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Abstract:

Cross-docking is auseful concept used by many companies to control the product flow. It enables the
transshipment process of products from suppliers to customers. This research thus extends the benefit of
cross-docking with reverse logistics, since return process management has become an important field in
various businesses. The vehicle routing problem in adistribution network is considered to be an
integrated model, namely the vehicle routing problem with reverse cross-docking (VRP-RCD). This
study develops a mathematical model to minimize the costs of moving productsin afour-level supply
chain network that involves suppliers, cross-dock, customers, and outlets. A matheuristic based on an
adaptive large neighborhood search (ALNS) agorithm and a set partitioning formulation isintroduced to
solve benchmark instances. We compare the results against those obtained by optimization software, as
well as other algorithms such as ALNS, a hybrid a gorithm based on large neighborhood search and
simulated annealing (LNS-SA), and ALNS-SA. Experimental results show the competitiveness of the
matheuristic that is able to obtain all optimal solutions for small instances within shorter computational
times. For larger instances, the matheuristic outperforms the other algorithms using the same
computational times. Finally, we analyze the importance of the set partitioning formulation and the
different operators.
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1 Introduction

Companies often aim to improve their distribution systems in order to reduce their oper-
ational cost and gain more market share by putting cross-docking into practice [1]. A
cross-dock is a transshipment facility that transfers products or items in large quantities
from suppliers to customers. Operating a cross-dock could reduce the distribution costs by
avoiding long origin-to-destination routes and decreasing the fleet size [2]. One successful
application of cross-docking was introduced by Walmart [3].

Lee et al. [4] highlighted the importance of considering vehicle routing and scheduling
in both pickup and delivery processes when efficiently operating a cross-dock. Since this
problem is happening more and more in the real world, the literature has introduced the inte-
gration of cross-docking in vehicle routing problems, namely the vehicle routing problem
with cross-docking (VRPCD). The VRPCD targets to design a route sequence for picking
up products from supplier nodes to the cross-dock and subsequently delivering these prod-
ucts to customers, all within a given time horizon such that no storage occurs inside the
cross-dock facility. The objective is to minimize the overall costs, including transportation
costs and fixed vehicle operations costs. Since the problem is considered to be NP-hard, var-
ious algorithms have been proposed to solve the benchmark instances, such as tabu search
(TS) [4, 5], simulated annealing (SA) [6], adaptive large neighborhood search (ALNS) [7],
and a matheuristic [8, 9].

While the VRPCD deals with a forward logistics system, many companies have recently
focused on reverse logistics, whereby items may be sent back from customers to suppliers
due to various reasons, such as defective or unsold products [10]. Rogers and Tibben-
Lembke [11] defined reverse logistics (RL) as the process of planning, implementing, and
controlling the efficient and cost effective flow of raw materials, in-process inventory, fin-
ished goods, and related information from the point of consumption to the point of origin
for the purpose of recapturing value or proper disposal. Shen and Li [12] studied the ben-
efits of reverse logistics by considering the effects of unsold products from an outsourced
fashion supply chain.

Motivated by the tendency to optimize RL systems and the success of incorporating
cross-docking in a forward logistics system, Widjaja et al. [13] extended the benefit of
cross-docking with RL to facilitate return process management, namely the vehicle rout-
ing problem with reverse cross-docking (VRP-RCD). Unlike the VRPCD that focuses on
product delivery from suppliers to customers (forward flow), the VRP-RCD looks at the
product delivery from customers to suppliers (reverse flow). Instead of directly sending
the returned products back to suppliers (as in Kaboudani et al. [10]), the VRP-RCD [13]
considers sending the returned products to the outlets first for a reselling activity [14].

The three main processes in the VRP-RCD are as follows: 1) the customer pickup pro-
cess that aims to pick up (or collect) returned products from the customers and bring them to
the cross-dock for the next process, 2) the outlet simultaneous delivery and pickup process
that aims to satisfy outlets’ demands based on the availability of the customers’ returned
products, for reselling at the outlets, while at the same time collecting the returned prod-
ucts from the outlets, and 3) the supplier delivery process that aims to deliver the returned
products from both customers and outlets to the supplier that supplied those products. The
VRP-RCD framework is illustrated in Fig. 1, while the network model will be explained in
Section 3. Here, we use the number of customers |C| = 6, the number of outlets |O| = 5,
the number of suppliers |S| = 4, and the number of vehicles |V | = 5.

This reverse process usually happens in a business with seasonal demand patterns, such
as fashion, books, or some electronic devices [15]. Once a new product is launched, the
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Fig.1 VRP-RCD with |C| =6, |0| =5, |S| =4,and |V| =5

primary sellers (we call them customers in the VRP-RCD) no longer sell the old products.
Hence, the old products are returned to the suppliers that supplied those products. However,
there might be some secondary sellers (i.e., outlets) that are willing to sell these old prod-
ucts at lower prices. Therefore, the returned products from the primary sellers are sent to
the secondary sellers. Afterwards, if there are still some unsold products at the secondary
sellers, then those products need to be returned to the respective suppliers for further pro-
cessings (e.g., recycle or remanufacture). The VRP-RCD thus aims to minimize the overall
costs occurring in the distribution of the RL system, such as the transportation cost and fixed
vehicle operational cost.

This paper extends the matheuristic algorithm that was originally designed for the
VRPCD in Gunawan et al. [8, 9], in order to solve the VRP-RCD problem. The matheuris-
tic consists of two phases: routes generation and solving the set partitioning formulation
(SPF). The first phase generates as many routes as possible, which is performed by the
ALNS of Gunawan et al. [16], while the second phase finds the optimal route combination
from any routes found in the first phase that satisfies the VRP-RCD constraints. We mod-
ify the SPF of Gunawan et al. [8, 9] to deal with the VRP-RCD and introduce a new set
of larger benchmark VRP-RCD instances to show how the matheuristic performs well on
these newly generated instances. These results can be used as a baseline for future research.
Finally, we present how every component in our matheuristic, such as the set partitioning
formulation and the operators, contributes toward generating better solution quality.

After discussing the related state-of-the-art algorithms in Section 2, Section 3 dis-
cusses the VRP-RCD in detail and presents a mathematical model. Section 4 explains
the matheuristic designed to tackle the VRP-RCD. Section 5 presents a comprehensive
experimental study in order to compare the matheuristic performance with the perfor-
mance of the optimization software CPLEX and three different types of ALNS algorithm:
a pure ALNS, LNS-SA, and ALNS-SA [16]. The LNS-SA does not incorporate an adap-
tive scheme when selecting the operators, but worse solutions found might be accepted
with some probability (i.e., employs the SA acceptance criterion), while the ALNS-SA [16]
combines the ALNS with the SA acceptance criterion. Section 6 summarizes the con-
tributions of different elements of the matheuristic, the conclusions, and future work
directions.
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2 Literature review

Lee et al. [4] first introduced the VRPCD as an integration of vehicle routing scheduling
and cross-docking. They formulated a mathematical model and proposed a tabu search (TS)
algorithm to solve their own generated instances. By comparing against enumeration results,
the proposed TS is able to obtain on average a 4% gap from the optimal solutions within a
reasonable CPU time. Liao et al. [5] then designed a new TS with two main differences with
the one of Lee et al. [4]: 1) the former moves one node at a time to another vehicle, while
the latter always exchanges two nodes at two different vehicles simultaneously, and 2) the
former allows the removal of an empty vehicle from the solution, while the latter does not.
Compared to TS [4], this new modified TS [5] is able to improve the quality of solutions
by 10.6%, 36%, and 14.9% on average for small, medium, and large instances, respectively,
within significantly shorter CPU times.

Yu et al. [6] proposed a new variant in the VRPCD by considering an open net-
work (namely OVRPCD) and developed a simulated annealing (SA) algorithm to solve
both benchmark VRPCD instances and newly introduced benchmark OVRPCD instances.
Experimental results show the competitiveness of the proposed SA in solving the VRPCD
instances as it is able to improve the best known solutions (from Lee et al. [4] and Liao
et al. [5]) on average by 3.3%, 2%, and 5.9% for small, medium, and large instances,
respectively. Gunawan et al. [7] designed an adaptive large neighborhood search (ALNS)
algorithm to solve the available benchmark VRPCD instances and showed that ALNS is
able to further improve the best known solutions (from Lee et al. [4], Liao et al. [5], and Yu
et al. [6]) by 1.4%, 13.6%, and 21.8% on average for small, medium, and large instances,
respectively. Gunawan et al. [9] proposed a two-phase matheuristic and showed the com-
petitiveness of the proposed matheuristic by optimally solving 29 out of 30 problems in
small benchmark VRPCD instances. Gunawan et al. [8] extended the proposed algorithm
in Gunawan et al. [7, 9] by incorporating more operators and adding larger instances for
the VRPCD in order to justify the performance of the proposed algorithm. Another vari-
ant of the VRPCD by considering multiple products is studied in Gunawan et al. [17].
Only small and medium instances were introduced and solved by an optimization software,
CPLEX.

Apart from the original VRPCD, there are many other variants of the VRPCD that have
been studied so far, such as the VRPCD with time windows (VRPCDTW) [18-21], the
VRPCDTW with split pickups in supplier nodes and split deliveries in customer nodes [22],
the VRPCD by considering the dock door utilization [23, 24], and the profitable hetero-
geneous VRPCD [25]. However, all of the above-mentioned research only deal with the
forward flow of products, from suppliers to customers.

Rezaei and Kheirkhah [2] introduced an integrated forward/reverse cross-docking for a
multi-product supply chain network in response to the needs of sustainability in logistics
networks and growing environmental and economic concerns (e.g., recycling of used prod-
ucts). They presented a mixed-integer linear programming (MILP) model with the objective
of minimizing total costs. The model is solved by the general algebraic modeling sys-
tem (GAMS) software. They also highlighted the importance of developing metaheuristic
methods to solve the model in large-scale problems.

Zuluaga et al. [15] discussed the concept of cross-docking in a reverse logistics context
as well as the importance of managing return flows, especially in businesses with sea-
sonal demand patterns, including selling unsold products to secondary channels. A reverse
cross-docking mathematical model is introduced with the objective of minimizing the cost
of return process management for unsold products. The mathematical model is solved by
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commercial software, CPLEX, for dealing with simulated data. However, the method for
solving instances with realistic sample sizes, which are close to real life problems, is still
missing. One requires (meta)heuristics to solve these realistic instances within reasonable
computational times.

An integrated model of the VRP with cross-docking for handling both forward and
reverse logistics was first introduced by Kaboudani et al. [10]. A mathematical model is
formulated that includes transferring products from suppliers to customers and returning
products from customers to suppliers through a cross-dock with minimum transporta-
tion cost. Since the problem is NP-hard, a simulated annealing based heuristic algorithm
was proposed and compared with commercial software, GAMS. The proposed algorithm
showed the efficiency at solving large-scale problems.

Widjaja et al. [13] studied the VRP-RCD by introducing a reselling process at secondary
customers (i.e., outlets). Hence, the distribution system in the network consists of: 1) picking
up customers’ returned products, 2) delivering outlets’ demand based on the amount of
customers’ returned products and simultaneously picking up their returned products, and 3)
delivering those returned products from both customers and outlets back to the suppliers
that supplied the products. A mathematical model was presented to formulate the problem.
Small instances were introduced and solved by optimization software, CPLEX.

Gunawan et al. [16] presented an algorithm that is based on an adaptive large neighbor-
hood search and the simulated annealing acceptance criteria to solve the VRP-RCD [13].
The algorithm employs DESTROY and REPAIR operators for repetitively removing some
nodes from a solution and re-inserting them back to a more profitable position, respec-
tively. In terms of the performance, the proposed algorithm performs well on solving two
sets of small and medium benchmark VRP-RCD instances. All above-mentioned references
are summarized in Table 1 in order to visualize how this research differs from the state
of the art concerning, for example supply chain levels, product flow, and other additional
considerations.

3 Problem description

This paper studies a four-level supply chain network that considers suppliers, customers,

outlets, and a cross-dock. We define C = {1, 2, ..., |C|} as a set of customers from which
returned products are sent to a set of outlets O = {1, 2, ...,|0O|} for the reselling process.
At each outlet, some unsold products are sent back to a set of suppliers § = {1,2, ..., |S|}

that originally supplied those products. Therefore, there are three main processes in the
VRP-RCD: 1) customer pickup process, 2) outlet simultaneous delivery and pickup process,
and 3) supplier delivery process.

A cross-dock facility as an intermediate point is set up to consolidate the products in-
between those processes. Let V = {1,2,...,|V|} be a set of homogeneous vehicles with
capacity ¢ that is available at the cross-dock. Each vehicle only serves one of the above-
mentioned processes. A fixed operational cost H is charged for every vehicle used in the
process.

In a union of cross-dock and customer nodes, each arc connecting nodes i and j has
a travel distance of el’.j and transportation time of t{ ;- Let ¢ be the transportation cost per
unit distance. Each customer i € C has rl.’ « units of returned product k, where pi (%) of it
are considered as defective products. Starting from the cross-dock, a vehicle must travel to
visit any customers with returned products. Those returned products are inspected inside the
cross-dock facility to be separated between py x r], of defective products and (1 — px) x r/,
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of non-defective products. The non-defective products are then consolidated according to
outlets’ demand and delivered to them.

In a union of cross-dock and outlet nodes, each arc connecting nodes i and j has a travel
distance of e/; and transportation time of t’ " Each outleti € O has demand for product k as
much as dj;,. However, not each outlet may be able to receive all of its demand, depending
on the avallablhty of the non-defective returned products from customers. Therefore, we
have to decide which outlets need to be visited. Moreover, some outlets might also have
returned products r/; that should be sent back to the suppliers. Those products also need
to be collected. Startlng from the cross-dock, a vehicle visits outlets with either delivery or
pickup, or both, and returns to the cross-dock.

In a union of cross-dock and supplier nodes, each arc connecting nodes i and j has a
travel distance of e/ and transportation time of #/”. The following products: 1) the returned
products from outlets, 2) the defective products from customers (if any), and 3) the returned
products from customers that are not sent to any outlets during the second process, are then
consolidated inside the cross-dock and are returned to the appropriate supplier. This overall
process is illustrated in Fig. 1 and must be done within the time horizon 7,4y

It should be noted that in the VRP-RCD considered herein, the number of products
returned (ri’ « and ri’;() is assumed to be known and fixed when the routing decisions are
made [16]. We consider this as a realistic assumption. In a previous work [13], the number
of returned products is fixed as a fraction of the number of products delivered to a certain
customer or outlet. However, that is only realistic when multiple periods are considered with
similar flows or when the return flow depends on the forward flow of (one of) the previous
period(s). The list of decision variables used in this problem is summarized in Table 2, and
the mathematical model is formulated as follows.

LZEI0>D VD SETED B M SEATED 3D D DR )

veV ieCU0 jeCUO veV ieOU0 jeOUO veV ieSU0 jeSU0
(T X+ X Xy + X ) o
veV jeC veV jeO veV jeS§
Yoxi Y x> xr <1 Yvev )
jeC jeo jes
Yo X < Teppax Y eV 3)
ieCU0 jeCUO, j#i
> Y [t < Todpmax Yv eV )
ieOU0 jeOUO,j#i
Yo > X)) < Tsdpax Yo eV (5)

ieSU0 jeSU0, j£i

Tcpmax + Todpmax + Tsdmax < Tiax (6)

The VRP-RCD objective function minimizes the total transportation and operational
costs, as expressed in (1). Constraint (2) ensures that each vehicle is only used in either one
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Table 2 List of VRP-RCD decision variables

Decision Variables

/U
X

"
ij
"
ij
Yk
AV
4
Aik

"
Ai

q, ()U

"y

qo

"

9y

"

4q;

"

T cpmax
Todpmax
T sdmax

a

1 if vehicle v travels from node i to j in the customer pickup process; 0 otherwise
(i,jeCUO,veV)

1 if vehicle v travels from node i to j in the outlet delivery and pickup process;
0 otherwise (i, j € O U0, v € V)

1 if vehicle v travels from node i to j in the supplier delivery process; 0 otherwise
(i,jeSUO,veV)

1 if the demand for product k from all outlets is less than the amount of non-
defective returned product k from all customers; O otherwise (k € S)

Amount of products picked up from node i by vehicle v in the customer pickup
process (i € C,v e V)

Amount of product k delivered to node i by vehicle v in the outlet delivery and
pickup process (i € O,k € S,v e V)

Amount of products delivered to node i by vehicle v in the supplier delivery
process (i € S,v € V)

Initial load of vehicle v upon leaving the cross-dock in the customer pickup
process (v € V)

Initial load of vehicle v upon leaving the cross-dock in the outlet delivery and
pickup process (v € V)

Initial load of vehicle v upon leaving the cross-dock in the supplier delivery
process (v € V)

Amount of load remaining in the vehicle upon visiting node i in the customer
pickup process (i € C)

Amount of load remaining in the vehicle upon visiting node i in the outlet
delivery and pickup process (i € O)

Amount of load remaining in the vehicle upon visiting node i in the supplier
delivery process (i € S)

Maximum traveling duration time in the customer pickup process

Maximum traveling duration time in the outlet delivery and pickup process
Maximum traveling duration time in the supplier delivery process

Order in which node i is visited on a tour in the customer pickup process (i € C)

Order in which node i is visited on a tour in the outlet delivery and pickup
process (i € O)

Order in which node i is visited on a tour in the supplier delivery process (i € §)

of the processes. Constraints (3) to (5) record the maximum time of each of the three pro-
cesses, where the service times (e.g., administration, loading, unloading, and consolidating)
are included in the transportation times. Constraint (6) ensures all processes must be done
within the time horizon T}, .

Customer pickup process constraints

@ Springer
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veV ieCU0,i#j keS
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keS

VeV ieCU0,i#j



YN xt =LY xf Yvev

ieC jeC,j#i jeC
v v
Z X = Z X Vie C,YveV
ieCU0,i#l jecuo, j£l
/v .
Y mjslvjec
veV ieCU0
v ’ v .
AP =3"rp Y xY VjeCYueV
keS ieCU0
v
qy =0 YveV

gz ql +AY —L(1—xY) VieC.VveV
4 <ql + AP+ L —xY) YieC YueV
¢;=q+AY—LU-xY) Vi,jeC VeV
gy <q+AP+LU0-xY) Vi,jeCVveV

ZA;“ <q YveV
jeC

Wy =4+ 1— |C|<1 - Zx,f;’) Vi,jeC

veV

€))

(10)

an

12

13)

(14)

5)

16)

a7

(18)

19

Constraints (7) and (8) ensure that if there is any returned product from a customer, then
a vehicle will visit that customer. L refers to a very large integer number, while € refers to a
very small positive number. Constraint (9) ensures that for every vehicle used in this process,
it always starts its trip from the cross-dock. Constraint (10) ensures the outflow and inflow
of a vehicle in each customer node. Constraints (11) and (12) ensure that each customer is
visited at most once by one vehicle, such that no split pickup occurs. Constraints (13) to (17)
track the total load inside a vehicle. Constraint (18) ensures that the total amount of picked-
up products from any customers assigned to a vehicle does not violate the vehicle capacity.

Constraint (19) is the sub-tour elimination constraint.
Outlet delivery and pickup process constraints

Y odi—(A—p)Y iy =—Ly VkeS

i€eO ieC

Yodi—A=p)Y ri <LU—y) VkeS

ieO ieC
Y AR =0 —-p)Y riy—Ly VkeS
veVieO ieC

(20)

ey

(22)
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veVieO ieC
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veVieO iceO

DAY <dj VieO,VkeS

veV
L Y xP=) AfVvjeo VeV
ic0U0,i%j kesS
LY, D =z D AR+) i vieo
veVieOU0,i#j veV keS keS
) ILVED SETIIIED S SEFTRIEYY
veV keS keS veVieOU0,i#j
Z Z x””<LZx”” YveV
i€0 jeO,j#i jeo
Yooxr= > xvieoVveV
i€e0U0,i#l JEOUO, j#l
Y Y xr<1vjeo
veV ieOU0
//v Z ZA//U YveV
jeO keS
qé’”—ZA;’,f—i—Zri’;(—L(l xot) Vi€ O,Yv eV
keS keS

q(’)’”—z ””—l—Zr +L(1—xy) Vie O,YveV

keS keS
qjzq/ =Y AN+> i —LU—x]}) Vi,jeO,YveV
keS keS
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keS keS
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Constraints (20) and (21) serve to determine the value of y;. Constraints (22) to (26) then
determine the amount of products delivered to the outlets, while ensuring that this amount
does not exceed each outlet’s demand. Constraint (27) ensures no split delivery occurs in
the process. Constraints (28) and (29) ensure that if there is a delivery process to an outlet
or there are returned products from an outlet, then a vehicle will visit that outlet. Con-
straint (30) ensures that for every vehicle used in this process, it always starts its trip from
the cross-dock. Constraint (31) ensures the outflow and inflow of a vehicle in each outlet
node. Constraint (32) ensures that each outlet is visited at most once. Constraints (33) to (37)
track the total load inside a vehicle. Constraint (38) ensures the vehicle capacity limitation
is addressed when a vehicle leaves the cross-dock, while constraint (39) ensures the vehicle
capacity limitation is addressed when a vehicle leaves any outlet node. Constraint (40) is
the sub-tour elimination constraint.

Supplier delivery process constraints Due to similarities with the customer pickup pro-
cess constraints, the constraints are listed in Appendix A. It is worth noting that the
differences lie on: 1) how to decide the visited suppliers (e.g., suppliers with either returned
products from customers or outlets, or both), and 2) the vehicle load is checked at the
beginning of the tour, and it is decreasing upon delivering its load to the supplier.

Given the flow constraints (14)—(17), (34)—(37), and (84)—(87), the subtour elimination
constraints (19), (40), and (89) are not strictly necessary, but we do note that they speed up
the optimization process.

4 Proposed algorithm

In the context of the VRPCD, we assume that all customers have to be visited [4]. How-
ever, in the VRP-RCD, only customers with returned products need to be visited. Thus, a
node selection process is first performed, as briefly explained in Section 4.1, followed by
implementing ALNS to find possible route sequences based on selected nodes, as explained
in Section 4.2. This ALNS is adopted from Gunawan et al. [16]. The matheuristic then
determines the best combination of the routes found.

Another main difference between the VRPCD and VRP-RCD is that the former involves
an individual pickup (delivery) process in supplier (customer) nodes, while the latter also
involves the simultaneous pickup and delivery processes in outlet nodes. In order to han-
dle this additional process, the vehicle capacity must be checked at every edge of the route.
Obviously, the solution representation includes outlet nodes together with supplier and
customer nodes. This will be described in Section 4.2.

4.1 Node selection
Let m}, m, and m!” be binary variables, where each equals 1 if customer i (i € C), outlet
i(i € 0), and supplier i(i € §) must be visited, respectively, and 0 otherwise. In the
customer pickup process, customer i is visited (m; = 1) only if it has any returned products,
while in the supplier delivery process, supplier & is visited (m;(” = 1) only if there is any
returned product sent to supplier k.

In order to determine the value of m;’ , we should first calculate the amount of prod-
uct k delivered to outlet i, denoted as 791.’,/(, where i € O and k € §. If the amount of
non-defective returned product £ from all customers is more than the cumulative of the
outlet demand k, then each outlet is able to receive product k as much as its demand. Hence,
¥/, =d, Vi € O,Vk € S; otherwise, when the demand from the outlets is larger than the
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amount of non-defective returned products, we apply sorting criteria on the outlets and then
iteratively assign 9/} according to this sorting until the amount of available units is reached.
For each instance, one of the following sorting criteria is randomly selected to determine
M

ik

— outlet with the highest demand of product k first

— all outlets with demand of product k are fulfilled by splitting the total amount of non-
defective returned products k equally over all those outlets

— outlet with demand of product k that is located nearest to the cross-dock and all other
outlets first

— outlet with the highest number of different product types first

— outlet with the highest cumulative demand of all product types first

— outlet with the lowest number of different returned product types first

— outlet with the lowest cumulative returned products of all product types first

Subsequently, outlet i is visited (m] = 1) if there is any delivered product to and/or
returned products from outlet i, as formulated in (41).

1

my = |1 1T 2k Dkt 2es i > 0y @)
0, if D pes Oip + Dres ik =0

4.2 Matheuristic

The pseudocode of the proposed matheuristic is presented in Algorithm 1. The matheuris-
tic starts by building an initial solution that will be explained in detail in Section 4.2.1.
Next, the matheuristic continues with two main phases. The first phase generates as many
feasible routes as possible by implementing adaptive large neighborhood search (ALNS)
(Section 4.2.2). The second phase of the matheuristic determines the best combination (i.e.,
minimum total cost) of the routes found in the first phase by solving the set partitioning
formulation (Section 4.2.3).

4.2.1 Initial solution
We construct an initial solution by assigning nodes to vehicles without violating the vehicle

capacity, regardless of the route sequence. The additional decision variables are listed in
Table 3. The initial solution is generated by solving the following equations.

Min Zx/”+x”"+xm” (42)
veV
> a4 =m] VieC (43)
veV
Y @ =m] vieo (44)
veV
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Algorithm 1 Matheuristic pseudocode.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

39
40

Soly, Sol*, Sol’ <— INITIALSOLUTION
UpdatePool(INITIALSOLUTION, £2, £2,, £25)

Temp < Ty

NOIMPR, ITER < 0

FOUNDBESTSOL <« False

Set s; and w; such that p; is equally likely

while NOIMPR < 6 and |$2.|, |$2,|, |§2s| < 2max do
REMOVEDNODES < 0

while REMOVEDNODES < 7 do

Soly < Destroy (R,)

UpdatePool(Soly, 2., £2,, §2)
UpdateRemovedNodes(REMOVEDNODES, R;)
end

while REMOVEDNODES > 0 do

Soly < Repair (I;)

UpdatePool(Soly, 2., §2,, §2)
UpdateRemovedNodes(REMOVEDNODES, [;)

end
AcceptanceCriteria(Soly, Sol*, Sol’, Temp)
if Soly < Sol* then
| FOUNDBESTSOL < True
end
Update s
if ITER mod narns = O then
| Update w; and p;
end
if ITER mod ns4 = O then
if FOUNDBESTSOL = False then
| NOIMPR < NOIMPR + 1
end
else
| NOIMPR «- 0
end
FOUNDBESTSOL <« False
Temp <— Temp X o

end
ITER < ITER + 1

end
Sol* < solve the set partitioning formulation
Return Sol*

" " .
E a" =m] VieS§

veV

ZZa;”ri’k <q YveV

ieC keS

(45)

(46)
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Table 3 List of additional decision variables to construct an initial solution

Additional Decision Variables

1 if node i is visited by vehicle v in the customer pickup process; 0 otherwise (i € C,v € V)

1 if node i is visited by vehicle v in the outlet delivery and pickup process; O otherwise
(ieO,veV)

1 if node i is visited by vehicle v in the supplier delivery process; 0 otherwise (i € S,v € V)
1 if vehicle v is used in the customer pickup process; O otherwise (v € V)
1 if vehicle v is used in the outlet delivery and pickup process; O otherwise (v € V)

1 if vehicle v is used in the supplier delivery process; O otherwise (v € V)

D a xmax (Y 05y ri) <q eV (47)

ic0 keS kes
Sa (Y =S vk + >l <q ywev (48)
keS ieC icO i€0

|C|X,UZZa;U YoeV (49)

ieC
10| X" > Zal{m YveV (50)

ie0
|S| X" > Zal{//v YoeV (&28)

ieS
e x4 <1 YoeV (52)

Objective function (42) minimizes the number of vehicles used. All mandatory visited
nodes are visited by exactly one vehicle, as addressed in constraints (43)—(45). The vehicle
capacity limitation is formulated by constraints (46)—(48). It is noted that our current aim
is to assign nodes to vehicles, regardless of their route sequences. Therefore, in the outlet
simultaneous pickup and delivery process (constraint (47)), the balance of vehicle capacity
checking cannot be performed at the edge of each route, since the route sequence has not
been generated yet. In order to overcome this, we use an upper bound product value of
each node, which is max(delivery, pickup). Only in the subsequent parts of the proposed
algorithm when the route sequences are already observed can the vehicle capacity checking
then be implemented by checking the vehicle capacity balance at every edge of the route
(e.g., balance - delivery + pickup < g). Constraints (49)—(51) keep track of the used vehicles
in each process, and finally constraint (52) ensures that each vehicle is being used in at most
one of the three processes.

After all nodes are assigned to exactly one vehicle, the route sequence of these nodes
in each vehicle are then constructed. We implement the nearest neighbor approach. When
the route sequences have been constructed for all vehicles, Constraints (3)—(6) are checked.
For a case when the time horizon (i.e., Constraint (6)) is violated, a node that is visited by a
vehicle with the longest transportation time is allocated to another used vehicle, as long as
the vehicle capacity and time horizon constraints are satisfied. Only when the insertion is
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Vehicle 1 0 S1 S2 S3 S4 0
Vehicle 2 0 01 02 03 0
Vehicle 3 0 04 05 0

Vehicle 4 0 C1 C2 C3 0
Vehicle 5 0 C4 C5 Cé6 0

Fig.2 Example of solution representation with |C| =6, |0| =5, |S| =4,and |V| =5

not possible in any positions will this node then be allocated to a new vehicle. This process
is repeated until the time horizon constraint is satisfied. By the end of this initial solution
construction process, a solution as illustrated in Fig. 2 is generated, where each row indicates
a route sequence of a particular vehicle.

4.2.2 Phase 1: Adaptive large neighborhood search (ALNS)

ALNS iteratively removes a subset of nodes from the current solution by using DESTROY
operators and re-inserts them back by using REPAIR operators in a more profitable position,
hence resulting in a new neigborhood solution. Each operator is associated with a score that
will be increased when it is able to generate a better solution. Subsequently, this score is
then used to calculate the weight. The higher the weight of an operator is, the greater is the
probability that it will be selected in the following iterations.

Soly, Sol*, and Sol’ represent the current solution, the best found solution so far, and the
starting solution in every iteration, respectively. Initially, they all equal the initial solution
(Line 1 in Algorithm 1). £2., §2,,, and £2; are defined as pools to retain any observed feasible
route during this first phase of the matheuristic. All customer pickup routes, outlet pickup
and delivery routes, and supplier delivery routes observed in the initial solution are kept in
2., £2,, and £2, respectively (Line 2 of Algorithm 1). A feasible route is defined as a route
that starts and ends its trip at the cross-dock, visits one or more non-duplicate nodes, and
does not violate vehicle capacity. An illustration of these pools from the routes observed in
Figs. 1 and 2 is shown in Fig. 3.

For the initialization, the current temperature (T emp) is set to the initial temperature
(To) (Line 3), NOIMPR and ITER are set to zero (Line 4), and FOUNDBESTSOL is set to
False (Line 5). NOIMPR is a variable to count the number of iterations without any solution
improvement, ITER is a variable that counts how many iterations have been passed so far,
while FOUNDBESTSOL is a boolean variable with the value set to True only when a new

0 C1 C2 C3 0 0 O1 02 03 0 0 S1 S2 S3 S4 0
0 C4 C5 C6 0 0 04 05 0

Qc = Qo = Qs =

Fig.3 Example of retaining feasible routes in the pools
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best found solution is observed. Each operator is initialized with an equal score, weight, and
probability to be selected (Line 6).

Let R={R/r =1,2,...,|R|}and I = {[;|i = 1,2, ...,]|I|} be defined as the sets of
DESTROY and REPAIR operators, respectively (all these operators are discussed in detail in
Section 4.2.4). In every iteration, a set of & nodes (e.g. # = 5) is removed from Solp by
using a randomly selected R, and the newly observed routes during the process are added
into £2., £2,, and §2; (Lines 9-13). Subsequently, those m nodes are re-inserted back into
Soly using a randomly selected /; (Lines 14—18), resulting in a new neighborhood solution

Soly. The quality of this new Soly is compared against Sol* and Sol” (Line 19). It is directly
—(Soly—Sol’)
accepted if it improves Sol’ and accepted with a probability of e Temp otherwise. When

it improves Sol*, FOUNDBESTSOL is set to True (Lines 20-22). Based on the quality of
this new Soly, the operators’ scores (s;) are updated (Line 23) by (53), where §; > 82 > 43
(e.g., 81 =0.5,8, = 0.33,83 = 0.17).

sj+ 8y, if jisselected and Soly < Sol*

sj 482, 1if jis selected and Soly < Sol’

sj= VjieRUI (53)

sj+ 683, if j is selected and Solp > Sol’,
but it is accepted

After napys iterations, each operator’s weight (w ;) is updated by (54), and subsequently
each operator’s probability (p;) is adjusted by (55) (Lines 24-26).

1—v)w; + S—j, ifx;, >0
w; = (L=Vwj+yy. Ty VjieRUI (54)
(I =ywj, if xj =0
wj .
. {ZkER - o (55)
pj= W Viel
Zkelwk ] €

After ns 4 iterations, FOUNDBESTSOL is evaluated. When no improved solution is found,
NOIMPR is increased by one (Lines 28-30); otherwise, it is set to zero (Lines 31-33).
FOUNDBESTSOL is then set to False to see whether there is any solution improvement in the
following iteration (Line 34). Subsequently, Temp is decreased by « (Line 35), and ITER
is increased by one for the next iteration. This whole process is terminated when there is
no solution improvement after 8 successive temperature reductions or the amount of routes
generated in either one of 2., £2,, or £2; has reached £2,,4x (€.8., 2max = 2000 in our case).

4.2.3 Phase 2: Solving the set partitioning formulation
Given the routes kept in £2., £2,,, and £25, phase 2 finds a combination of routes that min-
imizes the total cost of the entire processes. In order to complete this task, we build the

following set partitioning formulation. Additional parameters and decision variables needed
in this phase are listed in Table 4.

Min Z cpx, + Z olx! + Z o'x"+ H Z X, + Z X + Z x, (56)

resf. res2, resfg ref2. res2, resfg
A .
> ajx, =mj VieC (57)
ref2.

@ Springer



Table 4 List of additional parameters and decision variables in phase 2

Additional Parameters

c, transportation cost of route r (r € §2.)

) transportation cost of route r (r € §2,)

) transportation cost of route r (r € §25)

1 transportation time of route r (r € £2.)

i transportation time of route r (r € £2,)

1 transportation time of route r (r € £2)

a;, 1 if customer i is visited by route r; 0 otherwise (i € C,r € £2;)
aj, 1 if outlet i is visited by route r; 0 otherwise (i € C,r € £2,)
al 1 if supplier i is visited by route r; 0 otherwise (i € C,r € £2;)

Additional Decision Variables

X, 1 if route r is selected; 0 otherwise (r € £2.)
x) 1 if route r is selected; O otherwise (r € £2,)
x) 1 if route r is selected; 0 otherwise (r € §2;)
Y ajx! =m] YieO (58)
resf2,
a;lr/x;// = m;// Vies 59)
res2
Yoxl+ Y a Y K=V (60)
ref. resf2, res;
t/x. < Tcpmax Vr € 2, 61)
t/x! < Todpmax Vr € 2, (62)
t"x" < Tsdmax Vr € 24 (63)
Tcpmax + Todpmax + Tsdmax < Tiax (64)

Objective function (56) minimizes the total transportation and operational costs. All
mandatory visited nodes are visited, as required in Constraints (57)—(59). Constraint (60)
limits the number of selected routes (i.e., it does not exceed the number of available vehi-
cles). Constraints (61)—(64) ensure that the time horizon is not exceeded. In order to speed
up the calculations for the set partitioning, we warm-start the CPLEX solver with the Sol*
obtained from the first phase.

4.2.4 ALNS operators

This section explains the list of ALNS operators in greater detail. In total, there are six
DESTROY and nine REPAIR operators, respectively. The DESTROY operators are actually
created to select which nodes to remove from the current solution in a better way than to
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remove nodes randomly. Subsequently, REPAIR operators are implemented to re-insert back
those removed nodes in better positions. Each operator has a different criterion to choose
nodes.

A brief overview of why those operators are implemented in ALNS is illustrated in Fig. 4.
A good combination of the selected operators within one iteration may lead to a better
solution. It may reduce the number of vehicles used from three vehicles to two vehicles (see
number of routes between S1 S2 S3 S4 S5). It may also reduce the overlap routes between
C3 and C4. These two factors (number of vehicles used and travel distance) are the costs
employed to evaluate the quality of the solution.
Random removal (R;) randomly remove a node from Soly. It introduces randomness in the
search process.

Worst removal (R;) remove a node that has the x'" highest total cost difference between
including and excluding this node in or from its current route. Every time R» is applied, x
is decided by (65), where y; ~ U(0, 1), p = 3, and £ is the number of candidate nodes that
is formally formulated in (66) (Case 1).

x =y} x§&] (65)
Casel : |C| + |S| — REMOVEDNODES, for Ry

& = {Case2 :|C|+ |S| — REMOVEDNODES — 2, for R4, Rs (66)
Case3 : REMOVEDNODES, for Iy

Route removal (R3) randomly select a vehicle and remove its visited nodes. The purpose
is to reconstruct the route sequence in a selected vehicle. When a vehicle visits less than
nodes, then all nodes visited by this particular vehicle are removed; otherwise, only a subset
of random nodes is removed until 7 is reached.

Node pair removal (R4) remove a pair of nodes that has the xth highest arc cost between
them. Here, x is determined by (65), while & follows (66) case 2. The idea is to remove two
adjacent nodes with a high arc cost from Solp, such that when REPAIR reinserts them back
into Soly, they can be located in better, probably separated, positions.

Worst pair removal (Rs) similar to R, but Rs chooses a pair of nodes instead of only one
node. The underlying difference between R4 and Rjs is that R4 only focuses on the arc cost

Original solution New neighborhood solution

PN
42 a

(@) (b) (c)

Fig.4 Example on how ALNS finds a neighborhood solution: a original solution, b incomplete solution after
applying destroy operator, ¢ new neighborhood solution after applying repair operator
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between two nodes, while Rs5 considers the overall costs. The value of x is determined by
(65), while & is determined by (66) (Case 2).

Shaw removal (Rs) remove a node that is highly related with other removed nodes such
that it is easier to replace the positions of one another during the repair process. Let us
define node i as the last removed node and node j as the next candidate to be removed. The
relatedness value of node j (¢;) to node i is calculated by (67), where ¢; to ¢3 are weights
given to each of the related components in terms of travel distance, travel time, and node
position (/;; = —1 if nodes i and j are in the same vehicle; 1 otherwise). It means that the
lower the ¢; is, the more related node j to i is. Rg is started by randomly selecting a node
to be removed, setting this node as i, and then calculating ¢; for the remaining nodes in
Soly. Next, node j with the lowest ¢; is selected and removed from Soly. We implement

b1 =¢r=¢3=1.

pre; + ot + @3lij,  ifi € C
pj = ¢ie; + dat]; + ¢3lij, ifieO (67)

¢>1el’.;-/ + ¢21‘i/}/ + ¢3ll’j, ifi e §

Greedy insertion (/;) insert a node to a position with the lowest insertion cost (i.e., total
cost (TC) difference between after and before inserting a node into a particular position).

k-regretinsertion (I, I3, Is) aregret value is defined as the difference in objective function
values when node j is inserted in the best position (denoted as 7C;(j)) and in the k-best
position (denoted as T Cr(j)). Here, k is equal to 2 for I», 3 for I3, and 4 for /4. The node
with the largest regret value (see (68)) is then inserted in its best position.

k
argmax Z(Tci(j) - TCl(j))} (68)

JEREMOVEDNODES | ;=

Greedy insertion with noise function (I5) an extension of I; by introducing a noise func-
tion to the objective function value (69) when calculating the total cost after inserting a
node into a particular position. Here, € is the maximum transportation cost between nodes
(problem-dependent), 1 is a noise parameter (set to 0.1 in our case), and y, ~ U(—1, 1).
This noise function introduces randomness in the process.

TChew=TC+exuxy (69)

k-regret insertion with noise function (lg, I7, I3) an extension of I, I3, and I4 by applying
a noise function to the objective function value (69) when calculating T7C; Vi € {1, ..., k} in
(68). This noise function also introduces randomness in the process.
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GRASP insertion (/y): similar to 7, but instead of choosing the position of the node
with the lowest insertion cost, I9 chooses the insertion position of a node that has the x’ h
lowest insertion cost. By doing so, other nodes may have a chance to be selected. Here, x is
determined by (65), while & is determined by (66) (Case 3).

5 Computational results

This section presents the experiments and the analysis of the results. We first describe
the benchmark instances as well as the experimental set-up of this study in Section 5.1.
Section 5.2 summarizes the parameter setting used for the proposed matheuristic.
Section 5.3 presents the experimental results on the given benchmark instances and a
thorough analysis. The results of the newly proposed larger instances are also presented.
The importance of solving the set partitioning formulation is discussed in Section 5.4.
Section 5.5 analyzes the performance of the ALNS operators.

5.1 Benchmark instances

Widjaja et al. [13] introduced two sets of benchmark VRP-RCD instances. Both sets consist
of 30 problem instances with 15 (Set 1) and 40 (Set 2) nodes, respectively. These instances
were initially adopted from the available benchmark VRPCD instances [4] by adding several
parameters that are related to the VRP-RCD, such as:

— number of outlets (|O])

— outlets’ transportation cost (el’.’].), time (tl.’;.), and demand (d}})
—  amount of customers and outlets’ returned products (el
— percentage of defective products (pi)

We also introduce a new set (Set 3) with larger VRP-RCD instances of 65 nodes by
applying the above-mentioned modifications to a set of VRPCD instances. Table 5 summa-
rizes the parameters of all sets. We make these instances and our solutions available online
on https://www.mech.kuleuven.be/en/cib/op/opmainpage#section-50.

The mathematical model is solved by optimization software CPLEX 12.9.0.0, limited to
three hours for solving each instance. Our proposed matheuristic is coded in C++ with an
additional CPLEX solver to solve the set partitioning formulation. The matheuristic is run
five times for each instance. All experiments are executed on a computer with Intel Core
i7-8700 CPU @ 3.20 GHz processor, 32.0 GB RAM.

5.2 Parameter setting

We perform a standard full factorial design to determine the parameter values of six param-
eters used in the matheuristic. For each parameter, three different values are considered, as
summarized in Table 6. In total, there are 729 combinations.

The experiments are conducted on 10 randomly selected instances from Sets 1 to
3, and the average costs and CPU times are recorded. For each combination, we cal-
culate the average cost and average CPU time over all test instances. However, before
taking the average, those values are first normalized since each instance has its own
range of cost. Figure 5 plots the trade-off between solution quality (cost) and CPU time.
This figure also gives us some sense of which parameters affect cost and CPU time the
most.
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Table 5 VRP-RCD parameter values

Set 1 Set 2 Set 3
S| 4 7 12
IC] 6 23 38
10| 5 10 15
v 10 20 30
q 70 150 150
c 1 1 1
H 1000 1000 1000
Tnax 960 960 960
e,fj, e;}, e,’}’ U ~ (48,560) U ~ (48,480) U ~ (48,560)
ti/j’ ti/}, ti/}/ U ~ (20,200) U ~ (20,100) U ~ (20,200)
2kes dix U~ (5,50) U~ (5,20) U ~ (5,30)
Dkes ik 2okes Tk U~ (5,50) U~ (5,20) U~ (5,30)
Pk U ~ (0,0.05) U ~ (0,0.05) U ~ (0,0.05)

Figure 5 shows that the stopping criterion (9) and number of iterations in each tem-
perature (ns4) have a huge impact on both cost and CPU time, compared to any other
parameters. The higher the values are set to these parameters, the better is the cost we may
get. However, the CPU time is also greatly impacted. We hence decide to choose the middle
value for both parameters.

From Fig. 5a and d we observe that setting the initial temperature (7p) and the reaction
factor (y) with high values has a positive impact on minimizing both total cost and CPU
time. Setting o (see Fig. 5b) to 0.9 clearly reduces the CPU time, but results in the worst
total cost. Hence, we choose 0.95, although it results in a slight increment on CPU time.
A trade-off between solution quality and CPU time must be made on deciding the value of
naLns (see Fig. 5e). The low level (e.g., 100) might save CPU time, but the solution quality
is worse compared to the high level (300). For this case, we prioritize solution quality over
CPU time. Hence, for the rest of our experiments, we set the following parameter values:
To =20, =0.95,0 =50,y =0.9, narns = 300, and nsa = (|S| + |C| +10]) x 2.

5.3 Solving benchmark VRP-RCD instances

Optimization software, CPLEX, is able to obtain optimal solutions for Set 1 instances,
while for instances in Sets 2 and 3, we only report the best solution found, because CPLEX

Table 6 Matheuristic parameter

values Parameter Value
To 5,10, and 20
o 0.85, 0.9, and 0.95
0 10, 50, and 100
14 0.7,0.8,and 0.9
NALNS 100, 200, and 300
nsa (SI+ICI+10D) x 1, (S| +C|+]0]) x 2,

and (|S|+ |C|+|0]) x 3
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Fig.5 Cost and CPU time comparison in each parameter value: a 7o, b o, ¢ 6,d y, e narns, and f nsa

is unable to solve them optimally within three hours of CPU time. In some instances,
CPLEX is even unable to find any feasible solution, which we mark as “-”. For the proposed
matheuristic, we present the average objective function value over five runs (total cost, T C)
with the respective gap towards CPLEX results (following (70)). The best solution from all
five runs is also included, as indicated by TCp,y;.

TC, istic — TC
Gap(%) _ mathet;gi;LEX CPLEX % 100 (70)

In order to evaluate the performance of the proposed matheuristic, we compare the results
against those of: 1) a pure ALNS algorithm, 2) ALNS without the adaptive scheme to select
operators but with an SA acceptance criteria (namely LNS-SA), and 3) ALNS-SA of [16].
These three algorithms are also run five times with the same CPU time as the matheuristic
for a fair comparison. The gap between the matheuristic and baseline algorithm results is
calculated by (71). The CPU times of CPLEX and all algorithms (matheuristic, ALNS,
LNS-SA, and ALNS-SA) are also summarized for further assessing the performance of our
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proposed matheuristic. All results are summarized in Tables 7, 8, and 9 for Sets 1, 2, and 3,
respectively. The best or lowest cost obtained for each instance is indicated in bold.
Gap(%) _ TcmatheLislic — T Cpaseline % 100 (71)
T Cpaseline

For Set 1 (refer to Table 7), the proposed matheuristic is able to find all optimal solutions
obtained by CPLEX within very short CPU times. Furthermore, we note the consistency
of the matheuristic’s performance when obtaining these solutions, as it always finds the
optimal solution in each run. On the other hand, ALNS, LNS-SA, and ALNS-SA are only
able to find the optimal solutions of 28, 27, and 25 instances, respectively.

When we consider a larger set of instances (Set 2 in Table 8), CPLEX is unable to get
any optimal solutions within three hours for these instances. On the contrary, all algorithms
(ALNS, LNS-SA, ALNS-SA, and matheuristic) are able to obtain better solutions than
CPLEX for all instances within less than half a minute on average, with matheuristic results
being the best among all. It outperforms ALNS, LNS-SA, and ALNS-SA by 0.71%, 0.5%,
and 0.44%, respectively, on average.

In terms of the best solution found (TCp,s;) within five runs, LNS-SA is able to
find the most TCp,s;, which implicitly shows us that giving chances to the previously-
less-successful-operators to generate new solutions could be beneficial, followed by the
proposed matheuristic, ALNS, and ALNS-SA, respectively. In some instances, ALNS-SA
obtains better solutions than those of the matheuristic. The reason is that the stopping cri-
teria for the ALNS-SA inside the matheuristic are not used as the stopping criteria for the
pure ALNS-SA (which is time). Therefore, the pure ALNS-SA generates more routes than
the routes available for the set partitioning in the matheuristic. Some of the ALNS results
are also better than those of the matheuristic, which shows us that it might be beneficial to
always generate or explore a new neighborhood solution from the best solution found so far
(Sol*), instead of the starting point of each iteration (Sol’).

Finally, for the largest instance set (Set 3 in Table 9), CPLEX is unable to provide any
feasible solution within a given three hours of CPU time. ALNS, LNS-SA, and ALNS-SA
provide reasonably good solutions that are further improved by the matheuristic by 1.18%,
0.67%, and 0.62%, respectively, on average. Comparing the best solution found within five
runs (TCpess), all algorithms provide almost similar numbers of TCp,s;, which are 9, 6,
8, and 8 instances for ALNS, LNS-SA, ALNS-SA, and matheuristic, respectively. In this
instance set, all algorithms are able to provide these solutions with less than 10 seconds of
computational time.

These results conclude that designing a matheuristic is clearly beneficial for obtaining
a better solution quality. On average, our proposed matheuristic is able to obtain the best
solutions compared to all baseline algorithms. This shows the ability of the matheuristic to
provide stable and robust results over its runs. By using a heuristic scheme to perform the
column generation, the search process can be done in much shorter running time compared
to the branch-and-cut process as in CPLEX. However, the matheuristic can only prove the
optimality over all observed columns found in the first phase, unlike CPLEX, which is able
to prove it among all possible solutions.

5.4 Importance of solving the set partitioning formulation
We analyze the importance of implementing the set partitioning formulation (phase 2) in the

proposed matheuristic. For each instance, we calculate the improvement made by solving
phase 2 of the matheuristic, compared to solving phase 1 only. We therefore present the
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trade-off between these two aspects and summarize them in Table 10. The improvement is
calculated by (72). The average improvement (%) for each set of instances, as well as the
computational time of solving phase 1 and CPU time of solving both phases 1 and 2 (1+2),
is presented.

(ﬁphaselJrZ - ﬁphasel) «

100 (72)
Tcphase]

Improvement (%) =

Solving the set partitioning formulation is remarkably important towards solution qual-
ity, because we notice that the improvement is increasing when we solve larger instances.
Furthermore, phase 1 (ALNS) alone might not be able to find optimal solutions for Set 1.
This shows us that some of the observed routes that are ignored in the ALNS search are
indeed those good routes that form an optimal solution. However, solving the set partition-
ing formulation obviously requires another additional CPU time. Hence, if one only cares
about the CPU time, then solving phase 1 of our matheuristic is good enough to provide a
reasonably good solution. We also evaluate the importance of the set partitioning implic-
itly by comparing its performance to an ALNS given equal CPU time as the matheuristic in
Section 5.3. It can be concluded that solving the set partitioning formulation leads to better
solution quality when using equal CPU time.

5.5 Analysis of operators

This section analyzes the importance of operators used in the first phase of the proposed
matheuristic. The frequencies of selecting operator j, count;, and successful selection (e.g.,
better solutions), success , are recorded. For example, within an iteration, R is selected to
remove 7 nodes from the solution, and afterwards /5 is selected to reinsert 7 nodes back
into the solution. In this case, each countg, and county, are increased by one. If the newly
generated solution (we call it a neighborhood solution) improves either Sol’ or Sol*, then
successg, and successs are increased by one. When the matheuristic is terminated, the
success rate of each operator is calculated by (73).

. success; .
Operator j success rate (%) = — x 100 Vj e RUI (73)
cou

nt;

Figure 6 plots the success rates, which are divided by an average per set and an average
of all instances in all sets. It illustrates that the operator performance is similar for different
sets. We conclude that g is far less likely to successfully generate better solutions. Here,

Table 10 Improvement made by

solving the set partitioning Improvement (%) CPU time CPU time
formulation phase 1 phase 142
Set 1 —-0.91 0.11 0.21
Set 2 —0.95 0.74 18.92
Set 3 —1.31 2.50 8.07
Average —1.06 1.11 9.07
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Fig.6 Operators’ success rates

Rs, 11, Is, and Iy have somewhat lower success rates compared to the other operators, while
R>, Rs, I, I3, 14, I, and Ig have higher success rates. This denotes that a simpler algorithm
might be designed by employing a subset of the current operators rather than utilizing all of
them.

In order to verify the above idea, we introduce two variants of our matheuristic: variant
(ii), where Rg, I1, I5, and Iy are excluded; and variant (iii), where only R», Rs, I2, I3, 14, I¢,
and /g are considered. These two variants are compared against the original matheuristic that
employs all 15 operators: variant (i). The difference of objective function values obtained is
calculated by (74).

ﬁvariant(i) - ﬁvariant(ii)(Orﬁvariant(iii)) «

Gap(%) = —
T Cyariantii)(0r T Cyarianeiiiy)

100 74)

Table 11 summarizes the results for all scenarios in terms of solution quality and CPU
time. It is interesting to see that a lesser amount of operators used implies a worse perfor-
mance of the matheuristic. It seems that less successful operators are still required in order
to explore the entire solution space. Furthermore, we observe that the number of operators
employed does not have a significant impact on the CPU time.

Table 11 Comparison between employing all operators and removing some operators

Instance TC Gap (%) Average CPU time(s)

(1) (ii) (iii) (ii) (iii) @) (ii) (iii)
Set 1 9700.7 9716.6 9719.7 —0.17 —0.20 0.21 0.19 0.19
Set 2 12372.7 12429.6 12485.6 —0.46 —0.91 18.92 17.95 15.56
Set 3 27385.1 27464.5 27498.6 —0.28 —0.40 8.07 10.22 12.39
Average 16486.2 16536.9 16568.0 —0.30 —0.51 9.07 9.45 9.38
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6 Conclusion and future work

This research studies the integration of the vehicle routing problem and cross-docking
to handle reverse product flow, namely the vehicle routing problem with reverse cross-
docking (VRP-RCD). Our study is motivated by the recent trend whereby optimizing
reverse logistics is a source of profitability and competitiveness for various industries. The
main objective is to minimize the overall cost in the distribution systems, such as the
transportation costs and the fixed vehicle costs.

We propose herein a matheuristic algorithm based on an adaptive large neighborhood
search (ALNS) algorithm and a set partitioning formulation. ALNS focuses on generating a
list of feasible candidate routes. A set of 15 operators is employed for generating neighbor-
hood solutions. A set partitioning formulation is then used to find the best combination of
routes with respect to the VRP-RCD constraints, for example the limited number of vehicles
and the time horizon.

The proposed matheuristic is tested on benchmark VRP-RCD instances and newly gen-
erated larger instances. The results show that the matheuristic is able to obtain all optimal
solutions for small instances (15 nodes) within much shorter CPU time than CPLEX and
outperforms CPLEX and three algorithms (ALNS, LNS-SA, and ALNS-SA) on larger
instances with 40 and 65 nodes. Further analysis on the matheuristic properties such as
the set partitioning formulation and the operators are also presented. Solving the set parti-
tioning formulation leads to better solution quality, even though it takes more CPU time.
In our case, it improves the performance by 1.06% on average. Finally, we illustrate
that even operators that are less successful can still be necessary to obtain high quality
results.

This research contributes to the literature by designing a matheuristic approach that
effectively tackles the VRP-RCD in a four-level supply chain network. This actually
provides managerial insights for managing returned products. Future research should
focus on the obvious next step, which is the vehicle routing problem with forward and
reverse cross-docking. Other considerations from practice could also include: split deliv-
eries, a heterogeneous fleet, and multiple cross-docks. Developing and solving new and
larger instances with up to hundreds of nodes can be explored as well, because real-
sized problems faced in practice are probably larger than the instances considered in this

paper.

Appendix A: Supplier delivery process constraints

The constraints occurring in the supplier delivery process are formulated as follows.

LY Y e Y- arvies a9

veV ieSU0,i#j ieO ieC veVieO

Zr;;+zr;j_ZZA;;vze_L<1_Z 3 x;;.’v> vies  (6)

ieO ieC veVieO veV ieSU0,i#j

o> X =LY X eV (77)

ieS jes,j#i jes
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Yo oxi'= > x"VleSVveV (78)

ieSU0,i#l jesuo, j#£l
YooY xP<ivjes (79)
veV ieSUO

Sapz (T X - ray)-L(1-X ¥ ) vies 6o

veV i€e0 ieC veVieO veV ieSUO
Sars (TR r ) +L(i-X X ) vies o

veV i€e0 ieC veVieO veV ieSUO
L > x"=Al"VjeS VeV (82)

ieSU0,i#j
q" =) _ A" VeV (83)
jes
g" >qy" — A" =L —xp¥) VieS,YveV (34)
g <ql® — A"+ LA —x") VieS,YveV (85)
q) =q/'—A7" — LA —x]") Vi,jeS.YveV (86)
97 <q" = A"+ L0 —x[") Vi,jeSYveV (87)
9" <q YveV (88)
Wi =ul +1- |S|( Zf””) Vi,jes (89)
veV

Constraints (75) and (76) ensure that if either there exist outlets’ returned products or
there are some returned products from customers that are not sent to any outlet (including
the defective products), then the supplier that supplies the product will be visited. Con-
straint (77) ensures that for every vehicle used in this process, it always starts its trip from
the cross-dock. Constraint (78) ensures the outflow and inflow of a vehicle in each supplier
node. Constraint (79) ensures that each supplier is visited at most once. The amount of prod-
ucts delivered to each supplier is calculated in constraints (80) and (81), while ensuring no
split delivery occurs as in constraint (82). Constraints (83) to (87) track the total load inside
a vehicle. Constraint (88) ensures that the total amount of products delivered to all suppli-
ers in a vehicle does not exceed vehicle capacity. Constraint (89) is the sub-tour elimination
constraint.
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