
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2021

Set Team Orienteering Problem with Time Windows Set Team Orienteering Problem with Time Windows

Aldy GUNAWAN
Singapore Management University, aldygunawan@smu.edu.sg

Vincent F. YU
National Taiwan University of Science and Technology

Andros Nicas SUTANTO
National Taiwan University of Science and Technology

Panca JODIAWAN
National Taiwan University of Science and Technology

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, Operations Research, Systems Engineering

and Industrial Engineering Commons, and the Theory and Algorithms Commons

Citation Citation
GUNAWAN, Aldy; YU, Vincent F.; SUTANTO, Andros Nicas; and JODIAWAN, Panca. Set Team Orienteering
Problem with Time Windows. (2021). Learning and Intelligent Optimization: 15th International
Conference, LION 15, Athens, Greece, Virtual, June 20-25, 2021: Proceedings. 12931, 142-149.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6036

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6036&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6036&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6036&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6036&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6036&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Set Team Orienteering Problem with Time
Windows

Aldy Gunawan1, Vincent F. Yu2,3, Andro Nicus Sutanto2, and Panca
Jodiawan2

1 School of Computing and Information Systems, Singapore Management University,
80 Stamford Road, Singapore aldygunawan@smu.edu.sg

2 Department of Industrial Management, National Taiwan University of Science and
Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan

vincent@mail.ntust.edu.tw,{andronicus.sutanto,pancajodiawan}@gmail.com
3 Center for Cyber-Physical System Innovation, National Taiwan University of

Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan

Abstract. This research introduces an extension of the Orienteering
Problem (OP), known as Set Team Orienteering Problem with Time
Windows (STOPTW), in which customers are first grouped into clus-
ters. Each cluster is associated with a profit that will be collected if at
least one customer within the cluster is visited. The objective is to find
the best route that maximizes the total collected profit without violating
time windows and time budget constraints. We propose an adaptive large
neighborhood search algorithm to solve newly introduced benchmark in-
stances. The preliminary results show the capability of the proposed al-
gorithm to obtain good solutions within reasonable computational times
compared to commercial solver CPLEX.

Keywords: orienteering problem · time windows · adaptive large neigh-
borhood search.

1 Introduction

The Orienteering Problem (OP) was first introduced by [9] for which a set of
nodes is given, each with a score. The objective is to determine a path, limited
in length or travel time, that visits a subset of nodes and maximizes the sum
of the collected scores. The Orienteering Problem (OP) has received a lot of
attentions since many researchers have worked on it as well as its applications
and extensions [2], such as the inventory problem [10], Capacitated Team OP
[8], and Set OP [1].

The Set OP (SOP) was presented by [1]. The main difference lies on grouping
nodes into clusters and each cluster is associated with a profit. This profit is
collected by visiting at least one node in the respective cluster. Due to the time
budget constraint, only a subset of clusters can be visited on a path. Various
applications of the SOP can be found in mass distributions, yet it may benefit
less to visit all customers within a particular district. Therefore, only delivering

2 A. Gunawan et al.

products to one customer and letting other customers within the same district
to collect from the visited customer will actually help the distributor in terms of
travelling time or travelled distance. [1] proposed a matheuristic algorithm and
applied it in the context of the mass distribution problem. [7] introduced the
applications of the SOP in the travel guide problems. Variable Neighborhood
Search (VNS) is proposed to solve SOP. The Team Orienteering Problem with
Time Windows (TOPTW) is an extension of the Team OP [5] where the visit
on each node is constrained by a given time window. This TOPTW has been
studied in the past few years. For more details, please refer to [2].

Our work introduces another extension of the SOP and TOPTW - namely,
the Set Team OP with Time Windows (STOPTW). STOPTW considers both
multiple paths and time windows. The visits to nodes are also bounded by the
given time windows. We thus propose an adaptive large neighborhood search
algorithm (ALNS) to solve newly introduced benchmark instances. The prelim-
inary results of our experiments show the capability of the proposed algorithm
to generate good solutions within reasonable computational times.

2 Problem Description

Given a complete directed graph G = (N,A) where N represents a set of nodes,
N = {n0, n1, . . . , n|N |}, A represents a set of arcs A = {aij}, and n0 and n|N |
are the start and end nodes, respectively. Given a pair of nodes ni and nj , there
exists an arc aij with cost cij . In SOP, all nodes are grouped as clusters as disjoint
sets s0, s1, . . . , sm, with S = {s0, s1, . . . , sm}, si∩sj = ∅ for i 6= j, 0 ≤ i, j ≤ |N |,
and each node ni is associated with exactly one particular set in S. All disjoint
sets s0, s1, . . . , sm have associated profits p0, p1, . . . , pm for visiting at least one
node within the set. We note that s0 and sm represent the starting and ending
sets with p0 = pm = 0, respectively. The basic mathematical model of the SOP
is presented in [7] while the TOPTW mathematical model can be referred to [2].

In the context of the STOPTW, each node has a non-negative service time
si and time window [Ei, Fi], where Ei and Fi are the earliest and the latest
start times of service at node i, respectively. A visit beyond the time window
Fi is not allowed while an early visit is possible with additional waiting times
before entering at the earliest start time Ei. Each node i can only be visited once
and must be visited within its respective time window. Each set sj can only be
visited at most once as well. Given h paths, each path must start its visit from
the start node and also return to the end node. The objective of the STOPTW
is to determine h paths, limited by a given time budget Tmax and time windows,
such that each path visits a subset of S and maximizes the total collected profit.

3 Proposed Algorithm

The initial solution is generated based on the nearest distance criterion. Each
path h starts from node n0 and follows up by visiting the nearest unvisited

Set Team Orienteering Problem with Time Windows 3

nodes. This is done until it reaches Tmax or no more nodes can be visited. The
time window constraint has to be considered, and the path ends at node n0.

The initial solution is further improved by the proposed Adaptive Large
Neighborhood Search (ALNS) (Algorithm 1). This proposed algorithm is adopt-
ed from a similar algorithm for solving another combinatorial optimization prob-
lem, namely the vehicle routing problem [3].

The main idea is to use a set of destroy operators for removing nodes from
the current solution and to use a set of repair operators for reinserting them
into more profitable positions. A particular score is assigned to each selected
operator in order to assess its performance upon generating a new neighborhood
solution. The better the new generated solution is, the higher is the score given
to the corresponding operator.

Let Sol0, Sol
∗, and Sol′ be the current solution, the best found solution so far,

and the starting solution at each iteration, respectively, we first set Sol0, Sol
∗,

and Sol′ to be the same as the generated initial solution. The current tempera-
ture (Temp) is set to the initial temperature (T0) and will decrease by α after
ηSA iterations. The number of iterations Iter is set to zero. Let R = {Rr|r =
1, 2, . . . , |R|} be a set of destroy operators and I = {Ii|i = 1, 2, . . . , |I|} be a
set of repair operators. All operators j(j ∈ R∪I) initially have the same weight
wj and probability pj to be selected, based on:

pj =

{ wj∑
k∈R wk

∀j ∈ R
wj∑

k∈I wk
∀j ∈ I

(1)

ALNS adopts the Simulated Annealing (SA) acceptance criteria, under which
a worse solution may be accepted with a certain probability [6]. Therefore, each
of the operator’s score sj is adjusted by:

sj =

sj + δ1, if the new solution is the

best found solution so far

sj + δ2, if the new solution improves

the current solution

sj + δ3, if the new solution does not

improve the current solution,

but it is accepted

∀j ∈ R ∪ I (2)

with δ1 > δ2 > δ3. The operator’s weight wj is then adjusted by following:

wj =

{
(1− γ)wj + γ

sj
χj
, if χj > 0

(1− γ)wj , if χj = 0
∀j ∈ R ∪ I (3)

where γ refers to the reaction factor (0 < γ < 1) to control the influence of
the recent success of an operator on its weight, and χj is the frequency of using
operator j.

4 A. Gunawan et al.

At each iteration, a certain number of nodes are removed from Sol0 by using
a selected destroy operator. The removed nodes are then reinserted into Sol0
by applying another selected repair operator. Sol0 is directly accepted if its
objective function value is better than Sol∗ or Sol′; otherwise, it will only be

accepted with probability e
−(Sol0−Sol′)

Temp . Each operator’s score sj is then updated
according to (2). After ηALNS iterations, each operator’s weight wj is updated by
(3), and its probability pj is updated according to (1). ALNS is terminated when
there is no solution improvement after θ successive temperature reductions.

Algorithm 1: ALNS pseudocode

1 Sol0, Sol
∗, Sol′ ← Initial Solution

2 Temp← T0

3 Iter ← 0
4 FoundBestSol ← False
5 Set sj and wj such that pj is equally likely
6 while NoImpr < θ do
7 RemovedNodes ← 0
8 while RemovedNodes < π do
9 Sol0 ← Destroy(Rr)

10 UpdateRemovedNodes(RemovedNodes, Rr)

11 end
12 while RemovedNodes > 0 do
13 Sol0 ← Repair(Ii)
14 UpdateRemovedNodes(RemovedNodes, Ii)

15 end

16 AcceptanceCriteria(Sol0, Sol
∗, Sol′, Temp)

17 Update sj
18 if Iter mod ηALNS = 0 then
19 Update wj and pj
20 end
21 if Iter mod ηSA = 0 then
22 if FoundBestSol = False then
23 NoImpr ← NoImpr + 1
24 end
25 else
26 NoImpr ← 0
27 end
28 FoundBestSol ← False
29 Temp← Temp× α
30 end
31 Iter ← Iter + 1

32 end
33 Return Sol∗

Four destroy and six repair operators used in the proposed ALNS are:
Random removal (R1): select q nodes randomly and remove them from the
current solution. RemovedNodes is increased by q.
Worst removal (R2): remove the node with the smallest removal profit. The
removal profit is defined as the difference in objective function values between
including and excluding a particular node.
Shaw removal (R3): remove a node that is highly related with other removed
nodes in a predefined way. In other words, it tries to remove some similar nodes,
such that it is easier to replace the positions of one another during the repair
process. The last removed node is denoted as node i, while the next candidate

Set Team Orienteering Problem with Time Windows 5

of the removed node is denoted as node j. The relatedness value (ϕj) of node j
to node i is calculated by:

ϕj =

{
φ1c

′

ij + φ2t
′

ij + φ3lij + φ4|Pi − Pj |, if i ∈ S
φ1c

′′

ij + φ2t
′′

ij + φ3lij + φ4|Di −Dj |, if i ∈ C
(4)

Unvisited removal (R4): this operator removes selected nodes that are not vis-
ited due to the time windows violation. When selecting nodes, random numbers
are generated to determine whether they will be removed or not.
Greedy insertion (I1): insert a removed node to a position resulting in the
highest insertion profit (i.e., the difference in objective function value after and
before inserting a node to a particular position).
Regret insertion (I2): the regret value is calculated by the difference in Total
Profit when node j is inserted in the best position and in the second best position.
The idea is to select a node that leads to the largest regret value if it is not
inserted into its best position. In other words, this operator tries to insert the
node that one will regret the most if it is not inserted now.
Greedy visit insertion (I3): the insertion is decided by the changes in the
number of visited nodes for every inserted node. Since we consider time windows,
after inserting a particular node, there will be some nodes that cannot be visited
again. Here, we try to find an insertion with the highest number of visited nodes.
Random insertion (I4): the insertion is decided by choosing a random position
in the current solution and trying to insert any removed nodes into that position.
First feasible position insertion (I5): this operator is adopted from [4]. Every
removed node is inserted into the first position that makes the solution feasible,
one at a time.
Last feasible position insertion (I6): it works similarly to the previous op-
erator. The main difference lies on the position of inserting it. It should start
from last node of the feasible solution.

4 Computational Results

We first modified a set of TOPTW instances that are taken from Solomon’s
dataset - namely, Set A. There are 29 instances (c100, r100, and rc100) where
each instance contains 100 nodes. We group nodes into clusters using a method
proposed by [1]. The number of clusters is set to 20% of the total number of
nodes. After randomly inserting nodes into each cluster, the cluster profit is cal-
culated by adding all profits from all respective nodes in a particular cluster.
Another set of larger instances, Set B, is introduced by modifying the above-
mentioned instances. A hundred more nodes are added with respective parame-
ters, such as service times, locations, profits, etc. This experiment is performed
on a Windows 7 professional computer with Intel core i7-4790 CPU @3.60 GHz
processor with 16.00 GB RAM. AMPL is utilized to run the mathematical pro-
gramming using CPLEX, while Microsoft Visual C++ 2019 is used to code our
ALNS algorithm. The obtained results are compared to those of the commer-
cial software CPLEX (Table 4). The profit and computational (CPU) times are

6 A. Gunawan et al.

based on 10 runs of ALNS. We also calculate the gap (%) between CPLEX and
ALNS results.

Table 1. Total profit comparison between ALNS and CPLEX when solving Set A

Instance CPLEX ALNS
Profit CPU time Profit CPU time Gap (%)

c100 1808.89 753.22 1666.44 109.40 2.79
r100 1387.92 3300.81 1223.80 109.87 2.58
rc100 1601.50 3600 1389.23 108.31 6.11

For solving Set A instances, our proposed ALNS is comparable to CPLEX.
Here, our main purpose is to test the current performance of ALNS and em-
phasize the CPU time, which is much lower than the one of CPLEX. We note
that ALNS outperforms CPLEX for 5 instances - namely, r102, r104, r107, r108,
and rc104. The average gap in terms of the solution quality is 3.62%. We report
the performance of ALNS in solving Set B. The 29 instances are served by four
different numbers of vehicles, from one to four vehicles. CPLEX is also used to
solve those instances with the maximum CPU times of 2 hours (7200 seconds).
The results are summarized in Table 4. We observe that ALNS outperforms C-
PLEX for solving larger instances. This can be seen from the calculated average
gaps, which are -50.63%, -8.5%, -21.53%, and -48.16% for one, two, three, and
four vehicles, respectively. For most instances, CPLEX is unable to obtain the
optimal solutions, and therefore we only report the best found solutions within
2 hours of CPU time.

Table 2. Total profit comparison between ALNS and CPLEX when solving Set B

Number of vehicles Instance CPLEX ALNS
Profit CPU time Profit CPU time Gap (%)

c100 243.33 6405.1 282.56 1233.35 -26.85
1 r100 133 6602.95 201.25 1657.66 -89.15

rc100 224 7200 219 1708.86 -19.6
c100 561.11 7200 458 972 15.6

2 r100 313.5 7200 371.75 1198.46 -29.19
rc100 394.13 7200 383.75 1128.79 -4.58
c100 687.78 7200 646.67 1046.7 3.36

3 r100 406.92 6682.44 533.08 980.55 -37.98
rc100 466.38 7200 552.75 1032.34 -24.85
c100 802.22 7200 833.22 893.25 -8.43

4 r100 451.33 7200 700.75 829.2 -69.26
rc100 483.5 7200 720.75 860.85 -61.2

5 Conclusion

This research introduces the Set Team Orienteering Problem with Time Win-
dows (STOPTW) as a new extension of TOPTW, where customers are grouped
into clusters and a profit is associated with each cluster. The profit collection

Set Team Orienteering Problem with Time Windows 7

will only happen if at least one customer is visited in a particular cluster. The
objective of STOPTW is to maximize the total collected cluster profit with-
out violating any time windows. We propose an Adaptive Large Neighborhood
Search (ALNS) algorithm to solve STOPTW, while CPLEX is used to obtain
optimal solutions for comparison purposes. The computational study shows that
our algorithm outperforms CPLEX in solving newly larger introduced instances.
More development on the algorithm can be considered as future research. Other
destroy and removal operators can also be developed to provide better solutions.
Since STOPTW is a new problem, other (meta)heuristics can also be considered.

Acknowledgment

The work of Vincent F. Yu was partially supported by the Ministry of Science and
Technology of Taiwan under grant MOST 108-2221-E-011-051-MY3 and the Center
for Cyber-Physical System Innovation from The Featured Areas Research Center Pro-
gram within the framework of the Higher Education Sprout Project by the Ministry
of Education (MOE) in Taiwan.

References

1. Archetti, C., Carrabs, F., Cerulli, R.: The set orienteering problem. European
Journal of Operational Research 267, 264–272 (2018)

2. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of
recent variants, solution approaches and applications. European Journal of Oper-
ational Research 255(2), 315–332 (2016)

3. Gunawan, A., Widjaja, A.T., Vansteenwegen, P., Yu, V.F.: Vehicle routing problem
with reverse cross-docking: An adaptive large neighborhood search algorithm. In:
Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) Computational Logistics. Lecture Notes in
Computer Science, vol. 12433, pp. 167–182. Springer (2020)

4. Hammami, F., Rekik, M., Coelho, L.C.: A hybrid adaptive large neighborhood
search heuristic for the team orienteering problem. Computers and Operations
Research 123, 105034 (2020)

5. Labadie, N., Mansini, R., Melechovskỳ, J., Calvo, R.W.: The team orienteering
problem with time windows: an lp-based granular variable neighborhood search.
European Journal of Operational Research 220(1), 15–27 (2012)

6. Lutz, R.: Adaptive large neighborhood search (2015)
7. Pěnička, R., Faigl, J., Saska, M.: Variable neighborhood search for the set orienteer-

ing problem and its application to other orienteering problem variants. European
Journal of Operational Research 276(3), 816–825 (2019)

8. Tarantilis, C.D., Stavropoulou, F., Repoussis, P.P.: The capacitated team orien-
teering problem: a bi-level filter-and-fan method. European Journal of Operational
Research 224(1), 65–78 (2013)

9. Tsiligirides, T.: Heuristic methods applied to orienteering. Journal of the Opera-
tional Research Society 35(9), 797–809 (1984)

10. Vansteenwegen, P., Mateo, M.: An iterated local search algorithm for single-vehicle
cyclic inventory. European Journal of Operational Research 237(3), 802–813 (2014)

	Set Team Orienteering Problem with Time Windows
	Citation

	tmp.1626065956.pdf.4ZHwr

