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Abstract: This paper studies the integration of the vehicle routing problem with cross-docking (VRPCD). The aim is to 
find a set of routes to deliver products from a set of suppliers to a set of customers through a cross-dock facility, such that 
the operational and transportation costs are minimized, without violating the vehicle capacity and time horizon constraints. 
A two-phase matheuristic based on column generation is proposed. The first phase focuses on generating a set of feasible 
candidate routes in both pickup and delivery processes by implementing an adaptive large neighborhood search algorithm. 
A set of destroy and repair operators are used in order to explore a large neighborhood space. The second phase focuses 
on solving the set partitioning model to determine the final solution. The proposed matheuristic is tested on the available 
benchmark VRPCD instances and compared with the state-of-the-art algorithms. Experimental results show the 
competitiveness of the proposed matheuristic as it is able to improve the best known solutions for 80 instances and to 
obtain the same results for the remaining 10 instances, with an average improvement of 12.6%. On new and larger 
instances, our proposed matheuristic maintains its solution quality within acceptable CPU times and outperforms a pure 
ALNS algorithm. We also explicitly analyze the performance of the matheuristic considering the solution quality and 
CPU time. 

Keywords: Adaptive large neighborhood search, Cross-docking, Matheuristic, Scheduling, Set-partitioning formulation, 
Vehicle routing problem 
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1. Introduction  

Cross-docking is an intermediate activity within 
a supply chain network for enabling a transshipment 
process. The two key points of the cross-docking are 
simultaneous arrival and consolidation [1]. Different 
shipments for a particular destination are consolidated 
in a full truckload, such that direct shipment with less 
than truckload can be avoided, and thus the 
transportation cost can be minimized [2]. Whenever 
an incoming (inbound) vehicle arrives at the cross-
dock facility, its loads are sorted, moved, and loaded 
to the outgoing (outbound) vehicle for an immediate 
delivery elsewhere in the network [3]. 

The vehicle routing problem with cross-docking 
(VRPCD), as the integration of the vehicle routing 
problem (VRP) and cross-docking, is quite common 
in practice, however, only few papers consider both 
simultaneously [1]. Obviously, many papers consider 
the classical VRP, which involves the service of a set 
of customers with known demands by vehicles from a 
single distribution center or warehouse. The main 
objective is to minimize the total distance and the 
number of vehicles which start and end their tours at 
the central depot. The VRPCD was first introduced by 
Lee et al. [4]. It aims to construct a set of routes to 
deliver a single type of product from a set of suppliers 

to a set of customers through a cross-dock facility, 
such that the operational and transportation costs are 
minimized, with respect to vehicle capacity and time 
limitations. 

In this study, we design a matheuristic based on a 
branch-and-price/column generation approach, which 
employs a restricted master heuristic scheme [5]. This 
approach is commonly used since it only requires a 
heuristic scheme to generate columns. In the 
implementation, the column generation is performed 
by an adaptive large neighborhood search (ALNS), 
due to its ability to explore a large neighborhood 
space. The proposed matheuristic is tested on 
benchmark VRPCD instances, and the results are 
compared against those of the state-of-the-art 
algorithms: tabu search (TS) [4], improved tabu 
search (imp-TS) [1], and simulated annealing (SA) 
[6]. Experimental results on the available benchmark 
VRPCD instances show that our proposed 
matheuristic outperforms the state-of-the-art 
algorithms. New sets of larger instances which are 
originally developed for the VRPCDTW [7] are also 
introduced. On those instances, our matheuristic 
outperforms an ALNS algorithm. An explicit analysis 
is included on the added value of solving the set 
partitioning formulation and  
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implementing the adaptive scheme when selecting operators in
the neighborhood search process.

The main contributions of this work are summarized as fol-
lows:

• A matheuristic algorithm is developed in order to improve
the solutions of the available benchmark VRPCD instances.
The optimal solutions of one set of instances which were not
available before are also provided.
• New sets of larger instances are introduced in order to eval-

uate the performance of our matheuristic. These instances
and our solutions can also be used for future research.
• A comprehensive analysis of the properties of our algo-

rithm, such as the set partitioning formulation, the adaptive
scheme when selecting operators, and the performance of
operators, is presented.

The rest of the paper is organized as follows. Section 2 sum-
marizes related work to the VRPCD. Section 3 defines the VR-
PCD network. The proposed matheuristic is presented in Sec-
tion 4, followed by the computational results and some analysis
in Section 5. Finally, Section 6 concludes this study.

2. Related work

Lee et al. [4] first introduced the concept of VRPCD as the
integration of vehicle routing problem (VRP) and cross-docking.
A mathematical model for the VRPCD network is presented and a
tabu search (TS) approach is proposed to solve the problem, since
it is an NP-hard problem. The proposed TS is straightforward.
It generates a new solution by selecting two adjacent arcs that
have the highest transportation cost. The two selected arcs are
then exchanged with other arcs on the same positions from a
randomly selected vehicle, if any. Otherwise, only the sequence of
the two arcs is changed. If the newly generated solution improves
the total cost, then the (arc, vehicle) pairs found are preserved
in the tabu list. Benchmark instances are generated in order to
compare the results obtained by an enumeration approach and
the proposed TS. Experimental results show that TS is able to
obtain solutions with an average gap under 5% compared to the
enumeration results, in a reasonable CPU time.

Liao et al. [1] studied the same variant of VRPCD as in [4]
and solve the instances by introducing another TS. The main
differences of their TS with the one proposed by Lee et al. [4]
are: (1) the former [4] exchanged routes between two vehicles
simultaneously, while the latter [1] arranged it one at a time, (2)
the latter [1] allows a reduction of the number of vehicles used
during the search process, while this property is not observed
in the former approach [4]. This new TS is able to improve
the solutions by 10%–36% for different sizes of problems with
significantly shorter computational times.

Yu et al. [6] proposed a simulated annealing (SA) algorithm
which is primarily designed for solving a variant of the VRPCD,
namely the open VRPCD (OVRPCD). In this problem, an open
network wherein the flow starts from a pickup node and ends
at the cross-dock or begins at the cross-dock and finishes at one
of the delivery node without returning to the cross-dock is intro-
duced. The proposed SA uses a string of numbers representing a
permutation of the delivery nodes and pickup nodes with dummy
zeros to separate the routes. In order to create a neighborhood
solution, three common moves: swap, reverse, and N-insertion,
are implemented. Other than solving the OVRPCD, benchmark
VRPCD instances as in [4] and [1] are also solved. The proposed SA
is able to further improve the solutions of 78 out of 90 problem
instances.

Santos et al. [8] studied another variant of the VRPCD by
considering costs when loads are transferred from one vehicle

to another during the delivery and pickup process. Moreover,
no time horizon constraint is imposed in the proposed prob-
lem. A branch-and-price algorithm is proposed. It dominates a
linear programming approach based on branch-and-bound by
determining better lower and upper bounds during the search.
Wen et al. [7] extended the VRPCD by considering time win-
dows, namely VRPCDTW. The VRPCDTW however, has a different
objective function compared to the VRPCD, since it only aims
to minimize the total transportation time, while VRPCD aims to
minimize the total of transportation and vehicle operational costs.
Various algorithms have been proposed to solve the VRPCDTW,
such as TS [7,9,10], variable neighborhood search (VNS) [10],
genetic algorithm (GA) [11], matheuristic [12], local search [13],
and iterated local search (ILS) [14]. Grangier et al. [15] then
adapted the matheuristic in [12] to solve the VRPCDTW by con-
sidering the limitation of the number of dock doors that can be
used simultaneously. Wang et al. [16] allowed split deliveries in
customer nodes as well as split pickups in supplier nodes in an
effort to maximize the vehicle utilization. A two-layer variant of
SA and TS is proposed and it is able to effectively solve large-size
problems within a reasonable CPU time.

While both VRPCD and VRPCDTW only consider the vehicle
routing for delivering and picking up products, Ting and Chen [17]
studied the truck scheduling to determine the sequence of truck
arrivals at the cross-dock facility, as well as the routing problem.
This truck scheduling problem is important to address when the
number of docking doors at the cross-dock facility is insufficient
(or less than the number of vehicles used). In order to solve this
problem, an ant colony optimization (ACO) algorithm is proposed.
It is able to obtain optimal solutions in small size instances.
This problem is further extended by considering the docking
door assignment and a heterogeneous fleet [18]. A new rigorous
mixed-integer linear programming formulation improved by an
approximate sweep-based model is introduced. It is able to solve
instances with up to 50 nodes with three different fleet sizes up
to 10 vehicles within acceptable CPU times. Table 1 summarizes
the recent literature on the VRPCD.

The idea of combining metaheuristics with elements of exact
mathematical programming algorithms, known as matheuristics,
for solving the VRP was first introduced by Foster and Ryan [19].
Matheuristics also have been used to solve other VRP variants,
such as truck and trailer routing problems [20], the pollution-
routing problem [21], and the technician routing and scheduling
problem [22].

One of the matheuristic approaches is based on a branch-and-
price/column generation approach, which employs a restricted
master heuristic scheme [5]. In this approach, a heuristic al-
gorithm generates a set of columns, and the set partitioning
formulation is solved on that subset of columns to find a feasi-
ble solution. There are two different approaches to perform the
column generation phase:

• Use a heuristic algorithm without considering the dual in-
formation given by the solution of the restricted master
problem, or
• Consider the dual information, but only a restricted set of

columns is generated.

We observe that previous research on VRPCD mostly focuses
on developing (meta)heuristics which thus motivates us to design
a matheuristic approach in this paper.

3. Problem description

The VRPCD network consists of a set of suppliers S = {1, 2,
. . . , |S|} delivering products to a set of customers C = {1, 2, . . . ,
|C |} through a cross-dock facility, denoted as node 0. Two major

2
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Table 1
VRPCD literature.
Literature VRPCD Time Open Limited Heterogeneous Split pickups- Approach

windows network dock doors fleet deliveries

Lee et al. [4] ✓ – – – – – Tabu search
Liao et al. [1] ✓ – – – – – Improved tabu search of [4]
Yu et al. [6] ✓ – ✓ – – – Simulated annealing
Santos et al. [8] ✓a – – – – – Branch and price
Wen et al. [7] ✓ ✓ – – – – Tabu search
Tarantilis [9] ✓ ✓ – – – – Adaptive multi-restart tabu search
Sadri Esfahani and
Fakhrzad [10]

✓ ✓ – – – – Tabu search and variable neighborhood search

Touihri et al. [11] ✓ ✓ – – – – Genetic algorithm
Grangier et al. [12] ✓ ✓ – – – – Matheuristic based large neighborhood search
Urtasun and
Montero [13]

✓ ✓ – – – – Greedy randomized adaptive search procedure

Morais et al. [14] ✓ ✓ – – – – Iterated local search
Grangier et al. [15] ✓ ✓ – ✓ – – Matheuristic based large neighborhood search
Wang et al. [16] ✓ ✓ – – – ✓ Two-layer simulated annealing and tabu search
Ting and Chen [17] ✓b – – – – – Ant colony optimization
Dondo and Cerdá [18] ✓ ✓ – ✓ ✓ – Sweep-heuristic based-models
This research ✓ – – – – – Matheuristic based adaptive large

neighborhood search and simulated annealing

aAlso considering load transfer costs between vehicles.
bAlso considering the truck scheduling at the cross-dock.

processes in a VRPCD network are: the pickup process at the
suppliers and the delivery process to the customers. However,
the processes inside the cross-dock facility, such as loading, un-
loading and sorting processes, are assumed to be fast enough.
Therefore, they are not taken into consideration. Pi products must
be picked up from node i in S, and Di products must be delivered
to node i in C .

Each pair of nodes (i, j) in S is connected by travel time t ′ij and
transportation cost c ′ij. Each pair of nodes (i, j) in C is connected
by travel time t ′′ij and transportation cost c ′′ij . The two processes to-
gether cannot exceed the time horizon, Tmax. The VRPCD network
is illustrated in Fig. 1.

A fleet of homogeneous vehicles V = {1, 2, . . . , |V |} with
capacity Q is available at the cross-dock facility to be utilized
for shipments. Each vehicle may only be used to perform either
a pickup process or a delivery process, or neither. In the pickup
process, vehicles depart from the cross-dock, visit one (or more)
supplier(s) to pickup their products, and return to the cross-dock
for consolidating products. After the products are consolidated
according to customers’ demand, vehicles depart from the cross-
dock, visit one (or more) customer(s) to deliver their demand,
and return to the cross-dock. For each vehicle used, a fixed
operational cost H will be charged.

The VRPCD aims to determine the number of vehicles used
and its corresponding routes, such that the operational and trans-
portation costs are minimized. The constraints in the VRPCD are
as follows:

• The total transportation time for the pickup and delivery
processes together does not exceed Tmax. This implies that
all products are first collected from the suppliers and then
(after consolidation) these products are distributed to the
customers, all within Tmax.
• Each supplier and customer can only be visited exactly

once. This implies that split deliveries (pickups) in customer
(supplier) nodes are not allowed.
• Each vehicle starts its trip from and ends its trip at the

cross-dock. Multiple trips are not allowed.
• The number of vehicles utilized in both the pickup and de-

livery process together does not exceed |V |. VRPCD assumes
that each vehicle can only be used for one route, which is
either a pickup route or a delivery route.
• The amount of loads on the pickup route and on the delivery

route in each vehicle does not exceed Q .

One may think that solving the VRPCD is similar to solving two
independent VRPs. However, this is not the case due to the above-
mentioned constraints which require the two VRPs to be solved
simultaneously. This definitely increases the complexity of the
problem. Interested readers are referred to [4] for the VRPCD
mathematical model.

4. Proposed algorithm

In this section, we present the two phases of our matheuristic.
First, we briefly describe the overview of the matheuristic and
the motivation behind it. Sections 4.2 and 4.4 then describe each
phase respectively. Section 4.3 provides the list of destroy and
repair operators used in ALNS.

4.1. Overview of the matheuristic

The matheuristic pseudocode is presented in Algorithm 1.
Sol0, Sol∗, and Sol′ are defined as the current solution, the best
found solution so far, and the starting solution at each iteration
respectively. An initial solution is constructed based on a greedy
approach, where the node with the least additional transportation
cost is inserted, such that each vehicle starts (ends) its route from
(in) the cross-dock without violating the vehicle capacity and
time horizon constraints. At the beginning, the Sol0, Sol∗, and Sol′
are equal to the initial solution (Line 1 in Algorithm 1).

The proposed matheuristic is decomposed into two phases: (i)
ALNS and (ii) the set partitioning formulation. In the first phase
(Lines 7–38 in Algorithm 1), the aim is to generate as many as
feasible candidate routes, represented as columns. A column is
defined as a feasible candidate route of a vehicle which visits a
set of nodes, starting and ending at the cross-dock. A candidate
route is feasible if it visits any node at most once and it does not
violate the vehicle capacity constraint. In the second phase (Line
39 in Algorithm 1), a set partitioning formulation is solved to find
a combination of routes that satisfies the VRPCD constraints.

The motivation of the proposed matheuristic is explained as
follows. In a pure metaheuristic or heuristic search, a set of
routes could be completely ignored or rejected if it does not
improve the solution quality or it leads to an infeasible solution.
In fact, some of those routes could be good routes or part of the
optimal solution. Therefore, a matheuristic is introduced to tackle
this problem, where all routes constructed during the heuristic

3
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Fig. 1. VRPCD network.

search are stored and treated independently regardless of their
performances (the first phase) and a combination of routes is
then determined to minimize the objective function as long as it
satisfies all constraints (formulated as a set partitioning problem
in the second phase). By implementing this approach, some good
routes that were ignored in the first phase are still ‘‘remembered’’
and are available to be chosen in the second phase.

Since there are two processes in the VRPCD (pickup and deliv-
ery processes), the feasible candidate routes which are obtained
in the first phase are accommodated in two different pools. Let Ωs
and Ωc be a pool to accommodate the list of feasible candidate
routes in the pickup process and in the delivery process respec-
tively. Both Ωs and Ωc are expanded during the first phase with
the routes explored in ALNS after performing destroy and repair
operators (see Section 4.2). However, every time we insert any
routes to the Ωs or Ωc , we avoid route duplication. In the second
phase, we solve the set partitioning formulation (see Section 4.4)
over the set of routes stored in Ωs and Ωc . After generating
the initial solution, the constructed routes (pickup routes and
delivery routes) are added into Ωs and Ωc respectively (Line 2).

The current temperature (Temp) is set to be equal to the initial
temperature (T0) (Line 3), Iter and NoImpr are set to zero (Line
4), and FoundBestSol is set to False (Line 5). We introduce Iter
as a variable to count the number of iterations that have been
passed, NoImpr as a variable to count the number of successive
temperature reductions when no new best solution is found, and
FoundBestSol is a boolean variable which is True when a new
best solution is found and False otherwise.

4.2. Phase 1: Adaptive large neighborhood search algorithm

Adaptive large neighborhood search (ALNS) removes nodes
from the current solution by using destroy operators and reinserts
these nodes in a more profitable position by using repair opera-
tors iteratively. This process is illustrated in Fig. 2. Let us consider
an example with |S| = 5, |C | = 6, and |V | = 5. In Fig. 2(a), an
initial solution consists of visiting Customers 3 and 4 in a non-
optimal route. Additionally, there are three vehicles needed to
perform the pickup process in supplier nodes. After applying a de-
stroy operator to remove two customers and three suppliers from
this solution, the updated yet incomplete solution is illustrated in
Fig. 2(b). Subsequently, a repair operator is applied to the solution
in order to re-insert these five nodes in more profitable positions,
resulting in a better solution with a lower transportation cost and
lesser number of vehicles used, illustrated in Fig. 2(c).

Instead of only using a single operator during the entire search
process, ALNS employs multiple operators. However, the proba-
bility of selecting which operator to be used in a certain iteration
depends on its performance in the previous iterations. The better

Algorithm 1: Matheuristic pseudocode
1 Sol0, Sol∗, Sol′ ← Initial Solution
2 UpdatePool(InitialSolution, Ωs, Ωc)
3 Temp← T0
4 NoImpr, Iter← 0
5 FoundBestSol← False
6 Set sj and wj such that pj is equally likely (∀j ∈ R ∪ I)
7 while NoImpr < θ do
8 RemovedNodes← 0
9 while RemovedNodes < π do

10 Sol0 ← Destroy (Ri)
11 UpdatePool(Sol0, Ωs, Ωc)
12 UpdateRemovedNodes(RemovedNodes, Ri)
13 end
14 while RemovedNodes > 0 do
15 Sol0 ← Repair (Ii)
16 UpdatePool(Sol0, Ωs, Ωc)
17 UpdateRemovedNodes(RemovedNodes, Ii)
18 end
19 AcceptanceCriteria(Sol0, Sol∗, Sol′, Temp)
20 if Sol0 < Sol∗ then
21 FoundBestSol← True
22 end
23 Update sj(∀j ∈ R ∪ I)
24 if Iter modηALNS = 0 then
25 Update wj and pj (∀j ∈ R ∪ I)
26 end
27 if Iter modηSA = 0 then
28 if FoundBestSol = False then
29 NoImpr← NoImpr + 1
30 end
31 else
32 NoImpr← 0
33 end
34 FoundBestSol← False
35 Temp← Temp× α

36 end
37 Iter← Iter + 1
38 end
39 Sol∗ ← solve the set partitioning formulation
40 Return Sol∗

the performance is (i.e. obtains a better objective function value),
the higher its probability to be selected in the latter iterations.

In this phase, we aim to fill the Ωs and Ωc with any routes
that are generated by ALNS, as illustrated in Fig. 3. Any routes
observed in Fig. 2(a) are added to the pools, as illustrated in

4
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Fig. 2. Example on how ALNS finds neighborhood solution: (a) original solution, (b) incomplete solution after applying destroy operator, (c) new neighborhood
solution after applying repair operator.

Fig. 3(a). Subsequently, when a destroy operator changes the
solution as in Fig. 2(b), our pools are also updated with the newly
observed routes, as shown in Fig. 3(b). We keep these routes
since they could be part of a good solution. Finally, when a new
neighborhood solution is constructed as in Fig. 2(c), these routes
are added to the pools, as illustrated in Fig. 3(c). When doing this
process, duplications are avoided (e.g. 0 - S1 - S2 - 0 is only kept
once instead of twice, although it is observed twice during the
process).

Let R = {R1, R2, . . . , R|R|} be a set of destroy operators and
I = {I1, I2, . . . , I|I|} be a set of repair operators. The score sj and
weight wj of each operator j (j ∈ R ∪ I) is set such that the
probability of choosing each operator j, pj, in R and I is equally
likely in the beginning (Line 6).

The first phase of the matheuristic is run until NoImpr reaches
the threshold θ (Line 38). At each iteration, a destroy operator
Ri (Ri ∈ R) is randomly selected to remove π nodes from Sol0
(Lines 9–13). Subsequently, a repair operator Ii (Ii ∈ I) is selected
to reinsert back the π removed nodes to the Sol0 (Lines 14–18),
resulting in a new neighborhood solution. In our implementation,
we use π = 5. The operators are further explained in Section 4.3.
Each of the removed nodes is only considered as a candidate to be
inserted in a route of Sol0 if it satisfies both the vehicle capacity
and time horizon (Tmax) constraints. Therefore, the feasibility of
Sol0 is guaranteed, unless some of the removed nodes cannot be
inserted to any positions in Sol0. If that happens, a high penalty
value is added to the objective function value (total cost TC).

Sol0 is directly accepted if its objective function value is better
than Sol∗ or Sol′. Otherwise, it will only be accepted with probabil-
ity exp(− Sol0−Sol′

Temp ) (Line 19). Furthermore, if a new best solution is
found (i.e. Sol0 improves Sol∗), FoundBestSol is set to True (Lines
20–22). Each of the operators’ score sj is then updated (Line 23)

by Eq. (1), where δ1 > δ2 > δ3. We implemented 0.5, 0.33, and
0.17 for δ1, δ2, and δ3 respectively.

sj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sj + δ1, if j is selected and the new solution is

the best found solution so far

sj + δ2, if j is selected and the new solution

improves the current solution

sj + δ3, if j is selected and the new solution

does not improve the current solution,

but it is accepted

∀j ∈ R ∪ I (1)

After ηALNS iterations, each of the operators’ weight wj and
probability pj are updated (Lines 24–26). Operators’ weight wj is
updated by Eq. (2), where γ refers to the reaction factor (0 < γ <

1) to control the influence of the recent success of an operator on
its weight and χj is the frequency of using operator j.

wj =

{
(1− γ )wj + γ

sj
χj

, if χj > 0

(1− γ )wj, if χj = 0
∀j ∈ R ∪ I (2)

Operators’ probability pj is then updated by Eq. (3).

pj =

{
wj∑
k∈R wk

∀j ∈ R
wj∑
k∈I wk

∀j ∈ I
(3)

If, after ηSA iterations, there is no better solution than Sol∗,
NoImpr is increased by one (Lines 28–30), otherwise NoImpr is
reset to zero (Lines 31–33). FoundBestSol is then set to False
(Line 34) to see if in the subsequent ηSA iterations the algorithm is
able to improve Sol∗ and Temp is decreased by α (Line 35). Iter is
also increased by one (Line 37) to continue to the next iteration.

This entire phase is repeated until there is no solution im-
provement after θ successive temperature reductions. The Sol∗

5
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Fig. 3. Example on how observed routes are kept inside the pools during phase 1: (a) observed routes in original solution, (b) new routes from incomplete solution
after applying destroy operator are added to pools, (c) new routes from neighborhood solution after applying repair operator are added to pools.

constructed by this phase becomes an upper bound of the VRPCD
solution. It means that solving the following set partitioning
formulation (Line 39) will yield a lower (or at least the same)
objective function value as the Sol∗ constructed by this phase.

4.3. Adaptive large neighborhood search operators

Below is the list of destroy and repair operators used in ALNS:
Random removal (R1): remove a randomly selected node from
Sol0. Once R1 is applied, RemovedNodes += 1.
Worst removal (R2): remove a node with the xth highest re-
moval gain [12]. The removal gain is defined as the difference
in objective function value between including and excluding a
particular node. For each node in Sol0, this cost is calculated
and sorted in a descending order. x is determined by Eq. (4), in
which the value is ranged between 1 to ξ , with x = 1 having
the highest chance to be drawn, and the chance is decreasing
for larger xs. It means that R2 tries to remove a node which
contributes a high cost if it is located in the current position.
However, instead of always choosing the node with the highest
removal gain (e.g. x = 1), R2 also considers other nodes in order to
diversify the removal process (in which 2 ≤ x ≤ ξ ), with a lower
chance. We implement p = 3. y1 is introduced to maintain the
randomness, y1 ∼ U(0, 1). ξ is the number of candidate nodes
which is formally formulated in Eq. (5) case 1. By referring to
Algorithm 1 (Lines 9 – 13), if we consider |C | = 6, |S| = 4 with
RemovedNodes = 0, then, the number of candidate nodes that can
be removed in the current iteration is |C | + |S| − 0 = 10. Once a
node is removed, RemovedNodes += 1, then in the next iteration,
the number of candidate nodes that can be removed becomes
|C | + |S| − 1 = 9. It means that every time a node is removed
from the Sol0, then, the number of candidate nodes that can be
removed from the Sol0 in the next iteration is decreased.

x = ⌈yp1 × ξ⌉ (4)

ξ =

⎧⎨⎩
|C | + |S| − RemovedNodes, for R2

|C | + |S| − RemovedNodes− 2, for R4, R5

RemovedNodes, for I9
(5)

Route removal (R3): select a vehicle randomly and remove its z
visited nodes. The value of z is determined by Eq. (6), where β is
the number of nodes visited by the corresponding vehicle. There-
fore, once R3 is applied, RemovedNodes += z. R3 is implemented
to speed up the removal process compared to the one of R1. Take
note that implementing R1 requires at least π iterations (see Lines
9 – 13 of Algorithm 1). On the other hand, the implementation
of R3 may only require one iteration if β ≥ π (see Eq. (6) case
1). The worst case is that if all vehicles only visit one node each,
then, the implementation of R3 would also need π iterations (see
Eq. (6) case 2).

z =
{
π, if β ≥ π

β, otherwise
(6)

Node pair removal (R4): remove a pair of nodes with the xth
highest additional transportation cost. x is determined by Eq. (4)
while ξ is determined by Eq. (5) case 2. However, it should
be noted that applying R4 means that two nodes are removed
simultaneously from the Sol0 in one iteration and therefore, Re-
movedNodes is increased by 2. When applying R4 is impossible
(e.g. when RemovedNodes = 4 while π = 5), then, we apply
R1 instead. R4 tries to remove two adjacent nodes with a high
transportation cost from the Sol0, such that when repair reinserts
them back to Sol0, they can be located in better, and probably
separated, positions.
Worst pair removal (R5): similar to R2, but instead of only one
node, R5 chooses a pair of nodes. The underlying difference be-
tween R4 and R5 is that R4 only focuses in the transportation cost
between two nodes, while R5 considers the overall costs. Same

6
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as R4, applying R5 means that two nodes are removed simultane-
ously from the Sol0 in one iteration and therefore, RemovedNodes
is increased by 2. When applying R5 is impossible, we apply R1
instead. x is determined by Eq. (4) while ξ is determined by Eq. (5)
case 2.
Shaw removal (R6): remove a node that is highly related with
other removed nodes in a predefined way. R6 tries to remove
some similar nodes, such that it is easier to replace the positions
of one another during the repair process. The last removed node
is denoted as node i while the next candidate of the removed
node is denoted as node j. The relatedness value (ϕj) of node j
to node i is calculated by Eq. (7). R6 starts by randomly selecting
a node to be removed, set this node as i, and then calculating
ϕj for the remaining nodes in Sol0. The next removed node is the
node with the lowest ϕj. Since R6 removes one node at a time, Re-
movedNodes is increased by 1. The φ1 to φ4 are weights given to
each of the relatedness components, in which we set as 0.25 each.
lij = −1 if nodes i and j are in the same vehicle; 1 otherwise.

ϕj =

{
φ1c ′ij + φ2t ′ij + φ3lij + φ4|Pi − Pj|, if i ∈ S
φ1c ′′ij + φ2t ′′ij + φ3lij + φ4|Di − Dj|, if i ∈ C

(7)

Greedy insertion (I1): insert a node to a position with the lowest
insertion cost. The insertion cost is defined as the difference in
objective function values between after and before inserting a
node to a particular position. For each of the removed nodes, the
insertion cost to all possible positions is calculated and sorted
in an ascending order. A node with the lowest insertion cost is
then selected and inserted to the corresponding position. Once I1
inserts one node to the Sol0, RemovedNodes –= 1.
k-regret insertion (I2, I3, I4): a regret value is defined as the
difference in objective function values when node j is inserted
in the best position (denoted as TC1(j)) and in the k-best position
(denoted as TCk(j)). The idea is to select a node which leads to the
largest regret value if it is not inserted in its best position, which
is formally formulated in Eq. (8). This node is then inserted in
its best position. In other words, this operator tries to insert the
node that we will regret the most if it is not inserted now [23].
We implement k = 2, 3 and 4. Once I2, I3, or I4 inserts one node
to the Sol0, RemovedNodes –= 1.

argmax
j∈RemovedNodes

{
k∑

i=2

(TCi(j)− TC1(j))

}
(8)

Greedy insertion with noise function (I5): an extension of I1. A
noise function is applied to the objective function value by Eq. (9)
when selecting the best position of a node [24], where e is the
maximum transportation cost between nodes (problem-
dependent), µ is a noise parameter that we set to 0.1, and y2 ∼
U(−1, 1).

TCnew = TC + e× µ× y2 (9)

k-regret insertion with noise function (I6, I7, I8): an extension of
I2, I3, and I4 by applying a noise function to the objective function
value by Eq. (9) when calculating the regret value [24].
GRASP insertion (I9): similar to I1, but instead of choosing a
node with the lowest insertion cost, I9 chooses the node with the
xth lowest insertion cost. x is determined by Eq. (4) while ξ is
determined by Eq. (5) case 3.

4.4. Phase 2: Set partitioning formulation for the VRPCD

Phase 2 focuses on solving the set partitioning model to deter-
mine the final solution: optimal routes for pickup and delivery
processes. Recall that Ωs contains a set of candidate routes in
pickup process Ωs = {1, 2, . . . , |Ωs|} and Ωc contains a set of

candidate routes in delivery process Ωc = {1, 2, . . . , |Ωc |}. Each
of the candidate routes r in Ωs is associated to a transportation
cost of c ′r and a transportation time of t ′r , while each of the
candidate routes r in Ωc is associated to a transportation cost
of c ′′r and a transportation time of t ′′r . It should be noted that all
candidate routes satisfy the vehicle capacity constraint, which has
been handled during the route construction process by the repair
operators.

Let a′ir be a binary parameter equal to 1 if route r visits node
i; 0 otherwise (r ∈ Ωs, i ∈ S) and a′′ir be a binary parameter
equal to 1 if route r visits node i; 0 otherwise (r ∈ Ωc, i ∈ C).
Several decision variables in the set partitioning formulation are
as follows:

• x′r equals to 1 if route r is selected; 0 otherwise (r ∈ Ωs).
• x′′r equals to 1 if route r is selected; 0 otherwise (r ∈ Ωc).
• Tpmax records the maximum transportation time for the

pickup process.
• Tdmax records the maximum transportation time for the

delivery process.

Min
∑
r∈Ωs

c ′rx
′

r +
∑
r∈Ωc

c ′′r x
′′

r + H

(∑
r∈Ωs

x′r +
∑
r∈Ωc

x′′r

)
(10)

∑
r∈Ωs

a′irx
′

r = 1 ∀i ∈ S (11)

∑
r∈Ωc

a′′irx
′′

r = 1 ∀i ∈ C (12)

∑
r∈Ωs

x′r +
∑
r∈Ωc

x′′r ≤ |V | (13)

t ′rx
′

r ≤ Tpmax ∀r ∈ Ωs (14)

t ′′r x
′′

r ≤ Tdmax ∀r ∈ Ωc (15)

Tpmax + Tdmax ≤ Tmax (16)

The objective is to minimize the total of transportation and
operational costs, which is formulated in Eq. (10). All supplier
and customer nodes must be visited, as required in Eqs. (11) and
(12) respectively. Eq. (13) limits the number of selected routes
(i.e. does not exceed the number of available vehicles). Eqs. (14)
and (15) record the maximum transportation time in pickup and
delivery process respectively. Finally, the two processes must be
done within the time horizon, as expressed in Eq. (16).

We acknowledge that the proposed matheuristic is designed
for the VRPCD that considers the processes inside the cross-
dock facility (e.g. loading, unloading, and sorting processes) to
be fast enough (see Section 3), which might not be the case in
practice. Without considering those processes, a vehicle might be
waiting (ready for the loading process) while the products are still
moved/prepared inside the cross-dock facility. Then, further cost
reductions might be achieved by eliminating this vehicle waiting
time, if the decision on when the vehicle should be ready in
the cross-dock (respecting the arrival of the last vehicle picking
up products and handling time) is taken into consideration. This
can be adapted with a slight modification by specifying a time
(th) that should be added between the arrival of the last vehicle
picking up products from suppliers and the departure of the first
vehicle distributing products to customers. Subsequently, Eq. (16)
can be replaced by Eq. (17).

Tpmax + Tdmax + th ≤ Tmax (17)

7
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Table 2
Matheuristic parameter values.
Parameter Value

γ 0.7, 0.8, 0.9
θ 10, 20, 30
T0 300, 500, 700
α 0.85, 0.9, 0.95
ηALNS 200, 300, 400
ηSA (|S| + |C|)× 2, (|S| + |C |)× 3, (|S| + |C |)× 4

Table 3
VRPCD parameter values [4].
Parameter Set 1 Set 2 Set 3

|S| 4 7 12
|C | 6 23 38
|V | 10 20 30
Q 70 150 150
H 1000 1000 1000
Tmax 960 960 960
c
′

ij , c
′′

ij U∼(48,560) U∼(48,480) U∼(48,560)
t
′

ij , t
′′

ij U∼(20,200) U∼(20,100) U∼(20,200)
Pi , Di U∼(5,50) U∼(5,20) U∼(5,30)

5. Computational results

In this section, we first present the experimental setup of this
study, which includes the details about the environment used,
the selected parameter configurations of the proposed matheuris-
tic, the benchmark instances and the metrics used. Section 5.2
presents the experimental results on the given benchmark in-
stances and a thorough analysis. The results of the newly pro-
posed larger instances solved by the matheuristic and a pure
ALNS are presented in Section 5.3. Finally, the importance of solv-
ing the set partitioning formulation, implementing the adaptive
scheme, and analyzing the ALNS operators is discussed in Sections
5.4, 5.5, and 5.6 respectively.

5.1. Experimental setup

The proposed matheuristic is implemented in C++ with CPLEX
12.9.0.0 to solve the set partitioning formulation. All experiments
were performed on a computer with Intel Core i7-8700 CPU @
3.20 GHz processor, 32.0 GB RAM.

For the purpose of tuning parameters, we used the OFAT (one-
factor-at-a-time) method and randomly selected instances with
various values of parameters, as listed in Table 2. The best values
for parameters are highlighted in bold which yield good quality
of solutions. The following experiments are then conducted based
on this setting.

To assess the performance of our proposed matheuristic, we
use the available benchmark VRPCD instances which were intro-
duced by Lee et al. [4]. The benchmark VRPCD instances consist of
three problem sets, which are differentiated based on the num-
ber of nodes: 10-nodes, 30-nodes, and 50-nodes. The parameter
values are listed in Table 3. The benchmark VRPCD instances can
be downloaded at http://web.ntust.edu.tw/~vincent/ovrpcd/.

In order to further assess our matheuristic performance, we
adopted larger instances with up to 300 nodes (150 customer
nodes and 150 supplier nodes) from VRPCDTW instances [7]. The
instances are grouped into five sets with 40, 60, 100, 200 and
300 nodes each. Due to some differences between VRPCD and
VRPCDTW problems, some modifications are required:

• Time windows constraints in VRPCDTW instances are ig-
nored.
• Parameters H and |V | are added.

Table 4
New VRPCD instances parameter values.
Parameter Set 4 Set 5 Set 6 Set 7 Set 8

|S|, |C |, |V | 20 30 50 100 150
Q 33
H $100
Tmax 16 h
v 60 km/h
Total nodes 40 60 100 200 300
Number of instances 11 5 5 5 5

Furthermore, instead of directly providing the travel time and
transportation cost for connecting two nodes i and j in the net-
work, VRPCDTW instances provide each node’s coordinate (x,y) in
meters and the vehicle speed (v). Therefore, the travel distance
between nodes i and j, denoted as s′ij (for connecting supplier
nodes) and s′′ij (for connecting customer nodes), is calculated
by the euclidean distance and converted to kilometers. Conse-
quently, to derive the travel time and transportation cost, we use
Eqs. (18) and (19) respectively. Because of the above-mentioned
differences, comparing our results with VRPCDTW results (e.g. [7,
12,15]) makes no sense. Detailed parameters are listed in Table 4.
These large instances are available online on https://www.mech.
kuleuven.be/en/cib/op/opmainpage#section-47.⎧⎨⎩t ′ij = ⌊

⌊s′ij⌋

v
⌋, ∀i, j ∈ S

t ′′ij = ⌊
⌊s′′ij⌋

v
⌋, ∀i, j ∈ C

(18)

{
c ′ij = ⌊s

′

ij × $1⌋, ∀i, j ∈ S
c ′′ij = ⌊s

′′

ij × $1⌋, ∀i, j ∈ C
(19)

5.2. Results for the benchmark VRPCD instances

The results for the benchmark VRPCD instances are summa-
rized in Tables 5–7. Our matheuristic results are compared to
those of the state-of-the-art algorithms: Tabu search (TS) [4], im-
proved tabu search (imp-TS) [1] and simulated annealing (SA) [6].
For Set 1, we solved the mathematical model [4] using CPLEX to
obtain the optimal solutions. Take note that none of the state-of-
the-art algorithms report the optimal solutions. They only report
the average results where the best known solutions (BKS) are
consolidated from all of them. For this set, since the optimal solu-
tion is available for each instance, solutions should be compared
to these optimal solutions and the BKS is not very useful anymore.

For each algorithm, the average gaps from the optimal solu-
tions are calculated by Eq. (20). TCalgorithm represents the average
objective function value by a particular algorithm. We observe
that our matheuristic performs best and it is able to obtain all
optimal solutions with less CPU time. Table 5 summarizes the
results of Set 1 instances.

Gap (%) =
(TCalgorithm − Opt)

Opt
× 100 (20)

For Sets 2 and 3, CPLEX is unable to generate the optimal
solutions. Therefore, the gap values are calculated by comparing
the average results of the different algorithms with the BKS.
Tables 6 and 7 summarize results of Sets 2 and 3 respectively.
On average, our matheuristic is able to further improve the best
known solutions by 14.0% and 22.5% respectively. The CPU times
required are lower than others, except imp-TS [1]. In addition,
we are able to improve all best known solutions. The new best
known solutions are made available online on https://www.mech.
kuleuven.be/en/cib/op/opmainpage#section-47.
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Table 5
Total cost comparison of the proposed matheuristic, state-of-the-art algorithms and CPLEX for Set 1.
Instance TS [4] imp-TS [1] SA [6] BKS CPLEX Matheuristic Gap (%)

TC CPU (s) TC CPU (s) TC CPU (s) Opt CPU (s) TC Best CPU (s) [4] [1] [6] Matheuristic

1 7571.4 1.52 6847.6 0.22 6953.0 1.91 6847.6 6823 0.92 6823.0 6823 0.26 11.0 0.4 1.9 0.0
2 7103.7 1.74 6816.8 0.23 6741.0 1.78 6741.0 6741 1.36 6741.0 6741 0.19 5.4 1.1 0.0 0.0
3 9993.5 2.37 9615.6 0.19 9269.0 2.44 9269.0 9269 1.36 9269.0 9269 0.18 7.8 3.7 0.0 0.0
4 8338.0 1.60 7289.7 0.27 7255.0 1.75 7255.0 7229 1.09 7229.0 7229 0.18 15.3 0.8 0.4 0.0
5 8709.9 2.28 6599.0 0.21 6524.0 1.75 6524.0 6475 0.86 6475.0 6475 0.18 34.5 1.9 0.8 0.0
6 9143.5 1.82 9324.6 0.03 7613.0 1.81 7613.0 7434 0.66 7434.0 7434 0.13 23.0 25.4 2.4 0.0
7 12721.2 2.80 12083.0 0.01 11990.0 2.77 11990.0 11713 0.47 11713.0 11713 0.14 8.6 3.2 2.4 0.0
8 9275.7 1.85 8719.6 0.04 8158.0 2.21 8158.0 8158 1.26 8158.0 8158 0.16 13.7 6.9 0.0 0.0
9 8096.5 2.04 7362.2 0.25 7120.0 1.75 7120.0 6989 1.22 6989.0 6989 0.15 15.8 5.3 1.9 0.0
10 7044.8 1.82 6204.5 0.36 6056.0 2.05 6056.0 5960 1.37 5960.0 5960 0.16 18.2 4.1 1.6 0.0
11 8051.8 1.80 7635.3 0.00 7434.0 1.93 7434.0 6916 1.53 6916.0 6916 0.14 16.4 10.4 7.5 0.0
12 8661.0 1.72 7867.2 0.24 7800.0 1.76 7800.0 7656 2.90 7656.0 7656 0.16 13.1 2.8 1.9 0.0
13 7370.2 1.54 7097.9 0.24 6934.0 1.88 6934.0 6783 3.31 6783.0 6783 0.16 8.7 4.6 2.2 0.0
14 7132.3 1.53 5208.0 0.00 4704.0 1.69 4704.0 4417 0.75 4417.0 4417 0.15 61.5 17.9 6.5 0.0
15 7563.4 1.61 7103.2 0.41 7088.0 1.75 7088.0 7072 2.17 7072.0 7072 0.15 6.9 0.4 0.2 0.0
16 9983.6 2.05 8768.7 0.03 8616.0 2.05 8616.0 8440 3.98 8440.0 8440 0.13 18.3 3.9 2.1 0.0
17 9538.1 2.26 9003.0 0.06 9003.0 2.60 9003.0 9003 2.04 9003.0 9003 0.15 5.9 0.0 0.0 0.0
18 8057.4 1.74 6887.5 0.19 6911.0 1.88 6887.5 6760 2.39 6760.0 6760 0.15 19.2 1.9 2.2 0.0
19 9042.6 2.21 7123.0 0.03 7051.0 1.92 7051.0 7051 4.59 7051.0 7051 0.13 28.2 1.0 0.0 0.0
20 10478.0 2.55 10471.0 0.00 10004.0 2.32 10004.0 9786 1.39 9786.0 9786 0.14 7.1 7.0 2.2 0.0
21 8380.5 2.06 5431.4 0.00 4753.0 1.51 4753.0 4644 1.69 4644.2 4644 0.16 80.5 17.0 2.3 0.0
22 9016.9 2.42 6908.0 0.01 6442.0 1.85 6442.0 6442 3.78 6442.0 6442 0.13 40.0 7.2 0.0 0.0
23 9489.2 2.31 9224.1 0.11 9156.0 2.28 9156.0 9156 2.96 9156.0 9156 0.16 3.6 0.7 0.0 0.0
24 12513.6 2.64 11976.0 0.00 11976.0 2.78 11976.0 11976 1.79 11976.0 11976 0.12 4.5 0.0 0.0 0.0
25 7114.3 1.68 6638.0 0.10 6346.0 1.94 6346.0 6346 5.69 6346.0 6346 0.16 12.1 4.6 0.0 0.0
26 8421.3 2.04 7216.9 0.03 6880.0 1.86 6880.0 6817 5.46 6817.0 6817 0.16 23.5 5.9 0.9 0.0
27 10666.8 2.47 9709.8 0.06 9541.0 2.39 9541.0 9541 5.69 9541.0 9541 0.15 11.8 1.8 0.0 0.0
28 10123.3 2.69 7408.0 0.01 7107.0 1.84 7107.0 6782 4.85 6782.0 6782 0.13 49.3 9.2 4.8 0.0
29 7503.2 1.73 6748.5 0.18 6762.0 1.86 6748.5 6591 4.04 6591.0 6591 0.17 13.8 2.4 2.6 0.0
30 7642.6 1.82 7304.4 0.09 6942.0 3.51 6942.0 6919 7.18 6919.0 6919 0.16 10.5 5.6 0.3 0.0

Average 2.02 0.12 2.06 2.62 0.16 19.6 5.2 1.6 0.0

Table 6
Total cost comparison of the proposed matheuristic and state-of-the-art algorithms for Set 2.
Instance TS [4] imp-TS [1] SA [6] BKS Matheuristic Gap (%)

TC CPU (s) TC CPU (s) TC CPU (s) TC Best CPU (s) [4] [1] [6] Matheuristic

1 12366.7 3.00 7692.9 0.37 7550.2 2.80 7550.2 6620.0 6401 1.87 63.8 1.9 0.0 −12.3
2 14173.0 3.55 7787.2 0.16 7832.7 2.90 7787.2 6658.2 6593 1.77 82.0 0.0 0.6 −14.5
3 13836.8 4.32 7893.6 0.43 7747.4 3.00 7747.4 6626.3 6510 1.82 78.6 1.9 0.0 −14.5
4 10995.4 2.09 7792.2 0.23 7677.4 3.00 7677.4 6377.7 6259 1.36 43.2 1.5 0.0 −16.9
5 11757.8 2.26 7224.8 0.39 7579.7 3.50 7224.8 6289.6 6105 2.01 62.7 0.0 4.9 −12.9
6 11027.7 2.10 7245.9 0.22 7053.0 3.10 7053.0 5656.6 5617 1.21 56.4 2.7 0.0 −19.8
7 11899.2 2.61 8206.9 0.11 7720.1 3.00 7720.1 6865.1 6679 2.41 54.1 6.3 0.0 −11.1
8 12825.5 3.00 7880.9 0.16 7709.8 3.30 7709.8 6606.3 6351 2.04 66.4 2.2 0.0 −14.3
9 12718.6 3.10 8157.3 0.16 7882.5 2.80 7882.5 6820.1 6569 1.54 61.4 3.5 0.0 −13.5
10 11794.7 2.38 7924.7 0.20 7734.9 2.60 7734.9 6729.0 6492 1.77 52.5 2.5 0.0 −13.0
11 12094.9 3.03 7452.6 0.29 7721.7 3.00 7452.6 6421.3 6322 1.26 62.3 0.0 3.6 −13.8
12 12132.5 2.64 8320.0 0.16 7899.8 2.90 7899.8 6698.1 6631 1.49 53.6 5.3 0.0 −15.2
13 13223.4 2.92 8222.7 0.15 7863.7 2.90 7863.7 6766.3 6628 1.63 68.2 4.6 0.0 −14.0
14 12413.9 2.76 8211.7 0.18 8141.1 3.60 8141.1 6775.4 6695 1.44 52.5 0.9 0.0 −16.8
15 12521.4 3.06 8144.6 0.38 7941.6 3.10 7941.6 6711.4 6535 1.67 57.7 2.6 0.0 −15.5
16 12044.4 3.15 7451.7 0.28 7901.9 3.10 7451.7 6763.9 6719 1.58 61.6 0.0 6.0 −9.2
17 12699.4 2.14 8086.2 0.34 8055.0 3.00 8055.0 6709.7 6612 1.43 57.7 0.4 0.0 −16.7
18 11001.4 1.70 7576.0 0.28 7798.3 2.90 7576.0 6655.3 6541 1.53 45.2 0.0 2.9 −12.2
19 12724.4 2.77 7871.2 0.36 7964.3 3.10 7871.2 6788.5 6562 1.80 61.7 0.0 1.2 −13.8
20 12357.7 2.72 7883.7 0.24 7522.4 2.50 7522.4 6775.9 6382 2.06 64.3 4.8 0.0 −9.9
21 13177.0 3.39 7914.1 0.26 7886.2 3.40 7886.2 6655.6 6489 1.49 67.1 0.4 0.0 −15.6
22 11545.0 2.43 8005.3 0.35 7841.1 2.90 7841.1 6694.7 6566 1.55 47.2 2.1 0.0 −14.6
23 12308.1 2.93 7883.5 0.38 7791.5 3.20 7791.5 6574.4 6479 1.58 58.0 1.2 0.0 −15.6
24 12722.7 2.87 7731.2 0.48 7957.8 3.00 7731.2 6611.9 6537 1.56 64.6 0.0 2.9 −14.5
25 12844.9 2.67 7884.8 0.20 7839.4 3.00 7839.4 6766.7 6490 1.55 63.9 0.6 0.0 −13.7
26 13297.5 3.31 8001.6 0.16 7846.2 3.30 7846.2 6956.1 6703 2.36 69.5 2.0 0.0 −11.3
27 13415.2 3.25 8899.4 0.17 8128.6 3.30 8128.6 7164.1 6733 1.64 65.0 9.5 0.0 −11.9
28 12613.0 2.60 10131.0 0.00 8367.5 2.80 8367.5 7266.2 7191 2.09 50.7 21.1 0.0 −13.2
29 12840.8 3.28 8276.9 0.38 8003.1 2.90 8003.1 6900.8 6692 1.90 60.4 3.4 0.0 −13.8
30 13796.2 3.78 8251.6 0.28 7760.9 2.70 7760.9 6630.5 6520 1.66 77.8 6.3 0.0 −14.6

Average 2.86 0.26 3.02 1.70 61.0 2.9 0.7 −14.0
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Table 7
Total cost comparison of the proposed matheuristic and state-of-the-art algorithms for Set 3.
Instance TS [4] imp-TS [1] SA [6] BKS Matheuristic Gap (%)

TC CPU (s) TC CPU (s) TC CPU (s) TC Best CPU (s) [4] [1] [6] Matheuristic

1 24284.6 5.62 20704.6 0.49 19804.5 7.49 19804.5 15905.4 15731 7.06 22.6 4.5 0.0 −19.7
2 23435.6 5.73 20816.8 0.64 18248.1 6.62 18248.1 14110.1 13687 6.31 28.4 14.1 0.0 −22.7
3 23449.4 5.80 19612.2 0.30 18133.9 7.10 18133.9 13872.0 13554 5.89 29.3 8.2 0.0 −23.5
4 23471.1 5.87 19549.0 0.44 19083.6 6.89 19083.6 15087.1 14624 5.74 23.0 2.4 0.0 −20.9
5 23406.2 7.28 20448.0 0.61 18877.3 7.09 18877.3 14664.3 14091 6.74 24.0 8.3 0.0 −22.3
6 24026.6 5.38 21212.0 0.56 19783.0 7.47 19783.0 15206.3 14240 8.26 21.5 7.2 0.0 −23.1
7 24190.0 7.65 20640.2 0.55 19690.0 6.11 19690.0 15946.7 15689 7.06 22.9 4.8 0.0 −19.0
8 23158.9 9.88 20664.1 0.42 18939.2 6.91 18939.2 14643.2 14108 5.14 22.3 9.1 0.0 −22.7
9 23594.7 5.54 18920.0 0.38 18510.6 7.11 18510.6 14163.4 14009 6.01 27.5 2.2 0.0 −23.5
10 23530.5 5.77 20384.2 0.52 19607.3 7.10 19607.3 15754.5 15248 7.00 20.0 4.0 0.0 −19.6
11 23371.7 5.37 19941.6 0.37 18675.8 7.15 18675.8 14703.5 14368 6.98 25.1 6.8 0.0 −21.3
12 21082.8 4.46 17258.4 0.17 17550.3 6.75 17258.4 13126.3 12710 5.66 22.2 0.0 1.7 −23.9
13 21610.7 4.62 17829.9 0.16 18039.2 6.32 17829.9 13366.3 12559 6.03 21.2 0.0 1.2 −25.0
14 23397.9 5.44 19845.2 0.53 18252.5 7.38 18252.5 13685.6 13190 5.87 28.2 8.7 0.0 −25.0
15 24041.9 6.31 21863.0 0.55 19803.8 7.97 19803.8 15445.9 15015 6.99 21.4 10.4 0.0 −22.0
16 22893.4 5.18 20144.2 0.30 18808.3 6.95 18808.3 14304.4 13614 6.79 21.7 7.1 0.0 −23.9
17 22950.4 6.93 20093.3 0.44 18713.8 6.72 18713.8 14628.0 13853 5.48 22.6 7.4 0.0 −21.8
18 24358.2 6.25 20244.8 0.53 18579.7 7.07 18579.7 14291.9 13683 7.85 31.1 9.0 0.0 −23.1
19 25068.7 5.68 19955.0 0.28 18453.2 7.93 18453.2 14956.0 14554 7.16 35.9 8.1 0.0 −19.0
20 23232.1 4.79 19267.7 0.36 18167.3 7.56 18167.3 13932.5 13518 5.99 27.9 6.1 0.0 −23.3
21 22564.8 5.43 19533.4 0.61 19226.0 6.97 19226.0 14264.4 13838 6.83 17.4 1.6 0.0 −25.8
22 24360.7 6.04 19032.1 0.37 18551.6 7.83 18551.6 14170.5 13740 6.35 31.3 2.6 0.0 −23.6
23 24377.9 5.88 20562.5 0.51 18514.8 7.35 18514.8 14463.9 14175 5.68 31.7 11.1 0.0 −21.9
24 22008.7 5.36 19288.2 0.05 18558.5 6.81 18558.5 13589.9 13185 5.76 18.6 3.9 0.0 −26.8
25 24256.6 5.76 19695.9 0.33 18574.2 7.55 18574.2 14512.4 14212 6.78 30.6 6.0 0.0 −21.9
26 23424.9 5.05 20610.5 0.14 18995.7 7.80 18995.7 14554.5 13871 6.31 23.3 8.5 0.0 −23.4
27 22961.4 5.17 18942.8 0.31 18128.7 7.12 18128.7 14571.2 14300 7.41 26.7 4.5 0.0 −19.6
28 23822.3 5.56 20097.3 0.39 18952.4 7.41 18952.4 14332.3 13875 6.11 25.7 6.0 0.0 −24.4
29 23678.3 64.84 22248.1 0.20 19056.1 6.96 19056.1 14713.1 13948 5.19 24.3 16.8 0.0 −22.8
30 23149.8 5.91 19321.9 0.65 18268.6 8.29 18268.6 14451.7 14022 5.83 26.7 5.8 0.0 −20.9

Average 7.82 0.41 7.19 6.41 25.2 6.5 0.1 −22.5

5.3. Results for the new large VRPCD instances

As mentioned earlier, sets of larger instances are introduced
in this paper. In order to have some reference to compare with,
we run a pure ALNS algorithm with the same CPU time as the
matheuristic uses. The results are presented in Table 8. We also
calculate the gap between the matheuristic and the ALNS average
objective function values.

It can be concluded that ALNS alone is slightly outperformed
by the matheuristic. Table 9 summarizes the average results for
each set of large instances. The matheuristic is able to produce
better solutions especially for large instances, e.g. 100, 200 and
300 nodes. We remark the importance of solving the set partition-
ing formulation towards getting better solution quality, which
will be analyzed further in Section 5.4. By referring to the CPU
time, our proposed matheuristic is able to tackle up to a total of
100 nodes within half a minute of CPU time on average. When
the total number of nodes is increased up to 200 and 300, it
requires around nine minutes and 40 min of CPU time on average.
This is due to a long checking process in the first phase of the
matheuristic (the ALNS part) when the operators are applied
to modify the solution. Anyway, these computation times seem
acceptable for practical applications. The matheuristic results on
this new larger instances are made available online on https:
//www.mech.kuleuven.be/en/cib/op/opmainpage#section-47.

5.4. The importance of solving the set partitioning formulation

We conducted additional experiments in order to assess the
added value of the set partitioning compared to a pure meta-
heuristic approach, ALNS. The improvement made by our pro-
posed matheuristic compared to a pure ALNS is calculated by
Eq. (21). The improvement of each instance is then plotted

in Fig. 4.

Improvement (%) =
(TCmatheuristic − TCALNS)

TCALNS
× 100 (21)

From Fig. 4 (top) we observe that ALNS itself generates good
solutions for small instances, i.e. Set 1 with 10-nodes. In this set
of instances, ALNS may obtain exactly the same results as the
matheuristic (ALNS + set partitioning). Therefore, the improve-
ment is 0%. When the number of nodes is increased, e.g. 30-nodes
(Set 2), the ALNS result deteriorates and thus solving the set
partitioning helps to improve the results up to 0.4% on average,
with an individual instance improvement ranged from 0% to 1.9%
at most. Similar observations can be found when we further
increase the number of nodes to 50 (Set 3). Solving the set
partitioning improves the ALNS results up to 0.9% on average,
with an individual instance improvement ranged from 0.2% to
1.7% at most.

We then evaluate this improvement on sets with larger in-
stances (Sets 4 to 8), as plotted in Fig. 4 (bottom). It is observed
that the improvement made by solving the set partitioning is
even larger. It improves the results up to 0.9% on average, with
an individual instance improvement ranged from 0.1% to 2.6% at
most. However, solving the set partitioning of course takes longer
CPU time. For solving all instances, it is increased to 125 s from
113 s on average. Anyway, a trade-off can be made here between
solution quality and CPU time. According to us, this increase in
CPU time from 113 s to 125 s is certainly acceptable given the
increase in solution quality.

5.5. The importance of implementing the adaptive scheme

The first phase of our proposed matheuristic, which is the
column generation by ALNS, employs an adaptive scheme for the
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Table 8
Total cost comparison of the proposed matheuristic and ALNS for large
instances.

Instance TC Gap (%) CPU (s)

Matheuristic ALNS

40–a 3600.4 3623.0 0.6 3.64
40–b 4601.0 4601.2 0.0 1.20
40–c 3524.7 3539.0 0.4 1.55
40–d 5038.1 5056.0 0.4 1.07
40–e 3983.2 3990.6 0.2 1.43
40–f 4658.4 4675.7 0.4 1.25
40–g 4695.0 4696.5 0.0 1.52
40–h 4802.0 4802.3 0.0 3.14
40–i 4037.0 4037.4 0.0 1.52
40–j 4016.6 4030.3 0.3 1.34
40–k 4015.4 4066.0 1.3 1.06

60–a 5357.6 5362.0 0.1 105.29
60–b 6781.6 6803.7 0.3 4.01
60–c 7081.2 7229.8 2.1 4.68
60–d 5331.9 5336.5 0.1 105.91
60–e 6969.0 7024.9 0.8 4.14

100–a 9205.8 9218.3 0.1 138.18
100–b 10331.1 10594.1 2.5 47.37
100–c 10468.0 10554.4 0.8 36.39
100–d 9958.4 9972.1 0.1 131.78
100–e 10584.5 10698.3 1.1 28.36

200–a 18499.7 18564.6 0.4 557.30
200–b 20510.0 20653.1 0.7 474.30
200–c 19912.9 20202.8 1.5 484.19
200–d 19268.2 19543.6 1.4 601.65
200–e 19983.1 20397.3 2.1 431.08

300–a 28416.5 28512.5 0.3 2474.20
300–b 29635.5 30200.3 1.9 2191.69
300–c 28734.1 29104.1 1.3 2169.73
300–d 29366.6 29461.2 0.3 2408.02
300–e 28436.4 28745.3 1.1 2497.29

Table 9
Summary of new large instances.

Instance TC Gap (%) Avg. CPU (s)

Matheuristic ALNS

Set 4 – 40 nodes 4270.2 4283.5 0.3 1.70
Set 5 – 60 nodes 6304.3 6351.4 0.7 44.80
Set 6 – 100 nodes 10109.6 10207.4 0.9 76.41
Set 7 – 200 nodes 19634.8 19872.3 1.2 509.70
Set 8 – 300 nodes 28917.8 29204.7 1.0 2348.19

operator selection. Each operator’s performance upon generating
a new neighborhood solution is evaluated. When it performs well,
its score is increased, and so is its probability to be selected in
the subsequent iterations. This approach allows the algorithm to
learn and select which operators are more suitable to be used.

In this section, we compare this adaptive scheme and the
static scheme. The static scheme is defined by giving the same
probability to each operator to be selected during the search
process despite of its performance. Hence, for this static scheme,
pj is calculated by the following Eq. (22).

pj =

{
1
|R| ∀j ∈ R
1
|I| ∀j ∈ I

(22)

For each instance, we calculate the difference (%) made by im-
plementing the adaptive scheme compared to the static scheme,
as formulated in Eq. (23). TCadaptive and TC static refer to average
costs by the adaptive and static schemes respectively. The results
are summarized in Table 10.

Difference (%) =
(TCadaptive − TC static)

TCadaptive
× 100 (23)

Fig. 4. Improvement by solving the set partitioning formulation.

Table 10
Results of adaptive and static schemes.

Instance TC Difference Avg. CPU (s)

Adaptive Static (%) Adaptive Static

Set 1 7529.6 7529.7 0.0 0.16 0.20
Set 2 6684.5 6685.3 0.0 1.70 1.99
Set 3 14513.9 15261.0 −4.1 6.41 7.17

Set 4 4270.2 4270.2 0.0 1.70 1.71
Set 5 6304.3 6304.5 0.0 44.80 45.34
Set 6 10109.6 10110.1 0.0 76.41 80.62
Set 7 19634.8 19647.1 −0.1 509.70 603.52
Set 8 28917.8 28920.7 0.0 2348.19 2536.01

We can conclude that only for Set 3 the adaptive scheme
seems to make sense. Actually, a simplified algorithm with a
static scheme, basic LNS, would have been sufficient to solve
these instances and the added value of the adaptive scheme is
very limited. Since the results for the adaptive scheme are always
at least as good, and sometimes better, than the static scheme, we
decided to report the results of the adaptive scheme in the rest
of this paper. Moreover, the CPU time for the adaptive scheme
is slightly better than for the static scheme. Finally, the adaptive
scheme provides us with information about the performance of
the different operators, which will be discussed in detail in the
next section.

5.6. Analysis on ALNS operators

We introduce a total of 15 operators (Section 4.3) that are
employed in our matheuristic, consisting of six destroy operators
and nine repair operators. This huge amount of operator choices
is actually linked to the adaptive scheme, where the operators
will not be equally used since its selection is based on the per-
formance during previous iterations. We initially set pj to be
equally likely for each operator (see Algorithm 1 Line 6). When
operator j generates a better solution in a particular iteration,
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Table 11
Results of employing all operators and removing some operators.

Instance TC Gap (%) Avg. CPU (s)

(i) (ii) (iii) (ii) (iii) (i) (ii) (iii)

Set 1 7529.6 7529.7 7529.7 0.0 0.0 0.16 0.12 0.11
Set 2 6684.5 6729.8 6777.5 −0.6 −1.3 1.70 1.90 1.59
Set 3 14513.9 15184.5 15529.5 −4.0 −6.0 6.41 7.42 5.14

Set 4 4270.2 4270.3 4271.2 0.0 0.0 1.70 1.54 1.21
Set 5 6304.3 6305.2 6311.5 −0.1 −0.1 44.80 43.27 26.99
Set 6 10109.6 10110.1 10121.7 −0.1 −0.1 76.41 75.78 74.86
Set 7 19634.8 19637.2 19648.1 −0.1 −0.1 509.70 617.05 453.04
Set 8 28917.8 28941.9 28933.0 0.0 0.0 2348.19 3402.69 2310.53

Fig. 5. Comparison of operators’ probability.

pj is then increased. In this manner, operators with a higher pj
value frequently produce good solutions compared to those with
a lower pj value. Hence, in order to analyze the performance
of each operator, we record the pj of each operator upon the
matheuristic termination, and calculate the average value of it in
small instances (Sets 1 to 3), large instances (Sets 4 to 8), and all
sets (Sets 1 to 8). We then compare these values with the initial
pj (the so-called baseline) and plot the results in Fig. 5.

We observe a similar pj pattern for all sets in the destroy
operators, as shown in Fig. 5 (top). It seems that R1, R2 and
R4 frequently produce good solutions in contrast to operators
R3 and R6. R5 is around the baseline. From Fig. 5 (bottom), we
see different patterns on how repair operators perform in small
instances (Sets 1 to 3) and large instances (Sets 4 to 8). In our case,
I1 to I4 play an important role in solving large instances, while I5
to I8 play an important role in solving small instances. I9, on the
other hand, seems less beneficial compared to any other repair
operators both in small and large instances.

Based on these results, somewhat simplified matheuristics
could be designed with (much) less operators. Therefore, we
remove several operators to see whether it will influence the
matheuristic performance in terms of solution quality and CPU
time. We first try to remove a set of operators who are below
the baseline, which are R3 and R6 for destroy operators, and I1

and I9 for repair operators (called as ‘‘alternative (ii)’’). We also
try to remove a larger set of operators, which are R3, R5, and
R6 for destroy operators, and I1, I5 to I9 for repair operators (we
call this ‘‘alternative (iii)’’). We then compare both alternatives
towards the original results when we use all operators (we call
this ‘‘alternative (i)’’) by calculating the gap (%), as formulated
in Eq. (24). The results for these experiments are summarized in
Table 11.

Gap (%) =
(TCalternative (i) − TCalternative (ii) or (iii))

TCalternative (i)
× 100 (24)

Based on Table 11, we conclude that only for Sets 2 and 3 some
changes in solution quality can be observed. Clearly, alternative
(i) slightly outperforms alternatives (ii) and (iii). The operators
with lower probability turn out to be still useful to explore the
search space. Possibly surprising, the CPU times are also very
similar for different alternatives. So, removing certain operators
does not speed up the calculations. With all operators, alternative
(i), better solutions can be found in the earlier phase and thus the
algorithm terminates faster. With few operators, alternative (iii),
it might be more difficult to escape from local optima. Then the
algorithm sometimes terminates slightly faster, but with worse
solutions.

6. Conclusion

We study the integration of the vehicle routing problem with
cross-docking (VRPCD). A set of homogeneous vehicles is used
to deliver products from a set of suppliers to a set of customers
through a cross-dock facility. The aim is to select a set of vehicles
to be used and its corresponding routes, such that the operational
and transportation costs are minimized.

A matheuristic approach is proposed. It consists of two phases:
adaptive large neighborhood search (ALNS) and set partitioning.
ALNS is used to generate a list of candidate feasible routes. A total
of 15 operators are employed, consisting of six destroy and nine
repair operators. The selection of operators is based on the adap-
tive scheme where the probability of being selected in subsequent
iterations increases if the operators perform well. A set partition-
ing formulation is then developed to find the best route combi-
nation with respect to other VRPCD constraints, e.g. the limited
number of vehicles and the total transportation time available.

Computational results show that the proposed matheuristic
clearly outperforms the state-of-the-art algorithms in terms of
solution quality. It is able to obtain optimal solutions for all Set
1 instances. In summary, it improves the best known solutions
for 80 instances and obtains the same results for the remaining
10 instances. The improvement made towards the best known
solutions is 12.6% on average. A new set of larger instances,
adopted from available benchmark VRPCDTW instances, is also
introduced. Experimental results show that our matheuristic can
also solve these instances and obtain high quality results in ac-
ceptable computation times. Compared to a pure ALNS algorithm,
our matheuristic is able to obtain 0.7% better results on average.
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We further present comprehensive experiments on different
properties of our matheuristic. We conclude that solving the
set partitioning formulation has a clear impact on the solution
quality, as it may produce improvements up to 2.6% on large
instances, although it requires more CPU time. It is observed that
the implementation of the adaptive scheme when selecting the
operators in the matheuristic only leads to slight improvements
in performance. Finally, we observe that all operators during the
column generation phase are required in order to obtain the high
quality results. However, some of them only slightly contribute
and might be removed to simplify the matheuristic. Nevertheless,
this would have no impact on the required CPU time.

Possibly, the performance of the algorithm could be further
improved by extending the set of routes considered during the
set partitioning. Some routes are currently not accepted since
they are infeasible in the ALNS solution due to the combined
time horizon of supplier routes and customer routes. However,
individually, these routes could be considered as feasible during
the set partitioning phase. Solving other recent variants of VRPCD,
such as VRP with forward and reverse cross-docking, by modify-
ing our proposed matheuristic is also a possible interesting future
direction. A number of underlying assumptions within the current
model can be modified in future research in order to advance the
vehicle routing and cross-docking combinations, such as multi-
ple items or products, split deliveries, a heterogeneous fleet, or
multiple cross-docks.

New and larger instances with up to 300 nodes are introduced
together with benchmark results. This is another useful contri-
bution since it corresponds to real-sized instances that could be
faced by practitioners and the supply chain management com-
munity. Therefore, this paper could increase the awareness about
the advantages of the cross-docking. From a practical perspective,
especially when solving large instances, it may be preferred to
implement a pure ALNS instead of the matheuristic when making
trade-off between solution quality and CPU time.
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