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Abstract
Top-k recommendation seeks to deliver a personalized list of k items to each individual user.

An established methodology in the literature based on matrix factorization (MF), which usually
represents users and items as vectors in low-dimensional space, is an effective approach to rec-
ommender systems, thanks to its superior performance in terms of recommendation quality and
scalability. A typical matrix factorization recommender system has two main phases: preference
elicitation and recommendation retrieval. The former analyzes user-generated data to learn user
preferences and item characteristics in the form of latent feature vectors, whereas the latter ranks
the candidate items based on the learnt vectors and returns the top-k items from the ranked list. For
preference elicitation, there have been numerous works to build accurate MF-based recommen-
dation algorithms that can learn from large datasets. However, for the recommendation retrieval
phase, naively scanning a large number of items to identify the few most relevant ones may inhibit
truly real-time applications. In this work, we survey recent advances and state-of-the-art approaches
in the literature that enable fast and accurate retrieval for MF-based personalized recommenda-
tions. Also, we include analytical discussions of approaches along different dimensions to provide
the readers with a more comprehensive understanding of the surveyed works.

1. Introduction

Recommender system is a staple feature in e-applications, be it commerce (e.g., Amazon), enter-
tainment (e.g., Netflix), or social media (e.g., Facebook). This is driven by sheer necessity, as the
exploding number of choices implores product and service providers to narrow the myriad of pos-
sibilities down to a manageable number k to be presented to each customer. To cater to customers’
idiosyncratic preferences, such top-k recommendation lists should be customized. Personalization
is made possible via recommendation algorithms that learn from users’ historical feedback, which
may be explicit (e.g., ratings) (Salakhutdinov & Mnih, 2008) or implicit (e.g., click behaviors) (Ren-
dle et al., 2009). Example techniques include collaborative filtering (Sarwar et al., 2001), user-item
graph models (Aggarwal et al., 1999), regression based models (Vucetic & Obradovic, 2005), deep
learning-based models (Zhang et al., 2019).

A preponderance of recommendation algorithms in the literature are based on matrix factoriza-
tion (MF) techniques (Koren et al., 2009), which become prevalent after the Netflix competition
(2006) when Netflix announced a prize money of $1 million to those who would improve its root-
mean-square performance by at least 10%. The core idea of MF-based recommendation algorithms
is to learn low-dimensional representations of users and items from either explicit user-item associa-
tions such as user-item ratings or implicit feedback such as playcounts and dwell time. The associa-

©2021 AI Access Foundation. All rights reserved.



DUNG D. LE, HADY W. LAUW

tion (or preference) of a user to an item is modelled by the inner product between the corresponding
vectors. MF-based methods have improved upon the efficiency of other collaborative filtering ap-
proaches such as neighborhood-based models. By representing users and items as low-dimensional
vectors, MF-based methods can avoid the expensive similarity weight computation (user-to-user or
item-to-item) in high-dimensional space of neighborhood-based collaborative filtering models.

1.1 Two Phases of MF Recommender Systems

While focusing on the prevalent class of MF-based recommendation algorithms, we should be cog-
nizant of the two distinct phases that contribute towards their efficacious deployment (Bachrach
et al., 2014; Li et al., 2017). Figure 1 illustrates these two phases for a system of m users and n
items.

Top-
Retrieval

For a user determine item indices in that has highest inner product scores among 

Matrix Factorization
Preference Elicitation

Users’ 
Historical Feedback

Figure 1: Two Phases of Matrix Factorization Recommendation
(The focus of this survey is on the efficiency of the recommendation retrieval phase).

• One phase, which could be offline, is preference elicitation (Figure 1(a)). This phase analyzes
users’ historical feedback (e.g., ratings, click behaviors, etc.), which could express preference
signals of users. The learnt insight about user preferences will be modelled for prediction.
Specifically, given a collective interaction rating matrix R ∈ Rm×n, where m and n denote
the number of users and items respectively, the element rui denotes the rating given by user
u to item i. The observed elements constitute a small subset Ω of the rating matrix R. MF-
based algorithms work by decomposing the partially observed user-item interaction matrixR
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into the product of two rectangular matrices X and Y . The former matrix X can be referred
to as the user preference matrix, where each column of X is a latent vector xu ∈ Rd for a
user u, with d being the vector dimensionality. The latter matrix Y is the item matrix where
each column of Y is a latent vector yi ∈ Rd for an item i.

Generally, MF-based models can be categorized into either rating-based or ranking-based
approaches. Rating-based MF models try to fit the values of observed ratings and the learnt
user and item vectors are used to predict the missing entries in the matrix R. Ranking-based
MF methods learn from users’ ordinal preferences to derive a ranking of the non-observed
items for recommendation. In both cases, the degree of preference of u for i is modelled as
the inner product xuT yi. The emphasis of this phase is primarily the accuracy in identifying
a user’s preferred items. For reference, we list the common notations used throughout the
paper in Table 1.

• The next phase, commonly online, is recommendation retrieval (Figure 1(b)). Upon the ap-
pearance of a target user u, we immediately construct a recommendation list of k items for
u. In the context of MF models, given the user query vector xu, the top-k items with the
highest inner product scores xuT yi, ∀1 ≤ i ≤ n should be quickly identified for recommen-
dation. In the scenarios where there are bias terms in modelling user-item interaction, i.e.,
rui ∝ xuT yi + bu + bi, we can convert each user vector xu to x̃u = [xu, bu, 1] and each item
vector yi to ỹi = [yi, 1, bi]. The problem now becomes identifying the top-k items with the
highest inner product scores x̃Tu ỹi, ∀1 ≤ i ≤ n. For ease of readability, heretofore we refer
to x̃u and ỹi as xu and yi respectively. The real-time nature of the task is necessitated by
the response time expected by end users. Thus, the emphases in this phase encompass both
accuracy and retrieval efficiency.

Ideally, all item vectors in {y1, y2, . . . , yn} are examined and sorted according to their inner
product scores to vector xu, and the top-k items in the rank list will be returned. However,
the modern catalog of items is often too large to allow an exhaustive computation of all the
inner products within a budgeted retrieval time. Therefore, having a faster alternative for this
process of recommendation retrieval is critical and desirable.

The concern in traditional recommendation literature frequently stops at the preference elicita-
tion phase, preoccupied with accuracy as the sole arbiter in any comparison of methods. Towards
a more holistic discourse on the concerns of recommender systems, in this survey we cover ap-
proaches to managing the dual objectives of accuracy and retrieval efficiency of the top-k recom-
mendations (Figure 1(b)). Note that, some of the surveyed methods are aimed at recommendation
specifically, whereas some are proposed for more general retrieval problems. For the latter, we
discuss these methods in the context of MF-based recommendation retrieval specifically.

1.2 The Prohibitive Complexity of Linear Scanning

Top-k retrieval of MF-based recommendation is equivalent to the task of ranking every item i
(∀1 ≤ i ≤ n) for each user u with respect to the preference score xuT yi. This is reducible to
the fundamental problem of finding the item with the highest inner product (Equation 1).
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Symbol Description
U collection of all users
I collection of all items
R user-item ratings matrix
Ω set of observed ratings
u a specific user
i a specific item
rui rating of user u for item i

xu latent vector representation for user u
yi latent vector representation for item i

d latent space dimension
k the number of recommendations
m the number of users
n the number of items

Table 1: List of Notations.

Problem 1 (Maximum Inner Product Search - MIPS) For each vector xu, u ∈ U , determine the
item i ∈ I such that:

i = arg max
1≤i≤n

xTu yi (1)

Problem 1, known as Maximum Inner Product Search or MIPS, arises naturally in many large
scale tasks (Shrivastava & Li, 2014; Auvolat & Vincent, 2015), when inner product-based compar-
isons are done between the embedding vector of a query and many candidate objects’ vectors.

The straightforward solution for Problem 1 is to compute the user preference scores xuT yi of
all n items and rank these scores descendingly. Computationally, per-user, the cost of such naive
exhaustive approach is O(n× d), which scales linearly with the number of items n and the number
of latent factors d. Given the current scale of the number of items and the desired personalization
purpose, achieving real-time performance for each user by examining all possible items, repeatedly
for the many users of a large-scale system, is not practical. For instance, recent estimates1 put the
number of unique products at Amazon.com at hundreds of millions. For digital artefacts, the scale
could be even larger. The number of photos on Facebook2 or Flickr3 are estimated to number in
bi1lions. Therefore, an alternative solution to exhaustive search over all items is also desirable.

On the other hand, pre-computing and then storing the personalized recommendations for all m
users would require a storage cost of O(m × k). This is impractical when users and items number
in the millions. It also has a calcifying effect, making the system less malleable to the dynamically
changing preference of users (e.g., user vector is updated online according to their behaviors) and
adoptions of new items. A more promising direction would be retrieval strategies with a smaller
memory footprint than full pre-computation, yet with greater computational efficiency than linear
scanning.

1. https://bit.ly/2n6kadm, http://bit.ly/2g7wVUI
2. https://bit.ly/3uazjey
3. http://bit.ly/1vlm6zR
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1.3 Contributions and Organization

In recent years there emerge such a class of recommendation algorithms as well as search strate-
gies to optimize the recommendation retrieval efficiency of MF-based models, without adversely
affecting recommendation accuracy. In this paper, we survey recent state-of-the-art approaches in
the literature that enable fast and accurate retrieval for MF-based personalized recommendations.

Our focus on recommendation retrieval renders this work complementary to the existing rec-
ommender systems surveys on current generation of preference elicitation methods based on matrix
completion (Adomavicius & Tuzhilin, 2005; Das et al., 2017; Ramlatchan et al., 2018), on so-
cial recommendation (Yang et al., 2014), on transfer learning for recommendation (Pan, 2016),
on context-aware recommendation (Abdi et al., 2018), on explainable recommendation (Zhang &
Chen, 2020), and on deep learning based methods (Zhang et al., 2019), etc. This survey is expected
to be a useful resource for those interested in recommender systems, preference analytics, and in-
formation retrieval to understand the current state-of-the-art in efficient retrieval for recommender
systems.

Contributions. To our best knowledge, this is the first written work to systematically document
recent advances for efficient retrieval of MF-based personalized recommendations, which is our
first contribution. As our second contribution, we develop a novel taxonomization of the surveyed
approaches, overviewed in Section 2. This taxonomy categorizes related works in terms of their
pertinent concepts or strategies that yield the improvements in retrieval efficiency. As our third
contribution, we discuss issues surrounding recommendation retrieval, such as the trade-off between
accuracy, retrieval efficiency, and storage cost, as well as the theoretical complexities of the different
processing stages.

Organization. Section 2 describes an overview of the recommendation retrieval pipeline with
two main steps: candidate generation and candidate ranking, which are then subsequently elabo-
rated in detail in Section 3 and Section 4 respectively. In Section 5, we conclude the survey and
discuss several open research questions that would be interesting to explore further. For complete-
ness, we provide the necessary background knowledge of several popular efficient retrieval data
structures in Appendix A.

2. Survey Overview

Top-k matrix factorization recommendation retrieval can be seen as a similarity search problem.
Indeed, when a user u goes to the website, the system will request for recommendations given the
user vector xu as the query. The website is expected to return those item vectors with highest inner
product scores to the query vector xu.

As illustrated in Figure 2, retrieving a top-k recommendation list for each user involves the
following two requisite steps4:

1. Candidate Generation Given a user vector xu as query and item vectors {y1, y2, . . . , yn}, an
efficient filtering procedure determines a candidate setCu for recommendation. The objective
of this step is typically to remove items which are potentially not in the top-k recommendation

4. Note that these two steps are also applicable to other techniques for recommender systems (Covington et al., 2016).
We focus on matrix factorization collaborative filtering models in this work and will expand the coverage to other
techniques in future work.
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Candidate 
Generation

Candidate 
Ranking

Determine item indexes in that has highest inner product scores among . 

Figure 2: Top-k MF Recommendation Retrieval Pipeline

for user u. This effectively reduces the number of items investigated in the second step, i.e.,
|Cu| < n.

2. Candidate Ranking For the candidate items in Cu, we compute their inner products against
the query vector xu, and sort them accordingly to identify the top-k recommendations. This
step can be referred to as the re-ranking step, which aims to get better ranking among the
candidates, before arriving at the final top-k items for recommendation. The computational
complexity of this process is O (|Cu| × d+ |Cu| × log k).

For the exhaustive search approach (linear scanning), Step 1 essentially means doing nothing,
passing all n items as candidates, i.e., |Cu| = n to the ranking step. Step 2 involvesO (n× d) oper-
ations for computing n inner product scores {xTu y1, xTu y2, . . . , xTu yn} and O (n× log k) operations
for ranking these scores and maintain the top-k as we process the candidates.

As majority of items are irrelevant to the users, the two aforementioned steps are usually em-
ployed to achieve high efficiency in personalized recommendation (Covington et al., 2016; Kang &
McAuley, 2019). On one hand, the candidate generation component relies on heuristics or retrieval-
efficient structures to recall a small subset of relevant items, to reduce the number of similarity
evaluations in the ranking step (Guo et al., 2020). On the other hand, the candidate ranking com-
ponent applies fine-grained re-ranking methods to items produced by the candidate generation step
to obtain the final top-k. In this survey, we assume that both components are performed using the
low-dimensional vectors produced by the preference elicitation phase only.

Any effort to optimize the retrieval efficiency would have to improve the running times of either
or both of the steps outlined above. Therefore, we use these steps as the primary axis for taxonomiz-
ing the works, defining two categories of approaches: efficient candidate generation and efficient
candidate ranking (as shown in Figure 2), in which the former aims at reducing the item space and
the latter aims at reducing the complexity of similarity computation in the d-dimensional vector
space.

2.1 Efficient Candidate Generation

The idea for any efficient candidate generation method is to speed up the inference time of top-k
recommendations with high precision as compared to exhaustive linear scanning. Figure 3 organizes
works that seek to quickly discard potentially irrelevant items, resulting in a candidate set Cu in
which |Cu| is substantially smaller than n (however, usually larger than k). We define two lines of
such strategies under this category as follows:
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Approximate    

Indexing
(Section 3.1)

Item Ranking 
Estimation 

(Section 3.2)

Indexable
Representation

Graph-based
(Section 3.1.2)

Sorted Indices Lists 
(Section 3.2.1)

Exact
(Section 3.3)     

Efficient Candidate 
Generation
(Section 3)

Vector 
Augmentation

Space-Partitioning
(Section 3.1.1)

Sequential Scanning 
(Section 3.3.1)

Hardware Efficient 
Solver 

(Section 3.3.2)

Sampling
(Section 3.2.2)

Figure 3: Approaches for Efficient Candidate Generation

• We emphasize on the class of approximate methods, which are applicable in scenarios where
scalability is desirable at an acceptable cost of slightly different top-k to linear scanning. The
underlying idea of approximate methods is to trade off the cost of slightly lower recall from
potentially missing out on the false negatives, for the benefit of faster retrieval through smaller
candidate sets. We further categorize these approximate candidate generation methods into
two classes: using indexing structures (Section 3.1) or item ranking estimation methods (Sec-
tion 3.2).

– Indexing refers to techniques that pre-process item vectors for efficient similarity search
later. This pre-processing is query-independent and only involves the item vectors. We
further categorize this approach to graph-based and space-partitioning index structures.
The former constructs a similarity graph where each node represents an item and the
edges connect highly similar items. At the querying step, a greedy search algorithm
traverses the constructed graph to arrive at the most similar nodes (i.e., items) to the
query vector xu. The latter splits the item vectors into neighborhood regions, each of
which contains highly similar items. At the querying step, only items in the region that
contains the query vector or its neighboring regions are potential recommendation can-
didates. For the space-partitioning approach, there is a further consideration on whether
one should perform a post-learning vector augmentation step or learn an indexable rep-
resentation preference elicitation model to produce “indexing-friendly” vectors that can
achieve high retrieval accuracy. We provide a more detailed review of these structures
in Appendix A.

– Item Ranking Estimation refers to the class of methods that estimate the ranking of in-
ner product scores {xTu yi|∀i, 1 ≤ i ≤ n} without computing these inner products. The
top items in the estimated ranking will be selected as candidates for recommendations.
Sorted Indices Lists assumes that xTu yi > xTu yj ⇐⇒ max

1≤l≤d
x
(l)
u y

(l)
i > max

1≤l≤d
x
(l)
u y

(l)
j

and uses this assumption to generate the candidate set by searching for top elements in
the matrix Z =

[
x
(l)
u y

(l)
i

]
,∀i, 1 ≤ i ≤ n; ∀l, 1 ≤ l ≤ d. Sampling methods propose
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sampling strategies in which each item i ∈ I is associated with a random variable score
whose probability is proportional to xTu yi. The sampling process results in an array of
item scores [c1, c2, . . . , cn] (ci is the score for item i) that is correlated to the ranking
of the inner product scores

[
xTu y1, x

T
u y2, . . . , x

T
u yn

]
and the items with highest scores

will be the candidates. We further consider and review different sampling strategies in
Section 3.2.2.

• In addition to approximate methods, there are also a class of efficient methods for exact top-k
retrieval, which attempts to return an identical top-k to linear scanning. These methods are
most suitable for the low or moderate data dimension, and if perfect recall is indeed critical to
the applications. However, their performance will degrade rapidly as the number of features
d increases (Li et al., 2017; Shrivastava & Li, 2014). For completeness, we also include these
methods in the survey. Particularly, we describe two classes of exact top-k recommendation
retrieval methods, namely sequential scanning and hardware efficient solver in Section 3.3.

Section 3 describes these efficient candidate generation strategies in detail along with comprehen-
sive qualitative analyses and comparisons.

2.2 Efficient Candidate Ranking

Figure 4 organizes works that attempt to improve the efficiency of candidate ranking step by re-
ducing the cost of computing |Cu| inner product scores of the candidate vectors in Cu to the query
vector xu, which operate in the d−dimensional real-valued latent feature space. Efficient candidate
ranking can be achieved either via discrete representation, which formulates user-item preference
score as a function that is more computationally efficient such as Hamming distance in the binary
space (instead of real-valued space) or via quantization techniques, which approximate the inner
product computations in the d dimensional space.

• For recommendation retrieval, discrete representation (Section 4.1) reduces the computa-
tional cost of operating on real-valued latent vectors by representing users and items as binary
codes in the Hamming space. The inner product score computation can be converted to com-
puting the Hamming distance between user and item binary vectors, requiring efficient XOR
operations (Zhang et al., 2016). That speeds up the generation of recommendations, even
if we have to exhaustively scan over all items. Depending on the discretization strategies,
we can categorize these methods into either quantization-based discretization, which first
learns a real-valued vectors and then rounds up the closest solution in the Hamming space, or
optimization-based discretization, which learns the user and item binary codes directly from
the user-item interactions observations.

• Quantization is another approach for efficient maximum inner product search (Section 4.2), in
which each d−dimensional vector is expressed through a set of representative vectors called
the codebooks. The inner product in the original d-dimensional space is approximated as the
sum of inner products of some of these codebooks vectors. As the number of vectors in the
codebooks is typically significantly smaller than the number of items n, vector quantization
methods reduce the cost of computing inner products between original vectors. We further
categorize this approach into vector quantization, which performs clustering in the d− di-
mensional space, and product quantization, which decomposes the d−dimensional space into
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the product of M subspaces with dimension d′ and performs vector quantization for each
subspace separately.

Efficient Candidate 
Ranking

(Section 4)

Discrete Representation
(Section 4.1)

Quantization-based
Discretization
(Section 4.1.1)

Quantization for MIPS
(Section 4.2)

Optimization-based
Discretization
(Section 4.1.2)

Vector Quantization
(Section 4.2.1)

Product Quantization
(Section 4.2.2)

Figure 4: Approaches for Efficient Candidate Ranking

We will elaborate further on the complexities and qualitative comparisons of the methods under
these two ideas in Section 4.

3. Efficient Candidate Generation

We first discourse on the class of approximate methods for efficient candidate generation, compris-
ing retrieval-efficient structures and sampling methods. Thereafter, we discuss a couple of pertinent
issues such as the accuracy versus retrieval efficiency trade-off (Section 3.4.1) and budgeted queries
(Section 3.4.2).

3.1 Efficient Candidate Generation via Indexing

This approach performs query-independent preprocessing of item vectors and stores them in an in-
dexing data structure that supports efficient candidate filtering upon query, probably in sub-linear
time with respect to the number of items n. There are several possible structures, including space-
partitioning methods such as Locality Sensitive Hashing (Indyk & Motwani, 1998), spatial trees
such as KD-tree (Bentley, 1975) and graph-based methods such as Hierarchical Navigable Small
World - HNSW (Malkov & Yashunin, 2019) (see Appendix A for a background on indexing struc-
tures).

The pre-processing is query-independent and only involves item vectors. At the retrieval step,
the built structure can quickly retrieve the candidates for each user u, probably in sub-linear time
with respect to the number of items n. By indexing item latent vectors, we can quickly retrieve a
small candidate set for the “most relevant” items to the user query vector, as illustrated in Figure
5. Specifically, all indexing strategies adopt the same method to achieve sub-linear searching time:
given a query, it reduces the search space by automatically discarding a large amount of potentially
irrelevant data points. Figure 5 depicts two phases of a top-k recommender system with the aid of
indexing structures, consisting two main steps:

1449



DUNG D. LE, HADY W. LAUW

1. Index Construction: indexing item vectors {yi}i∈I obtained from the preference elicitation
phase.

2. Top-k Retrieval: given the user vector xu as query, using the built index to get the candidates
for top-k items, ranking the candidates, and returning the final top-k.

As opposed to exhaustive search, indexing offers a speed advantage, at the cost of some storage.
As opposed to full pre-computation that scales with the number of items and users, indexing is
significantly more storage-efficient (only items need to be indexed), while offering greater flexibility
for k, the size of recommendation list to be retrieved. Popular indexing structures include locality-
sensitive hashing (LSH) (Shrivastava & Li, 2014) hash tables, spatial indexing (Bentley, 1975),
and inverted index (Bhowmik et al., 2016) (see Appendix A). We categorize these structures under
space-partitioning approach. Another category is graph-based, based on the recent advances on
using similarity graph exploration for nearest neighbors search. In the following, we describe each
category in detail.

3.1.1 SPACE-PARTITIONING INDEXING

Here, we focus on space-partitioning indexing structures for efficient candidate generation. The
principal idea is to build a partition of Rd into many neighborhood regions and split the data ac-
cordingly.

Indexing
LSH Hash Table Spatial Tree Inverted Index

Candidate Set

Figure 5: An Illustration of Candidate Screening with Indexing

Early attempts towards having efficient MF-based retrieval include those by Koenigstein et al.
(2012), which constructs a ball tree with item vectors and employs a branch and bound algorithm
and Ram and Gray (2012), which proposes a dual-tree based search using cone trees to handle
many queries simultaneously. However, these solutions partition the data space based on Euclidean
distance, which could produce different top-k recommendations from the inner product. The reason
is because inner product does not form a proper metric space: for ∀x ∈ Rd, you can always find
y1, y2 ∈ Rd so that xT y1 < xTx < xT y2. A point might not be its own nearest neighbor. This
violates the triangle inequality and invalidates some common approaches for approximate nearest
neighbors search. This means that the inner product kernel is not compatible with the operations of
a spatial tree index relying on Euclidean distance, or an inverted index relying on cosine similarity.
To resolve this issue, there are two following possible solutions.
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1. Vector Augmentation The first solution is to reduce MIPS problem to either Nearest Neigh-
bor Search (NNS) problem defined as:

i = arg min
1≤i≤n

||xu − yi|| (2)

or Maximum Cosine Similarity Search (MCSS) problem:

i = arg max
1≤i≤n

xTu yi
||xu||.||yi||

(3)

The three problems are equivalent if all item vectors are of the same length. This can be
solved via post-learning transformations applied to user and item vectors. This typically adds
extra dimensions to user vectors {xu}u∈U and item vectors {yi}i∈I so that solving MIPS
in the original space is equivalent to solving NNS/MCSS in the transformed space. After
the reduction, there are several indexing solutions for the transformed NNS/MCSS such as
locality sensitive hashing (LSH) (Shrivastava & Li, 2014, 2015; Neyshabur & Srebro, 2015),
PCA-tree (Bachrach et al., 2014).

There are many choices for the transformation itself. For example, (Shrivastava & Li, 2014,
2015) augment the vectors to (d+m)-dimensional space. Later, (Neyshabur & Srebro, 2015;
Bachrach et al., 2014) extend the output latent vectors by one dimension to equalize the
magnitude of item vectors:

xu →
[
xu
||xu||

, 0

]
∀u ∈ U , (4)

yi →
[

yi
maxi∈I ||yi||

,

√
1− || yi

maxi∈I ||yi||
||2
]
∀i ∈ I, (5)

Extensions include (Huang et al., 2018) that minimizes the distortion error in reducing MIPS
to NNS via Asymmetric LSH scheme and Query Normalized First transformation and (Keivani
et al., 2018) that uses randomized partition trees instead of LSH for a better theoretical guar-
antee on choosing the best MIPS-to-NNS/MCSS reduction strategies. (Yan et al., 2018) points
out that (Neyshabur & Srebro, 2015) suffers from long tails in the 2-norm distribution of real-
datasets and proposes to partition a dataset to sub-datasets and build a hash index for each
sub-dataset independently.

Also under this category, (Bhowmik et al., 2016) recently presents a post-MF-learning pro-
cessing with sparsity mapping scheme that derives sparse representation for each user and
item from their respective dense real-valued latent vectors. Two close points are mapped to
sparse vectors with similar sparsity pattern (i.e., significant overlap of non-zero indices). Two
distant points are mapped to vectors with different sparsity patterns. It then uses inverted
indexing (See Appendix A) with the resulting sparse vectors to generate candidates for top-K
recommendation retrieval.

2. Indexable Representations The second solution is to avoid the need for post learning vector
augmentation by designing recommendation algorithms whose latent output vectors can be
immediately sublinearly searchable using indexing data structures.
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• Metric learning takes as input distances (or their ordinal relationships) and outputs
low-dimensional latent coordinates for each point that would preserve the input as much
as possible. Because they operate in the Euclidean space, the coordinates support NNS
using geometric index structures such as spatial trees. For instance, CFEE (Khoshneshin
& Street, 2010) fits a rating r̂ui by user u on item i in terms of the squared Euclidean
distance between xu and yi, i.e., r̂ui = µ + bu + bi − ||xu − yi||2. On the other hand,
COE (Le & Lauw, 2016) and CML (Hsieh et al., 2017) seek to ensure that an item i
liked by a user u would be placed closer to the user on the Euclidean representation
than a less preferred item j, implying ||xu − yi|| < ||xu − yj ||. As these methods
use Euclidean distance to model the user preference over items, the retrieval of top-
K recommendations becomes top-K nearest neighbor search (NNS) with Euclidean
distance.

• One insight towards achieving geometric compatibility is to desensitize the effect of
vector magnitudes. The key reason behind the incompatibility between inner product
search that matrix factorization relies on, and the aforesaid index structures is how a
user u’s degree of preference for an item i, expressed as the inner product xuT yi, is
sensitive to the respective magnitude of the latent vectors ||xu||, ||yi||. There are several
approaches in this direction. One is IPMF (Fraccaro et al., 2016), which extends the
Bayesian Probabilistic Matrix Factorization (Salakhutdinov & Mnih, 2008), by making
the item latent vectors natively of fixed length. Indexable Bayesian Personalized Rank-
ing or IBPR (Le & Lauw, 2017), on the other hand, proposes the use of angular distance
kernel, evaluated as the arccos of the inner product between the normalized vectors,
to model pairwise ordinal preferences. Both IPMF and IBPR produce output vectors in
which MIPS is equivalent to NNS and MCSS. Recently, (Le & Lauw, 2020) proposes
SRPR, an indexable method that learns the user and item vectors that are robust to the
stochasticity of randomly generated LSH hash functions. As as result, SRPR shows bet-
ter performances post-LSH-indexing for top-k recommendation compared to IPMF and
IBPR, when LSH is the designated indexing structure for recommendation retrieval.

3.1.2 GRAPH-BASED INDEXING

The idea of using similarity graph, i.e., where each vertex is connected to the most similar vertices
for nearest neighbor search problem has been well studied in literature (see Appendix A for a back-
ground). Some of the current approaches attempt to use this technique to solve the maximum inner
product search problem efficiently (Equation 1).

(Morozov & Babenko, 2018) introduces the concept of IP-Delaunay graph, which is the smallest
graph that can guarantee the return of exact solutions for maximum inner product search by greedy
seach algorithm. Specifically, the proposed framework ip-NSW is based on Navigable Small World
(NSW) approach to approximate the IP-Delaunay graph. Based on the assumption that similar item
vectors may constitute relevant results to the same query, ip-NSW (Morozov & Babenko, 2018)
proposes to solve MIPS with the use of similarity graph based on the inner product between item
vectors.

1. Before observing any query, ip-NSW constructs a s-Delaunay similarity graph based on the
inner product between item vectors. At each step, ip-NSW adds the next item i node to the
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graph. Vertex i is connected by directed edges to H vertices, corresponding to most similar
item vectors that are already added to the graph.

2. At the query phase, greedy walks on this graph are employed to efficiently determine the
candidates for recommendation. At this stage, ip-NSW maintains a priority queue of size
Q of neighbors that should be visited by the search process. Both H and Q determine the
balance/trade-off between the run-time and search accuracy.

Recently, (Liu et al., 2020) proposes ip-NSW+, which further improves ip-NSW by introducing an
angular similarity graph, in addition to the inner product similarity graph of ip-NSW. The search
process first starts on the angular graph to find the angular neighbors for the query. These angular
neighbors are used to initialize the candidate pool when searching on the inner product sinilarity
graph of ip-NSW.

Another recent work (Zhou et al., 2019), based on the Mobius transformation on the item
vectors, connects graph-based indices for maximum inner product search and approximate near-
est neighbor search. (Zhou et al., 2019) also points out that there is an isomorphism between the
IP-Delaunay graph before the transformation and a subgraph of the Delaunay triangulation with
respect to the Euclidean distance between the transformed data points. Based on this observation,
the authors propose to approximate the IP-Delaunay graph as follows:

1. Applying Mobius transformation to each item vector yi:

yi 7→ y′i =
yi
||yi||2

Let Ỹ = {y′i,∀i = 1, n} ∪ {0} be the transformed set (0 is the origin). Constructing ap-
proximate L2−Delaunay graph for Ỹ . Let N0 be the set of neighbors of 0 on the constructed
graph. Then remove 0 and its edges from the graph, and replace y′i by the original yi.

2. At the querying step, let N0 be the initial vertices of the greedy search algorithms described
in Figure 10.

Since the graph is built for L2− distance metric, it can preserve the advantageous features of metric
similarity graph. Also, the transformation provides good starting vertices for the greedy search
process. Thus, the performance of the proposed method significantly improves that of ip-NSW
(Morozov & Babenko, 2018).

Recent work on learning to route on similarity graphs (Baranchuk et al., 2019) and learning to
partition space for nearest neighbor search (Dong et al., 2020) could open a new class of methods
to improve even the greedy search algorithm on the similarity graph, which is used extensively for
most of graph-based indexing methods.

3.1.3 GRAPH-BASED VS. SPACE-PARTITIONING INDEXING

Compared to space-partitioning methods, searching for top-k recommendations with graph-based
indexing may start from a distant point to the query, but they usually approach closer to the query
quickly. The reason is that the similarity graphs can express the neighbor relationships better than
space-partitioning indexing methods, which tend to check more nearby areas to achieve the same
level of accuracy (Fu et al., 2019). Another interesting perspective about MF-based recommendation
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retrieval is that the queries (or user vectors) are usually having clustering structures (Jiang et al.,
2020) (i.e., users can be clustered to groups that share the same preferences), which is more suitable
for data-dependent methods such as graph-based indexes than data-independent methods such as
LSH tables or spatial trees.

However, the cost of constructing the similarity graph is usually significantly expensive. On
the other hand, constructing LSH tables or KD-trees can be done efficiently and their querying step
is parallelizable. Data-independent methods as space-partition indexes are also easier to perform
maintenance operations (e.g., inserting or deleting a data point), compared to data-dependent meth-
ods as graph-based indexes. In the context of rapid growing recommender systems, indexes might
need to be updated frequently, which is more suitable with structures such as LSH tables or spatial
trees.

3.2 Efficient Candidate Generation via Ranking Estimation Strategies

To avoid the need for computing inner product scores and ranking these scores to arrive at the
top-k recommendations, one approach is to estimate or approximate this ranking of scores using
solely elements of user and item vectors. The estimated ranking of items can be used to generate
candidates for recommendations. These candidates can be re-ranked later for more accurate ranking
among them and the final top-k will be selected.

Particularly, all methods covered in this section consider the following matrixZ = [x
(l)
u y

(l)
i ],∀i ∈

[1, 2, . . . , n] and ∀l ∈ [1, 2, . . . , d]:

Z =


x
(1)
u y

(1)
1 x

(1)
u y

(1)
2 x

(1)
u y

(1)
3 . . . x

(1)
u y

(1)
n

x
(2)
u y

(2)
1 x

(2)
u y

(2)
2 x

(2)
u y

(2)
3 . . . x

(2)
u y

(2)
n

...
...

...
. . .

...
x
(d)
u y

(d)
1 x

(d)
u y

(d)
2 x

(d)
u y

(d)
3 . . . x

(d)
u y

(d)
n

 (6)

in which, each column i of Z is the element-wise product between vectors xu and yi. The sum of
each column i of Z is the corresponding inner product score between xu and yi.

3.2.1 ITEM RANKING ESTIMATION WITH SORTED INDICES LISTS

To quickly construct the candidate set, (Yu et al., 2017) proposes an algorithm Greedy-MIPS based
on the following assumption:

xu
T yi > xu

T yj ⇔ max
1≤l≤d

x(l)u y
(l)
i > max

1≤l≤d
x(l)u y

(l)
j , (7)

In other words, the ranking of inner products between user vector xu and item vectors {yi}ni=1 can
be approximated by the ranking of the maximum element-wise products. For each query xu, if we
can quickly determine the index pair (i, l) such that x(l

∗)
u y

(l∗)
i∗ = max{x(l)u y(l)i , 1 ≤ i ≤ n, 1 ≤

l ≤ d}, then we can yield an estimate of the inner products and avoid the expensive inner product
computations. This is equivalent to determining the largest element in the matrix Z. Towards this
end, (Yu et al., 2017) proposes two following steps:

• Before observing any query, Greedy-MIPS constructs d different lists, in which the l−th list
consists of sorted indices of elements in that dimension of all item vectors, i.e., {y(l)i }.
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• At the querying phase, a max-heap is employed to iteratively traverse (j, l) entries of matrix
Z = [x

(l)
u y

(l)
j ], ∀j ∈ [1, 2, . . . , n] and l ∈ [1, 2, . . . , d] in a greedy sequence, and the first

newly visited item indices j will be added to the candidate set Cu.

Sampling

Candidate Set

Figure 6: An Illustration of Candidate Screening via Sampling

With assumption (7), Greedy-MIPS can avoid inner product computations in the candidate gen-
eration process. Although assumption (7) is not guaranteed mathematically, Greedy-MIPS shows
promising performances for many real-world datasets.

3.2.2 ITEM RANKING ESTIMATION VIA SAMPLING

Sampling is another way to approximate the ranking of inner products. The underlying principle
of sampling methods for estimating the item ranking for a user u is to associate each item index
i ∈ [1, 2, . . . n] with a ranking score, whose probability is proportional to xTu yi, without the need to
compute all n inner products {xTu yi}i=1,n. At the end of the sampling process, the spectrum of the
item ranking scores, i.e., {c1, c2, . . . , cn}would be highly correlated with the ranking of the original
inner product values. The larger the inner product values of xTu yi, the higher the score ci of item
index i.

The resulting item scores, i.e., {c1, c2, . . . , cn} enable us to generate Cu using candidate items
with the highest scores (illustrated in Figure 6). A re-ranking step with exact inner product compu-
tations can be performed afterwards to rank the candidates and to select the top-k items for recom-
mendation.

In the following, we review several existing sampling strategies in the literature and the analysis
of their complexities and limitations.

1. Simple Sampling: (Drineas et al., 2006) describes a simple sampling scheme, which can be
described as follows. For each column i of Y , we sample a row index l with a probability
of x(l)u /||xu||1, and return y(l)i as the score. For each column index i, let Zi be the random
variable that denotes the output of this sampling process. The expectation value of the score
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Zi for an item i can be measured as in Eq. 8:

E [Zi] =
d∑
l=1

y
(l)
i Pr [row index l is sampled]

=
d∑
l=1

y
(l)
i x

(l)
u

||xu||1
=

xTu yi
||xu||1

(8)

This means that for each i ∈ I , ||xu||1Zi is an unbiased estimate for xTu yi. Therefore, these
scores ci = ||xu||1Zi can be used to estimate the item ranking and to generate candidate set
Cu. This sampling strategy has the cost of O(n), as sampling is performed for each item
i ∈ I . To generate B candidates for top-k recommendation, we need to rank the scores
{c1, c2, . . . , cn} with the cost of O(n log(B)).

2. Wedge Sampling: (Cohen & Lewis, 1997) proposed another efficient sampling technique,
called wedge sampling. Wedge sampling needs to pre-compute some statistics in advance,
including the sum of all inner products z =

∑n
j=1 x

T
u yj and norm-1 of the rows of the

item matrix Y , i.e., rnorml is the norm-1 of the l−th row of Y . Since we can pre-compute
rnorml ,∀1 ≤ l ≤ d, computing the sum of all inner products z =

∑d
l=1 r

norm
l xlu takes O(d)

time.

Given the pre-computed sum of all inner products z and the norm-1 of matrix Y ’s rows
rnorml ,∀1 ≤ l ≤ d, wedge sampling randomly samples a column (an item) i of Y with

probability xTu yj
z as follows. It first samples a row index l with probability x

(l)
u
z r

norm
l , and then

samples a column (item) index i with probability yli/r
norm
l . Each time the item index i is

sampled, we increase the score ci for the i-th item by 1. In this case, ci acts as a counting
variable that summarizes the occurrence of item i in the sample set.

We have:

Pr(item i is sampled) =

d∑
l=1

Pr(i|l).Pr(l)

=
d∑
l=1

yli
rnorml

.
rnorml .x

(l)
u

z
=

d∑
l=1

x
(l)
u .yli
z

=
xTu yj
z

(9)

Wedge sampling achieves lower variance than the basic sampling in practice. Given that
the sampling is constant, wedge sampling has the complexity of O(s) for generating scores
{c1, c2, . . . , cn} and O(n log(B)) for ranking n scores {c1, c2, . . . , cn} to arrive at a set of B
candidates.

3. Diamond Sampling: (Ballard et al., 2015) proposes diamond sampling, which first makes
use of wedge sampling to return a random column i corresponding to yi with probability
xTu yi
z . Given such column index i, then (Ballard et al., 2015) samples a random row index

l with probability x
(l)
u

||xu||1 and returns y(l)i as the result. Let Zi as the random variable that
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denotes the output of the diamond sampling process. The expectation of Zi can be measured
as follows:

E[Zi] =

d∑
l=1

y
(l)
i

x
(l)
u

||xu||1
xTu yi
z

=
(xTu yi)

2

z||xu||1
(10)

This output score Zi of diamond sampling returns a scaled estimate of (xTu yi)
2, identifying

candidates with maximum squared inner product (xu
T yj)

2. As it follows the wedge sampling
strategy, diamond sampling also has the same complexity of O(s+ n log(B)) for generating
B candidates for top-k MIPS.

4. Bandit Sampling: (Liu et al., 2019) introduces a new framework BoundedME, which casts
MIPS as Multi-Arm-Bandit (MAB) with bounded pulls problem. The authors treat each item
vector yi as a bandit arm, whose reward has the following true mean of pi = 1

d

∑n
l=1 x

(l)
u y

(l)
i =

xTu yi
d . When pulling an arm yi, its rewards are generated by sampling without replacement

from the reward list Ri = {x(1)u y
(1)
i , x

(2)
u y

(2)
i , . . . , x

(d)
u y

(d)
i }.

Unlike previous sampling with replacement methods ((Drineas et al., 2006; Cohen & Lewis,
1997; Ballard et al., 2015)), the MAB framework in (Liu et al., 2019) is a sampling without
replacement method. Once an arm is pulled n times, the mean of the returned rewards is
exactly the true mean pi. The MAB framework wants to achieve epsilon−optimal arm with
probability of at least 1 − δ with as few pulls as possible. This approach provides a flexible
mechanism to control and bound suboptimality of the recommendation results with theoretical
guarantee.

Advantages of Sampling Methods. One advantage of the sampling approach is that it natively
supports budgeted queries (Lorenzen & Pham, 2020). As the number of samples increases, the
variance of the estimate decreases, these methods offer a mechanism to govern the trade-off between
search efficiency and accuracy. In (Qin Ding, 2019), the authors show that in the scenarios where
assumption (7) does not hold, sampling-based methods could be more effective than Greedy-MIPS
in (Yu et al., 2017). Another advantage of sampling is that it does not require a pre-built data
structure of item vectors as the sampling process is performed at the querying time.

Limitations. The limitation of the above-mentioned sampling methods is that it can only handle
non-negative item vectors and user vectors, i.e., when all the elements in the vector are non-negative.
For example, diamond sampling’s goal is to identify candidates with maximum squared inner prod-
uct (xu

T yj)
2, which is not equivalent to MIPS if inner product scores are negative. To solve this

issue, (Qin Ding, 2019) recently proposes a new sampling scheme with the use of alias tables that
can handle even negative input vectors. (Lorenzen & Pham, 2020) recently proposes a deterministic
wedge-based algorithm, namely dWedge that runs significantly faster than methods from (Yu et al.,
2017) for budgeted MIPS and (Li et al., 2017) for exact top-k MIPS.

3.3 Exact Methods for Efficient Candidate Generation

In this section, we discuss the class of exact methods for maximum inner product search (MIPS).
Exact MIPS retrieval methods attempt to return an identical top-k to linear scanning without exam-
ining all the items. For some domains, exact MIPS may be desired than approximate techniques,
especially those that are revenue-critical. We will review two different strategies for exact to-k
MIPS in the following.
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3.3.1 SEQUENTIAL SCANNING

Sequential scanning involves testing potential candidates sequentially, while weeding out unpromis-
ing ones. A prototypical approach is LEMP (Teflioudi & Gemulla, 2016; Teflioudi et al., 2015),
which exploits the Cauchy-Schwartz inequality xuT yi ≤ ||xu||.||yi||.

It first sorts all items in decreasing order of their magnitudes ||yi||. For a user query vector xu,
it scans each candidate in the sorted order and maintains a list of the top-k largest inner products
seen thus far. As soon as it encounters an item whose inner product upper bound ||xu||.||yi|| is less
than or equal to the k−th largest inner product computed so far, the scan stops and the current top-k
items are returned as the results, since it is impossible for the next items after yi to enter the result
list. This avoids redundant inner product computations.

(Teflioudi & Gemulla, 2016) and (Teflioudi et al., 2015) further improve the efficiency of LEMP
by proposing an incremental pruning technique that refines the upper-bounds by computing the
partial inner product over the first several dimensions. FEXIPRO in (Li et al., 2017) adopts the
same framework and applies singular value decomposition to the user and item matrices to make
the first dimensions more meaningful, effectively improving the upper bounds and facilitating the
pruning process.

3.3.2 HARDWARE-EFFICIENT MIPS SOLVER

A recent development in (Abuzaid et al., 2019) claims that methods like LEMP or FEXIPRO do
not always outperform hardware-efficient approaches for the problem of maximum inner product
search. The paper also proposes a solver for MIPS, namely MAXIMUS that takes advantage of
hardware efficiency and pruning of the search space. As MAXIMUS is not always better than
LEMP or FEXIPRO, (Abuzaid et al., 2019) introduces a data-dependent optimizer, OPTIMUS, that
selects online for the best solver for MIPS methods for a given input.

(Xiang et al., 2019) claims that the bottleneck of existing exact solutions is the costly inner
product computation. Based on this analysis, the paper proposes an approach that utilizes the char-
acteristics of CPU-GPU systems to accelerate the inner product computation. The three features of
the proposed approach include: heterogeneous processing of inner product computation and top-k
list retrieval in CPU-GPU systems, reducing the data transfer between CPU and GPU, and avoiding
unnecessary computation costs by early termination techniques. (Johnson et al., 2019) introduces
FAISS, a library for billion-scale vector similarity search, harnessing the power of GPU for top-k
nearest neighbor search and maximum inner product search.

3.4 Discussions

In this section, we discuss several matters concerning the efficient candidate generation methods for
top-k MF-based recommendation retrieval and provide some insights for deeper understanding of
these methods.

3.4.1 RETRIEVAL-EFFICIENT STRUCTURES

Retrieval-Efficient structures refer to the data structures that support efficient top-k recommenda-
tion retrieval such as sorted indices lists (Yu et al., 2017), LSH tables (Le & Lauw, 2017; Bachrach
et al., 2014), spatial trees (Keivani et al., 2018), or similarity graph (Morozov & Babenko, 2018).
These methods constitute a significant portion of the surveyed approaches for efficient top-k candi-
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date generation. To better understand the cost redistribution undertaken by this strategy, we provide
a summary of its various costs, including construction time, candidates generation time, and can-
didates ranking time in terms of theoretical complexities in Table 2. The methods are grouped
according to their approximation strategies as described in Section 3.

• Complexities. Table 2 describes the complexities of each method in terms of the number of
items n, number of features d, and the method’s parameters. This provides an easy way to
compare the methods across different recommendation retrieval criteria. As a reference point,
we note that exhaustive linear scanning (first line) does not require a pre-processing step.
However, it has significantly more expensive candidate ranking time, i.e., O(nd + n log(k))
than the other approaches that benefit from retrieval-efficient data structures. This is primarily
due to the reduction in the number of investigated candidates, which results in faster ranking
of candidates later. This benefit comes at the cost of constructing the data structures to store
the item vectors in new formats that support efficient similarity search, which is a one-time
cost to be amortized over the many query instances, as well as the cost to generate candidates
in real-time, which generally is less dominant than the candidate ranking time. Another factor
for consideration when using retrieval-efficient structures for recommender systems is the
growth rate of the systems. As user preferences may change over time, new items appear,
or old items are removed, maintaining a retrieval-efficient structure would require constant
updates (e.g., insertion, deletion, or even re-build).

• Accuracy-Efficiency Trade-Off. Table 2 also hints at the controls allowed by these strategies
to vary the trade-off between accuracy and efficiency. For instance, LSH-based retrieval
can achieve higher accuracy, by increasing the number of hash tables L and reducing the
number of hash functions b. The cost of this is the increase in terms of construction time, i.e.,
O(ndLb) and slower candidate ranking, i.e., O(nL

2b
d+ nL

2b
log(k)). For spatial trees, one can

decrease the depth level δ of the tree where the search process operates to get more candidates
for the ranking step (i.e., slower ranking time) to gain a higher accuracy. With s− Delaunay
approximate similarity graph, one increases the vertex degree H when constructing the graph
Gs to improve the quality of greedy walks. Sampling methods can increase the accuracy of
top-k results by simply having more samples to better approximate the true ranking of inner
product scores. Hence, optimizing for retrieval efficiency is less of a binary switch, and more
of a configurable control knob.

For computationally intensive preference elicitation models, the process of deriving user and
item vectors is usually executed in a periodic manner, followed by constructing the retrieval-efficient
structures. To improve the efficiency, one can employ additional interactive preference elicitation
models (He, Zhang, Kan, & Chua, 2016; Yin, Liu, Li, Dai, Chen, Wu, & Sun, 2019; He, Parra, &
Verbert, 2016) to handle user feedback that arrives sequentially. In that scenario, one only need to
update the user or item that corresponds to the new data in the structures, without the need to rebuild
them entirely (Aytekin & Aytekin, 2019).

3.4.2 BUDGETED QUERIES

Some real-world scenarios may allow recommendation retrieval for different computational budgets
depending on the query (Yu et al., 2017). For example, paid users (i.e., queries) could be allocated
more computational budgets and expect more quality recommendations as compared to standard
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users who use the services without fee. For MF-based recommendation retrieval, the challenge is
how to generate top-ranked recommendation candidates for a user under a given budget of inner
product computations. To handle such budgeted queries scenarios, candidate generation methods
should have a flexible control over the number of candidates produced, to be investigated in the
ranking step.

Not all methods could handle such scenarios. For example, LSH tables and spatial trees re-
quire construction of query-independent structure, which means the query cost and the accuracy-
efficiency trade-off are standardized across queries. Among the surveyed approaches, sampling-
based methods (Cohen & Lewis, 1997; Ballard et al., 2015; Qin Ding, 2019; Liu et al., 2019) and
Greedy-MIPS in (Yu et al., 2017) are capable of keeping the size of Cu within budget in the can-
didate generation step. Graph-based indexing is also a natural fit to budgeted queries scenario, as
the greedy-search algorithm on the similarity graph can control the number of generated candidates.
The advantage of sampling based methods over other efficient candidate generation methods is that
they do not require an overhead cost of pre-processing the item vectors before querying. However,
a major drawback of most sampling methods is that they can not handle the non-negative elements
in the vectors.

4. Efficient Candidate Ranking

Given the candidate set Cu from candidate generation step, there is an unavoidable number of inner
product computations, i.e., |Cu| to derive the ranking of the candidates. This process can be made
faster via efficient computation of inner product, whose idea is to reduce the cost of a specific user-
item interaction score. There are two lines of research under this category: one is based on discrete
representation approach, which learns to encode users and items as binary vectors equipped with
efficient XOR operations for preference score computations and the other is based on quantization
approach to approximate inner product computations.

• Discrete representation attacks the inefficient real-valued similarity operations when comput-
ing user/item vectors similarities by representing the users and items as binary vectors instead.
This approach has become popular recently, thanks to the approximate optimization frame-
work for learning binary user/item vectors in (Zhang et al., 2016), which can be adopted for
most of the matrix factorization-based recommendation models. Not only do binary represen-
tations offer the advantage of cheaper storage (as there are many 0s in the vectors), they also
support efficient similarity search with search strategies such as Hamming ranking or hash
tables lookup (Zhang et al., 2016) (See Section 5). Section 4.1 provides more detail about the
methods under this approach.

• Quantization approaches can achieve efficient candidates ranking as they require a smaller
number inner product computations in d− dimensional space or cheaper inner product com-
putations in lower dimensional sub-spaces. Particularly, vector quantization exploits the clus-
tering structures of the item vectors to approximate each item vector by the cluster’s centroid
to reduce the number of similarity computations when searching for top-k items. Product
quantization, on the other hand, attacks the dimensionality d of the latent space by decompos-
ing the feature vectors into several lower sub-components and applying vector quantization
for each sub-component. In Section 4.2, we describe these techniques in detail.
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Note that, some of the methods described in this category can also be used to efficiently generate
the recommendation candidates. For example, we can create Locality Sensitive Hashing tables with
the output of discrete representation methods to quickly retrieve relevant items given the user binary
vector as query. With vector quantization, we can consider the items whose centroids are most
similar to the query as candidates. Here, we focus on the use of these methods in approximating the
inner product computations in d−dimensional space.

4.1 Discrete Representation for Efficient Recommendation Retrieval

In this approach, each user/item is represented as a sequence of binary values. Let bu, di ∈ {−1, 1}r
be the binary codes that represent user u and item i respectively. The inner product preference score
in the Hamming space can be converted to computing the Hamming distance between user and item
binary vectors, which requires simple XOR operations (Zhang et al., 2016):

sim(u, i) =
1

r

r∑
l=1

I(blu = dli)

=
1

2

(
r∑
l=1

I(blu = dli) + r −
r∑
l=1

I(blu 6= dli)

)

=
1

2r

(
r +

r∑
l=1

blud
l
i

)
=

1

2
+

1

2r
bTudi (11)

where I(.) denotes the indicator function that returns 1 if the statement is true and 0 otherwise.

Given the binary representation of the users and items, one can use different search strategies
for nearest neighbor search such as hash tables or Hamming ranking (as described in Section 5).
To arrive at the binary vector representation for users and items, there are two main approaches:
quantization-based discretization or optimization-based discretization.

4.1.1 QUANTIZATION-BASED DISCRETIZATION

Quantization-based discretization consists of two phases. The first phase is relaxed optimization for
preference learning with some specific constraints to obtain continuous latent representations for
users and items. The second phase is binary quantization to convert the continuous latent represen-
tations from the first phase into binary codes. We review related work in the following:

(Zhou & Zha, 2012) constructs binary codes such that the Hamming distances of a user and her
preferred items are small through minimizing:

L =
∑

(u,i)∈Ω

(rui − sim(u, i))
2

+ λ

(
||
∑
u

bu||2 + ||
∑
i

di||2
)

=
∑

(u,i)∈Ω

(
rui −

1

2
− 1

2r
bTu di

)2

+ λ

(
||
∑
u

bu||2 + ||
∑
i

di||2
)

(12)
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(Zhou & Zha, 2012) first relaxes the solution space of Equation 12 to be real-vectors b̃u, d̃i in
[−1, 1]r and then rounds the real-valued solutions to the closest binary vectors in {±1}r, i.e.,

bu = argmin
b∈{±1}r

||b− b̃u||; (13)

di = argmin
d∈{±1}r

||d− d̃i||. (14)

(Zhang et al., 2014) proposes Preference Preserving Hashing or PPH, which is also a two-stage
process:

• At the relaxation step for optimization, different from classic matrix factorization, which
regularizes the norm of the latent vector to be small. PPH encourages the latent feature norm
to reach maximum ratings and hence smaller discrepancy between inner product and cosine
similarity is expected. The objective function is as follows:

min
X,Y
L =

∑
(u,i)∈Ω

(
rui − xTu yi

)2
+ λ

(∑
u

(
||xu||2 −

rmax

2

)2

+
∑
i

(
||yi||2 −

rmax

2

)2
)

(15)

where rmax represents the maximal rating value.

• At the quantization step, PPH quantizes each feature vector into (r − 2) bit phase codes and
2-bit magnitude codes. The Hamming distance between the generated hashcodes bu, di will
preserve the similarity between the original xu, yi.

Quantization-based discretization is considered a natural development of existing matrix factor-
ization recommendation models to produce binary vector representation for users and items. How-
ever, according to (Zhang et al., 2016), the major drawback of quantization-based discretization
methods is that they suffer from large information loss in the binary quantization stage. This could
result in a significant degeneration of recommendation accuracy of the original matrix factorization
models. This issue motivates the wide adoption of optimization-based discretization approach as an
alternative to the two-step approach.

4.1.2 OPTIMIZATION-BASED DISCRETIZATION

Optimization-based discretization adopts classic matrix factorization formulations, while imposing
further constraints on balance and decorrelation for the binary codes. The balance constraint is to
require each bit to split the dataset as balanced as possible, maximizing the information entropy
of the bit. The decorrelation constraint is to guarantee that each bit should be as independent as
possible, removing redundancy among the bits (Zhang et al., 2016).

Generally, the framework for optimization-based discretization can be described as in Equation
(16), in whichL (R,B,D) is the loss function over the rating matrix (or user-item interactions), user
and item binary codes B and D and the constraints are for the balance and decorrelation properties
of B and D.

min
B,D
L (R,B,D) such as: B ∈ {±1}r×m, D ∈ {±1}r×n, (16)

B1 = 0, D1 = 0;BBT = Im, DD
T = In
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However, solving Equation 16 is challenging since the solution space is O
(
2(m+n)×r) and

involves combinatorial search for the binary codes. (Zhang et al., 2016) proposes to soften the
balance and decorrelation constraints by solving the following problem:

min
B,D,X,Y

L (R,B,D)− 2αtr(BTX)− 2βtr(DTY ) (17)

such as: B ∈ {±1}r×m, D ∈ {±1}r×n,
X1 = 0, Y 1 = 0;XXT = Im, Y Y

T = In

Through joint optimization for the binary codes B,D and the delegate real variables X,Y , the
obtained solution for user and item binary codes are nearly balanced and uncorrelated.

We review several representative works in the following. DCF (Zhang et al., 2016) proposes
to learn the user and item hashcodes whose inner products reconstruct the observed ratings and laid
down an optimization framework for later works to learn user and item binary codes from user-
item interactions. For instance, DPR in (Zhang et al., 2017) learns from implicit feedback with
ranking-based AUC objective function. (Liu et al., 2019b) proposes DSR to learn user and item
codes that considers social information. DCMF (Lian et al., 2017) also takes into account context
information (such as user’s age and gender, item’s category and textual content), while DDL (Zhang
et al., 2018b) combines Deep Belief Network (DBN) and Collaborative Filtering (CF). DFM (Liu
et al., 2018), (Qu et al., 2020) also learn binary codes for any side feature based on the factorization
machine framework. Meanwhile DRMF (Zhang et al., 2018a) is based on each user’s pairwise
preferences, with self-paced learning. (Li et al., 2019) proposes Discrete Collaborative Hashing,
a binary codes learning framework with neural collaborative filtering for efficient recommendation
systems. (Guo et al., 2019) introduces discrete trust-aware matrix factorization (DTMF) model
to take advantage of both social relations and discrete technique for fast recommendation. (Wang
et al., 2019) exploits graph convolutional network (GCN) to model high-order feature from implicit
feedback and distill the ranking information derived from GCN to binarized collaborative filtering
to improve the efficiency of online recommendation. (Liu et al., 2019a) introduces a new approach
Compositional Coding for Collaborative Filtering (CCCF) that represents each user/item with a set
of binary vectors, instead of one as in (Zhang et al., 2016), which are associated with a set of sparse
real-value weight vectors. CCCF claims to achieve better recommendation efficiency than many
other discrete learning methods.

In summary, optimization-based discretization methods have been studied extensively recently,
thanks to the rich literature of matrix factorization recommendation models and the new optimiza-
tion framework proposed in (Zhang et al., 2016). However, the accuracy of optimization-based
discretization for collaborative filtering may be affected by the limitted representation capacity of
each bit. Therefore, they usually require longer binary codes to meet the desired performance, which
might hurt the generalization of the model in the sparse scenarios.

4.2 Efficient Maximum Inner Product Search via Quantization

In this section, we discuss another approach for efficient MIPS, namely quantization. The main idea
of quantization approach is to approximate the inner product computations in the d dimensional
space.
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4.2.1 VECTOR QUANTIZATION

Vector quantization is a data compression technique. The idea is to approximate the data points
through a smaller collection of representative vectors. In the literature, the collection of these rep-
resentative vectors is referred to as the codebook. We can construct these codebook vectors by
using clustering algorithms such as K-means clustering to get the clusters’ centroids. Each point is
represented by the centroid of the cluster it belongs to. This approach greatly reduces the number
of required computations when we perform nearest neighbor search. For a given query, we first
determine the closest codebook vector (i.e., centroid). We can then perform similarity computations
with data points of that centroid’s cluster to determine the top nearest neighbors.

(Du & Wang, 2014) proposes a compositional code approach to approximate inner product
search. The idea is based on a vector quantization. Using the composition of several vectors, each
of which is selected from one of M source dictionaries {C1, C2, . . . , CM} (where Ct, ∀1 ≤ t ≤M
is a matrix of size d×nC , and nC is the number of vectors in Ct). Each item vector yi is represented
by a compositional code bi =

[
bTi1,b

T
i2, . . . ,b

T
iM

]T such that:

yi ≈ [C1, C2, . . . , CM ]
[
bTi1,b

T
i2, . . . ,b

T
iM

]T
,

in which bit ∈ {0, 1}nC ; ||bit||1 = 1,∀1 ≤ t ≤ M . The vectors in source dictionaries Ct,∀1 ≤
t ≤ M and the compositional codes bi,∀1 ≤ i ≤ n are learned to minimize the item vector
approximation error. The complexity of the learning process isO(nM2nCd+d(MnC)2+(MnC)3)
for one iteration.

For any query vector xu, we first compute the inner products between xu andM×nC dictionary
vectors with the costO(MnCd). Since

∑
1≤t≤M nt < n, the number of inner product computations

is reduced by the order of n∑
1≤t≤M nt

. These inner product values can be used to approximately

compute the inner product xTu yi in O(M) time.

4.2.2 PRODUCT QUANTIZATION

Figure 7: Illustration for Product Quantization Method

In order to get good search accuracy, vector quantization methods need to use a large value
of clusters, i.e., a large number of codebook vectors to better approximate the original data points.
Product quantization addresses this issue by first decomposing the d−dimensional vector space into
the product of M sub-spaces with dimension d′ =

[
d
M

]
(Figure 7). In each subspace, we quantize

each sub-component vectors of the original vectors separately. Each data point is represented by
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a collection of centroids, one for each sub-component. This approach is interesting, as it turns the
curse of dimensionality challenge into an advantage.

(Guo et al., 2016) describes a product quantization technique for maximum inner product search.
In particular, each vector is first permuted using a random (but fixed) permutation. Each permuted
vector is mapped to M subspaces using simple chunking.

xu =
[
x(1)u ;x(2)u ; . . . ;x(M)

u

]
; (18)

yi =
[
y
(1)
i ; y

(2)
i ; . . . ; y

(M)
i

]
(19)

where x(t)u , y
(t)
i ∈ Rl, l = d dM e. The tth subspace containing the tth blocks of all the item vectors

{y(t)i }, is quantized by a code bookU (t) ∈ Rl×nC , where nC is the number of quantizers in subspace
t. Each item vector yi is quantized in the tth subspace as y(t)i ∼ U (t)α

(t)
yi , where α(t)

yi is one-hot
indication vector. The inner product of a user query vector and an item vector is approximated as
the sum of inner products with the subspace quantizers, with the cost of O(MnCd dM e):

xu
T yi =

K∑
k=1

x(k)u
T
y
(k)
i ≈

K∑
k=1

x(k)u
T
U (k)α(k)

yi

The codebook U (k) and indication vector α(k)
yi are learned by minimizing the inner product quanti-

zation error for held-out queries Z with known top-k, at the cost of O(nnC |Z|).
Norm-Explicit Quantization - A Hybrid Approach. Recent work (Dai et al., 2019) points out

that existing vector quantization techniques do not allow explicit control of norm error and angular
error. For each item vector yi and its codebook approximation ȳi. Given the user query vector xu,
the paper defines the inner product error, norm error, and angular error as follows:

ip− err =

∣∣∣∣xTu yi − xTu ȳixTu yi

∣∣∣∣ ; (20)

norm− err =

∣∣∣∣ ||yi|| − ||ȳi||||yi||

∣∣∣∣ ; (21)

ang − err = 1− yTi ȳi
||yi||.||ȳi||

(22)

The paper also hints that the norm error has more significant influence on inner product than
the angular error in most cases. Thus, it is more appropriate to reduce quantization errors in norm
to improve the performance of vector quantization methods for MIPS. Specifically, the idea of the
proposed method in (Dai et al., 2019) is to quantize the norm ||yi|| and the direction vector yi

||yi|| of
the item vectors separately. The objective is to achieve small norm error, while the direction vector
can be quantized using previous vector quantization methods. The code-books are divided into two
parts. The first M ′ are norm codebooks and the other M −M ′ code-books are for the direction
vector.

4.3 Discussions

In this section, we discuss the accuracy and efficiency trade-off of the efficient candidate ranking
methods and provide comparative analyses on several aspects of quantization and discretization
strategies for candidate ranking.
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4.3.1 ACCURACY AND EFFICIENCY TRADE-OFF

For vector quantization, higher accuracy can be achieved by increasing the number of quantization
vectors nC , which yields better item vector approximation (Du & Wang, 2014). However, that is
equivalent to increasing the number of inner product computations between the user query vector
and the codebook vectors at the querying step. The computational complexity for each query is
O(nC×d), which scales linearly with both the number of codebook vectors and the dimension of the
latent space. Product quantization is a clever approach to reduce the cost caused by the dimension
d of the latent space. However, to achieve good approximation resolution, product quantization
methods still need to increase the number of decompositional subspaces M (Guo et al., 2016),
which leads to the expensive cost at the querying step.

Discrete representation approaches may be limited by the representation capacity of the bi-
nary vectors. Particularly, r−dimensional real-valued vectors can represent an infinite number of
users and items. Whereas in the binary setting, r−dimensional binary vectors can represent a most
2r users/items. Discrete representation methods generally achieve better recommendation accu-
racy through longer binary codes, i.e., r. However, large code lengths, say more than 64, would
require over O(264) space to store the binary codes. To deal with such problem, one can use
Multi-Index Hashing (MIH) (Norouzi et al., 2012), which builds multiple hash tables, each for each
code sub-segment. Given the query vector bu, candidate items are aggregated from all the tables
and Hamming ranking is applied for re-ranking. MIH has also been used in (Kang & McAuley,
2019), in which the authors introduce a multi-step framework CIGAR, consisting of: (1)-learning
preference-preserving binary codes B,D, (2)- constructing a multi-index hash tables to index all
item vectors, and (3)-training a ranking model for candidate re-ranking step for more accurate final
top-k recommendation.

4.3.2 POST-LEARNING QUANTIZATION VS. NATIVE DISCRETIZATION

From another perspective, vector quantization and quantization-based discretization are related as
they both employ post-learning quantization of item vectors. This one-time cost of item prepro-
cessing is independent of the learning algorithms, i.e., it can be flexibly applied to the output of
any preference learning algorithms. This one-time processing is also beneficial for many future re-
quests. However, the major drawback of this two-step solution is the substantial loss of information
at the quantization step, which usually requires a large number of codebook vectors to preserved the
accuracy achieved by the original algorithms.

Meanwhile, optimization-based discretization natively supports efficient inner product compu-
tations in the Hamming space, however at the cost of solving harder optimization during the prefer-
ence elicitation phase. Since it is dependent on the training data, optimization-based discretization
is less flexible as compared to using data-independent hashing methods such as Locality Sensitive
Hashing or quantization-based discretization. The learning framework is also based on collabora-
tive filtering idea, thus they still potentially suffer from the sparsity of user-item interactions, and
the adoptions of new users and items. A promising solution is to exploit the user and item auxiliary
features to resolve the data sparsity issue and the cold-start problem.
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5. Conclusions and Open Questions

The current scale of e-commerce systems requires recommender systems to improve the efficiency
of both the preference elicitation phase and the recommendation retrieval phase. While there have
been numerous works on designing preference elicitation algorithms that can handle millions of
users and items, efficient recommendation retrieval has only gained more attention recently due to
the demand for online personalized recommendation of large scale systems.

This survey focuses on the retrieval phase of recommendation and provides an overview of
recent advances for efficient retrieval of matrix factorization recommendation. Particularly, the
two requisite steps for recommendation retrieval are candidate generation, which produces a set of
candidate items for top-k given a user vector xu and candidate ranking, which re-ranks the candidate
items to extract the final top-k. In this paper, for each step, we present a comprehensive taxonomy
that categorizes the relevant methods based on their pertinent strategies to improve the retrieval
efficiency, while still maintain high recommendation accuracy. We also provide several qualitative
analyses to better compare the surveyed methods along different dimensions and scenarios.

In the literature, there have been many proposed techniques to generate high quality recommen-
dation for each individual user, which would require the recommendation retrieval process to be
performed efficiently. This survey, however, is dedicated to the class of matrix factorization tech-
niques for personalized recommendation. There are still many interesting open problems we would
like to highlight as promising research directions:

1. Items or products can be represented by both sparse and dense vectors. For example, matrix
factorization vectors can be used in conjunction with sparse tf-idf vectors from textual fea-
tures. In some scenarios, the system may want to recommend items that are of interest to
the target user and also relevant to past adopted items by the user. Efficient recommendation
retrieval for such representation is challenging as current retrieval techniques are designed
to handle either dense or sparse component only. An interesting problem that worth further
investigation is to design an efficient data structure to solve these emerging hybrid scenarios
(Wu et al., 2019).

2. In this survey, we discuss preference elicitation and recommendation retrieval as two sepa-
rated phases, which could potentially hurt the final accuracy of top-k recommendation. Re-
cent studies have shown that considering the two phases altogether is beneficial. For instance,
(Kang & McAuley, 2019) proposes CIGAR, which jointly learns user/item binary codes with
implicit feedback, generates candidate with multi-index hash tables, and re-ranks candidates
with real-valued models. CIGAR exhibits both the efficiency of candidate generation with
hash tables and the accuracy of real-valued models for candidate ranking. (Le & Lauw, 2020)
introduces SRPR, which learns the user and item vectors that are robust to the stochasticity
of randomly generated LSH hash functions. SRPR thus achieves both efficient retrieval and
accurate top-k recommendation when LSH is the designated indexing structure. Hence, a
promising research direction that worth further study is to derive unified frameworks for both
accurate preference elicitation and efficient recommendation retrieval.

3. Another interesting problem is how to perform efficient recommendation retrieval for deep
neural network-based recommendation models (He et al., 2017; Deng et al., 2019; Zhang
et al., 2019). Classic matrix factorization models encode the user-item relationship through
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the inner product kernel between the user vector and the item vector. For neural network-
based models, this kernel is replaced by multi-layered neural networks to encode complex
and non-linear relationships between users and items. Which of classic matrix factorization
with inner product formulation or neural network-based approaches (Rendle et al., 2020) are
superior is still actively researched. However, due to the increasing attention of the latter, it
is worth investigating how to perform efficient recommendation retrieval for these models.
Recent studies (Zhu et al., 2018; Tan et al., 2020) have been proposed to achieve fast ranking
of items of neural network-based recommendation models.

4. Beyond accuracy and efficiency, the focus of recommender systems has gradually shifted to
consider other recommendation objectives such as novelty, coverage, and serendipity (Kamin-
skas & Bridge, 2016; Cheng et al., 2017; Wang et al., 2018; Xu et al., 2020). In the litera-
ture, these objectives are mostly considered at the preference elicitation phase (Kaminskas &
Bridge, 2016) instead of at the recommendation retrieval phase. As most of the efficient rec-
ommendation retrieval strategies are approximate, the lists of recommended items are not en-
tirely based on relevancy to the user and could include surprising, unexpected items. Hence,
an interesting direction is to investigate how these approximate recommendation retrieval
methods affect the above-mentioned objectives. Whether there is any trade-off between ac-
curacy, efficiency, novelty, coverage, and serendipity of top-k using the efficient recommen-
dation retrieval methods in this survey.

As recommender system is a widely employed technology for real-world large-scale systems,
scalable recommendation retrieval has become an interesting important problem that needs further
studies and experimentation. Due to the ever-growing number of users and items, the optimal
solution for this problem still remains a challenge for researchers and practitioners.
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Appendix A

The ubiquity of high dimensional objects such as images, audios, videos, and documents in today
applications makes the brute force top-k similarity search (k−SS) solution prohibitively expen-
sive. This prohibitive cost has given the rise to approximate k−SS studies, seeking a balanced
trade-off between the search quality and the search efficiency. To equip the readers with necessary
background, we describe in the following popular data structures that are used extensively for the
approximate k−SS problem in general and for efficient MF recommendation retrieval in specific.

Locality Sensitive Hashing

A.1 Locality Sensitive Hashing or LSH

(Indyk & Motwani, 1998; Datar et al., 2004a) is a probabilistic space-partitioning indexing tech-
nique. One important element of LSH is the hashing function h(.), which maps a data point into a
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hash value. This hashing function is usually designed with the locality-sensitive property, which is:
two similar data points are more likely to get the same hash values as compared to two distant data
points. Mathematically, the above property can be expressed as follows:

sim(x, y1) > sim(x, y2) (23)

⇒ Pr (h(x) = h(y1)) > Pr (h(x) = h(y2)) ,

in which, Pr(.) denotes the collision probability function and sim(., .) measures the similarity be-
tween two data points.

A set of locality-sensitive hashing functions effectively map a data point to a hashcode. Let
h be a set of LSH hash functions i.e., h = (h1, h2, . . . , hb). h will assign each user u a binary
code h(xu), and each item i a binary hashcode h(yi), all of length b. The length of hashcodes b
is an important parameter to be specified at the index construction time. This parameter controls
the trade-off between search accuracy and search speed. The longer the hashcode length b, the
better the hashcodes will approximate the original similarities among data points, resulting in more
accurate search results. However, longer hashcodes also slow down the other run-time components.
The design of LSH hash function is highly sensitive to the similarity metric. There exists various
LSH families to support different approximate similar search problems, e.g., Euclidean LSH (Datar
et al., 2004b) for approximate Nearest Neighbor Search and Sign Random Projection LSH (Charikar,
2002) for approximate Maximum Cosine Similarity Search.

Figure 8: Indexing and Searching with LSH

The most frequent search protocol using LSH is Hamming Ranking and LSH Hashtable (see
Fig.8). The former strategy performs a linear scan during which the distance between the query
hash-code and the hash-code of all items is computed. In the latter strategy, we store item hash-
codes in hash tables, with items having the same hash-code in the same bucket. Given a query
(user) code, we can determine the corresponding bucket in constant time. We search for the top-k
only among items in that bucket, referred to as the candidate set Cu, reducing the number of items
on which we need to perform exact similarity computations. Higher accuracy can be achieved by
further searching in neighboring buckets or searching with many hash tables. However, this would
increase the number of computations for inner product scores to arrive at the final top-k items.
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A.2 Spatial Tree Indexing

Spatial Tree Indexing (McFee & Lanckriet, 2011) refers to a family of indexing methods that recur-
sively partition the data space. The resulting data structure is a balanced binary search tree, in which
each node encompasses a subset of the data points (Figure 9). A generic algorithm to construct the
partition trees is described in (McFee & Lanckriet, 2011), in which one needs to specify the rule for
generating space splitting directions. We refer the readers to (McFee & Lanckriet, 2011) for more
details about different spatial tree indexing methods.

During the search process, the tree locates the nodes that the query belongs to, and exact simi-
larity computation is performed only on the points indexed by those nodes. It is easy to implement
and requires minimal parameter tuning, but may not be suitable for high dimensional data (i.e., the
curse of dimensionality). Efficient search with spatial trees can be achieved in many ways such as
limiting the number of visited leaf nodes or the depth level of the tree that the search process are
allowed to reach. While originally developed for metric spaces, the framework has been recently
extended to support efficient retrieval for non-metric similarity.

Figure 9: Indexing and Searching with Spatial Tree

For recommendation algorithms that model the user-item association through L2 distance, i.e.,
rui ∝ −||xu − yi||2, spatial trees can be used to index the item vectors {yi}i ∈ I. Top-k recom-
mendation is thus equivalent to nearest neighbor search for the query (user) vector. For MF-based
models, as inner product is used as the predictor, a post-learning vector augmentation process should
be conducted before constructing the spatial tree index of the item vectors (See Section 3.2).

A.3 Inverted Indexing

Inverted index (Zobel & Moffat, 2006) is designed for top-K relevant documents retrieval with
sparse TF-IDF vector representation. Inverted index exploits the sparsity structure of TF-IDF vec-
tors to quickly filter out potentially irrelevant documents. However, MF-based methods usually
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derive dense latent user and item vectors from user-item interactions. Using inverted indexing for
matrix factorization-based recommendation retrieval could be counter-intuitive. (Bhowmik et al.,
2016) recently presents a post-MF-learning processing with sparsity mapping scheme that derives
sparse representation for each user and item from their respective dense real-valued latent vectors.
Two close points are mapped to sparse vectors with similar sparsity pattern (i.e., significant overlap
of non-zero indices). Two distant points are mapped to vectors with different sparsity pattern. It
then uses inverted indexing with the resulting sparse vectors for efficient top-k retrieval.

A.4 Similarity Graph

Figure 10: Indexing and Searching with Similarity Graph:
Starting at a random vertex (black circle), the search traverses over the graph by moving to the neighbors of

visited vertices (orange circle) to arrive at the true top closet neighbors (red circles).

Similarity graph approaches (Malkov & Yashunin, 2019; Morozov & Babenko, 2018) have
shown a superior performance over other approaches in solving k−SS problem in terms of accuracy.
The key step of most methods under this category lies in the process of constructing the similarity
graph from the data points. In this similarity graph, each vertex represents a data point. Two vertices
are connected if the two corresponding data points are sufficiently close to one another according
to a similarity measurement. The search process starts from a group of random seed vertices and
traverses iteratively over the graph. Guided by the neighbors of visited vertices, the search procedure
descends closer to the true nearest neighbor in each round until no better candidates could be found.
Figure 10 illustrates the greedy search process on the constructed similarity graph.

In the literature, various constraints have been proposed on the edges to make the graph more
suitable for approximate nearest neighbor search. For example, Delaunay Graph (Aurenhammer,
1991) or Monotonic Search Networks (Dearholt et al., 1988) ensure that from any node p to another
the node q, there exists a path on which the intermediate nodes are closer towards q (Dearholt
et al., 1988). Other work includes Randomized Neighborhood Graphs (Arya & Mount, 1993) and
Navigable Small-World Networks (Malkov & Yashunin, 2019). However, these approaches still
face a challenge that the time complexity of building the similarity graphs is still impractical for
many real-world applications.

Some recent approaches try to address this problem by designing approximations for the simi-
larity graphs. For example, GNNS (Hajebi et al., 2011), IEH (Jin et al., 2014), and Efanna (Fu &
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Cai, 2016) are based on the k−NN graph, which is an approximation of the Delaunay Graph. NSW
(Malkov & Yashunin, 2019) is proposed to take advantage of the Delaunay Graph, the NSWN, and
the Relative Neighborhood Graphs, enabling multi-scale hopping on different layers of the graph.
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