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Abstract: This study addresses a variant of the Electric Vehicle Routing Problem with Mixed Fleet, named as the Green 
Mixed Fleet Vehicle Routing Problem with Realistic Energy Consumption and Partial Recharges. This problem contains 
three important characteristics — realistic energy consumption, partial recharging policy, and carbon emissions. An 
adaptive Large Neighborhood Search heuristic is developed for the problem. Experimental results show that the proposed 
ALNS finds optimal solutions for most small-scale benchmark instances in a significantly faster computational time 
compared to the performance of CPLEX solver. Moreover, it obtains high quality solutions for all medium- and large-
scale instances under a reasonable computational time. We also perform numerical studies to analyze the potential carbon 
emission reduction resulted from the proposed model. 
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1. Introduction  
Global warming has turned out to be a growing 

concern worldwide due to various human activities 
[1], with transportation systems becoming one of the 
largest contributors of air pollution for many 
countries; e.g., China [2], U.S.A. [3], and EU-27 [4]. 
Air pollution has been proven to toxicologically affect 
people’s health [5], [6], as it not only causes negative 

impacts toward the environment, but also slows down 
global economic growth [7]. Considering such effects, 
innovations to decrease pollution are greatly needed. 
In addition, governments of various nations have 
recently set targets and strategies for emissions 
reduction; i.e. the U.S. proposed a target on 
greenhouse gas (GHG) emissions reduction to be 
26%–28% below 2005 levels by 2025 [8]; and the EU-
27 has also set a similar goal to reduce GHG emissions 
to be 60% below 1990 levels by 2050 [9]. 

The aforementioned actions have led to 
increasing attention toward the utilization of electric 
vehicles (EVs). The main benefit of EVs compared to 
conventional vehicles, denoted as internal combustion 
vehicles (ICVs), is that EVs produce zero tailpipe 
emission when operating [10], although several 
considerations need to be carefully studied [11], [12]. 
Various logistics companies, e.g. DHL, UPS, and 
FedEx [13], [14], [15], have begun to utilize EVs as 
part of their operational fleets for conducting 
deliveries. In spite of the sustainability-related 
potential benefit offered by harnessing EVs, several 

limitations co-exist, which impede their adoption 
level; e.g., high purchase prices and battery costs, 
limited driving range, and potentially long recharging 
time requirements [16]. Considering the benefits and 
limitations of utilizing EVs, careful planning needs to 
be conducted by companies before any mass adoption 
of EVs. 

One of the main activities carried out in a logistics 
company is distributing goods by visiting a set of 
customers with a set of available vehicles that start and 
end at the depot and minimizing transportation cost, 
which is generally called a vehicle routing problem 
(VRP) [17]. Due to VRP’s important economic 
applications and theoretical interests, the related 
research field has grown fast and intensive over the 
years by considering various real-world constraints 
and challenges [18]. One of the most recent practical 
situations considered in VRP involves the utilization 
of EVs. Schneider et al. [19] introduced Electric 
Vehicle Routing Problem with Time Windows 
(EVRPTW) by incorporating the recharging 
possibility at any of the available stations with 
recharging times that depend on the battery level when 
arriving at the station and by considering capacity 
constraints on vehicles as well as customer time 
windows. The problem is formulated as a mixed-
integer programming model. A hybrid Variable 
Neighborhood Search with Tabu Search (VNS/TS) 
heuristic, in which infeasible solutions are allowed 
during the search, was proposed  
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to solve the problem. The performance of the algorithm was
tested with new generated instances. Furthermore, the authors
made a comparison to the results obtained by VNTS/TS with-
out Simulated Annealing (SA) and showed that SA acceptance
criterion performed better versus simply accepting an improved
solution criterion.

Research in dealing with EVs in the VRP field has also started
to gain momentum. Keskin and Çatay [20] extended EVRPTW
by considering a partial recharge policy and proposing Adaptive
Large Neighborhood Search to solve the problem. They proved
that a 1.64% cost saving can be obtained by applying the par-
tial recharge policy based on a comparison with the result of
Schneider et al. [19]. The research was later extended by in-
cluding the existence of multiple recharging technologies [21].
Felipe et al. [22] pioneered the research on multiple refueling
technology, although they did not explicitly mention EVs. Keskin
and Çatay [23] dealt with multiple recharging technologies for
EVRPTW and found several benefits: lower total energy consump-
tion and lower number of utilized fleets. Another characteristic
worth mentioning in the literature is the recharging time char-
acteristic. The real recharging function is generally non-linear
with time [24]. Zündorf [25] targeted the non-linear recharging
function by transforming the non-linearity into a piecewise lin-
ear function. Montoya et al. [26] introduced the electric vehicle
routing problem with a non-linear recharging process by utilizing
the piecewise linear approximation introduced by Zündorf [25].
In addition to electric vehicles, hybrid vehicles which utilize
both fuel and electricity have also been identified to have such
potential benefits [27].

Electric vehicle employment in city logistics, which involve
a two-tier supply chain network, has gained greater interest.
Breunig et al. [28] considered EVs as part of the operational fleets
in 2EVRP and later termed this as E2EVRP. In the problem, a fleet
of ICVs still serves the first echelon, while EVs operate on the
second echelon. Jie et al. [29] also worked on a similar problem
with the main difference being that the considered type of EVs
requires battery swapping instead of recharging.

A mixed fleet between EVs and ICVs has recently become a
prominent strategy due to the limitations encountered in EVs’
utilization. Goeke and Schneider [30] addressed EVRPTW-MF,
involving a realistic energy consumption model, to calculate elec-
tricity consumption of an EV and fuel consumption of an ICV. In
order to manage the driving range limitation of EVs, it is impor-
tant to adopt a realistic energy consumption model to predict
electricity usage [31]. Hiermann et al. [32] extended the mixed
fleet scenario by considering Plug-in Hybrid Electric Vehicles
(PHEVs) together with EVs and ICVs. Two types of sensitivity
analyses were performed to analyze the benefit of utilizing a
mixed fleet compared to a single type of particular fleet as well as
the impact of cost change toward the fleet composition. Macrina
et al. [33] proposed the green mixed fleet vehicle routing problem
with partial recharging and time windows, involving a limitation
of carbon emissions that can be emitted by a company’s opera-
tional fleet. Moreover, Macrina et al. [34] dealt with a mixed fleet
scenario of EVs and ICVs by considering partial recharges and a
realistic energy consumption model.

Based on the aforementioned literature, the mixed fleet prob-
lem seems to be widely adopted by logistics companies due to
current market and business conditions. Recently, Yu et al. [35]
proposed a new variant of a mixed fleet between EVs and ICVs,
named as the Green Mixed Fleet Vehicle Routing Problem with
Realistic Energy Consumption and Partial Recharges (GMFVRP-
REC-PR) and developed a mixed integer programming model for
the problem. It simultaneously addresses three important char-
acteristics, partial recharges, realistic energy consumption, and
emissions, making the problem closer to the real-world condition.

The problem is modeled as a single objective problem with eco-
nomic and environmental considerations, i.e. transportation and
carbon emissions costs, respectively. This modeling approach has
also been employed in various routing problem variants [36–38].
Based on the findings presented in Yu et al. [35], the compu-
tational time of solving the mathematical model is significantly
high, even for the small-scale instances. Therefore, this research
is presented with following objectives and contributions:

1. To propose an Adaptive Large Neighborhood Search (ALNS)
embedded with a dynamic programming procedure and an
efficient solution evaluation procedure to solve GMFVRP-
REC-PR of various sizes. In addition, both feasible and in-
feasible solution spaces are considered in aim of guiding
the search toward diverse regions.

2. To analyze the potential carbon emission reduction of the
proposed GMFVRP-REC-PR.

The remainder of the paper is organized as follows. Section 2
describes GMFVRP-REC-PR and explains our MILP formulation.
Section 3 proposes the ALNS algorithm in detail. Section 4 re-
ports computational studies involving the parameter settings and
makes a comparative analysis between our proposed methods
with state-of-the-art benchmark results and carbon emission re-
duction analysis. Finally, Section 5 presents our conclusions and
future direction of this research.

2. Model formulation

This section explains the mathematical model of GMFVRP-
REC-PR formulated by Yu et al. [35]. Section 2.1 presents the
energy consumption model, which will be used to calculate an
EV’s electricity consumption and an ICV’s fuel consumption. Sec-
tion 2.2 explains the mathematical model of GMFVRP-REC-PR
in detail. In addition, all the variables used in the mathemat-
ical model and equations are summarized in Table A.1 of the
Appendix.

2.1. Electricity and fuel consumption calculations

In order to obtain an EV’s energy consumption, a mechanical
power requirement PM is required. We evaluate PM by using the
energy consumption model presented in Bektaş and Laporte [39],
where PM depends on several variables: mass, speed, gradient,
and physical environment (road surface, vehicle dimensions, and
engine properties). Eq. (1) calculates the amount of PM .

PM =
(
m.a+

1
2
.cd.ρ.A.v2 +m.g. sin (α)+ cr .m.g. cos(α)

)
.v (1)

where m is vehicle mass (kg), a is acceleration (m/s2), cd is the
coefficient of aerodynamic drag, ρ is air density (kg/m3), A is
vehicle frontal surface (m2), v is vehicle speed, g is a gravitational
constant (m/s2), α is the gradient angle of the road, and cr is the
coefficient of rolling resistance.

We particularly define m as a function of the currently loaded
amount of cargo that is brought by vehicle k from a particular
node i to node j, uk

ij. Therefore, m
(
uk
ij

)
represents the total mass

consisting of a vehicle’s curb mass and uk
ij. Let p

k
ij

(
uk
ij

)
denote the

constant mechanical power requirement for an EV to travel from
node i to node j with total mass m

(
uk
ij

)
. Thus, pkij

(
uk
ij

)
is able to be

evaluated by Eq. (2).

pkij
(
uk
ij

)
=

(
1
2
.cd.ρ.A.v2 +m

(
uk
ij

)
.g.(sin

(
αij
)
+ cr . cos

(
αij
)
)
)
.vij

(2)

2
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The electricity consumption of an EV can be obtained from the
calculated mechanical power requirement by the following two
steps. First, the necessary electric power is evaluated by taking
energy losses that occur in the electric engine into account by
multiplying pkij

(
uk
ij

)
with energy efficiency, Φd and discharging

efficiency, ϕd. Second, the final electricity requirement is obtained
by considering the travel time from node i to node j, tij. To sum
up, Eq. (3) calculates the electricity consumption of an EV while
traveling from node i to node j.

bkij
(
uk
ij

)
= Φd.ϕd.pkij

(
uk
ij

)
.tij (3)

The aforementioned mechanical power is also utilized to evaluate
the fuel consumption of an ICV. First, the fuel consumption rate
of ICV k while traveling from node i to j is calculated by:

FRk
ij

(
uk
ij

)
= max

(
ξ

κ.ψ

(
k.N.D+

pkij
(
uk
ij

)
η.ηtf

)
, 0

)
(4)

where ξ denotes the fuel-to-air mass ratio, κ represents the heat-
ing value of typical diesel fuel, k represents the engine friction
factor, N denotes engine speed, D represents engine displace-
ment, ψ denotes a factor converting the fuel rate from gram
per second to liters per second, η represents the efficiency pa-
rameter for diesel engines, and ηtf denotes drive train efficiency.
After obtaining the fuel consumption rate, the associated fuel
consumption of an ICV traveling from node i to node j can be
calculated by:

f kij
(
uk
ij

)
= FRk

ij

(
uk
ij

)
.tij (5)

2.2. Problem definition

Consider a directed graph G = (0∪V ∪ F ′ ∪N + 1, A), where V
is a set of N customers, V = {1, . . . ,N}, F is a set of recharging
stations, F ‘ is the set of dummy nodes representing each node
in F to enable multiple visits to a particular recharging station
in the formulation, and nodes 0 and N + 1 are the starting and
ending points, respectively. The nodes are connected through a
set of arcs A = {(i, j)|i, j ∈ 0 ∪ V ∪ F ‘ ∪ N + 1, i ̸= j} with a non-
negative distance, dij, travel time tij, and cost ct for each kilometer
traveled by the vehicle. For simplifying the mathematical model
formulation, we introduce several sets: V ‘ = V ∪ F ‘, V0 = V ∪ 0,
VN+1 = V ∪ N + 1, V ′0 = V ∪ F ′ ∪ 0, and V ′N+1 = V ∪ F ′ ∪ N + 1.

Each node i has non-negative demand, qi(i ∈ V ), service time,
si(i ∈ V ), and hard time windows, [ei, li](i ∈ 0 ∪ V ∪ F ‘ ∪ N + 1),
where early arrival with waiting is allowed, but late arrival is
strictly prohibited. Sets of EVs, KE , and ICVs, KIC , with capacity
Q are available at the depot. EVs having a battery capacity of B
can be charged partially at a recharging rate of r .

The carbon emissions emitted by an ICV depend on the CO2
emitted per liter of fuel, FE [33] which is later multiplied with
the cost ce to obtain the carbon emission cost. Let EMij represent
the total carbon emissions produced by an ICV while traveling
from node i to node j, calculated by:

EMij = FE.FRij (6)

where FE is a fuel conversion factor, expressed in grams of CO2
emitted per liter of fuel. The value of FE depends on several
factors: vehicle type, fuel type, etc. FRij is the fuel consumption
of an ICV, as has been explained in Section 2.1.

Decision variables

• xEijkE = 1 if an EV kE travels from node i to j (kE ∈ KE; i, j ∈
0 ∪ V ∪ F ‘ ∪ N + 1)
• xICijkIC = 1 if an ICV kIC travels from node i to j (kIC ∈ KIC ; i, j ∈

0 ∪ V ∪ N + 1)
• τi = arrival time at node i(i ∈ V ′0)

• τ
kE
N+1 = arrival time of an EV kE at node N + 1(kE ∈ KE)

• τ
kIC
N+1 = arrival time of an ICV kIC at node N + 1(kIC ∈ KIC )

• ukE
0 = initial load brought by an EV kE(kE ∈ KE)

• ukIC
0 = initial load brought by an ICV kIC (kIC ∈ KIC )

• ukIC
ij = amount of load brought by an ICV kIC when traveling

from node i to node j (kIC ∈ KIC ; i, j ∈ 0 ∪ V ∪ N + 1)
• ukE

ij = amount of load brought by an ICV kE when traveling
from node i to node j (kE ∈ KE; i, j ∈ 0 ∪ V ∪ F ‘ ∪ N + 1)
• yKEi = remaining electric energy of an EV kE upon arrival at

node i (kE ∈ KE; i, j ∈ 0 ∪ V ∪ F ‘ ∪ N + 1)
• Y KE

i = amount of electric energy obtained by an EV kE after
recharging at recharging station i (kE ∈ KE; i ∈ F )
• pkEij

(
ukE
ij

)
= amount of mechanical power spent by an EV kE

when traveling from node i to node j and carrying a load of
ukE
ij (kE ∈ KE; i, j ∈ 0 ∪ V ∪ F ‘ ∪ N + 1)

• pkICij

(
ukIC
ij

)
= amount of mechanical power spent by an ICV

kIC when traveling from node i to node j and carrying a load
of ukIC

ij (kIC ∈ KIC ; i, j ∈ 0 ∪ V ∪ N + 1)

• bkEij
(
ukE
ij

)
= amount of electric energy consumed by an EV

kE when traveling from node i to node j and carrying a load
of ukE

ij (kE ∈ KE; i, j ∈ 0 ∪ V ∪ F ‘ ∪ N + 1)

• f kICij

(
ukIC
ij

)
= amount of fuel consumed by an ICVkIC when

traveling from node i to node j and carrying a load of
ukIC
ij (kIC ∈ KIC ; i, j ∈ 0 ∪ V ∪ N + 1)

Objective Function

min
∑
kE∈KE

∑
i∈V ′0

∑
j∈V ′N+1

ctdijxEijkE +
∑

kIC∈KIC

∑
i∈V ′0

∑
j∈V ′N+1

ctdijxICijkIC

+

∑
kIC∈KIC

∑
i∈V ′0

∑
j∈V ′N+1

ceFEf
kIC
ij (uIC ) (7)

Constraints∑
kE∈KE

∑
j∈V ′N+1

xEijkE +
∑

kIC∈KIC

∑
j∈VN+1

xICijkIC = 1 ∀i ∈ V (8)∑
j∈V ′N+1

xEijkE ≤ 1 ∀i ∈ V ′0,∀kE ∈ KE (9)∑
j∈VN+1

xICijkIC ≤ 1 ∀i ∈ V0,∀kIC ∈ KIC (10)∑
i∈V ′0

xEijkE =
∑

i∈V ′N+1

xEjikE ∀j ∈ V ′,∀kE ∈ KE (11)∑
i∈V0

xICijkIC =
∑

i∈VN+1

xICjikIC ∀j ∈ V ,∀kIC ∈ KIC (12)∑
j∈V ′

xE0jkE ≤ KE ∀kE ∈ KE (13)∑
j∈V

xIC0jkIC ≤ KIC ∀kIC ∈ KIC (14)

τ0 = 0 (15)

τi + (si + tij)

⎛⎝∑
kE∈KE

xEijkE +
∑

kIC∈KIC

xICijkIC

⎞⎠
−M

⎛⎝1−

⎛⎝∑
kE∈KE

xEijkE +
∑

kIC∈KIC

xICijkIC

⎞⎠⎞⎠ ≤ τj
∀i ∈ V0,∀j ∈ V (16)

τi + (si + tij)
∑
kE∈KE

xEijkE −M

⎛⎝1−
∑
kE∈KE

xEijkE

⎞⎠ ≤ τj ∀i ∈ V0,∀j ∈ F ′ (17)

3
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τi +
1
r

(
Y kE
i − ykEi

)
+ tijxEijkE −M(1− xEijkE ) ≤ τj ∀i ∈ F ′,∀j ∈ V ′,∀kE ∈ KE

(18)

τi +
1
r

(
Y kE
i − ykEi

)
+ tiN+1xEiN+1kE −M(1− xEiN+1kE ) ≤ τ

kE
N+1 ∀i ∈ F ′,∀kE ∈ KE

(19)

τi + (si + tiN+1)xEiN+1kE −M
(
1− xEiN+1kE

)
≤ τ

kE
N+1 ∀i ∈ V0,∀kE ∈ KE (20)

τi + (si + tiN+1)xICiN+1kIC −M
(
1− xICiN+1kIC

)
≤ τ

kIC
N+1 ∀i ∈ V0,∀kIC ∈ KIC

(21)

ei ≤ τi ≤ li ∀i ∈ V ′ (22)

eN+1 ≤ τ
kIC
N+1 ≤ lN+1 (23)

eN+1 ≤ τ
kE
N+1 ≤ lN+1 (24)∑

i∈V ′0

ukE
ij −

∑
i∈V ′N+1

ukE
ji = qj

∑
i∈V ′0

xEijkE ∀j ∈ V ′,∀kE ∈ KE (25)∑
i∈V ′

ukE
iN+1 = 0 ∀kE ∈ KE (26)

0 ≤ ukE
ij ≤ Q .xEijkE ∀i ∈ V ′0,∀j ∈ V ′N+1,∀kE ∈ KE (27)∑

i∈V0

ukIC
ij −

∑
i∈VN+1

ukIC
ji = qj

∑
i∈V0

xICijkIC ∀j ∈ V ,∀kIC ∈ KIC (28)∑
i∈V

ukIC
iN+1 = 0 ∀kIC ∈ KIC (29)

0 ≤ ukIC
ij ≤ Q .xICijkIC ∀i ∈ V0,∀j ∈ VN+1,∀kIC ∈ KIC (30)

pkICij (ukIC
ij ) =

( 1
2 .cd.ρ.A.v

2
+mtruck.g.cr

)
xICijkIC

+g.cr .u
kIC
ij

∀i ∈ V0,∀j ∈ VN+1,∀kIC ∈ KIC

(31)

f kICij (ukIC
ij ) =

(
ξ

κ.ψ

(
kND+

P
kIC
ij

(
u
kIC
ij

)
η.ηtf

))
xICijkIC .tij ∀i ∈ V0,∀j ∈ VN+1,∀kIC ∈ KIC

(32)
pkEij (u

kE
ij ) =

( 1
2 .cd.ρ.A.v

2
+mtruck.g.cr

)
xEijkE

+g.cr .u
kE
ij

∀i ∈ V ′0,∀j ∈ V ′N+1,∀kE ∈ KE

(33)

bkEij (u
kE
ij ) ≥ Φd.ϕd.p

kE
ij (u

kE
ij ).tij ∀i ∈ V ′0,∀j ∈ V ′N+1,∀kE ∈ KE (34)

bkEij (u
kE
ij )+M

(
1− xEijkE

)
≤ ykEi − ykEj

≤ bkEij (u
kE
ij )−M

(
1− xEijkE

) ∀i ∈ V0,∀j ∈ V ′N+1,∀kE ∈ KE (35)

bkEij (u
kE
ij )+M

(
1− xEijkE

)
≤ Y kE

i − ykEi

≤ bkEij (u
kE
ij )−M

(
1− xEijkE

) ∀i ∈ F ′,∀j ∈ V ′N+1,∀kE ∈ KE (36)

ykE0 = B (37)

ykEi ≤ B ∀i ∈ V ′0,∀kE ∈ KE (38)

ykEi ≤ Y kE
i ∀i ∈ F ′,∀kE ∈ KE (39)

Y kE
i ≤ B ∀i ∈ F ′,∀kE ∈ KE (40)

Objective function (7) is to minimize the total cost comprised
of the distance traveled cost by all utilized fleets and the total
emitted pollution cost from the utilized fleet of ICVs. Eq. (8)
ensures that each customer is visited at most once, either by an
EV or an ICV. Eqs. (9) and (10) guarantee that each vehicle, either
an EV or an ICV, can only visit one customer when it starts a
route from the depot. Eqs. (11) and (12) are the flow-in flow-
out constraints for an EV and an ICV, respectively. Eqs. (13) and
(14) consecutively limit the number of EVs and ICVs that can be
assigned to serve customers. Constraints that regulate time are
described from Eq. (15) to Eq. (24). Eq. (15) guarantees that the
initial time of every utilized fleet starts from 0. Eqs. (16) to (21)
link arrival times at node i and node j and M denotes a very large
value which is multiplied with the term(s) inside the parentheses.

Eqs. (22) to (24) ensure that the time windows of each visited
node are not violated. Eqs. (25) to (30) regulate the load balance.
The total load carried by an EV and an ICV from a node to another
node is modeled by Eqs. (25) and (28), respectively. Eqs. (26) and
(29) guarantee that a vehicle returning to the depot carries no
remaining load. Eqs. (27) and (30) respectively ensure that the
total load brought by an EV or an ICV is within the maximum
allowable load. Eqs. (31) and (32) calculate the fuel consumption
of an ICV that travels through an arc (i, j). Eqs. (33) and (34) cal-
culate the electricity consumption of an EV that travels through
an arc (i, j). Eq. (35) is responsible for tracking the energy level
of an EV traveling from node i to node j. Eq. (36) links the energy
level when an EV performs a recharging process at a recharging
station i. Eqs. (37) to (40) guarantee the natural range of an EV’s
battery level.

3. Proposed adaptive large neighborhood search algorithm for
GMFVRP-REC-PR

Adaptive Large Neighborhood Search (ALNS), first proposed
by Ropke and Pisinger [40], consists of removal and insertion
heuristics. These heuristics are developed based on Large Neigh-
borhood Search (LNS). ALNS differs from its previous version,
LNS, as it utilizes more than one removal and more than one
insertion heuristics, a removal and insertion heuristics selection
mechanism that is based on collected statistics, and a simulated
annealing metaheuristic for the acceptance mechanism. Several
studies have showed the excellent performance of ALNS in solv-
ing various real-world transportation problems, like the orien-
teering problem [41] and vehicle routing problems [42–45]. ALNS
has also been adopted to solve routing problems that consider
electric vehicles’ utilization [20,30,46].

This study embeds several mechanisms that enable ALNS to
solve GMFVRP-REC-PR. First, the preprocessing stage is imple-
mented to reduce the searching space by eliminating infeasible
arcs. Second, infeasible solutions are allowed during the itera-
tions. Therefore, this work utilizes a generalized objective func-
tion comprised of the objective function presented in Eq. (7) and
several penalty values. Third, dynamic programming is integrated
into ALNS to determine recharging station visit(s) for the routes of
an EV in an optimal manner. Lastly, the time-efficient evaluation
of neighborhoods is employed in this work to reduce the compu-
tational burden of implementing removal and insertion heuristics
repeatedly.

The flow chart of the proposed ALNS is shown in Fig. 1. Before
ALNS is implemented, the algorithm starts by finding an initial
solution (Section 3.1), setting the necessary parameters, and set
the initial solution to be the best solution σ ∗. There are two
types of termination criterion utilized by the proposed ALNS,
either by maximum number of iterations, ηmax, or by maximum
number of non-improvement iterations, ηmax

noi . First, ALNS will
determine how many customers need to be removed, δ, from
the current solution. This mechanism depends on three param-
eters: minimum number of selected customers, Ωmin, maximum
number of selected customers, Ωmax, and collected scores, π c . A
neighborhood solution, σ ′, is then built by applying removal and
insertion heuristics to the current solution, σ . Several necessary
components for applying this procedure are (1) δ, (2) available
removal heuristics, D , (3) available insertion heuristics, and R (4)
collected scores of removal and insertion heuristics, π .

The local search procedure – localSearch (.) which is explained
in Section 3.7 – will be implemented if the objective value of
a neighborhood solution, λ

(
σ ′
)
, is smaller than λ (σ ∗)

(
1+ δ′

)
where σ ∗ is the best solution so far. If the objective of the solution
after implementing localSearch (.) is less than λ (σ ∗)

(
1+ δd

)
,
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then dynamicProgramming (.), described in Section 3.8, is exe-
cuted.

The implementation of a simulated annealing framework in
ALNS is explained as follows. It starts by calculating ∆, the dif-
ference between λ

(
σ ′
)

and λ (σ) which is obtained by sub-
tracting λ (σ) from λ

(
σ ′
)
. If ∆ is negative, then it means σ ′

is better than σ regardless of its feasibility. This σ ′ is accepted
as a new σ . Furthermore, if λ

(
σ ′
)
is below λ (σ ∗), then σ ′ is

accepted as a new σ ∗. Another solution, σ ′f , is generated by
generateFeasibleSolution (.), which will be further described in
Section 3.9. If the resulting σ ′f is feasible through the feasibility
checking, feasible(.), and the objective value of σ ′f is below the
objective value of the best-feasible solution so far σ ∗f , then σ

∗

f and
timp representing the iteration when the last improvements are
updated. If ∆ is positive, then σ ′ will still replace σ if a particular
value obtained by generating a random number with a range be-
tween 0 and 1 is lower than e

−∆
T , where T is current temperature,

a parameter of simulated annealing. The detail calculation of ∆ is
further explained in Section 3.11. Moreover, a restarting strategy
by adopting σ ∗f to be σ will be utilized every time a particular
number of iterations, ηres, is reached.

The update score procedure – updateScores(.) – becomes the
next step after performing the simulated annealing acceptance
mechanism. This procedure which will be explained in Sec-
tion 3.10 is defined as a function to update the scores of each
removal and insertion heuristics. The scores of these heuristics
later determine the tendency of each heuristic being selected
during iterations, denoting a selection probability of a heuristic.
The selection probability will be updated for each ηp iterations,
and the penalty value of the generalized objective function will
also be updated every time ηs iterations have been reached.
Before ending a particular iteration, T decreases to αT .

3.1. Initial solution

Before generating an initial solution, a pre-processing step is
performed to remove all arcs that clearly cannot be part of a fea-
sible solution; i.e., their inclusion leads to constraint violation(s).
The pre-processing steps are mentioned as follows.

1. v,w ∈ V ∧ qv + qw > 0
2. v ∈ V ′0, w ∈ V ′N+1 ∧ ev + sv + tvw > lw
3. v ∈ V ′0, w ∈ V ′ ∧ ev + sv + tvw + sw + twN+1 > l0
4. v ∈ V ′0, w ∈ V ′ ∧ bvw(qw) > B
5. v ∈ V ′0, w ∈ V ′ ∧∀j ∈ F ′0, i ∈ F ′N+1: bjv(qv + qw)+ bvw(qw)+

bwi(0) > B

Rules 1–3 eliminate arcs that violate the capacity and time
windows restriction. These rules were initially utilized by Schnei-
der et al. [19]. Rules 4 and 5 were specifically developed by Goeke
and Schneider [30] and only hold for EV routes. Rule 4 judges
those arcs that cannot be traveled even by an EV that has full
battery capacity and only carries demand qw along the arc (v,w).
Rule 5 determines whether an arc is feasible or not by checking
the total utilized electricity if the EV comes from a recharging
station node or depot prior to traveling the arc (v,w) and visiting
a recharging station node or depot after traveling the arc (v,w).
If the total utilized electricity is larger than battery capacity in all
scenarios, then the arc could be deemed infeasible.

After the preprocessing process has been done, an initial so-
lution is created. All the customers are first placed on a removal
list. Regret-two insertion heuristic – described in Section 3.6 – is
then performed to put all the customers into the route based on a
generalized objective function. After all the customers have been
assigned to either an EV or an ICV, a local search procedure is then
performed. Lastly, dynamic programming is applied to further

Fig. 1. Flow chart of the proposed ALNS for GMFVRP-REC-PR.

improve the initial solution by optimally solving the recharging
station visits in every route of employed EVs.

3.2. Generalized cost function

Infeasible solutions are allowed during the search in order to
widen the solution spaces that can be traversed. Therefore, the
generalized objective function of a solution, λgen (σ ), is calculated
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by the following equation.

λgen(σ ) = λ(σ )+ γcap.Cap(σ )+ γtw.TW (σ )+ γbatt .BT (σ ) (41)

Here, λgen (σ ) denotes the original objective function (7). There
are three conditions where penalties apply: violations on capac-
ity, time windows, and battery capacity, respectively denoted by
γcap, γtw , and γbatt .

The penalty factors are dynamically adjusted in the following
manner. If there is at least one violation that occurred in ηp

iterations, then the penalty multipliers are multiplied by a factor
Ω in order to increase the possibility of finding feasible solutions;
otherwise, the penalty multipliers are then divided by Ω .

3.3. Concatenation operators

A consideration of infeasible solutions means that the algo-
rithm needs to calculate the total violation every time a new
neighborhood solution is generated. Thus, efficiently evaluating
a new neighborhood is important for the proposed ALNS al-
gorithm in order to minimize the computational time. Nagata
et al. [47] pioneered the development of an efficient approach
that takes O(1) time to evaluate a time window violation and
to implement it in order to solve the vehicle routing problem
with time windows. Schneider et al. [19] extended the approach
that also takes O(1) time to evaluate a battery penalty to deal
with EVRPTW. In this work, we utilize the approach proposed by
Schiffer and Walther [46] — namely, the corridor-based approach
due to its ability to deal with a partial recharging policy. Forward
and backward penalties of time window (TW ) and battery (BT ),
represented respectively by a⃗ and ← a where a ∈ {TW , BT },
are the required information to evaluate neighborhood solutions
efficiently. This approach is particularly able to compute the time
window and battery penalties in O(1) time if the case is that
one node is inserted between two partial routes. To evaluate the
case in which two or more nodes are inserted, either forward or
backward penalties need to be extended prior to the evaluation.

Several variables are needed to estimate the time window and
battery forward and backward penalties. Table 1, which is also
described in Schiffer and Walter (2017), summarizes the variables
and their definitions for calculating the forward penalties, while
the variables for calculating the backward penalties are defined as
bk with k ∈ {min,max, sl, rt, add}, b̃min

i , and b̃max
i . Readers may

to refer to Schiffer andWalther [46] for more details in calculating
each variable and penalty. One slight modification in the part of
calculating electricity consumption is implemented, because this
work considers a realistic energy consumption model. Hence, the
electricity consumption of an EV while traveling from vertex i
to vertex j is calculated as hij = r.bkEij

(
ukE
ij

)
, where bkEij

(
ukE
ij

)
is

obtained by Eq. (3).
The route concatenations are then explained as follows. The

first scenario is insertion of a vertex into two partial routes, and
the latter is the concatenation of two partial routes. Let a route
σi = {0, . . . , x, v, y, . . . , n+ 1}, which is built by inserting vertex
u between a partial route σ1 = {0, . . . , x} and σ2 = {y, . . . , n+1}.
The time window penalty of σ can be calculated by Eq. (42).
Subsequently, the battery penalty of σ is calculated by utilizing
Eq. (43).

TW (σi) =

−→
TW (σ1)+

←

TW (σ2)+max
{
0, amin

v − lv −max
{
0, amin

v − amax
v

}}
+max

{
0,min

{
lv,max

{
ev, amin

v

}}
− bmin

v −max
{
bmax
v − bmin

v , 0
}}

(42)

BT (σi) =
−→
BT (σ1)+

←

BT (σ2)+max
{
0, amin

v − amax
v

}
+ D (43)

Table 1
Variables for calculating forward penalties.
Variables Definition

amin
i Earliest allowed arrival time at a vertex i

amax
i Arrival time at vertex i if as much fuel as

possible has been recharged at preceding
facilities

aslij A possible slack between vertex i and vertex j
that is happening due to time window
limitations while traveling from vertex i to
vertex j

arti Inverse residual battery capacity at vertex i
aaddij Additional fuel that has to be replenished at

the preceding refueling facility to travel arc
(i, j)

ãmin
i Adjusted value of amin

i to prevent a repeated
penalization

ãmax
i Adjusted value of amax

i to prevent a repeated
penalization

where

D =

max
{
0, artv + brtv − B−min

{
B,max

{
0, bmin

v − amin
v

}}}
if v ∈ F ′

max {0, artv + brtv − B−min {B,min {max{0, bmin
v − amin

v },

max{0, amax
v − amin

v } +max{0, bmin
v − bmax

v }}}} otherwise

(44)

The concatenation of two partial routes, σ1 = {0, . . . , x} and
σ2 = {y, . . . , n + 1}, that form σc = {0, . . . , x, y, . . . , n + 1} is
obtained by first extending the variables of forward penalties to
vertex y. The time window and battery penalty are able to be
calculated by Eqs. (45) and (46) consecutively.

TW (σc) =

−→
TW (σ1)+

←

TW (σ2)+max
{
0, amin

y

−ly −max
{
0, amin

y − amax
y

}}
+max

{
0,min

{
lv,max

{
ey, amin

y

}}
−bmin

y −max
{
bmax
y − bmin

y , 0
}}

(45)

BT (σc) =
−→
BT (σ1)+

←

BT (σ2)+max
{
0, amin

y − amax
y

}
+ E (46)

where:

E =

max
{
0, arty + brty − B−min

{
B,max

{
0, bmin

y − amin
y

}}}
if y ∈ F ′

max {0, arty + brty − B−min {B,min {max{0, bmin
y − amin

y },

max{0, amax
y − amin

y } +max{0, bmin
y − bmax

y }}}} otherwise

(47)

If the electricity consumption model excludes cargo load from
the consideration, then changes in battery capacity violation
can be obtained in constant time for most neighborhood op-
erators [46]. However, load is considered to be one factor that
influences energy consumption in this work. This assumption will
lead to a computational burden when concatenation operators in
the algorithm are performed, because whenever a concatenation
operator is performed, recalculations of time windows and bat-
tery forward and backward penalties should be conducted [30].
Hence, a surrogate violation concept, which was proposed by
Goeke and Schneider [30], is adopted by assuming that the
violations of vertices located prior to the point of change re-
main unmodified, and therefore the aforementioned equations to
evaluate the concatenation will remain unchanged. Hereafter, the
surrogate violation version of time windows will be mentioned
as T̃W (σ ) and the surrogate violation version of battery will be
referred as B̃T (σ ). The generalized cost function, which consists
of surrogate violations, will be referred to as λ̃gen (σ ). All the
aforementioned variables in Table 1 should be updated after
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applying the destroy phase, the repair phase, and the local search
procedure. The update requires O(n) time complexity where n is
the number of nodes in σ .

3.4. Customer interval selection

The number of customers to remove is the beginning step to
be performed before applying a removal heuristic. In the pro-
posed ALNS, an adaptive mechanism to choose the number of
customers to be removed is applied. Let [Ωmin,Ωmax] be the
allowable interval of number of customers to be removed. This in-
terval is then divided into ω non-overlapping subintervals. ALNS
then selects a subinterval according to the set of probability
π c
= {π c

1 , π
c
2 , . . . , π

c
ω}. Here, π

c is updated based on an adaptive
mechanism that we will describe further in Section 3.10. From
the selected subinterval, a random number δ of customers is
determined.

3.5. Destroy operators

The developed ALNS employs five removal heuristics. The
following subsections explain the heuristics. The input of the
heuristics is δ, as described in Section 3.4. A removal heuristic
aims to select δ customers to be removed from the solution. After
one of these heuristics is applied to the solution, a list of removed
customers is generated, and the solution becomes an incomplete
solution.

3.5.1. Random removal
The random removal heuristic selects a number of customer

nodes randomly and removes them from the solution. This
heuristic runs the fastest among all utilized removal heuristics
since it does not consider any criterion in removing nodes from
a solution. The time complexity of random removal is O(δ).

3.5.2. Worst removal
This removal heuristic was introduced by Ropke and Pisinger

[40] and aims to remove customer nodes that contribute sig-
nificantly to the total cost if they are at their current position
in a route. All customer nodes are sorted in descending order
based on their cost value, which is determined by the change
in λ̃gen (σ ) that is calculated by removing the respective node.
From the list, the node at position ⌊D.bχ⌋ is selected, where D is
total customers remaining in the solution, b is a uniform random
number between 0 and 1, and χ is a parameter controlling the
randomness of selecting a customer node from D that takes the
value of 6 which is adopted from Goeke and Schneider [30]. Let c
be the number of remaining customers in σ . In each iteration of
removal process, we need O(c) to calculate the objective change
of removing each customer. In addition, we need O(clogc) to
perform the sorting procedure. After each iteration of the worst
removal, we need to update the variables mentioned in Table 1,
requiring time complexity of O(n). Thus, the time complexity of
this removal is O((clogc + n+ c)δ).

3.5.3. Route removal
This removal was first proposed by Hemmelmayr et al. [48].

This heuristic works by randomly selecting a route and remov-
ing all nodes contained in the selected route. This heuristic is
similar to random removal, but it performs at the route level.
The computational time of the route removal heuristic depends
on the number of nodes in the chosen route. Since this operator
removes all customers in a selected route, the time complexity is
O(L) where L is the length of the route.

3.5.4. Shaw removal
This type of removal was introduced by Shaw [49] and later

revised by Goeke and Schneider [30]. The basic concept is to
remove customers that are similar to one another in regards to
several criteria, and therefore they tend to be interchangeable
when an insertion heuristic is implemented. These criteria are
defined as relatedness. The relatedness measure consists of sev-
eral components: geographical distance dij, difference in demand⏐⏐qi − qj

⏐⏐, and difference of the earliest start of service
⏐⏐ei − ej

⏐⏐. The
equation to calculate relatedness is as follows.

R (i, j) = χd
dij

maxi,j∈V
(
dij
) + χq

⏐⏐qi − qj
⏐⏐

maxi∈V (qi)−mini∈V (qi)

+ χe

⏐⏐ei − ej
⏐⏐

maxi∈V (ei)−mini∈V (ei)
(48)

Here, χd, χq, and χe are parameters of each aforementioned cri-
teria in the relatedness measure that take values of 6, 5, and
4, respectively. These values are all adopted from Goeke and
Schneider [30].

One randomly removed customer is required in order to mea-
sure the relatedness of other customers. The customer at position
⌊D.bχ⌋ is then chosen from the removal list, where D is total
customers remaining in the solution, b is a uniform random
number between 0 and 1, and χ is a parameter to control the
randomness of a chosen position. After the first iteration, this
heuristic will select a node from the removal list to measure
the relatedness of other customers that have not been removed
yet. This heuristic will terminate after δ customers have been
removed from a solution. The time complexity of this operator
is O((logc + 1)δc).

3.5.5. Station vicinity
This removal heuristic was first proposed by Goeke and

Schneider [30]. The idea of this heuristic is to re-order customer
nodes that are located relatively close to recharging stations. To
define the vicinity of a station, a radius value r is randomly
chosen in the interval

[
χmin
radius.maxi,j∈V

(
dij
)
, χmax

radius.maxi,j∈V
(
dij
)]
,

where χmin
radius = 0.05 and χmin

radius = 0.15. Next, a recharging
station R is randomly chosen, and customer nodes located within
a distance less than r are removed. The aforementioned step is
repeated until δ customers are removed from a solution. The time
complexity of this operator is O(δ).

3.6. Repair operators

After δ customers have been removed from a solution, the
algorithm will proceed to the repair phase where an insertion
heuristic is selected to repair the solution by inserting the re-
moved δ customers into the incomplete solution obtained from
the destroy phase. This phase aims to build a new better solu-
tion. The following sub-sections are devoted to describing the
employed insertion heuristics during the repair phase.

3.6.1. Sequential insertion heuristics
This type of insertion heuristic works by iteratively performing

the best possible insertion. For each customer node remaining on
the removal list, the increase in the surrogate cost function for the
insertion at every position of a route, λ̃gen (σ ), is evaluated and
the customer node is inserted to the position resulting in the min-
imum cost increase. We also utilize another version of sequential
insertion heuristics by applying noise factor x ∈ [γmin, γmax],
where γmin = 0.8 and γmax = 1.4, to the calculated λ̃gen (σ ) in the
developed ALNS. The latter is referred to as perturbed sequential
insertion heuristics and includes randomness into the original
version, which leads to a higher probability to escape from local
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Fig. 2. (a) The reference solution before any neighborhood move is implemented, (b) the resulting solution after an exchange has been implemented to the reference
solution, (c) the resulting solution after 2-opt* has been applied to the reference solution, (d) illustration of implementing the relocate move, (e) an illustration of
implementing station-in move.

optima. The time complexity of performing this insertion heuris-
tic depends on the number of customers in the removal list δ,
the number of insertion positions Li, and the time complexity
of evaluating the insertion itself. As mentioned in Section 3.3,
the time complexity of the concatenation operators employed
in the insertion procedure to evaluate the cost of insertion is
O(1). Consequently, the time complexity of sequential insertion
heuristics is O(δLi) in each iteration of insertion.

3.6.2. Regret insertion heuristics
This type of insertion was described by Ropke and Pisinger [40]

which later modified by Liu et al. [43]. A k-regret value for
each customer node is calculated as the difference between

the insertion cost in the best position and that cost in the k-
best position. The cost of insertion is evaluated by λ̃gen (σ ). This
research applies the regret-2 and regret-3 insertion heuristics.
Similar to sequential insertion heuristics, the perturbed versions
of these regret insertion heuristics are embedded as options in
the repair phase. Let Li be the number of insertion positions for a
particular node. For each evaluated node in the removal list, the
required time complexity is O(Li) since there are Li evaluations
of objective change. Then, we perform sorting procedure on the
obtained objective changes to find the k best positions, requiring
O(LilogLi). Thus, the time complexity of regret insertion heuristics
is O((Li + (LilogLi))δ) in each iteration of insertion.
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Fig. 3. An illustration of removing the recharging station from a solution.

3.7. Local search procedure

In order to enhance the solution quality, a local search (LS) is
applied. A composite neighborhood comprised of several moves,
i.e. exchange, 2-opt*, relocate, and station-in, are utilized in LS.
Fig. 2.b to e illustrate how the neighborhood moves respec-
tively work, whereas Fig. 2.a depicts the original solution before
exchange and 2-opt* are implemented.

Exchange and 2-opt* are applied for inter-route moves, while
relocate is applied for intra- and inter-route moves, and they
only deal with recharging station nodes. Moreover, 2-opt* is not
allowed to be applied between ICV and EV routes. Station-in
is a special local search operator first proposed by Schneider
et al. [19] and aims to insert a recharging station into EV routes.

The neighborhood size of the exchange move is O(n2
e ), while

the neighborhood size of the 2-opt* move for ICV routes and
EV routes are O(n2

ICV ) and O(n2
EV ), respectively [50]. nICV and nEV

represent the number of nodes visited in ICV routes and EV
routes, respectively, while ne denotes the number of nodes to
be exchanged in the solution. Since the time complexity of eval-
uating the feasibility of inter-route moves is O(1) as explained
in Section 3.3, the time complexity of performing exchange and
2-opt* are consequently the same as their neighborhood sizes.
The time complexity of relocate is O(nEV ) since it evaluates all
available positions in EV routes and the worst-time complexity
of station-in is O(knEV ), where k denotes the number of available
recharging stations.

When the moves generated by LS result in an infeasible so-
lution, they will be automatically discarded. A surrogate cost
function, λ̃gen (.), is utilized to evaluate the moves. These strate-
gies are taken in order to reduce the computational burden of
performing a local search. In each iteration of LS, a list M contain-
ing the best ε solutions generated by the composite neighborhood
is generated. An exact evaluation of the objective value, λgen (.),
is then performed on each solution in M. The time complexity
of exact evaluation of a solution is O(n). Thus, this step requires
a O(εn) time to complete. Next, the solution with the best λgen
on the list is applied to the solution. LS stops when no further
improvement is found by the neighborhood.

3.8. Dynamic programming to solve the optimal placement of a
recharging station

In order to improve the solution quality of routes traveled
by EVs, dynamic programming (DP) is utilized after a number of
search steps to identify optimal placement of recharging station
visits for the routes traveled by EVs. The DP utilized in this work
is adopted from Schiffer and Walther [46] with a modification
that will be explained in the following paragraph. DP starts by
removing all the recharging station visits of a particular route.
Fig. 3 depicts a solution that initially consists of a visit to recharg-
ing station 3 and later is dropped, leading to a solution solely
consisting of customer node visits.

After removing recharging stations in the solution, the dy-
namic programming procedure is executed. The procedure tries

Table 2
A description of label component for REFs.
T cost
i Cost of path

T F
i Number of recharging station visits on path

T tMin
i Earliest arrival time on node i without running out of electric

energy
T tMax
i Latest arrival time on node i recharging as much as possible at

preceding recharging stations, without violating time windows
T rtMax
i Maximal amount of energy that can be recharged (expressed

in time unit)

to create a path by inserting each possible recharging station
after each customer node in the solution, starting from the first
customer node. A path is further extended as long as it remains
feasible and is not dominated by another path. Resource ex-
tension functions (REFs) are used for feasibility and dominance
checks of each developed path. By doing so, optimal recharging
station visits for the considered route are identified. Based on
the aforementioned explanation, the worst-time complexity of
this procedure is O(kLroute ), where k and Lroute denote the num-
ber of available recharging stations and the number of insertion
positions in the evaluated EV route, respectively.

The original idea of REFs was proposed by Desaulniers et al.
[51] and extended by Schiffer and Walther [46]. A modification is
made to adapt DP to our problem by defining hij = r.bkEij (u

kE
ij ). The

REFs necessary to extend a path from node i to node j are written
in Eqs. (49)–(55). Table 2 describes the label components.

T cost
j = T cost

i + dij (49)

T F
j = T F

i +
1 if j ∈ F ′,
0 else,

(50)

T tMin
j =

{
max

{
ej, T tMin

i + tij
}

if T F
i = 0,

max
{
ej, T tMin

i + tij
}
+ Xij

(
T tMin
i , T tMax

i

)
else,

(51)

T tMax
j =

{
min

{
lj,max

{
ej, T tMin

i +max
{
0, T rtMax

i

}
+ tij

}}
if i ∈ F ′

min
{
lj,max

{
ej, T tMax

i + tij
}}

else,
(52)

T rtMax
j =

T rtMax
i + hij if T F

i = 0,
min

{
H,max

{
0, T rtMax

i − Sij
(
T tMin
i

)}
+ hij

}
if i ∈ F ′,

min
{
H,max

{
0, T tMax

i −min
{
Sij
(
T tMin
i

)
, T tMax

i − T tMin
i

}}
+ hij

}
else,

(53)

Xij
(
T tMin
i , T tMax

i

)
=

max
{
0,max

{
0, T rtMax

i − Sij
(
T tMin
i

)}
+ hij − H

}
if i ∈ F ′

max
{
0,max

{
0, T rtMax

i −min
{
Sij
(
T tMin
i

)
, T tMax

i

− T tMin
i

}}
+ hij − H

}
else,

(54)

Sij
(
T tMin
i

)
= max

{
0, ej −

(
T tMin
i + tij

)}
(55)

A label Lj =
(
T cost
j , T F

j , T
tMin
j , T tMax

j , T rtMax
j

)
is feasible if the follow-

ing requirement holds:

(T tMin
j ≤ lj) ∧ (T tMin

j ≤ T tMax
j ) ∧

(
T rtMax
j ≤ H

)
(56)

For the dominance check, a label L2 is dominated by L1 and thus
neglected if:

T cost
1 ≤ T cost

2 , (57)

T rtMax
1 −

(
T tMax
1 − T tMin

1

)
≤ T rtMax

2 −
(
T tMax
2 − T tMin

2

)
, (58)

T rtMax
1 −

(
T tMin
2 − T tMin

1

)
≤ T rtMax

2 . (59)

3.9. Generating a feasible solution procedure

As an effort to obtain feasible solutions, an approach proposed
by Vidal et al. [52] is employed in this algorithm; i.e. we use
the local search procedure with penalty weights multiplied by

9
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100. If no feasible solution is found after applying the procedure,
then penalty weights are multiplied by 10 and a local search
is performed again. No further steps are conducted to obtain a
feasible solution if the second step fails to find a feasible solution.

3.10. Adaptive mechanism

During the destroy and repair phase, heuristics are selected
based on their probability values. This section describes the adap-
tive mechanism of the destroy and repair phase in detail, and a
similar procedure is also applied in order to select the interval of
number of customers to be removed, as described in Section 3.4.

The probability values assigned to each heuristic reflect how
successful each heuristic improves the solution during iterations
of ALNS. Here, D and R are a set of removal and insertion heuris-
tics, as briefly explained in Section 3. Let D = {D1,D2, . . . ,DND}

and R = {R1, R2, . . . , RNR}, where ND and NR represent the
number of available removal heuristics and available insertion
heuristics, consecutively. Additionally, P (Di) and P (Ri) represent
the probability of choosing Di and Ri, respectively, where Di is the
removal heuristic i and Ri is the insertion heuristic i. Both Di and
Ri depend on the weight of each heuristic, π = {πD

∪πR
}, where

πD and πR consecutively represent a set of weights of removal
heuristics and insertion heuristics where πD

= {πD
1 , π

D
2 , . . . , π

D
ND}

and πR
= {πR

1 , π
R
2 , . . . , π

R
NR}. These weights are calculated using

Eqs. (60) and (61).

P(Di) =
πD
i∑ND

j=1 π
D
j

(60)

P(Ri) =
πR
i∑NR

j=1 π
R
j

(61)

These weights are always updated every ηs iterations. In order
to calculate a weight of a heuristic, a score is collected after
a heuristic performs, which is denoted as σ D

i and σ R
i where

σ D
i is the score of removal heuristic i and σ R

i is the score of
insertion heuristic i. The score is updated based on a scoring
system

(
εf , εb, εi, εw

)
. After performing a preliminary study, we

set εf = 15, εb = 9, εi = 4, and εw = 1. If a new best
feasible solution is found, then εf is added to the total score of
the utilized heuristic. If a new best solution is found, then εb is
added. If the new solution improves the current one, then εi is
added, and if the new solution results in a worse solution yet it is
still accepted by the SA acceptance mechanism, then εw is added.
After ηs iterations have passed, the weight of each heuristic is
updated using Eqs. (62) and (63). After the weight is updated, all
statistics in Eqs. (62) and (63) are set back to zero.

πD
i = ϕ

σ D
i

χD
i
+ (1− ϕ)πD

i (62)

πR
i = ϕ

σ R
i

χR
i
+ (1− ϕ)πR

i (63)

where:
ϕ is the smoothing factor and ranges between 0 and 1;
χD
i is the frequency of utilizing removal heuristic i;
χR
i is the frequency of utilizing insertion heuristic i.

3.11. Simulated annealing acceptance mechanism

The concept of the Simulated Annealing (SA) mechanism is to
not always reject worse solutions. We ccan accept a worse solu-
tion with a particular probability depending on (i) the difference
between cost values of the new and the current solutions and (ii)
number of iterations that has been made.

A careful treatment needs to be conducted since we allow
for a dynamic adjustment of penalty factors. The main impact
is that the cost value of a solution strongly depends on the
current values of the penalty factors. Consequently, evaluating
two solutions by utilizing two different sets of penalty values can
be misleading, because the cost difference may be merely caused
by the difference in penalty values.

Let
(
γ σcap, γ

σ
tw, γ

σ
batt

)
be the vector of penalty values employed

for evaluating λgen (σ ) and
(
γ σ
′

cap, γ
σ ′

tw , γ
σ ′

batt

)
be the penalty values

used for evaluating λgen
(
σ ′
)

at the time of solution creation.
In order to make two solution, σ and σ ′, comparable, revised
penalty values are calculated using Eq. (64) prior to calculating
the acceptance probability.(
γ eval
cap , γ

eval
tw , γ eval

batt

)
=

(
1
2
.

(
γ S
cap + γ

S′
cap

)
+

1
2
.

(
γ S
tw + γ

S′
tw

)
+

1
2
.

(
γ S
batt + γ

S′
batt

))
(64)

The cost difference between two solutions is then calculated
based on the revised penalty values using Eq. (65), and dete-
riorating solutions are accepted with an acceptance probability
calculated by using Eq. (66).

∆(σ ′, σ ) =
λevalgen (σ

′)− λevalgen (σ )

λevalgen (σ )
(65)

p(σ , σ ′, T ) = e
−∆(σ ′,σ )

T (66)

A value for the parameters related to the SA mechanism is set
by following Goeke and Schneider (2015). The initial temperature
is determined so that a solution that is worse than the initial solu-
tion by 50% is accepted with a probability of 50%. The temperature
is then decreased by a constant factor such that the temperature
is below Tthreshold = 0.0001 in the last 20% of iterations.

4. Computational results

Section 4 focuses on describing the performance of the pro-
posed ALNS algorithm and the benefit of dealing with GMFVRP-
REC-PR in terms of carbon emission reduction. The proposed
ALNS algorithm was coded in C++ and tested on a computer with
an Intel Core i7-7700 CPU @3.60 GHz processor and 8.00 GB RAM.

4.1. Test instances

The benchmark instances are obtained from Goeke and
Schneider [30]. These instances were originally proposed by
Demir et al. [53] for the pollution routing problem (PRP). Each
instance consists of a set of customers whose locations represent
real cities in the UK, and each customer has an amount of demand
and particular time windows that are all random. In total, there
are nine benchmark instance sets, varying in the number of
customers (10 to 200 customers). Each instance set contains
20 different instances. A modification was made by Goeke and
Schneider [30] in a way that there is only one value of vehicle
speed, 90 kilometers per hour, instead of varying speed values in
PRP. In addition, Goeke and Schneider [30] generated a number
of recharging stations, i.e. ⌊0.1.|N|⌋, where N is number of cus-
tomers, and the location of each recharging station is generated
randomly. The variables in the realistic energy consumption are
obtained from Demir et al. [53]. The value of FE, fuel conversion
factor, is 2.6 and obtained from Macrina et al. [33] by rounding
up to one number after the decimal point. The parameters of the
realistic energy consumption model are obtained from Goeke and
Schneider [30].

10
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Table 3
The considered parameters in the parameter selection phase.
The bold values are the best combination among all available
combinations under a 2k−2 factorial design experiment that results
in the lowest average cost.
Parameter Values

ηmax
noi (800, 1400)
ηres (400, 600)
ηS (50, 80)
ηp (10, 30)
ϕ (0.6, 0.8)
γ init
cap , γ

init
tw , γ

init
batt (200, 400)

Ω (1.15, 1.7)

4.2. Parameter calibration

Before applying our developed ALNS algorithm to the test
instances, we conduct the parameters’ selection procedure. The
aim of the parameter selection is to find the combination of
considered parameters among the available options that result

in the best performance of the algorithm. We utilize a 2k−2

factorial design to select the best combination of parameters and
randomly choose 18 out of 180 instances to be solved, or two
problems from each of nine test instance sets. ALNS is then run
five times for each instance.

The parameters considered in this phase are: (1) Number of
maximum non-improvement iterations (ηmax

noi ), (2) Number of nec-
essary iterations to perform a restart strategy (ηres), (3) Number
of necessary iterations for updating the probability of selecting
removal and insertion heuristics (ηS), (4) Number of necessary
iterations for updating the penalty values (ηp), (5) The smoothing
factor (ϕ), (6) Initial penalty values

(
γ init
cap , γ

init
tw , γ

init
batt

)
, and (7)

Multiplication factor of penalty values (Ω). Table 3 contains the
considered parameters of ALNS.

4.3. Performance of ALNS on solving E-VRPTWMF instances

We then apply our proposed ALNS to solve the benchmark
test instances proposed by Goeke and Schneider [30]. The prob-
lem addressed by Goeke and Schneider [30] is E-VRPTWMF and

Table 4
Comparison summary of solutions obtained by Goeke and Schneider [30] and our developed ALNS.
Instance set Goeke and Schneider (2015) ALNS Average gap (%)

ICV EV Average cost Average CPU
time (mins)

ICV EV Average cost Average CPU
time (mins)

Instance set 1:
10 customers

20 20 479.612 0.034 20 20 479.659 0.008 0.012

Instance set 2:
15 customers

33 18 639.51 0.078 34 17 626.46 0.022 −0.901

Instance set 3:
20 customers

40 21 787.579 0.156 40 21 788.849 0.047 0.148

Instance set 4:
25 customers

40 33 824.448 0.278 40 33 827.367 0.126 0.328

Instance set 5:
50 customers

78 63 1414.383 1.455 78 63 1427.33 1.368 0.888

Instance set 6:
75 customers

108 100 2041.475 2.876 109 99 2044.487 3.954 0.896

Instance set 7:
100 customers

139 129 2564.567 6.705 139 128 2594.574 11.099 1.192

Instance set 8:
150 customers

204 197 3639.389 11.912 204 197 3652.167 30.784 0.405

Instance set 9:
200 customers

271 256 4517.461 16.715 271 254 4473.824 91.94 −0.988

Table 5
Computational results for small GMFVRP-REC-PR instances (10 and 15 customers).
Instance ICV EV CPLEX ALNS Instance ICV EV CPLEX ALNS

Total cost CPU Time(mins) %Gap (cost) %Gap (time) Total cost CPU Time(mins) %Gap (cost) %Gap (time)

E-UK10_01 1 1 544.319 25.031 0.00 −96.00 E-UK15_01 2 0 1071.18 35.474 0.00 −97.71
E-UK10_02 1 1 692.87 10 0.00 −90.41 E-UK15_02 1 1 654.05 306.2 0.00 −99.39
E-UK10_03 1 1 664.81 18.859 0.00 −95.55 E-UK15_03 2 1 997.13 3294.88 0.00 −99.95
E-UK10_04 1 1 689.8 22.547 0.00 −96.11 E-UK15_04a 2 1 1014.06 7361.45 0.74 −99.95
E-UK10_05 1 1 575.95 11.937 0.00 −93.06 E-UK15_05 2 0 1094.87 3.026 0.00 −63.07
E-UK10_06 1 1 805.95 69.576 0.00 −98.74 E-UK15_06a 2 1 806.71 7629.62 −3.23 −99.98
E-UK10_07 1 1 729.888 226.295 2.65 −99.59 E-UK15_07 2 1 865.24 2649.22 0.00 −99.94
E-UK10_08 1 1 779.61 23.946 0.00 −95.85 E-UK15_08a 1 1 538.34 7208.15 0.00 −99.95
E-UK10_09 1 1 644.87 131.134 0.61 −99.74 E-UK15_09 2 1 866.07 2019.9 0.00 −99.85
E-UK10_10 1 1 755.47 297.275 0.11 −99.85 E-UK15_10 1 1 769.57 3210.42 0.00 −99.94
E-UK10_11 1 1 987.842 10.483 0.00 −91.93 E-UK15_11 2 0 972.35 4337 0.00 −99.98
E-UK10_12 1 1 578.846 47.377 0.00 −98.41 E-UK15_12 2 1 1061.66 1174.41 0.00 −99.86
E-UK10_13 1 1 756.9 85.66 0.00 −99.32 E-UK15_13a 2 1 882.072 7300.38 −0.29 −99.99
E-UK10_14 1 1 578.12 38.797 0.00 −99.18 E-UK15_14a 2 1 1221.93 7346.17 −0.17 −99.98
E-UK10_15 1 1 343.64 45.661 0.00 −99.09 E-UK15_15a 1 1 731.7 7228.24 0.00 −99.99
E-UK10_16 1 1 548.095 28.923 0.00 −96.55 E-UK15_16a 1 1 734.15 7209.13 0.00 −99.98
E-UK10_17 1 1 569.836 26.083 0.00 −98.41 E-UK15_17a 2 1 996.58 7249.99 0.00 −99.99
E-UK10_18 1 1 535.95 200.321 0.00 −99.76 E-UK15_18 2 1 1101.34 4315.18 0.00 −99.97
E-UK10_19 1 1 575.138 22.604 0.00 −98.17 E-UK15_19 1 1 498.81 119.59 0.00 −97.25
E-UK10_20 1 1 495.153 65.505 0.00 −98.53 E-UK15_20 2 1 687.24 4046.73 0.00 −99.97
Average 0.17 −97.21 Average −0.15 −97.83

aIndicates that the instance is not solved to optimality.
Bold values indicate that the ALNS can obtain better solution compared to CPLEX.
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Table 6
Computational results of the propose ALNS on solving the GMFVRP-REC-PR instances.
Instance mIC mE Best Cost Stdev CV CPU

Time
Instance mIC mE Best Cost Stdev CV CPU

Time
Instance mIC mE Best Cost Stdev CV CPU

Time

E-UK10_01 1 1 544.32 0.00 0.00 0.02 E-UK25_01 2 1 915.51 2.00 0.22 0.14 E-UK100_01 7 7 3565.07 36.89 1.02 21.02
E-UK10_02 1 1 692.87 0.29 0.04 0.02 E-UK25_02 2 2 1031.62 3.25 0.31 0.21 E-UK100_02 7 6 3551.73 49.04 1.36 10.75
E-UK10_03 1 1 664.81 0.00 0.00 0.01 E-UK25_03 2 1 598.60 9.89 1.63 0.17 E-UK100_03 7 6 3230.70 48.66 1.49 25.33
E-UK10_04 1 1 689.80 0.36 0.05 0.01 E-UK25_04 2 1 856.11 0.00 0.00 0.10 E-UK100_04 7 7 3052.26 61.52 1.97 21.97
E-UK10_05 1 1 575.95 2.18 0.38 0.01 E-UK25_05 2 2 997.76 16.81 1.65 0.15 E-UK100_05 7 7 2730.19 30.42 1.10 13.47
E-UK10_06 1 1 805.95 0.65 0.08 0.01 E-UK25_06 2 2 919.53 22.56 2.41 0.12 E-UK100_06 7 7 3563.61 18.17 0.51 8.58
E-UK10_07 1 1 749.22 0.69 0.09 0.02 E-UK25_07 2 1 1083.86 6.62 0.61 0.17 E-UK100_07 6 6 3058.37 66.32 2.12 21.27
E-UK10_08 1 1 779.61 0.00 0.00 0.02 E-UK25_08 2 1 1217.34 21.23 1.71 0.07 E-UK100_08 7 6 3375.74 51.37 1.50 14.28
E-UK10_09 1 1 648.78 0.00 0.00 0.01 E-UK25_09 2 2 890.78 0.08 0.01 0.11 E-UK100_09 7 6 2759.51 12.78 0.46 27.33
E-UK10_10 1 1 756.31 2.22 0.29 0.01 E-UK25_10 2 2 1121.35 1.72 0.15 0.23 E-UK100_10 6 6 3119.50 16.84 0.54 18.91
E-UK10_11 1 1 987.85 0.00 0.00 0.01 E-UK25_11 2 2 1140.37 13.05 1.13 0.24 E-UK100_11 7 7 3596.45 60.91 1.65 13.71
E-UK10_12 1 1 578.85 0.00 0.00 0.01 E-UK25_12 2 2 1354.48 2.44 0.18 0.09 E-UK100_12 6 6 3008.03 67.68 2.18 11.32
E-UK10_13 1 1 756.91 0.00 0.00 0.01 E-UK25_13 2 2 605.13 1.70 0.28 0.11 E-UK100_13 7 6 3466.39 55.44 1.56 17.57
E-UK10_14 1 1 578.13 0.00 0.00 0.01 E-UK25_14 2 2 1240.10 34.79 2.76 0.11 E-UK100_14 7 7 3651.74 36.23 0.98 24.26
E-UK10_15 1 1 343.64 0.20 0.06 0.01 E-UK25_15 2 1 1249.93 3.32 0.27 0.04 E-UK100_15 8 7 3856.20 83.29 2.11 18.46
E-UK10_16 1 1 548.10 0.00 0.00 0.02 E-UK25_16 2 2 1066.19 10.67 0.99 0.12 E-UK100_16 6 6 2840.79 18.69 0.65 18.33
E-UK10_17 1 1 569.84 0.00 0.00 0.01 E-UK25_17 2 2 1659.60 6.58 0.41 0.04 E-UK100_17 8 7 3822.75 91.08 2.32 12.34
E-UK10_18 1 1 535.95 0.00 0.00 0.01 E-UK25_18 2 1 1292.06 5.72 0.44 0.12 E-UK100_18 7 6 3137.17 15.97 0.50 16.63
E-UK10_19 1 1 575.14 0.00 0.00 0.01 E-UK25_19 2 2 1429.98 24.23 1.67 0.13 E-UK100_19 7 6 2933.26 32.35 1.10 26.80
E-UK10_20 1 1 495.16 0.00 0.00 0.02 E-UK25_20 2 2 1054.68 9.13 0.86 0.17 E-UK100_20 7 7 3783.91 72.86 1.89 9.07

E-UK15_01 2 0 1071.18 0.00 0.00 0.01 E-UK50_01 4 3 1767.69 32.65 1.81 2.23 E-UK150_01 10 10 4097.71 68.71 1.65 29.61
E-UK15_02 1 1 654.05 0.33 0.05 0.03 E-UK50_02 4 3 1887.33 27.36 1.42 1.35 E-UK150_02 10 10 4948.88 131.00 2.60 72.14
E-UK15_03 2 1 997.13 0.00 0.00 0.03 E-UK50_03 4 3 1881.52 19.65 1.03 2.98 E-UK150_03 10 9 4047.67 94.37 2.28 73.56
E-UK15_04 2 1 1014.06 0.00 0.00 0.06 E-UK50_04 4 4 2208.11 34.82 1.55 1.99 E-UK150_04 11 10 4673.19 25.32 0.54 94.39
E-UK15_05 2 0 1094.88 0.00 0.00 0.02 E-UK50_05 3 3 2042.18 24.33 1.17 1.03 E-UK150_05 10 10 4283.76 102.46 2.34 55.38
E-UK15_06 2 1 806.71 14.26 1.78 0.02 E-UK50_06 4 4 1596.36 25.95 1.59 2.83 E-UK150_06 11 10 4288.05 55.55 1.28 52.14
E-UK15_07 2 1 865.24 0.00 0.00 0.03 E-UK50_07 4 3 1466.89 17.64 1.18 2.56 E-UK150_07 11 10 5005.33 81.34 1.59 42.82
E-UK15_08 1 1 538.34 0.44 0.08 0.06 E-UK50_08 4 3 1715.72 21.72 1.25 0.70 E-UK150_08 10 10 4327.06 69.17 1.57 109.27
E-UK15_09 2 1 866.07 0.46 0.05 0.05 E-UK50_09 4 3 2117.84 36.00 1.65 1.59 E-UK150_09 10 10 4673.95 43.57 0.92 47.52
E-UK15_10 1 1 769.57 0.00 0.00 0.03 E-UK50_10 4 3 2048.91 22.19 1.07 2.61 E-UK150_10 10 10 4562.50 31.80 0.69 57.36
E-UK15_11 2 0 972.35 0.00 0.00 0.01 E-UK50_11 4 3 1992.11 32.54 1.61 0.65 E-UK150_11 10 10 5070.56 132.82 2.58 40.88
E-UK15_12 2 1 1061.66 0.00 0.00 0.03 E-UK50_12 4 3 1731.31 5.93 0.34 0.78 E-UK150_12 11 10 4982.46 68.91 1.36 43.70
E-UK15_13 2 1 882.07 1.52 0.17 0.02 E-UK50_13 4 3 1744.83 32.02 1.80 1.97 E-UK150_13 10 9 4767.65 69.65 1.44 77.08
E-UK15_14 2 1 1221.93 7.80 0.64 0.02 E-UK50_14 4 3 2064.35 8.05 0.39 1.13 E-UK150_14 10 10 4801.21 62.29 1.27 48.44
E-UK15_15 1 1 731.70 1.70 0.23 0.02 E-UK50_15 3 3 1783.37 23.30 1.30 2.10 E-UK150_15 10 9 4123.96 76.46 1.81 55.93
E-UK15_16 1 1 734.15 0.00 0.00 0.02 E-UK50_16 4 3 1684.68 24.01 1.40 1.37 E-UK150_16 10 10 4936.33 95.25 1.90 46.00
E-UK15_17 2 1 996.58 0.00 0.00 0.02 E-UK50_17 4 3 1161.70 15.25 1.30 1.92 E-UK150_17 10 10 4738.68 36.42 0.76 91.71
E-UK15_18 2 1 1101.34 14.74 1.31 0.02 E-UK50_18 4 4 1968.20 39.52 1.96 1.59 E-UK150_18 10 10 4851.65 74.65 1.51 52.23
E-UK15_19 1 1 498.81 0.00 0.00 0.05 E-UK50_19 4 3 1788.58 16.40 0.91 1.22 E-UK150_19 10 10 5437.31 83.80 1.52 22.21
E-UK15_20 2 1 687.24 1.55 0.23 0.02 E-UK50_20 4 3 2088.26 32.13 1.51 1.03 E-UK150_20 10 10 5071.47 18.08 0.36 63.58

E-UK20_01 2 1 1071.08 0.00 0.00 0.05 E-UK75_01 6 5 2913.18 30.85 1.04 4.14 E-UK200_01 14 14 5798.64 82.10 1.39 173.71
E-UK20_02 2 1 1154.29 23.69 2.02 0.04 E-UK75_02 6 5 2387.97 19.59 0.81 5.07 E-UK200_02 12 12 5528.58 59.75 1.07 72.38
E-UK20_03 2 1 599.16 0.00 0.00 0.06 E-UK75_03 5 5 2510.62 20.86 0.83 7.08 E-UK200_03 14 13 5681.30 18.09 0.32 37.76
E-UK20_04 2 1 1080.80 2.06 0.19 0.09 E-UK75_04 6 5 2261.07 22.46 0.98 5.08 E-UK200_04 13 13 5084.53 40.96 0.79 94.81
E-UK20_05 2 1 1011.65 12.30 1.21 0.04 E-UK75_05 5 5 2673.89 36.53 1.35 6.12 E-UK200_05 14 13 6036.57 91.61 1.48 108.43
E-UK20_06 2 1 1137.83 1.66 0.15 0.06 E-UK75_06 6 5 2798.60 31.65 1.12 3.45 E-UK200_06 13 13 4904.51 87.39 1.74 139.46
E-UK20_07 2 1 705.06 2.54 0.36 0.07 E-UK75_07 6 5 2810.67 7.79 0.28 3.09 E-UK200_07 14 13 5497.56 112.19 1.99 158.71
E-UK20_08 2 1 888.43 0.00 0.00 0.06 E-UK75_08 6 5 2816.02 38.12 1.33 6.37 E-UK200_08 14 13 5842.03 138.44 2.32 135.57
E-UK20_09 2 1 1148.65 13.14 1.14 0.03 E-UK75_09 5 5 2760.46 25.43 0.91 6.93 E-UK200_09 13 12 5086.59 59.20 1.15 217.20
E-UK20_10 2 1 914.49 0.32 0.04 0.08 E-UK75_10 5 5 2881.38 17.65 0.61 10.78 E-UK200_10 13 14 6200.38 29.75 0.48 104.63
E-UK20_11 2 1 1230.51 3.33 0.27 0.06 E-UK75_11 5 5 1860.18 34.99 1.84 13.12 E-UK200_11 14 13 5183.09 97.45 1.85 141.28
E-UK20_12 2 1 1089.74 1.38 0.13 0.05 E-UK75_12 5 5 2489.64 21.28 0.84 8.14 E-UK200_12 13 12 6094.57 52.52 0.85 150.32
E-UK20_13 2 1 1070.17 11.90 1.11 0.04 E-UK75_13 5 5 2951.43 34.91 1.17 2.72 E-UK200_13 13 12 6076.72 68.49 1.11 108.79
E-UK20_14 2 2 1345.53 0.00 0.00 0.08 E-UK75_14 5 5 2756.39 35.63 1.27 7.04 E-UK200_14 14 13 5547.18 117.10 2.06 126.56
E-UK20_15 2 1 1075.22 9.52 0.87 0.06 E-UK75_15 5 5 2939.96 44.53 1.50 3.08 E-UK200_15 13 12 6040.53 116.06 1.89 69.27
E-UK20_16 2 1 1113.41 0.74 0.07 0.05 E-UK75_16 5 5 2723.48 21.60 0.79 1.54 E-UK200_16 14 13 5624.33 107.22 1.87 152.27
E-UK20_17 2 1 1196.03 6.05 0.50 0.11 E-UK75_17 6 5 2604.64 29.01 1.09 8.48 E-UK200_17 13 13 6308.25 135.77 2.12 110.58
E-UK20_18 2 1 1197.82 1.69 0.14 0.03 E-UK75_18 5 5 2460.94 49.78 1.98 6.02 E-UK200_18 14 13 5575.6 100.17 1.77 150.04
E-UK20_19 2 1 1080.58 11.66 1.06 0.03 E-UK75_19 5 5 2379.39 41.72 1.72 5.71 E-UK200_19 13 12 5013.21 108.26 2.10 197.80
E-UK20_20 2 1 1154.27 25.93 2.20 0.04 E-UK75_20 6 5 2711.73 44.30 1.60 4.97 E-UK200_20 13 13 6031.46 96.19 1.56 147.47

tackles a mixed fleet between EV and ICV, a full recharging
policy, and realistic energy consumption, while GMFVRP-REC-PR
possesses similar characteristics with two main differences: a
partial recharging policy is utilized instead of a full recharging
policy, and carbon emission minimization takes an important role
as part of the objective function of this problem. Thus, we verify
our ALNS algorithm by performing a comparison with Goeke
and Schneider [30], which can be achieved by eliminating the
emission cost from the objective function. We run our ALNS
to solve each instance with five replications and we used the

most minimum one to perform the comparison with Goeke and
Schneider [30] since the benchmark results were also obtained
from the best among the replications performed by Goeke and
Schneider [30]. Although our algorithm is built to solve the partial
recharging policy, it is still comparable since we adopt the dataset
from Goeke and Schneider [30]. The gaps between our proposed
ALNS and Goeke and Schneider [30] are calculated using Eq. (67).
Table 4 presents a summary of the comparison.

Gap =
Costbenchmark − CostALNS

Costbenchmark
× 100% (67)
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Table 7
Statistics for the destroy and repair operators.
Operator Solution degradation without

this operator
Average number of new best
solutions found by the operator

Random Removal −1.03 2.07
Worst Removal −0.77 11.85
Route Removal −0.05 17.11
Shaw Removal −1.06 11.27
Station Vicinity Removal −1.76 7.70

Sequential Insertion −0.99 2.32
Sequential Insertion with Perturbation −1.04 1.86
Regret Insertion −1.39 23.08
Regret Insertion with Perturbation −1.07 22.75

Table 4 summarizes the information of comparison. The
columns ICV and EV represent the total utilized ICV and EV in all
datasets, respectively, for each instance set. We take the average
total cost of the twenty datasets in each instance set. These
average values are listed in column Average cost in Table 4. Based
on the conducted experiments, the largest average gap between
our developed ALNS and that of Goeke and Schneider [30] is
1.192%, which can be found in Instance set 7: 100 customers.
However, the proposed ALNS managed to obtain better results in
Instance Set 9: 200 customers with the average gap of −0.988%.
Although our ALNS algorithm does not outperform that of Goeke
and Schneider [30], our algorithm could solve the problem with
a partial recharging policy, which means closer to the real-world
condition, while Goeke and Schneider [30] focused on solving the
full recharging policy.

The average computational time of our proposed ALNS on
solving EVRPTWMF ranges from 0.008 to 91.94 min. In particular,
the ALNS performs faster compared to Goeke and Schneider [30]
in solving instances with 10 to 50 customers, while it performs
slower in solving the remaining instances. There are various fac-
tors influencing the computational time, i.e. CPU speed, memory
size, operating system, compiler, computer program, and pre-
cision [54]. In addition, the dynamic programming procedure
applied to EV routes is rather expensive in terms of computational
time because it guarantees the optimal placement of recharging
station(s) if a feasible route exists.

4.4. Performance of ALNS on GMFVRP-REC-PR instances

We now apply our ALNS algorithm to solve GMFVRP-REC-PR.
For the small instances, we compare ALNS results with the results
from CPLEX in Yu et al. [35]. CPLEX is run with a limit of two hours
while ALNS is run with 5 replications on each instance. Table 5
presents the solution values and the computational times in
seconds for two instance sets, 10 and 15 customers. Both Columns
ICV and EV represent the number of utilized ICV and EV. Column
Total Cost denotes the objective value of each instance obtained
by CPLEX. In terms of computational time, our ALNS algorithm
outperforms CPLEX solver significantly. For instances with 10
customers, our ALNS does not find an optimal solution for several
instances, i.e. E-UK10_07, E-UK10_09, and E-UK10_10, with an
average gap of 0.17%. However, we do obtain better solutions for
several instances with 15 customers, i.e. E-UK15_06, E-UK15_13,
and E-UK15_14, and one worse solution for one instance, i.e. E-
UK15_04, with an average gap of −0.15%. CPLEX solved all small
instances to the optimality with long computational times. Based
on the conducted experiments, the ALNS performs under a less
computational time with competitive solution quality compared
to results from CPLEX solver. Consequently, our ALNS is the only
method applied to remaining larger instances from Goeke and
Schneider [30], varying from 20 customers to 200 customers.

Table 6 shows the results of all instances solved by ALNS.
Column Total Cost presents the best objective value obtained

among five replications. Columns mIC and mE denote the number
of utilized ICVs and EVs, respectively. Two measurements of
robustness are presented, i.e. standard deviation (stdev) and co-
efficient of variance (CV). As shown in Table 6, the computational
time increases as the number of customers increases. Regarding
to the robustness of the proposed ALNS, the results show that the
standard deviation value tend to increase as the objective value
increases. Therefore, CV is also presented as a companion to stdev.
Based on the results, ALNS shows a relatively good stability since
the average value of CV is 0.95%, while the maximum value is
2.76%.

% Gap (cost) =
(best total cost obtained by ALNS − Total cost)× 100%

Total cost

% Gap (time) =
(average computational time of ALNS − Time)× 100%

Time

4.5. Sensitivity analyses on destroy and repair operators of ALNS

Table 7 summarizes the statistics on removing different de-
stroy and repair operators. These statistics are built from five
runs over a subset of instances. The first column shows the
percentage of solution degradation when a particular operator is
not considered. Based on this column, the station vicinity removal
is the most useful operator among all the employed destroy
operators, followed by the Shaw removal and random removal.
Among all the repair operators, the regret insertion is superior
to all other repair operators, followed by the regret insertion
with perturbation. The success of regret insertions – both with
and without perturbation – come from the criterion for selecting
the node to be inserted. While the sequential insertions select
the node with the least cost, the regret insertions consider not
only the best position but also the 2nd and 3rd best positions in
terms of cost. By harnessing this criterion, the regret insertions
could help ALNS escape from the myopic behavior of sequential
insertions. In the third column of Table 7, the percentage of new
best solutions found by each operator is presented. Among all
removal operators, the statistics show that route removal is the
operator that finds the highest number of the best solutions.
Again, the two versions of regret insertion become the superior
ones in terms of the frequency of finding new best solutions.

4.6. Potential emission reduction of solving GMFVRP-REC-PR

One of the main aims of this research is to show the potential
emission reduction of addressing GMFVRP-REC-PR. In order to
analyze it, we utilize the reduced version of GMFVRP-REC-PR by
eliminating emission cost from the objective function. The orig-
inal version of GMFVRP-REC-PR is stated as an original scenario,
while the other version of the problem is named as a revised
scenario. Four medium instance sets are selected for this purpose:
20, 25, 50, and 75 customers.

Our finding is that emission reduction could be gained by
solving GMFVRP-REC-PR. Fig. 4(a) to (d) depict the difference
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Fig. 4. Total emission cost calculated from the solutions in instance sets of (a)
20 customers, (b) 25 customers, (c) 50 customers, and (d) 75 customers.

in terms of total carbon emissions calculated from the obtained
solution of each dataset in each instance set. The average CO2
reductions are 11.09%, 17.95%, 15.68%, and 18.46% for instance

Fig. 5. The average increase percentage of total traveled distance by employed
EV fleets resulting from the comparison between original and revised scenarios.

sets with 20, 25, 50, and 75 customers, respectively. The re-
duction of CO2 in solutions provided by the original scenario
exists, because more customers are visited by EV fleets in the
original scenario compared to the reduced scenario. Fig. 5 shows
the average increase percentage of total distance traveled by the
employed EV fleets.

5. Conclusions

This research has solved a new variant of the routing problem,
named the Green Mixed Fleet Vehicle Routing Problem with
Realistic Energy Consumption and Partial Recharges. The exper-
iments were first conducted on the EVRPTWMF, from which
GMFVRP-REC-PR is extended. Although our proposed ALNS does
not outperform the approach of Goeke and Schneider [30], it
successfully obtains comparable results in terms of solution qual-
ity. The ALNS was then applied on GMFVRP-REC-PR instances.
CPLEX solver were also employed to solve the small instances.
Although both CPLEX and ALNS have a comparable performance
in terms of solution’s quality, CPLEX solver takes up signifi-
cant high computational time while ALNS is able to perform
much faster. Consequently, we only utilize our developed ALNS
heuristic to deal with medium and large instance sets. Based
on the numerical studies carried out during the experiment,
potential carbon emission reduction could be achieved by solving
GMFVRP-REC-PR.

Furthermore, future research can consider hybridizing other
algorithms with ALNS to solve GMFVRP-REC-PR in order to
achieve better results in terms of solutions quality and com-
putational time. Another interesting extension is to reformulate
the problem into a multi-objective problem and to develop an
appropriate method to tackle the multi-objective version.
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Appendix

See Table A.1.

Table A.1
Nomenclature table.
Symbol Definition

PM Mechanical power requirement
m Vehicle mass
a Acceleration
cd The coefficient of aerodynamic drag
A Vehicle frontal surface
v Vehicle speed
g Gravitational constant
α The gradient angle of the road
cr The coefficient of rolling resistance
uk
ij Currently loaded amount of cargo that is brought by vehicle k

from node i to node j
m
(
uk
ij

)
Total mass consisting of a vehicle’s curb mass and uk

ij
pkij
(
uk
ij

)
Mechanical power requirement required by vehicle k to travel
from node i to node j

Θd Energy efficiency coefficient
ϕd Discharging efficiency coefficient
bkij
(
uk
ij

)
The electricity consumption of electric vehicle k to travel from
node i to node j

tij Traveling time from node i to node j
ξ Fuel-to-air mass ratio
κ Heating value of typical diesel fuel
k Engine friction factor
N Engine speed
D Engine displacement
ψ Fuel rate converting factor (gram per second to liters per

second)
η Efficiency parameter for diesel engines
ηtf Drive train efficiency
FRk

ij

(
uk
ij

)
The fuel consumption rate of internal combustion vehicle k
while traveling from node i to node j

f kij
(
uk
ij

)
The fuel consumption of internal combustion vehicle k while
traveling from node i to node j

0,N + 1 The origin and destination depot nodes
V The customer nodes
F ′ The set of dummy nodes of recharging stations
A Set of arcs
dij Distance between node i and j
tij Traveling time between node i and j
ct Traveling cost for each kilometer traveled by the vehicle
qi Demand of node i
si Service time of node i
[ei, li] Time windows of node i
KE Number of EVs
KIC Number of ICVs
Q Capacity
B Battery capacity
r Recharging rate
FE CO2 emitted per liter of fuel
EMij The total carbon emissions produced by an ICV while traveling

from node i to node j
ce The carbon emission cost for each gram of emitted CO2
xEijkE 1 if an EV kE travels from node i to j

(kE ∈ KE ; i, j ∈ 0 ∪ V ∪ F ‘ ∪ N + 1)
xICijkIC 1 if an ICV kIC travels from node i to j

(kIC ∈ KIC ; i, j ∈ 0 ∪ V ∪ N + 1)
τi arrival time at node i

(continued on next page)

Table A.1 (continued).
Symbol Definition

τ
kE
N+1 arrival time of an EV kE at node N + 1
τ
kIC
N+1 arrival time of an ICV kIC at node N + 1
ukE
0 initial load brought by an EV kE

ukIC
0 initial load brought by an ICV kIC

ukIC
ij amount of load brought by an ICV kIC when traveling from

node i to node j
ukE
ij amount of load brought by an ICV kE when traveling from

node i to node j
yKEi remaining electric energy of an EV kE upon arrival at node i
Y KE
i amount of electric energy obtained by an EV kE after

recharging at recharging station i
pkEij

(
ukE
ij

)
amount of mechanical power spent by an EV kE when
traveling from node i to node j and carrying a load of ukE

ij

pkICij

(
ukIC
ij

)
amount of mechanical power spent by an ICV kIC when
traveling from node i to node j and carrying a load of ukIC

ij

bkEij
(
ukE
ij

)
amount of electric energy consumed by an EV kE when
traveling from node i to node j and carrying a load of ukE

ij

f kICij

(
ukIC
ij

)
amount of fuel consumed by an ICVkIC when traveling from
node i to node j and carrying a load of ukIC

ij
λgen (σ ) Generalized objective value of solution σ
γcap Multiplication factor of capacity penalty
γtw Multiplication factor of time windows penalty
γbatt Multiplication factor of battery capacity penalty
Cap(σ ) Capacity penalty of solution σ
TW (σ ) Time windows penalty of solution σ
BT (σ ) Battery capacity penalty of solution σ
amin
i Earliest allowed arrival time at node i

amax
i Arrival time at node i if as much fuel as possible has been

recharged at preceding facilities
aslij A possible slack between node i and node j that is happening

due to time window limitations while traveling from node i to
node j

arti Inverse residual battery capacity at node i
aaddij Additional fuel that has to be replenished at the preceding

refueling facility to travel from node i to node j
ãmin
i Adjusted value of amin

i to prevent a repeated penalization
ãmax
i Adjusted value of amax

i to prevent a repeated penalization
R(i, j) Relatedness between node i and node j
χd Relatedness parameter on distance between node i and node j
χq Relatedness parameter on demand difference between node i

and node j
χe Relatedness parameter on the difference of the earliest start of

service between node i and node j
T cost
i Cost of path

T F
i Number of recharging station visits on path

T tMin
i Earliest arrival time on node i without running out of electric

energy
T tMax
i Latest arrival time on node i recharging as much as possible at

preceding recharging stations, without violating time windows
T rtMax
i Maximal amount of energy that can be recharged (expressed

in time unit)
P (Di) The probability of choosing removal heuristic i
P (Ri) The probability of choosing insertion heuristic i
πD
i The weight of removal heuristic i
πR
i The weight of insertion heuristic i
σ D
i The score of removal heuristic i
σ R
i The score of insertion heuristic i

p(σ , σ ′, T ) The acceptance probability of solution σ ′ by considering
current solution σ and temperature T
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