expected log-likelihood found
in the E step.

2.1.7 Genetic Clustering

The use of genetic algorithms [10, 11] to identify the best clustering typically depends
on the evolution of cluster structures, as evaluated by certain cluster validity indices.
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As an example, the symmetry-based genetic clustering algorithm, called VGAPS-
clustering [11], models a cluster structure x as a “chromosome” where the “genes”
are a concatenation of the number of clusters and cluster weights, such that x =
[ j, x1, . . . , x j ]. VGAPS-clustering thereafter randomly generates a number of such
“chromosomes” as a population pool, and uses a fitting function f (x) to select the
best-fitting “chromosomes”, defined as

argmax
x

f (x), (2.9)

where the f (x) is customized and a typical choice is that of the K-means clustering
algorithm as defined in Eq. (2.1).

The selected best-fitting patterns of cluster structures are then modified to gener-
ate the next generation pool using the typical evolutionary operators of genetic algo-
rithms, such as “mutation”, “crossover” and “selection”. Note that different patterns
may have different numbers of centers. After the maximum number of generations,
the pattern with the highest fitness is selected as the best cluster structure.

Genetic clustering can identify clusters of arbitrary shapes and achieve a global
optimum. However, genetic clustering algorithms are usually quite slow due to the
stochastic evolution of patterns. The experiments presented in [11] were only con-
ducted on a few small datasets with several hundred patterns, each of which also had
a small number of dimensions. A review of genetic clustering algorithms is provided
in [10].

2.1.8 Density-Based Clustering

Density-based clustering identifies dense regions of data objects as clusters in the
feature space. As the first density-based clustering algorithm, DBSCAN [57] forms
the degree of density using two parameters, namely, the maximum distance for the
search of neighbors ε and the minimum number of neighbors minPts; data objects
and their neighbors that satisfy the above requirements are called core points and are
deemed to be in the same cluster. The data objects that do not satisfy the requirements
and are not neighbors of any core point are considered noise. Following the above
criteria, DBSCAN examines all the data objects and identifies clusters and noise.

In addition, DBSCAN has several extensions. GDBSCAN [142] extends
DBSCAN so that it can cluster point objects and spatially extended objects according
to both their spatial and non-spatial attributes. OPTICS [6] provides a hierarchical
view of the data structure, which is equivalent to the density-based clusterings corre-
sponding to a broad range of parameter settings. DECODE [128] composes clusters
with different densities in the dataset; more specifically, it computes the mth near-
est distance of each pattern and uses reversible jump Markov Chain Monte Carlo
(MCMC) to identify the clusters of patterns in terms of their different densities. Tran
et al. [159] proposed a density-based clustering algorithm, KNNCLUST, in which
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the density is measured by a KNN-kernel table. With a pre-defined number of neigh-
bors, all the patterns in the dataset are assigned to clusters according to the proposed
KNN-kernel Bayes’ class-condition. The cluster memberships of all the patterns are
recalculated until their cluster assignments stop changing.

Density-based algorithms have several advantages, including their ability to form
clusters with arbitrary shapes and their insensitivity to initialization. However, they
require several pre-defined parameters that are difficult to decide, such as the mini-
mum number of neighbors in DBSCAN, the value ofm and the parameter for decid-
ing the probability mixture distribution in DECODE, the number of neighbors in
the KNN table and the choice of kernel in KNNCLUST. Additionally, density-based
clustering algorithms typically require a quadratic time complexity of O(n2), which
may be reduced to O(n log n) when a spatial index structure is used to speed up the
search process for neighbors [142]. A review of density-based clustering algorithms
can be found in [90].

2.1.9 Affinity Propagation

Affinity Propagation [60] is an exemplar-based clustering algorithm that identifies
a set of representative data objects (patterns) as “exemplars” to the other patterns
in the same cluster. Exemplars are identified by recursively updating two messages
of patterns, namely, the “availability” a(i, k) to indicate the qualification of the k-th
data object to be an exemplar of the i-th data object, and the “responsibility” r(i, k)
to indicate the suitability of the i-th data object to be a member of the k-th exemplars’
clusters. The algorithm stops when the exemplars for all the patterns remain for a
number of iterations, or upon reaching a maximum number of iterations.

Two algorithms [62, 171] have been proposed to improve the efficiency ofAffinity
Propagation. Fast SparseAffinity Propagation (FSAP) [171] generated a sparse graph
using the K-nearest neighbor method, rather than the original similarity matrix, to
reduce the computation of message transmission in Affinity Propagation. In [62],
the proposed fast algorithm for Affinity Propagation reduced the computation by
pruning the edges that can be directly calculated after the convergence of Affinity
Propagation.

Affinity Propagation has shown better performance than K-means in terms of
the average squared error. However, it has a quadratic time complexity of O(tn2)
where t is the number of iterations. Even the fastest one [62] has a quadratic time
complexity of O(n2 + tm), where m is the number of edges. Additionally, Affinity
Propagation usually requires the tuning of four parameters, including the preference
vector “preference” which controls the number of generated clusters and impacts
the speed of convergence, the damping factor “dampfact” and the maximum and
minimum number of iterations “maxits” and “convits” which ensure convergence.
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2.1.10 Clustering by Finding Density Peaks

Clusterdp [139] identifies data clusters by finding the density peaks. It does not follow
traditional density-based algorithms, such as DBSCAN. Instead, with a predefined
value of search radius dc, the local density ρi and the nearest distance to the data
objects with the higher local density δi for each data object is computed. The density
peaks are evaluated by following two criteria: 1) Density peaks should have more
neighbors than those of their neighbors; and 2) all density peaks should be far away
from each other. Clusterdp requires human decisions to select the density peaks. It
plots the “ρ − δ” decision graph for the users and asks them to identify those density
peaks appearing in the upper-right part of the graph that are a sufficient distance from
the other points. These density peaks will serve as cluster centers, and the remaining
patterns are assigned to the nearest cluster centers.

This approach is fast (in time complexity of O(n)) and roughly robust to the
single parameter dc. However, it was found to be ineffective in the identification of
representative peaks for social media data, mainly due to the high dimensionality of
data and the noise in many ways [116].

2.1.11 Adaptive Resonance Theory

Adaptive Resonance Theory (ART) [30, 67] is a learning theory on how a human
brain memorizes events and objects, and it leads to a series of real-time unsupervised
learningmodels capable of fast and stable category recognition, such as ART 1 [180],
ART 2 [28], ART 2-A [33], ART 3 [29], and Fuzzy ART [34], as well as supervised
learning models, such as ARTMAP [32] and Fuzzy ARTMAP [31].

TheART-based clustering algorithmshavedifferent learningoperations but follow
similar procedures, which incrementally perform real-time searching and matching
between input patterns (data objects) and existing clusters (memory prototypes) in
the category space one at a time. Specifically, given an input pattern x, ART performs
the following actions

1. Searching for the best-matching (winner) cluster c j in the category field using a
choice function T (x; c j ).

2. If c j exists, a match function M(x; c j ) is used to determine if the degree of
matching reaches a threshold, called the vigilance parameter ρ.

3. Satisfying the vigilance criteria leads to a “resonance”, i.e. the input pattern
is assigned to the winner c j . Otherwise, winners in the remaining clusters are
selected one by one for Step 2 until one of them passes the vigilance criteria or
all of them are presented.

4. If resonance occurs, the winner cluster c j updates its weight vector. Otherwise, a
new cluster is generated to encode the input pattern.
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ARThas advantages of fast and stable learning aswell as an incremental clustering
manner, and it has been successfully applied to many applications, such as pattern
recognition and document organization [112]. However, since ART achieves stable
learning by depressing the values of weight vectors if the intra-cluster data objects
have varied values in the corresponding features, it may suffer from the problem of
“category proliferation”. That is, a cluster’s weight values may approach 0’s after
learning from ill-represented data objects.

The above problem is addressed by Fuzzy ART with the incorporation of fuzzy
operators and complement coding. The use of fuzzy operators replaces the intersec-
tion operator (∩) used in ART 1 with the min operator (∧) used in fuzzy set theory;
while the complement coding concatenates the input feature vector x with its coun-
terpart x̄ = 1 − x (Note that ART requires input values to be in [0, 1]). These changes
enable Fuzzy ART to normalize the input patterns and limit the size of the clusters.
More importantly, Section 3.2 illustrates how they change the clustering mechanism
of ART 1 to prevent category proliferation.

Fuzzy ART has been used in different ART-based variants to resolve many image
and text mining problems, such as web document management [156], tag-based web
image organization [114], image-text association analysis [82], multimedia data co-
clustering [117] and social community detection in heterogeneous social networks
[115]. Related case studies will be presented in Part II.

2.2 Semi-Supervised Clustering

Clustering organizes data objects into groups according to purely similarity (or dis-
tance) measures in the feature space, whereas semi-supervised clustering exploits
the available prior knowledge, also called side information, to guide the clustering
process. Typically, the prior knowledge is given by the information about the related
and/or irrelevant data objects. Group label constraint and pairwise constraint are two
commonly used methods for providing such information.

2.2.1 Group Label Constraint

Group label constraint requires users to indicate subsets of documents in the dataset
that belong to the same class. Semi-supervised learning is usually achieved by learn-
ing a metric for adjusting the similarity measure [145, 167] or incorporating such
constraints to adjust the objective function of the original clustering algorithms [84,
108]. This type of constraint usually has conditions on the size of the subsets for
performance improvement.
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2.2.2 Pairwise Label Constraint

Pairwise Label constraint is the most widely used method in practice because it is
easily accessible to users and does not require them to have much prior knowledge.
Using thismethod, users need to provide a set ofmust-link and cannot-link constraints
to indicate if pairs of documents should be associated with the same cluster or not.
Chen et al. developed twomethods for incorporating the pairwise constraints into the
Non-negative Matrix Tri-Factorization (NMF) algorithm [52]. The first method [45]
adds the constraints into the objective function as rewards and penalties to balance the
clustering. The other method [44] computes new relational matrices for documents
through a distance metric learning algorithm such that, in the derived feature space,
documents with must-link are moved closer while those with cannot-link are moved
farther apart. Besides the NMF, spectral constrained clustering algorithms for incor-
porating pairwise constraints have also been widely studied [61, 147]. Other notable
works include Semi-supervised Kernel K-means (SS-KK) [91] and Semi-supervised
Spectral Normalized Cuts (SS-SNC) [80].

2.3 Heterogeneous Data Co-Clustering

Heterogeneous data co-clustering, also called high-ordermultiview/multimodal clus-
tering, addresses the problem of clustering composite objects, which are described by
the data from heterogeneous resources. Typically, the data objects, such as images,
text documents, and social users, and their associated descriptive information are
modeled as a star structure [47]. By simultaneously integrating those different types
of data as the multi-modal features of the composite objects, the heterogeneous data
co-clustering task is to find the best partitioning of the composite objects, considering
their similarities in terms of each feature modality.

This section illustrates existing heterogeneous data co-clustering algorithms in
terms of different model formulations, which can be organized into six categories,
discussed as follows.

2.3.1 Graph Theoretic Models

A large body of recent literature on heterogeneous data co-clustering is based on
graph theoreticmodels.Gao et al. [63] proposed aweb image co-clustering algorithm,
namedConsistentBipartiteGraphCo-partitioning (CBGC).This algorithm interprets
the image-text co-clustering task as a tripartite graph and transforms the partitioning
of the tripartite graph into the simultaneous partitioning of the visual and textual
graphs. In this way, CBGC models the solution as a multi-objective optimization
problem which is solved by semi-definite programming (SDP). This work has been
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generalized to process multimodal heterogeneous data in [64]. However, CBGC
requires empirical settings of three parameters, and it should employ traditional
clustering algorithms on the embedding vectors produced to obtain the final clusters.

A similar work [136] to CBGC, called) Consistent Isoperimetric Highorder Co-
clustering (CIHC), also considers the problem of integrating visual and textual fea-
tures as the partitioning of a tripartite graph. Contrary to CBGC, CIHC solves the
problem by extending the Isoperimetric Co-clustering Algorithm (ICA) [135], which
can be solved by a sparse system of linear equations. CIHC has been demonstrated
to be more effective and has a much lower time cost than CBGC. However, it also
requires an additional clustering algorithm to partition the obtained embedding vec-
tors, and it is only applicable for distinguishing data of two classes.

Long et al. [110] proposed Spectral Relational Clustering (SRC) for clustering
multi-type relational data. They first proposed a collective clustering based on min-
imizing the reconstruction error of both the object affinity matrices and the feature
matrices, and then they derived an iterative spectral clustering algorithm accordingly
for the factorization of these relational matrices. However, SRC requires solving
the eigenvalue decomposition problem which is inefficient for large-scale datasets.
Moreover, a separate clustering algorithm, in this case K-means, is used to obtain
the final clustering.

Zhou et al. [181] proposed amulti-view spectral algorithm for clustering data with
multiple views. This method generalizes the normalized cut from a single view to
multiple views by forming a mixture of Markov random walks on each graph, and it
aims to divide the data objects into two clusters, which should be a good partitioning
for each of the graphs. Therefore, this method is not suitable for clustering datasets
with many underlying clusters.

Cai et al. [25] proposed Multimodal Spectral Clustering (MMSC) to simultane-
ously integrate five types of visual features for image clustering. In order to obtain the
final cluster indicator matrix, MMSC uses a unified objective function to simultane-
ously optimize the clustering results of each feature modality and their combination.
This objective function is finally solved by eigenvalue decomposition and a spectral
rotation algorithm.

MultimodalConstraint Propagation (MMCP) [61] has been proposed for the semi-
supervised clustering of multi-modal image sets. MMCP first defines the random
walk on multiple graphs, each of which corresponds to one type of modality. Subse-
quently, by decomposing the problem of label propagation on multiple graphs into
a set of independent multi-graph-based two-class label propagation sub-problems,
MMCP deduces the refined similarity matrix of data objects through a series of
quadratic optimization procedures. A spectral clustering algorithm is applied to
obtain the final clustering results.

In view of the above issues, the graph theoretic models typically utilize a unified
objective function to realize the fusion of multi-modal features, and they require a
series of matrix operations to deduce a vector or matrix that reveals the features of
data objects. It is notable that the graph theoretic models deal with the similarity
matrix of the data objects instead of the feature matrix. So, in practice, evaluating
the similarities between data objects should be considered first. A drawback of this
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approach is the computational complexity due to the mathematical computation.
Also, the clustering performance depends on the traditional clustering algorithms
that are used to obtain the final results.

2.3.2 Non-Negative Matrix Factorization Models

The non-negative matrix tri-factorization (NMF) approach, as illustrated in
Sect. 2.1.5, iteratively factorizes the datamatrix into three sub-matrices. One of these,
called the cluster indicator matrix, reveals the projection values of data objects to the
dimensions (clusters).

Chen et al. [47] proposed a symmetric nonnegative matrix tri-factorization algo-
rithm, called Semi-SupervisedNMF (SS-NMF), which attempts to find a partitioning
of the data objects to minimize the global reconstruction error of the relational matri-
ces for each type of data. Like the NMF, the cluster membership of each data object is
determined by the largest projection value among all clusters. Moreover, by incorpo-
rating the user-provided pairwise constraints, SS-NMF derives new relational matri-
ces through a distance learning algorithm to enhance the clustering performance.

Linked Matrix Factorization (LMF) [158] has an objective function similar to
that of SS-NMF. However, LMF minimizes the overall reconstruction error and
maximizes the sparsity of the factorized sub-matrices at the same time. Also, a semi-
supervised version using pairwise constraints is proposed for metric learning.

The NMF approach has the advantage of a linear time complexity of O(tn),
where t is the number of iterations and n is the number of data objects. However,
it requires users to set the number of clusters for the data objects and each type of
features to construct the sub-matrices, and its performance may vary with different
initializations of the sub-matrices.

2.3.3 Markov Random Field Model

Bekkerman et al. [18] proposed Combinatorial Markov Random Fields (Comrafs)
for co-clustering multimodal information based on the information bottleneck the-
ory, and applied it to various applications, such as semi-supervised clustering [17],
multimodal image clustering [16] and cluster analysis [19].

Comrafs constructs a set of Markov random fields for each type of data, wherein
each data modality is modeled as a combinatorial random variable which takes val-
ues from all the possible partitions, and the edges between pairs of variables are
represented using mutual information. The approach of Comrafs is to maximize
the information-theoretic objective function, which is resolved by the hierarchical
clustering algorithm with either agglomerative or divisive strategies.
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One potential problemwith this approach is the heavy computational cost, having
a time complexity of O(n3 log n). As Comrafs needs to traverse all subsets of the
data samples for each data modality, the computational cost increases significantly
with respect to the size of datasets.

2.3.4 Multi-view Clustering Models

The multi-view clustering models consider the clustering of data objects with two
types of features. Typically, two clustering algorithms are employed for each set of
features. Subsequently, the learned parameters of two clustering models are refined
by learning from each other iteratively. However, this approach is restricted to two
types of data.

In [21], three types of traditional clustering algorithms, namely Expectation-
Maximization (EM),K-means and agglomerative clustering algorithms, are extended
to fit the multi-view clustering framework. Additionally, the extended EM and K-
means algorithms have been applied for discovering communities in linked data [55].

Recent studies also developed multi-view clustering models based on Canonical
Correlation Analysis [39] and spectral clustering [92].

2.3.5 Aggregation-Based Models

The aggregation approach follows a similar idea of first identifying the similarity
between the data objects through each type of features, and subsequently integrating
them to produce the final results.

Principal Modularity Maximization (PMM) [157] first obtains a fixed number of
eigenvectors from the modularity matrices which are produced with each type of
relational matrix. Then, those eigenvectors are concatenated into one matrix, and
singular value decomposition is employed to obtain the final embedding vectors for
each data object. Finally, K-means is used to obtain the final clustering.

MVSIM [22] is an iterative algorithm based on a co-similarity measure termed
X-SIM, which, given a relational matrix, evaluates both the similarity between the
data patterns and the features. In each iteration, MVSIM runs X-SIM on the rela-
tional matrices for each feature modality to obtain the similarity matrices and then
aggregates them to form an integrated similarity matrix using an update function.

2.3.6 Fusion Adaptive Resonance Theory

As discussed in Sect. 2.1.11, Adaptive Resonance Theory (ART) is an incremental
clustering algorithm. It processes input patterns one at a time and employs a two-way
similarity measure for the real-time searching and matching of suitable clusters to
the input patterns.
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Fusion ART [155] extends ART from a single input field to multiple ones and
learns multi-channel mappings simultaneously across multi-modal pattern channels
in an online and incremental manner. As a natural extension of ART, Fusion ART is
composed of multiple input feature channels, each of which corresponds to one type
of features. Thus, each type of features of the data objects is processed independently,
and the output similarities of each feature channel are integrated through a choice
function.

Contrary to existing heterogeneous data co-clustering algorithms, Fusion ART
allows the flexibility of using different learning methods for different types of fea-
tures, and it considers both the overall similarity across feature channels and the
individual similarity of each modality. More importantly, Fusion ART has a very
low computational complexity of O(n), so it is suitable for clustering large-scale
datasets. Successful applications in the multimedia domain [82, 122] have demon-
strated the viability of Fusion ART for the multimedia data analysis.

2.4 Online Clustering

The large-scale and high-velocity nature of social media data, especially the streams
of user-generated content, raises the need of online learning capability for clustering
algorithms. It enables clustering algorithms to perform real-time processing, learn
from input data objects one at a time and evolve the structure of data clusters without
re-visiting past data.

2.4.1 Incremental Learning Strategies

Incremental clustering [1, 4, 12, 38, 69] belongs to a more general class, called
stream clustering [148], which has attracted attention for decades. It is a special case
of online learning, and it aims to enable one- or several-pass processing of the dataset
one by one or in small batches instead of the whole for the purpose of saving time
and memory cost.

2.4.2 Online Learning Strategies

Online clustering [46, 105, 120, 148, 175] is another branch of stream clustering.
Beyond incremental clustering that clusters static data, it incorporates the online
learning property that allows not only incrementally processing but also continuous
learning from streaming data. However, existing algorithms in the literature usually
are k-means or hierarchical clustering variants requiring the specification of either
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the number of clusters or more than two parameters. As illustrated in Section 1.2.5,
this affects the robustness of these algorithms for large-scale and noisy social media
data and makes human intervention intractable.

2.5 Automated Data Cluster Recognition

Existing clustering algorithms typically require setting the number of clusters in
datasets. However, contrary to traditional image and text document datasets, social
media data is usually large-scale and may cover diverse content across different
topics, making it difficult to manually evaluate the number of underlying topics in
the datasets. Therefore, automatically identifying the number of clusters in datasets
becomes a key challenge for clustering social media data.

This section introduces existing approaches on the automatic recognition of clus-
ters in a dataset.

2.5.1 Cluster Tendency Analysis

Cluster tendency analysis aims to identify the number of clusters in a dataset before
clustering. Most recent studies [20, 149, 161] have focused on investigating the
dissimilarity matrix of patterns.

Visual Assessment of Tendency (VAT) [20] reorders the dissimilarity matrix of
patterns so that patterns in nearby rows will have low dissimilarity values. When
displaying the reordered matrix as an intensity image, referred to as a “reordered
dissimilarity image” (RDI), the number of clusters may be determined by counting
the dark blocks along the diagonal pixels in the image. However, in complex datasets,
the boundaries between dark blocks may be indistinct, making it difficult to correctly
identify the number of clusters.

Therefore, Cluster Count Extraction (CCE) [149] and Dark Block Extraction
(DBE) [161] are further proposed to objectively identify the number of clusters
without relying on manual counting. CCE attempts to remove noise in the RDI
obtained by VAT through two rounds of Fast Fourier Transform (FFT) with a filter
that transforms the RDI to and from the frequency domain. The number of clusters
equals the number of spikes in the histogram constructed by the off-diagonal pixel
values of the filtered image. In contrast, after obtaining the RDI, DBE employs
several matrix transformation steps to project all the pixel values of the RDI to the
main diagonal axis to obtain a projection signal. The number of clusters equals the
number of major peaks in the signal.

In practice, a traditional clustering algorithm, such as K-means, can be employed
to obtain the clusters using the identified number of clusters. However, such meth-
ods have several limitations when applied to web multimedia data. First, because
these datasets typically involve noise, the dissimilarity matrix may not represent the
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structure of the data in the input space well, which may result in an RDI with low
quality. Second, such methods employ heavy computation, so their performance is
only measured on small datasets containing several thousand patterns.

2.5.2 Posterior Cluster Validation Approach

Cluster validation aims to quantitatively evaluate the quality of different cluster struc-
tures, usually based on intra-cluster compactness and between-cluster separation, to
find the best clustering.

Liang et al. [103] proposed a modified K-means algorithm with a validation
method based on the intra-cluster and between-cluster entropies. This algorithm
requires K-means to run multiple times, starting with a pre-defined maximum num-
ber of clusters. During each iteration, the “worst cluster” is removed using informa-
tion entropy, and the quality of the clusters is evaluated according to the proposed
validation method. Upon reaching the pre-defined minimum number of clusters, the
clustering with the best quality is identified.

In [153], Sugar et al. proposed a “jump method”, which generates a transformed
distortion curve based on the clustering results of K-means with different numbers
of clusters. The highest peak, or “jump”, in the curve represents the best number of
clusters.

Kothari et al. [89] proposed a scale-based algorithm in which a “neighborhood”
serves as the scale parameter. By varying the value of the neighborhood, the pro-
posed algorithmmay identify clusterings with different numbers of clusters. The best
number of clusters is identified based on the persistence across a range of neighbors.

A meta-learning-based algorithm was proposed in [95]. Given a dataset, multi-
ple subsets are first generated by distorting the original patterns. Subsequently, for
each subset, a traditional clustering method is employed to generate clusterings with
different numbers of cluster; the quality of these is measured by the disconnectivity
and compactness. After identifying the elbows of both the disconnectivity and the
compactness plots for each subset, the true number of clusters is decided by a vote.

The above methods are typically designed for hard clustering algorithms. For
fuzzy clustering algorithms, a summary of existing cluster validity indices can be
found in [154, 162].

2.5.3 Algorithms Without a Pre-defined Number of Clusters

As discussed above, the cluster tendency analysis requires heavy computation and
is not robust to noise. Similarly, the cluster validation approach attempts to select
the best number of clusters by evaluating the quality of clusterings with different
numbers of clusters. As such, they are not feasible for the large-scale social media
datasets.
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Fortunately, there are clustering algorithms that do not require a pre-defined
number of clusters, including the hierarchical-clustering-based algorithms, genetic
clustering algorithms, density-based clustering algorithms, Affinity Propagation and
ART-based clustering algorithms. The hierarchical clustering and genetic clustering
algorithms, especially, are theoretically similar to the cluster validation approach,
which generates different cluster structures of patterns and employs cluster valida-
tion methods to evaluate the quality of newly generated clusters to identify the best
cluster structure.

As discussed in Sect. 2.1.2, hierarchical clustering algorithms either merge small
clusterswith individual data objects into big clusters or split the dataset into individual
data objects step by step. Therefore, existing studies typically incorporate a cluster
validity index tomeasure the cluster quality during eachmerging or splitting iteration.
Li et al. [101] proposed an Agglomerative Fuzzy K-means algorithm that introduces
a penalty term to the objective function of the standard Fuzzy K-means and requires a
maximumnumber of clusters. Themodified FuzzyK-means runsmultiple timeswith
a gradually increased penalty parameter; during these runs, the clusters that share
centers are merged according to a validation method. The algorithm stops when the
number of cluster centers remains stable over a certain number of iterations. Leung
et al. [98] proposed a scale-based algorithm, based on the scale space theory, in
which a dataset is considered an image, and each pattern is considered a light point
on the image. The generation of a hierarchy is then simulated by blurring the image
such that the light points gradually merge together. Several cluster validity indices,
including lifetime, compactness, isolation and outlierness, are used to select the best
cluster structure in the hierarchy. In [172], an agglomerative clustering algorithm
was proposed for transactional data. Based on the intra-cluster dissimilarity measure,
referred to as the “coverage density”, a “Merge Dissimilarity Index” is presented to
find the optimal number of clusters.

Detailed illustrations of genetic clustering algorithms, density-based clustering
algorithms, Affinity Propagation, and ART-based clustering algorithms can be found
in Sects. 2.1.7, 2.1.8, 2.1.9, and 2.1.11 respectively.

Although the aforementioned algorithms do not require the number of clusters to
be set, they employ other parameters to determine the properties of patterns in the
same cluster. The advantages of ART-based algorithms over density-based clustering
algorithms and Affinity Propagation include their low time complexity and the use
of a single ratio value (the vigilance parameter) to form clusters.

2.6 Social Media Mining and Related Clustering
Techniques

Social media data refers to data that is generated by the users on social websites,
such as the tweets on Twitter, blogs published on Facebook, images shared on Flickr,
questions and answers on Yahoo! answers, and user comments and descriptions for
the above user-generated multimedia data.
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As previously mentioned, the big social media data record user behaviors and
activities on social websites and provide rich information for multimedia data under-
standing and social behavior analytics. However, contrary to traditional dat sets for
data mining tasks, they are large scale, noisy, multimodal, unstructured and dynamic
in nature, due to the diverse ways for communicating between users provided by
social websites.

Therefore, those distinguishing characteristics of socialmedia data pose new chal-
lenges for developing novel techniques to utilize the rich but noisy information for
traditional multimedia data understanding and mining tasks, such as tag-based web
image organization [24, 83], comment-based video organization [76], image retrieval
assisted by web images and their surrounding text [42], short text understanding
[77, 150] and multimodal feature integration for social media data understanding
[47, 117]. Additionally, numerous new problems and requirements arise, which are
important for social media research and development, such as social community
discovery [8, 115, 126, 173], user sentiment analysis [107, 125], influential user
detection [2, 35], social link prediction and recommendation [54, 88, 174], ques-
tion answering system analysis [5, 75], and emerging social event recognition and
prediction [14, 102, 141]. A brief introduction of social media mining can be found
in [70].

The following sections illustrate several directions of social media mining tasks
that utilize clustering techniques as a solution.

2.6.1 Web Image Organization

The vast number of web images online motivates the requirement of effective image
organization, especially the search results from web engines. Due to the diverse
nature of web image content, it is difficult to group images with similar semantics
solely based on the visual features. Therefore, early efforts are usually based on the
clustering of the textual features extracted from the surrounding text of web images
[76, 83].

Additionally, there are some studies [24, 53] that make use of both the visual
content and the surrounding text of web images to generate a two-layer hierarchical
structure. Those methods typically apply clustering algorithms to the textual features
to generate the first layer of clusters, and subsequently group the images in each
cluster according to their visual features.

Besides the tag-based image organization techniques, there are also studies on
improving the organization of the image search results using purely visual features.
Leuken et al. [96] developed three clustering algorithms that can incorporatemultiple
types of visual features for partitioning images with different visual appearances. A
weighting function is proposed to dynamically evaluate the distinguishing power of
the algorithms.

Recently, crowdsourcing has been incorporated into the clustering techniques as
a solution to improve the clustering performance of web images [43]. By asking web
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users to judge the cluster membership of some images, this type of clustering models
utilizes such information as relevance constraint to learn a new distance metric for
refining the clustering performance.

2.6.2 Multimodal Social Information Fusion

The images and text documents in social media are usually attached with rich meta-
information, such as category information, user description and user comments.
Multi-modal information fusion, therefore, is aimed at processing those interrelated
data modalities in a unified way and identifying their underlying interactions.

Image-text fusion for image clustering is widely studied for alleviating the seman-
tic gap [114]. Early studies attempt to integrate the visual and textual features by either
concatenating them into a single vector [180] or using them in a sequential manner
[24]. However, the first approach usually cannot achieve the desired results. The sec-
ond method suffers from the problem of error propagation, and the sequential usage
of textual and visual features does not help improve the clustering quality. Jiang et al.
[82] interpret the fusion of visual and textual features as identifying pairs of related
images and texts, and propose two methods, based on vague transformation [81]
and Fusion ART [155], for learning the image-text associations. Existing clustering
techniques in the literature for the fusion of multimodal features will be discussed in
Sect. 2.3.

The fusion of multi-modal features is also an important research task for vari-
ous applications, such as multi-document summarization [72, 160] and multi-modal
multimedia data indexing and retrieval [36, 99, 118, 134].

2.6.3 User Community Detection in Social Networks

A user community is formed when a group of social users have similar interests or
behaviors or interact with each other more frequently on the Web than those outside
of the group. The user community detection task is thus to identify different under-
lying communities in social networks, which may further benefit relevant research
tasks, such as collective social behavior analysis [177] and social link prediction and
recommendation [54, 88, 174].

A social network of users is typically modeled as a graph, where each node cor-
responds to a user and each edge indicates the strength of the connection between
two users, such as the frequency of contact or the number of co-subscription. Clus-
tering is commonly used for the community detection task, especially the graph
theoretic clustering algorithms. However, there are two challenges for applying tra-
ditional clustering algorithms to clustering social networks. The first challenge is
the large-scale size of the social network data. To overcome this problem, existing
studies attempt to reduce the computational cost of their algorithms by obtaining an
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approximate solution from the simplified network graphs [111, 143] or developing
parallel clustering models [164]. In addition to the problem of big data, the other
problem is the lack of ground-truth. Existing studies on assessing the quality of the
discovered clusters are usually based on the internal similarities or distances between
nodes. Yang et al. [173] presented a comparative study of 13 evaluation measures
for discovering the densely connected users as communities.

In recent years, a large body of studies focused on discovering user communities
in the heterogeneous social networks. That is, users are connected with different
types of links. Some of the recent studies on this topic are based on multi-view clus-
tering approach [55], matrix factorization approach [158] and aggregation approach
[158]. Additionally, this task is closely related to heterogeneous data co-clustering,
as discussed in Sect. 2.3.

2.6.4 User Sentiment Analysis

The analysis of user sentiment is aimed at understanding the users’ attitudes and
opinions from their comments on products, services and events.

Most of the existing studies are based on supervised learning while those based on
unsupervised learning are inadequate [78, 182]. Clustering algorithms, in this task,
are typically performed to identify groups of users or comments that reveal similar
sentiment, such as positive, negative and neutral. Hu et al. [78] incorporated emo-
tional signals, such as emoticons and sentiment lexicon, into a non-negative matrix
tri-factorization clustering algorithm to discover groups of users with similar senti-
ment. Zhu et al. [182] also developed a non-negative matrix tri-factorization model
for clustering user and user comments. Moreover, an online framework has been
proposed to receive dynamic online streams. A review of unsupervised sentiment
analysis methods can be found in [78].

2.6.5 Event Detection in Social Networks

Clustering-based social event detection aims to identify the social events that attract
collective attention through the massive number of posts and comments of users on
social networking websites.

There are two directions for social event detection. One type of study focuses on
detecting real-time social events through online clustering algorithms. Becker et al.
[14] developed an online clustering model with a set of cluster-level event features
to group Twitter messages, and subsequently trained a classification model to judge
whether the generated clusters are related to events.

The other type focuses on detecting social events from a set of user messages
collected from a given time period, also known as retrospective event detection [41].
Chen et al. [41] utilized the tags, time stamps, and location information of the images
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collected from Flickr to cluster these images and simultaneously obtain the key tags
of clusters as events. Papadopoulos et al. [127] developed a clustering algorithm
to cluster tagged images using their visual and textual features, and subsequently
used a classifier to determine whether the clusters of images represent events or
landmarks. Petkos et al. [129] developed a multi-modal spectral clustering algorithm
for clustering multimedia data with different attributions, such as time, location,
visual features and tags.

2.6.6 Community Question Answering

The community question answering task attempts to resolve the problem of automat-
ically providing answers to user’s questions based on a question-answer database.

In this task, the user’s question is typically treated as a query, and clustering is usu-
ally adopted to identify the question-answer pairs that are similar to the user query.
Subsequently, answer ranking is further employed to produce relevant answers. In an
early work, Kwok et al. [93] developed a question answering system, called Mulder.
It first obtains a set of answers by sending the user’s query to several search engines,
and it then uses a clustering algorithm to group similar answers together. Finally, a
voting procedure is conducted to select the best-matching answer. Blooma et al. [23]
modeled the question-answer pairs as a question-answer-asker-answerer quadripar-
tite graph and proposed an agglomerative algorithm tomerge similar question-answer
pairs. A review of the related question answering studies can be found in [87].

The community question answering task is also closely related to the task of query
clustering [15, 97, 179], which addresses the problem of identifying and organizing
similar user queries to web search engines.

2.6.7 Social Media Data Indexing and Retrieval

Multimodal image indexing and retrieval typically follow two main approaches.
The first approach is to extend existing algorithms for image indexing with a single
type of features for integrating multiple types of features. Examples include Latent
Semantic Indexing (LSI) [27, 37], probabilistic Latent Semantic Analysis (pLSA)
[37, 106], and Non-negative Matrix Factorization (NMF) [26]. Caicedo et al. [27]
proposed a Latent Semantic Kernel (LSK), based on LSI, which adopts kernel meth-
ods to compute the similarity between the query and the indexed images.Multimodal
LSI (MMLSI) [37] utilizes tensors for multimodal image representation and employs
Higher Order Singular ValueDecomposition (HOSVD) [48] for obtaining the feature
representation of images. Chandrika et al. [37] extended pLSA by jointly considering
visual and textual features in a probabilistic model and employed the EM algorithm
to obtain the derived representation of the images. The Multilayer Multimodal prob-
abilistic Latent Semantic Analysis (MM-pLSA) [106] handles the visual and textual
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information of images via a multi-layer model, which consists of two leaf pLSA
models for learning the visual and textual representation of images respectively, and
a node pLSA for obtaining a unified representation. Caicedo et al. [26] proposed
two methods based on Non-negative Matrix Factorization (NMF), of which the first
method concatenates the matrices for visual and textual features in order to enable
searching through both visual and textual features, while the second method aims
to successively optimize the transformation matrices of textual and visual features,
which enables searching by using either visual features or keywords.

The second approach is to construct a new representation by exploring the asso-
ciation among multimodal features. Li et al. [100] proposed four methods to infer
the similarity matrices for the visual and textual features. The learned similarities
are utilized for tackling image retrieval based on visual or textual features. Escalante
et al. [56] proposed two methods for image indexing based on the occurrences and
co-occurrences information of terms in the surrounding text and the object labels
associated to images. The hybrid framework [152], named iSMIER, performs image
retrieval by predicting the captions and annotations for the query image and indexing
it by its visual fuzzy membership of clusters.

2.6.8 Multifaceted Recommendation in Social Networks

Recommendation is one of the most important techniques in the era of the social
Web in both academic and industrial domains. Utilizing the rich multimedia data
online, the recommendation techniques will be able to analyze the information (E-
commerce products, mobile apps, or new friends online) to be diffused and targeted
towards suitable populations. Some popular directions include location-based rec-
ommendation, online-offline recommendation, and explicit/implicit feedback-based
recommendation. To be concrete, given an e-commerce product coupon, the recom-
mendation algorithmwill analyze the profiles of the peoplewho are likely to purchase
this product. These profiles may be the users’ living and shopping locations, users’
online browsing and purchase records, users’ interactions and feedbacks to similar
products, or the similarity of the users’ interests to other users who may be willing
to buy such products.

The above scenarios lead to the need for multifaceted recommendation [138],
where information on the profiles of users from different sources can be gathered
and analyzed for effective recommendation. This task is commonly addressed using
the collaborative filtering approach,1 which is a general term describing the methods
for understanding a user’s interests by analyzing those of many other users.

Interestingly, multifaceted recommendation is literally related to the community
detection in social networks as described in Sect. 2.6.3, in view of the shared task
on identifying strongly-linked users. As such, a straight-forward recommendation
approach is suggested for discovering user groups which include the users who are

1https://en.wikipedia.org/wiki/Collaborative_filtering.
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likely to be interested in the recommended information. For example, based on graph
theory, a clustering algorithm [119] was proposed to obtain user/item clusters for
recommendation. Saudagar et al. [79] developed a hybrid clustering approach for
music recommendation, which uses multimodal information from music profiles
and user ratings. Similar clustering based algorithms have also been investigated for
the recommendation of articles [71, 163], e-commerce products [104] and scientific
publications [137].

Alternately, recommendation can also be addressed from the ranking perspective,
which relies on the evaluation of the relevance between users and the recommended
items. Matrix factorization (MF) [74, 131, 178] (Similar to NMF as described in
Sect. 2.1.5) is a big branch of collaborative filtering, which factorizes the user-item
matrix to obtain the latent vectors of both users and items in the same feature space.
The similarity between a user and an item is obtained by a product of their latent
vectors. More importantly, deep neural networks, as the most effective embedding
technique so far, have been incorporated in the MF-based approaches for effective
recommendation [73, 86]. Besides the MF approach, recommendation algorithms
may also be developed based on search/retrieval and hashingmethods [85, 165, 176].
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